Ảnh hưởng của chiều cao cột tháp đến nội lực trong dầm chủ của cầu Extradosed
THE EFFECT OF PYLONE’S HEIGHT ON INTERNAL FORCE IN SPINE BEAM
OF EXTRADOSED BRIDGE
SVTH: Nguyễn Văn Hòa
Lớp 05X3C, Trường Đại học Bách khoa
GVHD: ThS. Nguyễn Duy Thảo
Trường Đại học Bách khoa
.
ABSTRACT
Extradosed brigde is the kind of constructure combinated between continuous bridge and
cable – stayed bridge.Therefore, it promotes advantages of both. Force of extradosed bridge is
under the effect of many parameters such as: the hardness of spine beam, the rate of span, the
height of pylone, the hardness of pylone, the scope and location locating stayed – cable as well as
force in satyed – cable, etc. This topic concentrates on studying the effect of height of pylone on
force beam.
1. M
1.1. Tổng quan về cầu Extradosed
Cầu bê tông cốt thép dự ứng lực ngoài đặc biệt, trong
đó cáp được đưa lên khỏi mặt cầu và liên kết với cột tháp có chiều cao thấp đặt ở đỉnh trụ.
Đối với cầu BTCT dự ứng lực ngoài thông thường, độ lệch tâm của cáp bị hạn chế trong
phạm vi chiều cao tiết diện của dầm. Để tăng độ lệch tâm của cáp, chúng được bố trí ra
ngoài phạm vi chiều cao tiết diện. Việc tăng độ lệch tâm của cáp căng ngoài sẽ cải thiện
khả năng tạo dự ứng lực tại các khu vực dầm xuất hiện ứng suất kéo trong giai đoạn khai
thác sử dụng.
6 trang |
Chia sẻ: lvcdongnoi | Lượt xem: 3614 | Lượt tải: 1
Bạn đang xem nội dung tài liệu Ảnh hưởng của chiều cao cột tháp đến nội lực trong dầm chủ của cầu Extradosed, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tuyển tập Báo cáo Hội nghị Sinh viên Nghiên cứu Khoa học lần thứ 7 Đại học Đà Nẵng năm 2010
311
THE EFFECT OF PYLONE’S HEIGHT ON INTERNAL FORCE IN SPINE BEAM
OF EXTRADOSED BRIDGE
SVTH: Nguyễn Văn Hòa
Lớp 05X3C, Trường Đại học Bách khoa
GVHD: ThS. Nguyễn Duy Thảo
Trường Đại học Bách khoa
.
ABSTRACT
Extradosed brigde is the kind of constructure combinated between continuous bridge and
cable – stayed bridge.Therefore, it promotes advantages of both. Force of extradosed bridge is
under the effect of many parameters such as: the hardness of spine beam, the rate of span, the
height of pylone, the hardness of pylone, the scope and location locating stayed – cable as well as
force in satyed – cable, etc. This topic concentrates on studying the effect of height of pylone on
force beam.
1. M
1.1. Tổng quan về cầu Extradosed
Cầu bê tông cốt thép dự ứng lực ngoài đặc biệt, trong
đó cáp được đưa lên khỏi mặt cầu và liên kết với cột tháp có chiều cao thấp đặt ở đỉnh trụ.
Đối với cầu BTCT dự ứng lực ngoài thông thường, độ lệch tâm của cáp bị hạn chế trong
phạm vi chiều cao tiết diện của dầm. Để tăng độ lệch tâm của cáp, chúng được bố trí ra
ngoài phạm vi chiều cao tiết diện. Việc tăng độ lệch tâm của cáp căng ngoài sẽ cải thiện
khả năng tạo dự ứng lực tại các khu vực dầm xuất hiện ứng suất kéo trong giai đoạn khai
thác sử dụng.
Hình 1.1- Khái niệm về các giải pháp bố trí cáp căng ngoài có độ lệch tâm lớn.
Cáp dự ứng lực ngoài
(d)
(e) Cáp dự ứng lực ngoài
(b)
Cáp dự ứng lực ngoài
Momen trong dầm
(a) (c)
Momen trong dầm
Tuyển tập Báo cáo Hội nghị Sinh viên Nghiên cứu Khoa học lần thứ 7 Đại học Đà Nẵng năm 2010
312
*Một số cầu Extradosed đã được xây dựng trên thế giới:
STT Tên cầu Sơ đồ bố trí nhịp
Chiều cao cột
tháp (m)
Chiều cao
dầm (m)
Năm hoàn
thành
Nước
1 Tsukuhara 65.4+180+76.4 16.0 3.0-5.5 5/1998 Nhật
2 Shyoyo 99.3+180+99.3 22.1 3.0-5.6 3/1998 Nhật
3 Palau 82+247+82 27.0 4.0-7.0 12/2001 Palau
Cầu Extradosed là dạng kết cấu kết hợp giữa kết cấu của cầu dầm cứng và cầu dây
văng, do vậy phát huy được các ưu điểm của cả hai loại cầu trên.
1.2.
Cáp CĐC được đưa lên trên mặt tiết diện dầm tạo ra độ lệch tâm lớn so với trục
trung hòa của dầm, và cột tháp được coi như là vách chuyển hướng có độ cứng rất lớn →
, do đó khả năng vượt nhịp lớn hơn so với cầu dầm thông thường.
Chiều cao dầm cầu chỉ bằng một nửa so với cầu dầm liên tục. Vì vậy sẽ giảm được
tĩnh tải, giảm chiều cao kiến trúc, nâng cao khoảng tĩnh không bên dưới, rất thích hợp cho
các cầu vượt trong đô thị.
1.3.
Với CDV, phần lớn tải trọng được truyền qua dây văng lên đỉnh tháp và truyền qua
tháp xuống nền móng. Trong cầu Extradosed, cả dầm cứng và cáp văng đều chịu tải trọng.
Một phần tải trọng được truyền qua dầm vào trụ cầu, và phần còn lại được truyền qua cáp
văng, lên đỉnh tháp và truyền qua tháp xuống nền móng → kết cầu cầu Extradosed chịu lực
hiệu quả hơn.
Chiều cao tháp nhỏ hơn so với CDV → phù hợp với cầu vượt trong đô thị, cầu gần
sân bay ...Chiều cao cột tháp thấp cũng tạo điều kiện dễ dàng cho việc lắp đặt cáp văng
cũng như cho công tác duy tu bảo dưỡng sau này.
Do dầm có độ cứng lớn nên biến dạng nhỏ, việc kiểm soát độ võng trong qua trình
thi công đơn giản hơn so với CDV → việc căng chỉnh cáp đơn giản hơn.
Biên độ ứng suất trong cáp văng của cầu Extradosed gần giống như kết cấu cầu
bêtông ứng suất trước và nhỏ hơn khá nhiều so với CDV nên ảnh hưởng do mỏi giảm
nhiều. Ứng suất kéo cho phép đối với cáp văng có thể đạt đến (0.7-0.75)fpu [trong CDV chỉ
đạt (0,4-0,45)(0.7-0.75)fpu ] → số lượng cáp văng có thể giảm xuống và kết cấu neo cũng
không cần đến các loại có khả năng chịu mỏi cao đắt tiền, do đó giá thành xây dựng giảm.
Cáp văng trong cầu Extradose ngắn, độ võng bản thân cáp nhỏ nên dao động của
cáp cũng không phải là yếu tố ảnh hưởng lớn và không quan trọng như ở CDV.
2.
:
+ Dầm chủ: Độ cứng dầm chủ, tỉ lệ nhịp.
Tuyển tập Báo cáo Hội nghị Sinh viên Nghiên cứu Khoa học lần thứ 7 Đại học Đà Nẵng năm 2010
313
+ Cột tháp: Chiều cao cột tháp, độ cứng cột tháp.
+ Cáp văng: Phạm vi và vị trí bố trí cáp văng, lực căng trong các dây.
.
2.1.
- : 2,5m.
2.1:
Việc phân tích kết cấu được tiến hành bằng phần mềm MIDAS/Civil – Version
7.0.1
2.2.
Ảnh hưởng của chiều cao cột tháp đến ứng xử của kết cấu được nghiên cứu bằng
cách thay đổi chiều cao tháp từ 1/15 đến 1/5 chiều dài nhịp chính.
(m) (KNm) 1/2L(KNm) )
)
H=L/15 11 689644,8 74243,1 44,89 13,25
H=L/11 15 506895,1 69845,7 33 12,46
H=L/9 18 371493 66536,6 26,4 11,84
H=L/7 23 241680 62087,1 15,73 11,08
H=L/5 32 168755,8 56510,2 10,98 10,08
-M).
(m) Rat_P Rat_M Rat_P + Rat_M
L/15 11 0,2167 0,2166 0,4333
L/11 15 0,1258 0,1267 0,2525
L/9 18 0,1214 0,1212 0,2426
L/7 23 0,1334 0,134 0,2674
L/5 32 0,1434 0,1449 0,2883
Tuyển tập Báo cáo Hội nghị Sinh viên Nghiên cứu Khoa học lần thứ 7 Đại học Đà Nẵng năm 2010
314
-800000
-700000
-600000
-500000
-400000
-300000
-200000
-100000
0
100000
200000
0 5 10 15 20 25 30 35
H(m)
M
(K
N/
m
)
momen tại trụ momen tại 1/2L
2.2: Quan hệ giữa Htháp-Mdầm
Quan hệ giữa số bó cáp âm và cáp dương với chiều cao tháp
0
10
20
30
4
50
0 5 10 15 20 25 30 35
H(m)
Số
bó
cá
p (
bó
) số bó cáp âm số bó cáp dương
`
2.3: Quan hệ giữa Htháp-cáp trong dầm
Quan hệ giữ tỉ lệ p=Pu/Pr+Mc/Mr trong tháp với chiều cao tháp
0
0.1
0.2
0.3
0.4
0.5
0 5 10 15 20 25 30 35H(m)
p
2.4: Quan hệ giữa Htháp-sức kháng tháp
:
:
+ : (1/15-1/5)Lnhịp mome
23,88%.
Tuyển tập Báo cáo Hội nghị Sinh viên Nghiên cứu Khoa học lần thứ 7 Đại học Đà Nẵng năm 2010
315
+ (1/15-1/5)Lnhịp
75,53%.
(1/15-1/5)Lnhịp
- :
+ =(L/15-L/11), .
+ - .
+ - .
2.3. So sánh nội lực giữa cầu Extradosed có tháp cao 18m(L/9) với cầu dầm liên tục
cùng chiều dài nhịp thi công theo công nghệ đúc hẫng
*Giai đoạn đã có tĩnh tải giai đoạn 2:
Biểu đồ momen ở giai đoạn sau khi đã chất tĩnh tải giai đoạn 2
-200000
0
200000
400000
600000
800000
1000000
1200000
0 50 100 150 200 250 300 350 400
Khoảng cách(m)
M(
KN
m)
biểu đồ momen của cầu liên tục biểu đồ momen của cầu extrdosed
2.5: So sánh nội lực Cầu Extradosed – cầu dầm liên tục
So với cầu liên tục thì nội lực cầu extradosed ở giai đoạn này giảm như sau: M p
biên giảm 2,35%, M giảm 71,47%, M giảm 37,24%.
*Giai đoạn khai thác ( đã có hoạt tải):
-200000
0
200000
400000
600000
800000
1000000
1200000
1400000
0 50 100 150 200 250 300 350 400
Khoảng cách(m)
M(
KN
m
)
momen của tổ ợp cbmax_cầu liên tục
momen của tổ hợp cbmin của cầu liên tục
momen của tổ hợp cbmax của cầu extradosed
momen của tổ hợp cbmin của cầu extradosed
2.6: So sánh nội lực Cầu Extradosed – cầu dầm liên tục
So với cầu liên tục thì nội lực cầu extradosed ở giai đoạn này giảm như sau:
Tuyển tập Báo cáo Hội nghị Sinh viên Nghiên cứu Khoa học lần thứ 7 Đại học Đà Nẵng năm 2010
316
M giảm 40%, M giảm 68,7%, M giảm 20,09%.
*Nhận xét:
Nội lực trong cầu extradosed giảm đáng kể so với câu liên tục có cùng chiều dài
nhịp, đặc biệt là momen âm tại trụ giảm 71,47% → khả năng vượt nhịp của cầu Extradosed
(so với cầu dầm liên tục) tăng lên khá lớn.
3. Kiến nghị
và với các về
trong đô thị Việt nam.
Kết quả nghiên cứu cho thấy, chiều cao tháp cầu Htháp = (1/9-1/11)Lnhịp →
.
TÀI LIỆU THAM KHẢO
[1] GS-TS Lê Đình Tâm. Cầu bê tông cốt thép trên đường ô tô tập 1, 2. NXB Xây Dựng
Hà nội, 2005.
[2] Nguyễn Viết Trung – Hoàng Hà. Cầu bê tông cốt thép tập 1, 2. NXB Giao thông vận
tải, Hà nội, 2003.
[3] Tiêu chuẩn thiết kế cầu 22TCN 272-05, Bộ giao thông vận tải, Hà nội, 2005
[4] Đào Xuân Lâm, Đỗ Bá Chương. Mỹ học cầu đường. NXB GTVT, Hà nội, năm 2003.
[5] Richard M.Baker. J A Puckett. Design of Highway Bridges. NXM MC Graw Hill,
1997
[6] Narenda Taly. Design of Highway Bridges. NXM MC Graw Hill, 1998.
[7] Wai Fan Chen, Lien Duan. Bridges Engineering Handbooks. NXB CRC press New
York , 2000.
[8] LRFD-Bridge Desgin Guidelines, Section 1.1. NXB MoDot, 2001
[9] AASHTO LRFD Bridge Desgin Specifications, SI Units, Third Edition.2004
[10] Jacques Mathivatb. The cantilever constructions of prestressed Concrete Bridges.
Các file đính kèm theo tài liệu này:
- Ảnh hưởng của chiều cao cột tháp đến nội lực trong dầm chủ của cầu Extradosed.pdf