Tính toán thiết kế hệ thống mô phỏng chuyển động phục vụ huấn luyện tăng

Lời nói đầu Trong thời đại công nghiệp hoá và hiện đại hoá, sự phát triển của ngành máy thủy lực đóng một vai trò quan trọng, góp mặt trong hầu hết các nghành các lĩnh vực. Do có những điểm nổi bật như kết cấu gọn nhẹ, hiệu suất, công suất cao, dễ tự động hóa, độ an toàn cao . nên các hệ thống truyền động thủy lực ngày nay là sự chọn lựa mang tính hiệu quả và kinh tế. Lĩnh vực mô phỏng chuyển động là lĩnh vực tương đối mới trên thế giới và ở Việt Nam, hầu như không có tài liệu liên quan đến lĩnh vực này trong giảng dạy cũng như trong thực tế và với một số nước nó còn là tài liệu hạn chế tiếp cận. Dám đi vào tìm tòi những cái mới là điều mà sinh viên trường Đại học Bách Khoa và đặc biệt là sinh viên nghành Thủy Khí nên làm. Sau khi nhận hướng đề tài của giáo viên hướng dẫn, em thấy đây là đề tài còn rất mới và rất thiết thực trong tình hình phát triển nghành thủy lực trong nước hiện nay. Đề tài tính toán thiết kế hệ thống mô phỏng chuyển động phục vụ huấn luyện tăng, thiết giáp là một đề tài khó, cần những hiểu biết tổng thể và cần có hướng nhìn xây dựng một hệ thống mở trong khi có sự hạn chế về tài liệu tham khảo hệ thống tương tự. Tuy vậy, với sự cố gắng của bản thân, cùng với những điều học hỏi từ các thầy cô trong bộ môm Thủy khí - Hàng không và sự hướng dẫn sát sao của giáo viên hướng dẫn, em đã hoàn thành đồ án dưới dạng một thiết kế tổng thể để từ đó có thể chế tạo thành công hệ thống mô phỏng chuyển động trong nước với chi phí thấp, thích ứng với các điều kiện kĩ thuật trong nước hiện có. Trong quá trình làm đồ án này do còn thiếu kiến thức thực tế cũng như chưa hoàn thiện về kiến thức chuyên môn, cách tiếp cận một vấn đề khoa học cho nên không thể tránh khỏi những sai sót về nội dung cũng như cách thể hiện. Vì vậy em rất mong được sự chỉ bảo, tham gia góp ý của các thầy, cô, các bạn và những người đã quan tâm tới nội dung đồ án của em. Để hoàn thành được toàn bộ nội dung đồ án này em xin chân thành cảm ơn Thầy giáo - TS Hoàng Sinh Trường, thầy giáo TS Phạm Văn Khảo cùng cảm ơn các thầy, cô giáo trong bộ môn. Hà nội ngày 5 tháng 5 năm 2005 Sinh viên thực hiện : Lớp Máy Thủy Khí - K45 Bộ Môn Kĩ Thuật Hàng Không và Thủy Khí Trường Đại Học Bách Khoa Hà Nội Mục lục: TỔNG QUAN Tổng quan hệ thống mô phỏng chuyển động. 1 Hệ thống mô phỏng chuyển động phục vụ huấn luyện lái xe tăng, thiết giáp. 4 Cấu trúc và nguyên lí làm việc của hệ thống. 7 Chương1 Hệ thống khung giàn cơ khí1.1 Yêu cầu của khung giàn hệ thống. 17 1.2 Thiết kế sơ bộ khung giàn cơ khí. 18 1.2.1 Chọn hệ truyền động cho hệ thống.                                         18 1.2.2  Tính toán sơ bộ kích thước khung.                                          19 1.2.3 Kiểm nghiệm kích thước đã chọn của khung cơ khí. 28 1.3 Thiết kế chi tiết khung giàn cơ khí. 1.3.1 Chi tiết lắp khớp cầu của xi lanh với khung sàn. 33 1.3.2 Chi tiết lắp đầu dưới của thanh X1 và X2 với khung đế. 37 1.3.3 Chi tiết X1 và X2 (Hình chữ T). 38 1.3.4 Chi tiết trượt trên trục trượt. 40 1.4 Tính bền hệ khung cơ khí. 1.4.1 Xác định tải trọng động cho hệ thống khung giàn. 42 1.4.2 Tính bền cho các mối hàn. 43 Chương2 Hệ thống thủy lực 2.1 Chọn sơ đồ nguyên lý hệ thống thủy lực. 48 2.1.1 Giới thiệu chức năng phần tử thuỷ lực trong hệ thống. 50 2.1.2 Nguyên lý hoạt động của hệ thống thuỷ lực. 52 2.2Tính chọn thiết bị trong hệ thống. 54 2.2.1 Tính chọn xilanh, piston. 54 2.2.2 Tính chọn đường ống. 55 2.2.3 Tính chọn bơm nguồn. 57 2.2.4 Tính toán kích thước bể dầu. 61 2.3 Tính chọn van. 66 2.3.1 Giới thiệu van tỷ lệ. 66 2.3.2 Tính chọn van phân phối. 72 2.4 Van tỷ lệ 4WRKE. 72 Chương3 Hệ thống điều khiển 3.1 Chọn phương pháp điều khiển hệ thống . 75 3.2 Giới thiệu về hệ thống PLC S7-200. 3.2.1 Cấu hình phần cứng và đặc tính kỹ thuật. 81 3.2.2 Kết nối phần cứng. 90 3.2.3 Cấu trúc bộ nhớ. 91 3.2.4 Cách thức lập trình. 94 3.3 Truyền thông cho hệ thống mô phỏng. 96 3.3.1 Chuẩn truyền RS23. 97 3.3.2 Chuẩn truyền RS485. 98 3.4 Điều khiển hệ thống. 3.4.1 Phần mềm mô phỏng. 99 3.4.2 Phần mềm điều khiển giàn mô phỏng. 100 3.4.3 Phần mềm test hệ thống. 107 Chương4 Mô phỏng và khảo sát hệ thống 4.1 Mô hình hóa hệ thống cho một mạch vòng điều khiển. 108 4.2 Xây dựng hàm truyền. 110 4.3 Khảo sát hệ thống bằng phần mềm Matlab. 114 Kết luận 119

doc18 trang | Chia sẻ: lvcdongnoi | Lượt xem: 2664 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Tính toán thiết kế hệ thống mô phỏng chuyển động phục vụ huấn luyện tăng, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
DESIGN AND DEVELOPME NT OF 6 -DOF MOTION PLATFORM FOR VEHICLE DRIVING SIMU LATOR Assoc. Prof. Dr Mohamad Kasim Abdul Jalil (Project Head) Design Department, Faculty of Mechanical Engineering 81310 Universiti Teknologi Malaysia kasim@fkm.utm.my 1.0 Introductions Driving simulators are often used in educational and research purposes. Driving Simulators’ capability in producing a virtual driving environment resembling real driving condition can be used to train novice drivers before they are exposed to the real world. Aside from that, driving simulators are important in data collection for road safety research, human factor study, vehicle system development and also traffic control device development. These allow designers, en gineers as well as ergonomists, to bypass the design and development process of detailed mockups of the automobile interiors for human factor and v ehicle performance studies. Driving simulators range in complexity, capability and can be classified into 3 major groups: high, medium and low -level driving simulator. Figure 1 shows the classification of driving simulators. Some ex amples of high level s imulators are, the National Advanced Driv ing Simulator NADS in IOWA, USA and the Toyota Driving Simulator in Susono City, Japan which started its operation on Nov 2007. These high level simulators have sophisticated systems such as a dome with 360 degree p rojection screen for virtual environment generation. They are also equipped with a full vehicle cab and a large motion platform which can mimic the driving conditions. Low level simulators can be relatively simple which only r equire personal computer or gr aphical work station, monitor and a simple cab and driving controls. Between these two extremes is the mid -level driving simulator. Mid -level driving simulators can have adequate fidelity, validity and realism; yet affordable compared to the “world class” or high -level driving simulator. With proper configuration and harmonization of the visual, motion and cues, they can perform a wide range of driving scenarios and tasks. Figure 2 shows a few example of driving simulators Figure 1 : Driving simulator classification. b. 5DT driving simulator a. Toyota driving simulator d. Honda driving simulator c. National Advance Driving Simulator Figure 2 : Driving Simulator Example 2.0 Project Objective Road safety has always been a major concern for the Malaysian Government. The rapid increases in motor vehicle ownership in combination with the relatively young age of the populations and wide mix of vehicle types in the recent years ha ve resulted in a significant increase of road safety problems. Various engineering approaches have been taken b y the Government to overcome the problem. They are proactive actions, reactive actions, road maintenance and building new roads. In conjunction w ith the effort in the proactive actions, a research in developing a driving simulator was started in 2002 in Universiti Teknologi Malaysia by the Engineering Visualisation Research Group (EngViz). The driving simulator will provide the platform for future research related to road safety and transport. At the end of the first stage of the research, a fixed base driving simulator with Visual Database and a generic v ehicle dynamic model, also known as Universiti Teknologi Malaysia Vehicle Dynamic Model (UTMVDM ) was developed. A topographical-based visual database based on Universiti Teknologi Malaysia landscap e was successfully constructed using virtual reality technology. A simple driver’s cabin with generic vehicle dynamic model (UTMVDM) is also developed. Th e developed vehicle dynamic model is compatible for operator -in-loop simulation requirements of a low cost fixed -base driving simulator. a. Virtual Database b. Driving Simulator Cabin c. Vehicle Dynamic Model Figure 3: Design and development of a virtual reality fixed base driving simulator. The second stage research work was aimed to integrate a motion platform to the existing fixed based driving simulator. While driving a vehicle, a driver experiences the ride and handling characteristic of the vehicle through motion cues du e to angular and linear accelerations of the vehicle chassis. The motion platform for driving simulator is a mechatronic equipment that is capable of gi ving the realistic feeling of a actual vehicle to the drivers. This is a research that involves multidisciplinary engineering skills. It is divided into 3 parts which is the motion platform mechanism design and fabrication, control system design and simula tion and finally the integration of both control and actual model. Figure 4 shows the overall project layout Design and Development of a 6 - DOF Motion Base Control System Design Mechanism Design and Simulation and Fabrication Integration Validation or Verification Figure 4 : Project Layout 3.0 Motion Platform Mechanism Design and Fabrication The motion platform design is based on the Stewart platform design configuration. Stewart platform is selected because it is parallel robot manipulator with 6 parallel links which is capable of moving in 6 -DOF. The upper platform connects all 6 parallel links forming a closed loop mechanism. This allows the platform to have good performance in terms of accuracy, rigidity and capable of handling large payload. The motion platform design is shown in figure 5. Figure 5: Motion platform design 4.0 Motion Platform Control System Design and Simulation 4.1 Motion Platform System layout The motion platform is interfaced with control model in order to perform the 6 - DOF motion cues. The motion platform system layout is presented in figure 6. First, the desired motion platform positions are fed into the simulation model from the UTMVDM. The motion platform simulation model then calculates the required actuators length to perform the motion cues. The model sends the input signal and passes through a PID controller to the data acquisition system (DAQ). In the mean time, the simulation model also passes the output data to SimMechanics. Communication between the mathematical model and DAQ is established using S -Function written in C pro gramming language. The digital signal is converted to analog signal and pulse width modulation (PWM) signal to control the motor driver which drives the DC actuator. The DC actuator position signal is retrieved using potentiometer. The signal is converted to digital signal through the DAQ and filtered with low pass filter before feedb ack to Proportional -Integral-Derivative Controller (PID) as error signal. This completes the close -loop control system. DAQ Card Hardware MATLAB Simulink Desired Motions (UTMVDM) Analog to PWM Signal Converter Digital to Analog Signal PID Motor Converter Controller Driver E rro r + Mathematic al Model for - S 6-DOF F Power u Motion n Supply c Platform t i o Analog to n Sim Digital Signal Sensor Mechanics Converter POT Low Pass Filter Figure 6: Motion Platform In this project, Proportional -Integral-Derivative controller is used and tuned using Ziegler -Nichols and approximation method. PID controller is by far the most common control algorithm among the control strategies. It is a control strategy that has been successfully applied in various processes over many years. The reason behind this is due to its simplicity, robustness and ability to suit in wide range of applications. For ZN PID controller tuning, the gain value is first increased until the closed -loop system becomes K , which is the gain value is recorded together with the critically stable. The u T is also known as the ultimate T of the system. u corresponding oscillation period, u period Based on the ultimate properties, the tuning parameters is calculated. Table 1 shows ZN PID tuning parameters . In this project, ZN method was able to give an over all guideline in tuning the motion platform control. The PID value is then retuned through approximation or heuristic tuning method. Table 1: Ziegler – Nichols PID tuning parameters Ziegler–Nichols K I D u P 2 K u PI 2 . 2 K 2 . 1 P u u PID 7 . 1 K 2 P 8 P u u u 4.2 Motion Platform Kinematics The kinematics of a robot manipulator describes the relationship between the motion of the joints of the manipulator and the resulting motion of the rigid bodies which form the robot. Kinematics ca n be divided into forward and inverse kinematics. The main role of forward kinematic of a parallel robot is to determine the position and orientation of the mobile platform is the actuators or parallel chain’s lengths are known. This problem has no known closed form solution. The forward kinematic of a Stewart platform can be mathematically formulated in several ways with each having pros and cons. Computation becomes a complex situation when optimization and adaptation is required to obtain an efficient pr ocedure in forward kinematics solution. On the other hand, inverse kinematic provides one exact solution to solve the problem of determining the actuators length for a given position and orientation of th e upper platform. Inverse kinematics is applied in t his project because it provides a starting line for determination of the requirements and limitations of the driving simulator motion platform. Figure 7: Vector diagrams for Stewart platform. Figure 7 shows the vector diagram for a typical Stewart pl atform. Frame {P} is located at the center of upper platform and frame {B} is at the center of lower platform. X -axis is perpendicular Z -axis is pointing upwards and p Figure 7 also shows that the P P and 6 P . The angle between 1 P and 2 P is denoted b y P , and the to the line connecting 1 X -axis is P , 3 P and 5 P is 120°. Similarly for base platform, B P and 3 angles between 1 B is denoted B and 6 B , the angle between 1 B and 2 perpendicular to the line connecting 1 PP B , 3 B and 5 B is 120°. Later, the angles between 1 B and 3 by B and angles between 1 o X is denoted by i and angles between 1 60 B BB and B X by i . Next, 2 i i and p o 60 P ; 2 i i for actuators 1, 3, 5 and B i 1 , for actuators i i i 1 ; P B q q q q ) ( , with respect to the frame {B}, can be express by 2, 4, 6. Leg vector T iz iy ix i the following equations. B p R b d q P B B B (1) i P i i B z T y x d ] [ is the position of frame {P} P p p p p ) ( describes the position of the attachment point P The Vector T iz iy ix i i B b b b b ) ( as the position of the attachment with respect to frame {P}, and vector T iz iy ix i B with respect to frame {B}, then they can be written as point i r P r B r r p ] 0 sin cos [ r b ] 0 sin cos [ T and T for i = 1, 2, …, 6 where P i P i P i i B i B i r represents the radius of the upper platform and base platform, respectively. and B R The R P represents the orientation matrix whereby 0 sin cos 0 cos sin R Y 1 0 0 sin 0 cos 0 1 0 R P cos 0 sin 0 0 1 sin cos 0 R R cos sin 0 And by combining 3 matrixes, we obtain sin sin cos sin cos cos sin sin sin cos cos cos sin cos cos sin sin cos cos sin sin sin cos sin R B R YP R P cos cos sin cos sin s (2) With (Roll/ X angle), (Pitch/ Y An gle), (Yaw/ Z angle) . B q , can be computed into equation (3). l (Leg) of vector i Thus the length i 2 2 2 2 2 r r z y x l B P i ) )( ( 2 b x p r p r 12 11 ix iy ix ) )( ( 2 b y p r p r 22 21 iy iy ix ) ( 2 ) ( 2 yb xb z p r p r (3) 32 31 iy ix iy ix Equation 3 is then used extensively in developing the motion platform mathematical model for controlling the actuators length i n performing 6 -DOF motion task. The developed motion platform mathematical model (Inverse Kinematic Model) is shown in figure 8 and figu re 9. Figure 8: Inverse Kinematic Model Figure 9: Subsystems in Inverse Kinematic Model (Each subsystem represent s an Actuator) 4.3 SimMechanics Motion Platform Generation Process In order to investigate the performance of the developed inverse kinematic model, SimMechanics is introduced in this project . Based on 6-UPU motion platform configuration , a simplified motion platform is developed for SimMechanics. The simplified motion platform is aimed to reduce the total mechanical component yet retaining the main characteristic of the motion platform such as types of joint and its corresponding location . After modeling a simplified motion platform, CAD translation tool is used to transform geometric CAD assemblies into Simulink block diagram model. The CAD translation tool first exports the assembly mod el from CAD platform into physical modeling file with x ml extension. The physical modeling file is then imported into Simulink, creating a SimMechanics model. Figure 10 shows the sequence of CAD to SimMechanics transformation. Simulink CAD Platform CAD XML File SimMechanics Model Translator Generation Model Assembly Figure 10: CAD to SimMechanics transformation sequence The imported xml file will be converted to a SimMechanics block model. The generated SimMechanics model can be visualized while the simulation is running. Figure 11 shows the simplified motion platform in CAD platform and model after it is converted into SimMechanics. (a) Motion Platform in CAD platform (b) Motion platform in SimMechanics Figure 11: Simplified Motion Platform The SimMechanics motion platf orm (SimPlatform) is incorpor ated with inverse kinematics model for actuation control (Figure 12). The inverse kinematic model controls the actuators to extend and/ or retract relatively to one another. The complete SimPlatform Model allows the motion platform motion cues to be visualized . This also helps to test and validate the performance of inverse kinematics model . Figure 12: Complete SimPlatform with inverse kinematic block 4.4 Motion Platform Graphic User Interface (UTMMP GUI) Figure 13 shows the motion platform graphic use interf ace ( UTMMP GUI) is developed for the whole UTM motion platform system control. UTMMP GUI provides controls for the motion platform actuators. It is divided into 5 parts which are colored orange, blue, red, yellow and green. The orange colored subsystem is the Simulink Execution Block. It controls the execution of a Simulink model and allows simulation to run in real time or a factor of real time. The blue subsystem indicates the i nput source which is the inverse kinematic model developed in the earlier stage. It calculates the desired actuator position for a given the vehicle dynamic input and sends the signal as input for UTMMP GUI. The yellow subsystem is where S -function calls for data acquisition system. Green block is the PID controller. The controller can be tune b y altering the parameters in the controller block. Finally is the red subsystem which acts as emergency stop. This is a crucial subsystem whenever the system is out of control, the manual switch can be trigger to stop the simulation immediately. Figure 13: UTM Motion Platform GUI 5.0 Motion Platform Hardware and Simulation Integration After the motion platform is constructed, the motion platform is installed a nd connected to the simulation model through data acquisition system. The complete motion platform system (UTMMP) with data acquisition is shown in figure 14. Figure 15 shows the motion cues performed by the motion platform. a. Complete motion platform system b. Motion platform c. Electronic circuit Figure 14: Motion Platform Complete Setup Idle Position X angle 20° Y angle 20° Z angle 10° X – axis 0.2m Y – axis 0.2m Z – axis 0.2m X, Y angle 15°, X, Y – axis X, Y, Z angle Z – axis 0.2m 0.1m, Z – axis 10° X, Y, Z – 0.2m axis 0.1m Figure 15: Experimental result for motion platform movement 6.0 Conclusion At the end of the research work, a 6 -DOF motion platform prototype for vehicle driving simulator was developed. The motion platform is to provide the vehicle motion while traveling on differ ent road surface conditions. The motion platform can not only be used as driving simulator but also other v ehicle simulator such as small ships and aircraft. 6-DOF motion platform is also often used as earthquake shaking table, vibration platform and in seismic research. An earthquake shaking table or vibration platform is a device for shaking structural models and components with a wide range of simulated ground motions, including reproductions of recorded earthquakes. The motion platform can also be used as positioning devices. With the capabilities of presenting good performance in terms of accuracy and rigid ity, it can be applied in machine tool industries. Last but not least, the knowledge gain from the motion platform research process can be used as stepping stone for future automation, robotics, automotive related research and human factor studies. The future works of the driving simulator project outline are as follows: 1. Motion platform washout algorithm design Integrating of vehicle dynamic model and 6 degree of freedom motion platform Reestablish the data communication between existing vehicle dynamic model and virtual database Optimizing data transfer and simulation performance 2. Motion platform control and system refinement Developed a complete Graphic User Interface for motion platform Implementation of a sliding mode controller using high performance sensors Perform circuitry building, power supply distribution and electronics packaging which is reliable and safe under standard regulations 3. Driving cabin design and instrumentations Design and dev elop a driving simulator cabin Possible of providing vehicle system development Human factor studies and vehicle cabin ergonomics Control and sensor setup

Các file đính kèm theo tài liệu này:

  • doc6can phai doc.doc
  • doc10Motionbase3.doc
  • doc11Motionbase4.doc
  • doc12002_4794.doc
  • doc12Nieuwenhuizen2009b_5974%5B0%5D.doc
  • doc13P82.doc
  • doc14Romansy06.doc
  • doc16The_New_Dynamic_Driving_Simulator_%20DLR.doc
  • doc17vp7kcsur.doc
  • doc20109751.doc
  • doc3DSC2001_aka_paper.doc
  • doc4123919.doc
  • doc5952524.doc
  • doc7esmat.doc
  • doc7HUMANISTA_04Virtual_Reality.doc
  • doc8iftomm03.doc
  • doc9Motionbase2.doc
  • jpgdefault.jpg
  • rarDOAN.rar
  • docG04074(1).doc
  • jpgmotion base.JPG
  • doc`15The True Origins of Paralle.doc