Tóm tắt nội dung
Trích xuất thông tin từ dữ liệu bán cấu trúc là một bài toán được sự quan tâm tại
nhiều hội nghị lớn trên thế giới [9],[10],[12],[13]. Bài toán này là một thành phần không
thể thiếu trong các ứng dụng về thu thập và trích xuất thông tin hiện nay. Một trong
những ứng dụng đó là trích xuất thông tin của sản phẩm từ các trang Thương mại Điện tử
để Xây dựng hệ thống tìm kiếm giá cả, nhằm cung cấp thông tin tốt nhất đến người tiêu
dùng.
Khóa luận này tập trung nghiên cứu bài toán trích xuất thông tin từ dữ liệu bán cấu
trúc và áp dụng để Xây dựng hệ thống tìm kiếm giá cả sản phẩm. Khóa luận xác định một
tập luật trích xuất giá cả để giải bài toán trích xuất giá khi cho biết tên sản phẩm và trên
cơ sở đó, bài toán tự động trích xuất thông tin về tên và giá của sản phẩm được giải quyết.
Khóa luận đưa ra các bước Xây dựng hệ thống tìm kiếm giá cho sản phẩm trên các trang
web tiếng Việt. Khóa luận đã tiến hành các thực nghiệm và đánh giá kết quả. Kết quả
thực nghiệm cho thầy các thông tin được trích xuất từ hệ thống là có độ tin cậy.
Mục lục
Tóm tắt nội dung .i
Mục lục ii
Bảng các kí hiệu và chữ viết tắt . v
Danh sách các hình . .vi
Danh sách bảng biểu viii
Giới thiệu . 1
Chương 1. Khái quát bài toán trích xuất thông tin cho dữ liệu bán cấu trúc 3
1.1 Bài toán trích xuất thông tin .3
1.1.1 Giới thiệu bài toán . .3
1.1.2 Dữ liệu của bài toán .3
1.1.3 Các hướng tiếp cận trong bài toán trích xuất thông tin 4
1.2 Bài toán trích xuất thông tin cho dữ liệu bán cấu trúc . .6
1.2.1 Vấn đề đặt ra với bài toán 6
1.2.2 Một số phương pháp trích xuất thông tin cho dữ liệu bán cấu trúc .6
1.2.3 Phương pháp đánh giá 7
1.2.4 Ứng dụng của bài toán trích xuất thông tin cho dữ liệu bán cấu trúc 8
Chương 2. Một số phương pháp sử dụng trong bài toán trích xuất thông tin cho dữ
liệu bán cấu trúc .10
2.1 Trích xuất thông tin dựa vào cây DOM . .10
2.1.1 Khái nhiệm cây DOM . .10
2.1.2 Xây dựng cây DOM . 11
2.1.3 Sử dụng cây DOM để trích xuất thông tin . 12
2.2 Trích xuất thông tin dựa theo các mẫu biểu thức chính qui .13
iii
2.2.1 Khái niệm biểu thức chính qui . 13
2.2.2 Sử dụng biểu thức chính qui để trích xuất thông tin 14
2.3 Một số giải thuật trích xuất thông tin cho dữ liệu bán cấu trúc 14
2.3.1 Hai kiểu biểu diễn của các trang giàu dữ liệu 14
2.3.2 Một số giải thuật điển hình 16
Chương 3. Áp dụng bài toán trích xuất thông tin bán cấu trúc để Xây dựng hệ thống
tìm kiếm giá cả sản phẩm 21
3.1 Khái quát hệ thống tìm kiếm giá cả của sản phẩm .21
3.1.1 Khái niệm .21
3.1.2 Các phương pháp Xây dựng .21
3.1.3 Các hệ thống hiện tại . .22
3.2 Cơ sở thực tiễn 23
3.3 Cơ sở khoa học .25
3.3.1 Phân loại trang kinh doanh . 26
3.3.2 Bài toán trích xuất thông tin giá cả của một sản phẩm xác định. 27
3.3.3 Bài toán tự động trích xuất thông tin về tên và giá của sản phẩm trong các trang
Kinh doanh sản phẩm .33
3.4 Các bước Xây dựng hệ thống 37
3.4.1 Mô hình hệ thống .37
3.4.2 Khả năng mở rộng của hệ thống 40
Chương 4. Thực nghiệm và đánh giá kết quả . .41
4.1 Môi trường phần cứng và phần mềm . .41
4.1.1 Cấu hình phần cứng .41
4.1.2 Công cụ phần mềm 41
4.2 Kết quả thực nghiệm .44
iv
4.2.1 Thực nghiệm trích xuất giá của một sản phẩm cho trước 44
4.2.2 Thực nghiệm xác định website Kinh doanh .49
4.2.3 Thực nghiệm thu thập và trích xuất thông tin từ một website .52
4.2.4 Thực nghiệm khả năng thu thập thông tin của hệ thống 53
Kết luận .55
Tài liệu tham khảo 56
70 trang |
Chia sẻ: lvcdongnoi | Lượt xem: 2757 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Đề tài Bài toán trích xuất thông tin cho dữ liệu bán cấu trúc và áp dụng xây dựng hệ thống tìm kiếm giá cả sản phẩm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
cho dữ liệu bán cấu trúc và các ưu nhược điểm
của giải thuật đó.
2.1 Trích xuất thông tin dựa vào cây DOM
2.1.1 Khái nhiệm cây DOM
Theo W3C thì DOM (Document Object Model) là một giao diện lập trình ứng dụng
(API) cho các văn bản HTML hợp lệ và các văn bản XML có cấu trúc chặt trẽ. Nó định
nghĩa cấu trúc logic của các văn bản và cách thức một văn bản được truy cập và thao
tác[15]. Ví dụ về một bảng được lấy văn bản HTML:
Shady Grove
Aeolian
Over the River,
Charlie
Dorian
Dạng biểu diễn cây DOM của mã HTML
11
2.1.2 Xây dựng cây DOM
Xây dựng cây DOM từ những trang Web đầu vào là một bước cần thiết trang nhiều
giải thuật trích xuất dữ liệu [2]. Có hai phương pháp cơ bản để xây dựng các cây DOM.
- Sử dụng các thẻ riêng biệt
Hầu hết các thẻ HTML làm việc trong một cặp. Mỗi cặp chứa một thẻ mở và một
thẻ đóng . Bên trong mỗi cặp thẻ có thể có những cặp thẻ khác, kết quả là cấu trúc trở
nên chồng chéo. Xây dựng một cây DOM từ một trang Web bằng cách sử dụng mã
HTML của nó là một vấn đề cần thiết. Trong một cây DOM, mỗi cặp thẻ là một node,
những cặp thẻ ẩn bên trong là node con của node hiện tại. Có hai nhiệm vụ cần thi hành
đó là:
¾ Làm sạch mã HTML: Một vài thẻ không cần thẻ đóng (như , ,) mặc
dù chúng có thẻ đóng. Bởi vậy một thẻ đóng nên được chèn vào để tất cả các thẻ
được cân bằng. Các thẻ được định dạng không tốt cũng cần thiết được sửa chữa.
Một thẻ sai thường là một thẻ đóng, đó là thẻ cắt ngang các khối ẩn bên trong. Ví
dụ: … … … , sẽ rất khó để sửa lỗi trường hợp này nếu
tồn tại sự chồng chéo đa cấp. Có một vài phần mềm mã nguồn mở để làm sạch
mã HTML, một số những phần mềm thông dụng như: JTidy, NekoHTML,
HTMLCleaner.
¾ Xây dựng cây: Chúng ta có thể đi theo các khối con của các thẻ HTML để xây
dựng được cây DOM.
- Sử dụng các thẻ và các hộp ảo (visual cue)
Thay vì phân tích mã HTML để sửa lỗi, có thể sử dụng sự biểu diễn hoặc các thông
tin ảo (ví dụ như: địa chỉ trên màn hình mà các thẻ được biểu diễn) để suy luận mối quan
hệ có cấu trúc của các thẻ và có thể xây dựng được cây DOM. Phương thức xây dựng có
thể phân tích mã HTML thành cây DOM, miễn là trình duyệt có thể hiển thị được đoạn
mã đó một cách chính xác.
Trong một trình duyệt web, mỗi phần tử HTML (chứa đựng một thẻ mở, các thuộc
tính tùy chọn, nội dung HTML được nhúng tùy ý và một thẻ đóng, thẻ này có thể thiếu)
được biểu diễn như một hình chữ nhật. Thông tin ảo này có thể lấy được sau khi mã
12
HTML được biểu diễn trên trình duyệt. Một cây DOM sau đó có thể được xây dựng dựa
vào các thông tin ảo này. Các bước xử lý như sau:
¾ Tìm 4 đường biên của hình chữ nhật ứng với mỗi phần tử HTML thông qua việc
công cụ trình diễn của trình duyệt, ví dụ: Internet Explorer.
¾ Theo sự tuần tự của các thẻ mở và sự kiểm tra xem một hình chữ nhật có nằm
trong một hình chữ nhật khác không, để xây dựng cây DOM.
Ví dụ minh họa về sử dụng visual cue:
Một đoạn mã HTML có 3 lỗi. sử dụng thông tin ảo có thể dễ dàng xây dựng được
cây DOM.
Hình 5. Ví dụ xây dựng cây DOM sử dụng hộp ảo
2.1.3 Sử dụng cây DOM để trích xuất thông tin
Để trích xuất được thông tin cần thiết ở một node của cây DOM, chúng ta cần chỉ rõ
đường đi từ gốc của cây đến node cần trích xuất thông tin. Đường đi này gọi là một
XPath[16]hay mẫu trích xuất.
Trích xuất thông tin web dựa vào cây DOM trước tiên việc trích xuất này được hỗ
trợ bởi xây dựng cây DOM cho mã HTML của trang.
Các mẫu trích xuất có thể được làm rõ như đường dẫn từ gốc của cây DOM đến
node chứa nội dung cần trích xuất.
13
Ví dụ :
Đây là cây DOM của một đoạn mã HTML chứa thông tin về cuốn sách, gồm tên
cuốn sách (title) và tên tác giả (author). Bài toán đặt ra là sử dụng cây DOM này trích
xuất các thông tin về tên sách và tác giả viết sách. Mẫu trích xuất được xây dựng sau:
2.2 Trích xuất thông tin dựa theo các mẫu biểu thức chính qui
2.2.1 Khái niệm biểu thức chính qui
Một biểu thức chính qui có thể được sử dụng để mô hình mã hóa HTML [2]. Cho
một tập các ký tự alphabe ∑ và một token “#text” không thuộc ∑, một biểu thức chính qui
trên ∑ là một chuỗi trên ∑∪{#text, *,?,|,(,)} được định nghĩa như sau :
Sample DOM Tree Extraction
Mẫu trích xuất tên sách: HTMLÆBODYÆBÆCharacterData
Mẫu trích xuất tên tác giả: HTMLÆ BODYÆFONTÆAÆ CharacterData
HTML
BODY
FONT B
Age of Spiritual
Machines
Ray
Kurzwei
Element
Character-Data HEADER
A
14
Một chuỗi rỗng ε và tất cả các phần tử trong ∑ ∪ {#text} đều là một biểu thức chính
qui.
Nếu A và B là một biểu thức chính qui, thì AB, (A|B) và (A)? cũng là một biểu thức
chính qui, trong đó (A|B) tức là A hoặc B và (A)? thức là (A|ε).
Nếu A là một biểu thức chính qui, thì (A)* cũng là biểu thức chính qui, trong đo
(A)*= {ε, A, AA, AAA,…}.
Chúng ta cũng sử dụng (A)+ để chỉ A(A)*. Nếu biểu thức chính qui không có chứa
(A|B) thì nó gọi là biểu thức chính qui kết hợp tự do. Một biểu thức chính qui thường
dùng để thể hiện một mẫu trích xuất.
2.2.2 Sử dụng biểu thức chính qui để trích xuất thông tin
Với một biểu thức chính qui, một otomat hữu hạn trạng thái có thể được xây dựng
và được sử dụng để so khớp sự xuất hiện của nó trong chuỗi tuần tự các trang web. Trong
quá trình này, dữ liệu có thể được trích xuất.
Ví dụ: Với mã HTML như sau:
Tinh Tong cua cac so tu 1->n
Để lấy được phần tiêu đề của đoạn mã này thì ta có thể xây dựng biểu thức chính qui
như sau: .*?(#text)
2.3 Một số giải thuật trích xuất thông tin cho dữ liệu bán cấu trúc
2.3.1 Hai kiểu biểu diễn của các trang giàu dữ liệu
Các trang giàu dữ liệu được chia thành hai loại thông qua sự biểu diễn của chúng[2]
- List Page: là trang chứa đựng một vài danh sách của các đối tượng. Hình 8 giới
thiệu một list page. Có hai dạng trang list, đó là trang list bố trí theo chiều ngang
15
hoặc chiều dọc. Bên trong mỗi vùng, bản ghi dữ liệu được định dạng sử dụng cùng
một mẫu và mẫu sử dụng trong hai vùng khác nhau là khác nhau [2].
- Detail Page: là trang chỉ giới thiệu một đối tượng đơn. Ví dụ hình 9 là một trang
detail page giới thiệu về sản phẩm . Nó chứa đựng tất cả các thuộc tính của sản phẩm
như: tên, ảnh, giá, thông số kỹ thuật, thời gian bảo hành [2] .
Hình 6. Dạng biểu diễn của trang list page
Hình 7. Dạng biểu diễn của trang detail page
16
2.3.2 Một số giải thuật điển hình
Hiện nay tư tưởng của phương pháp trích xuất thủ công không còn được sử dụng .
Vì vậy khóa luận chỉ giới thiệu phương pháp trích xuất thông tin tự động và bán tự động
cho “bài toán trích xuất thông tin cho dữ liệu bán cấu trúc”.
• Phương pháp Wrapper qui nạp: đây là phương pháp trích xuất bán tự động
Giải thuật được nêu ra dưới đây là giải thuật dựa trên hệ thống Stalker.
- Một ví dụ về trích xuất theo giải thuật dựa trên hệ thống Stalker.
Một trang Web có thể được nhìn dưới dạng có thứ tự của token S (ví dụ như: các từ,
các số và các thẻ HTML). Việc trích xuất sử dụng một cấu trúc cây gọi là cây
EC(embedded catalog tree), đây là công cụ để mô hình dữ liệu nhúng trong một trang
HTML. Gốc của cây là văn bản chứa tất cả các token tuần tự S của trang, nội dung của
mỗi node con là một chuỗi con của node cha. Để trích xuất một node, Wrapper sử dụng
miêu tả cây EC của trang đó và tập hợp các luật trích xuất.
Ví dụ bên dưới là sự chuyển đổi một đoạn mã HTML sang cây EC. Chú ý rằng
chúng ta sử dụng LIST ở đây bởi vì tập hợp các địa chỉ luôn luôn có thứ tự.
Hình 8. Chuyển đổi từ mã HTML sang cây EC
17
Với mỗi node trong cây, Wrapper nhận dạng hoặc trích xuất nội dung của node từ
cha của nó, node cha là node chứa đựng chuỗi token của tất cả các node con. Mỗi trích
xuất được thực hiện bởi 2 luật, Start Rule và End Rule. Start Rule chỉ ra sự bắt đầu của
node và End Rule chỉ ra sự kết thúc của node. Phương thức này có thể áp dụng cho cả
node lá và các node danh sách (list node).
Các luật trích xuất dựa trên ý tưởng của mỏ neo (landmark). Mỗi mỏ neo là một
chuỗi các token liên tiếp và nó dùng để đánh dấu sự bắt đầu hay kết thúc của một phần tử
mục tiêu. Hình dưới đây là trình diễn mã HTML của trang web trong hình 10.
Restaurant Name: Good Noodles
205 Willow, Glen, Phone 1-773-366-1987
25 Oak, Forest, Phone (800) 234-7903
324 Halsted St., Chicago, Phone 1-800-996-5023
700 Lake St., Oak Park, Phone: (708) 798-0008
Để trích xuất được tên của quán ăn “Good Noodles” thì luật trích xuất sẽ là:
Start Rule: R1: SkipTo() tức là hệ thống nên xuất phát ở điểm bắt đầu của trang
và bỏ qua tất cả các token cho đến khi chúng thấy được thẻ đầu tiên. Các luật
SkipTo(:) hoặc SkipTo(i) đề không đúng. Vì theo cây EC trong hình 10 R1 là cha của
node name, như vậy nó sẽ là node gốc. Node gốc thì chứa chuỗi token tuần tự của cả
trang Web.
Tương tự End Rule : R2: SkipTo () sẽ xác định được điểm kết thúc tên của
quán ăn.
- Quá trình học luật
Trong hệ thống Wrapper qui nạp quá trình học là một quá trình chủ đạo.
Khóa luận này sẽ trình bày giải thuật học của wrapper để sinh ra các luật trích xuất. Ý
tưởng cơ bản của giải thuật học luật như sau:
Để sinh ra Start Rule cho một node của cây EC, một vài token tiền tố hay các đại
diện của node được nhận dạng như các mỏ neo, chúng có thể nhận dạng đơn nhất sự bắt
đầu của một node. Để sinh ra End Rule cho một node, một vài token hậu tố hay các đại
18
diện của node được nhận dạng như một mỏ neo. Tiến trình sinh Start Rule và End Rule là
giống nhau.
Cho trước một tập các mẫu huấn luyện đã được gán nhãn, giải thuật học sẽ sinh ra
các luật trích xuất tổng quan để trích xuất tất cả các phần tử mục tiêu (positive items) mà
không trích xuất các phần tử khác (nagertive items).
Sau quá trình này thì một wrapper đã được sinh ra , nó sẽ được áp dụng cho các
trang web khác chứa đựng các dữ liệu tương tự và được định dạng cùng một cách với tập
mẫu huấn luyện.
- Ưu điểm và nhược điểm
Ưu điểm:
Người sử dụng chỉ phải gán nhãn một lượng nhỏ các dữ liệu mẫu.Quá trình học là
quá trình tự động để sinh ra luật trích xuất.
Nhược điểm:
Nếu một site thay đổi, làm sao để wrapper biết được sự thay đổi đó?
Nếu phát hiện chính xác có sự thay đổi, làm sao để tự động sử wrapper?
Vì phương pháp này phụ thuộc vào việc gán nhãn bằng tay nên nó không phù hợp
cho trích xuất một lượng lớn các trang. Ví dụ, nếu một trang kinh doanh sản phẩm muốn
trích xuất tất cả các các sản phẩm được bán trên Web, việc gán nhãn bằng tay hầu như là
nhiệm vụ không thể. Việc duy trì wrapper là việc làm rất tốn kém, vì web là một môi
trường động. Các site thì luôn luôn thay đổi.
• Phương pháp trích xuất tự động
Để hạn chế nhược điểm của Wrapper qui nạp, phương pháp trích xuất tự động đã
được nghiên cứu rất nhiều. Việc trích xuất tự động là hoàn toàn có thể bởi vì dữ liệu trên
một website thường được mã hóa với một số lượng mẫu cố định. Có thể tìm những khuôn
mẫu đó bằng việc khai phá những mẫu lặp lại trong nhiều trang của một website.
Trong một vài ứng dụng, chúng ta cần trích xuất dữ liệu từ các trang detail-page, vì
những trang này chứa nhiều thông tin hơn. Ví dụ: trong một trang list-page, thông tin của
mỗi sản phẩm thông thường chỉ là tên, ảnh và giá. Tuy nhiên nếu ứng dụng cần những
thông tin miêu tả sản phẩm thì chúng ta cần trích xuất từ những trang detail.
19
Một thuật toán trích xuất tự động khá tiêu biểu mà có thể trích xuất ở cả trang detail
và trang list đó là RoadRunner.
- Mô tả giải thuật
Đầu vào: Một tập hợp các trang mẫu, mỗi trang chứa đựng một hay nhiều bản ghi
(một trang có thể là list page hoặc detail page).
Đầu ra: Một mẫu trích xuất có thể trích xuất được tất các các trang trong tập mẫu,
trong giải thuật này mẫu trích xuất đó là biểu thức chính qui kết hợp tự do.
- Phương thức tiếp cận
Ban đầu, giải thuật sẽ lấy một số lượng ngẫu nhiên các trang với mẫu trích xuất W.
Mẫu trích xuất W sau đó được định nghĩa lại bởi việc kết hợp có thứ tự với mã
HTML của mỗi trang pi khác trong tập mẫu, để giải quyết vấn đề sai khác giữa các mẫu
trích xuất của các trang trong tập mẫu. Cuối sung giải thuật sinh ra một wrapper chung có
thể trích xuất được tất cả các trang trong tập mẫu. Wrapper này sẽ được áp dụng trích xuất
cho những trang khác có cấu trúc tương tự với những trang trong mẫu
Sự sai khác xuất hiện khi một vài token của trang pi xuất hiện sai khác so với W.
Có hai kiểu sai khác trong việc so khớp đó là:
¾ Sự sai lệch xâu văn bản (string mismatch) : Chúng biểu thị thông qua các trường
dữ liệu hay các mục.
¾ Sự sai khác giữa các thẻ (tag mismatch).
Giải thuật này được làm rõ trong hình dưới đây:
20
Hình 9. Ví dụ giải thuật RoadRunner [12]
- Ưu, nhược điểm của giải thuật
Ưu điểm: Không cần sự gán nhãn của người dùng với tập mẫu huấn luyện, có thể
tự động xây dựng được mẫu trích xuất.
Nhược điểm: Nó không thể tự động nhận dạng được đâu là thực thể thông tin
mong muốn của người dùng. Vì vậy người sử dụng sẽ vẫn phải tự gán nhãn
những kết quả đầu ra. Ví dụ: hình trên khi nó xác định được thẻ có dữ liệu
tương đương của 2 trang nhưng nó không thể xác định đấy là tên của quyển sách,
mà chỉ có thể xác định nó là một xâu ký tự.
21
Chương 3. Áp dụng bài toán trích xuất thông tin bán cấu
trúc để xây dựng hệ thống tìm kiếm giá cả sản phẩm
Việc áp dụng bài toán trích xuất thông tin cho dữ liệu bán cấu trúc để xây dựng hệ
thống tìm kiếm giá cả sản phẩm là vấn đề quan trọng nhất của khóa luận. Trong chương
này khóa luận sẽ đề cập đến khái niệm của hệ thống tìm kiếm giá cả, phương pháp xây
dựng hệ thống và cách đánh giá các hệ thống đang tồn tại.
3.1 Khái quát hệ thống tìm kiếm giá cả của sản phẩm
Trong phần này khóa luận sẽ đề cập tới khái niệm về hệ thống tìm kiếm giá cả, các
phương pháp xây dựng, ưu nhược điểm của các hệ thống tìm kiếm giá cả hiện tại, từ đó
đưa ra cách tiếp cận để xây dựng hệ thống tìm kiếm giá cả phù hợp.
3.1.1 Khái niệm
Hệ thống tìm kiếm giá cả (hay còn được biết đến với tên là “dịch vụ so sánh giá cả”)
là một khái niệm thuộc lĩnh vực thương mại điện tử. Các hệ thống này cho phép người
sử dụng tìm kiếm và thấy được sự so sánh giá cả của một sản phẩm cụ thể trên nhiều
trang web bán hàng khác nhau [18]. Hệ thống tìm kiếm giá cả thông thường không phải là
một hệ thống bán hàng trực tuyến, tuy nhiên nó chính là một công cụ gián tiếp hỗ trợ việc
giới thiệu sản phẩm của các cửa hàng kinh doanh cũng như việc mua hàng của người sử
dụng.
3.1.2 Các phương pháp xây dựng
Do các hệ thống tìm kiếm giá cả tập trung vào việc thể hiện các thông tin giá cả trên
nhiều trang web bán hàng khác nhau nên hướng tiếp cận để giải quyết bài toán này cũng
đều đi sâu vào việc tạo ra một môi trường tốt nhất cho việc thu thập, trao đổi thông tin sản
phẩm giữa các cửa hàng có sản phẩm và hệ thống. Thông thường có ba phương pháp để
xây dựng hệ thống dựa vào đặc trưng trên [18] :
- Phương pháp dựa vào sự cung cấp thông tin trực tiếp từ các cửa hàng. Các hệ
thống dạng này sẽ nhận được sự cung cấp thông tin của các cửa hàng về thông tin, giá cả
của sản phẩm, người quản trị hệ thống sẽ cập nhập vào cơ sở dữ liệu của hệ thống. Các
cửa hàng sẽ không tương tác trực tiếp lên hệ thống.
22
- Phương pháp dựa vào sự tương tác của cửa hàng trên hệ thống. Các hệ thống dạng
này thường được biết đến như là các mô hình B2C(Business To Customer), B2B
(Business To Business) trong thương mại điện tử. Hệ thống sẽ tạo ra môi trường giao
diện, cho phép các cửa hàng tương tác trực tiếp với hệ thống để cung cấp thông tin.
- Phương pháp tự động thu thập thông tin từ các trang web bán hàng hay giới thiệu
sản phẩm của các cửa hàng. Hệ thống dạng này sẽ không dựa vào sự cung cấp thông tin
của các cửa hàng mà tự động truy nhập vào các trang web của cửa hàng để trích xuất các
thông tin sản phẩm đưa về cơ sở dữ liệu của hệ thống.
3.1.3 Các hệ thống hiện tại
• Các hệ thống hiện tại.
Đối với ba phương pháp tiếp cận đã được giới thiệu ở mục 3.1.2, việc áp dụng hai
phương pháp đầu sẽ gặp phải các hạn chế do dữ liệu của hệ thống hoàn toàn phụ thuộc
vào sự cung cấp của các cửa hàng trong khi giá cả là dạng dữ liệu biến động liên tục theo
thời gian đòi hỏi phải có sự cập nhật liên tục thông tin vào cơ sở dữ liệu. Bên cạnh đó,
việc áp dụng hai phương pháp này, cơ sở dữ liệu sẽ bị giới hạn về số lượngcửa hàng cung
cấp dữ liệu cho hệ thống. Do đó hai phương pháp này không phải là phương pháp tối ưu
để xây dựng hệ thống tìm kiếm giá cả.
Còn ở phương pháp tiếp cận thứ ba, dữ liệu được thu thập thông qua các trang kinh
doanh sản phẩm. Hệ thống sẽ quét qua những trang web cửa hạng để nhận được giá cả
của sản phẩm, thay vì phải sử dụng nguồn cung cấp của người kinh doanh. Vì vậy đây là
phương pháp có giá trị nhất tình tới thời điểm hiện nay.
Có rất nhiều bài toán được đề xuất theo phương thức tiếp cận thứ ba để xây dựng hệ
thống tìm kiếm giá cả như:
- “Bootstrapping Information Extraction from Semi-structured Web Pages” được đề
xuất bởi Andrew Carlson và Charles Schafer áp dụng cho những trang cho thuê nhà
và du lịch …. [1].
- “Automated Price Comparison Shopping Search Engine” của Elwin Chai, Rick
Jones áp dụng cho hệ thống PriceHunter [3].
- “A Scalable Comparison-Shopping Agent for the World-Wide Web” của Robert Bo
Doorenbos, Oren Etzioni và Daniel So Weld [7].
23
• Các vấn đề của bài toán nêu trên
Các bài toán này được đề xuất để xây dựng những hệ thống tìm kiếm giá cả sản
phẩm, tuy nhiên chúng gặp phải một vấn đề, đó là các tên của sản phẩm phải được cung
cấp trước và các trang kinh doanh sản phẩm phải xác định rõ trên hệ thống.
Ở Việt Nam hiện nay cũng có một vài hệ thống khá tiêu biểu như : Vatgia1, Aha2.
Tuy nhiên hai hệ thống này lại xây dựng theo cách tiếp cận thứ hai, nên phải phụ thuộc
nhiều vào các nhà kinh doanh.
Từ những nhận định đã nêu trên, khóa luận này sử dụng cách tiếp cận thứ ba để xây
dựng hệ thống và sẽ giải quyết một số tồn tại một số phương pháp xây dựng hệ thống tìm
kiếm giá cả hiện tại.
3.2 Cơ sở thực tiễn
Hiện nay các trang web đều xây dựng trên nền những ngôn ngữ lập trình động như
PHP, ASP…. Khi người dùng vào một trang kinh doanh sản phẩm và tìm kiếm một sản
phẩm nào đó thì kết quả được trả về và hiển thị trên trình duyệt theo một số khuôn mẫu
định sẵn, các trang trong cùng khuôn mẫu này thì có chung cấu trúc HTML. Tức là khi
chúng ta biết mẫu để trích xuất một trang trong khuôn mẫu này, thì có thể sử dụng mẫu đó
để trích xuất những thông tin của những trang khác có cùng khuôn mẫu.
Ví dụ : Với website www.trananh.vn, hình 13,14 là hai sản phẩm của laptop HP
được biểu diễn bởi hai trang detail.
1
2 vn
24
Hình 10. Trang giới thiệu sản phẩm HP CQ60-203TX
Hình 11. Trang giới thiệu sản phẩm HP CQ60-101TX
Hai trang detail này tuy giới thiệu về hai sản phẩm khác nhau nhưng đều có chung
một dạng biểu diễn của cây DOM
25
Hình 12. Biểu diễn cây DOM của mã HTML hai trang về sản phẩm HP
Mẫu trích xuất các thông tin
Tên Sản phẩm: HTML Æ BODY Æ TABLE Æ TR[1] Æ TD[1] Æ TÊN SẢN
PHẨM (1).
Giá Sản Phẩm: HTML Æ BODY Æ TABLE Æ TR[3] Æ TD[1] Æ DIV[1] Æ
FONT [1]Æ GIÁ SẢN PHẨM (2).
Nhận xét:
Vì các trang trong cùng một website có cấu trúc tuân theo một vài khuôn mẫu nhất
định nên ta có thể sử dụng những mẫu trích xuất (1) để trích xuất tên sản phẩm và (2) để
trích xuất giá sản phẩm từ trang khác có cùng cây DOM trên.
3.3 Cơ sở khoa học
Phần cơ sở lý thuyết sẽ nêu và giải quyết những bài toán cơ sở để xây dựng hệ thống
tìm kiếm giá cả. Trong phần này sẽ tập trung vào hai bài toán chính đó là “bài toán về xác
định giá thực của một sản phẩm” và “bài toán tự động trích xuất thông tin về tên và giá
26
sản phẩm”. “Bài toán xác định giá thực một sản phẩm” sẽ bổ trợ để giải quyết “bài toán tự
động trích xuất thông tin về tên và giá của sản phẩm”. Đây chính là thành phần cốt lõi để
xây dựng hệ thống tìm kiếm giá cả sản phẩm.
3.3.1 Phân loại trang kinh doanh
Các trang kinh doanh sản phẩm được chia làm hai loại chính:
- Các trang kinh doanh sản phẩm thuần tuý: đây là các trang có bố cục và trình bày
rõ ràng, các thông tin được cung cấp theo những khuôn mẫu nhất đinh.
Hình 13. Ví dụ về trang kinh doanh thông thường
27
- Các trang rao vặt: các trang có bố cục không rõ ràng, tùy thuộc vào người sử dụng.
Hình 14. Ví dụ về trang rao vặt
3.3.2 Bài toán trích xuất thông tin giá cả của một sản phẩm xác định
• Bài toán tiền đề: xác định giá trong một trang Web
- Đầu vào: Mã nguồn HTML của một trang Web.
- Đầu ra: Các giá chứa trong mã nguồn đó.
Ví dụ: Với một trang Web về kinh doanh sản phẩm “HP Mini-note”.
Hình 15. Ví dụ về trích xuất giá trong một trang web
Thì các giá trích xuất được sẽ là:
Tiền tố: Giá Hậu tố: VNĐ
28
- 6,559,000 VNĐ
- 4,950,000 VNĐ
- 13,999,000 VNĐ
- 14,399,000 VNĐ
Phương pháp khóa luận sử dụng đó là xây dựng cây DOM tương ứng với mã HTML
của trang, sau đó sẽ duyệt qua cây DOM để xác định được giá chứa trong trang.
Để xác định được node nào trong cây DOM là chứa giá thì khóa luận đã xây dựng
được bộ luật xác định giá.
Để xác định được giá ta sử dụng một số luật sau:
- Trước giá thì có một vài tiền tố: như “GIÁ”, “PRICE”
- Sau giá cũng có các hậu tố như: “VNĐ”, “USD”, “VND”,”Đ”,”$” ….
- Định dạng của giá: dạng số , tức là bao gồm các ký tự {0, 1, 2,…, 9, “,”, “.”}
- Node chứa giá là: #text
Tuy nhiên trong quá trình thống kê này chúng tôi cũng thấy có nhiều giá không liên
quan ví dụ như trường hợp trên thì “300.000 VNĐ” không phải là giá mặc dù nó chứa hậu
tố VNĐ.
Trong một số trường hợp như hình 19 thì mặc dù thỏa mãn các điều kiện về tiền tố,
hậu tố và định dạng của giá. Nhưng nó không phải là giá có ý nghĩa với người sử dụng.
Vì vậy khóa luận này xây dựng các tiền tố loại trừ để loại trừ các giá không ý nghĩa
đó.
Một số tiền tố loại trừ như : “GIÁ CŨ”, “GIÁ BÌA”, “GIÁ THỊ TRƯỜNG”…
29
Hình 16. Ví dụ về sản phẩm chứa những giá không đúng
• Bài toán trích xuất thông tin giá cả của sản phẩm
Mô tả bài toán
- Đầu vào: Tên sản phẩm và trang Web lên quan đến sản phẩm.
- Đầu ra: Giá thực của sản phẩm, mẫu trích xuất giá thực đó và mẫu trích xuất tên
sản phẩm.
Ví dụ: đầu vào là trang web bán sản phẩm Nokia 1200 như sau.
Hình 17. Ví dụ về trích xuất giá thực của trang sản phẩm
Giá không đúng
Tiền tố loại trừ
Giá thực
30
Đầu ra sẽ là giá của sản phẩm này : VNĐ 540.000 là giá thực của sản phẩm, mẫu
trích xuất tên sản phẩm này là “HTML Æ BODY Æ TABLE[1] Æ TR[1] Æ TD[1] Æ
Tên sản phẩm” và mẫu trích xuất giá này là “HTML Æ BODY Æ TABLE[1] Æ TR[2] Æ
TD[2] Æ Giá thực sản phẩm”.
Xác định đước giá của sản phẩm là một bài toán hết sức quan trọng trong hệ thống
tìm kiếm giá cả. Tuy nhiên không có một chuẩn để nhận dạng được giá mà có thể áp dụng
để nhận dạng tất cả các trang.
Phương pháp giải quyết bài toán
Để xác định giá phương pháp được thực hiện thông qua những bước sau:
Xây dựng cây DOM tương ứng với mã HTML của trang Web đầu vào
- Bước 1: Xác định được node của cây DOM chứa tên sản phẩm và lấy được mẫu trích
xuất tên sản phẩm.
- Bước 2: Xác định tất các các node chứa giá trong trang Web như đã nêu ở trong bài
toán tiền đề và lấy được mẫu trích xuất tương ứng với những giá đó.
- Bước 3: Loại trừ các giá không phù hợp.
- Bước 4: Xác định được giá thực của sản phẩm thông qua mối quan hệ giữa tên và giá
của sản phẩm.
Tại bước 1, ta sẽ duyệt qua cây DOM, xác định node chứa tên sản phẩm (tên sản
phẩm đã định rõ từ đầu vào). Từ các node này ta sẽ sinh ra mẫu trích xuất tương ứng với
tên sản phẩm.
Tại bước 2 sau khi xác định được node có chứa giá theo bài toán tiền đề, ta có thể lấy
được mẫu trích xuất tương ứng với node đó theo phương pháp trích xuất sử dụng cây
DOM đã nêu ở phần 2.1.
Sau khi đã xác định được tất cả các mẫu trích xuất giá và mẫu trích xuất tên sản
phẩm, để xác định được giá thực của sản phẩm ta phải loai trừ những giá không phù hợp,
đó là những giá nằm trông một số thẻ hay thẻ .
Giá có thể xuất hiện độc lập hoặc không độc lập, ví dụ: giá 120.000 vnđ
là giá độc lập trong khi giá 100.000 vnđ (30%) là giá không độc lập.
Nếu chỉ có một giá độc lập thì giá này được coi là giá thực. Nếu có nhiều giá độc lập, thì
31
tất cả các giá đó đều có thể là giá của sản phẩm. Vì vậy ta phải dựa vào mối quan hệ giữa
tên sản phẩm và giá của sản phẩm đó. Mối quan hệ giữa tên sản phẩm và giá của nó trong
một trang kinh doanh sản phẩm đó là sự gần nhau về mặt cấu trúc HTML (ví dụ: chúng
thuộc 2 node kề nhau trong cây DOM ).
Để xác định được sự gần nhau giữa các node chứa tên và giá trong cây DOM. Khóa
luận này sử dụng độ trùng lặp về đường đi từ gốc đến node của mẫu trích xuất.
Ví dụ:
Mẫu trích xuất tên sản phẩm là: HTML Æ BODY Æ TABLE Æ TR Æ TD Æ
DIV[1] Æ Tên sản phẩm.
Mẫu trích xuât giá sản phẩm là: HTML Æ BODY Æ TABLE Æ TR Æ TD Æ
DIV[2] Æ FONT Æ Tên sản phẩm.
Với 2 mẫu trích xuất như trên thì độ trùng lặp sẽ là : 5 tương ứng với 5 bước đi:
HTML[1] Æ BODY[2] Æ TABLE [3]Æ TR[4] Æ TD[5].
Nếu độ trùng lặp giữa mẫu trích xuất tên và mẫu trích xuất giá là lớn nhất thì nó
được coi là giá thực của sản phẩm. Tuy nhiên trong một số trang không cung cấp giá của
sản phẩm nhưng lại có chứa những giá ngoại lai, những giá này không phải là giá sản
phẩm. Vấn đề đặt ra là làm sao có thể xác định được giá đó không phải là giá của sản
phẩm.
Để giải quyết vấn đề này, khóa luận sử dụng thêm một độ đo về sự khác biệt giữa 2
mẫu trích xuất. Nếu sự khác nhau này nhỏ hơn một ngưỡng thì mẫu trích xuất trỏ đến giá
và mẫu trích xuất trỏ đến tên sản phẩm mới được chấp nhận là một ứng cử để trích xuất
giá thực và tên của sản phẩm các trang.
Đối với những trang Việt Nam, khóa luận này gặp một vài thách thức đó là cách
thức viết giá không đúng hoặc giá quá nhập nhằng, như một số trang lại viết là : Giá:
VNĐ 120.000 , trong khi thực tế thì phải viết là 120.000 VNĐ. Mặt khác một số trang lại
chưa cập nhật được giá sản phẩm và giá chỉ xuất hiện dưới dạng “Giá:(x)vnđ”. Đặt biệt là
giá ở một số trang về rao vặt ở Việt Nam thì không theo một qui tắc viết, ví dụ “Cần bán
nokia 1200 giá 320k”…
Qua thống kê tại nhiều trang kinh doanh các loại sản phẩm ở Việt Nam và trên thế
giới trên nhiều lĩnh vực như các trang về: Điện thoại, máy tính, mỹ phẩm và trang sức,
32
đặc biệt là một số trang về rao vặt….. .Kết hợp bài toán tiền đề và bài toán “xác định giá
thực” khóa luận này đã đề xuất ra một tập luật để trích xuất giá của sản phẩm.
Hình 18. Tập luật trích xuất giá sản phẩm
Trong tập luật này gồm một số luật chính:
- FirstRule: tiền tố của giá
- LastRule: Hậu tố của giá
- RejectRule: tiền tố loại trừ
- Format: định dạng của giá
- TagName: tên thẻ HTML mà giá nằm trong đó.
Trong khi xây dựng được tập luật để trích xuất giá cả, chúng tôi nhận thấy: ngoài giá
cả của sản phẩm người sử dụng còn quan tâm đến những thuộc tính khác của sản phẩm
như: ảnh của sản phẩm, thời gian bảo hành, thông tin khuyến mại… Bên cạnh đó cách tổ
chức tập luật với giá có thể áp dụng cho những thuộc tính này.
Trên tư tưởng chung của phương pháp trích xuất giá, tức là lấy tên sản phẩm làm
neo để xác định giá thực của sản phẩm bằng cách xác định giá gần nhất với sản phẩm.
Khóa luận này cũng đã xây dựng thành công các luật trích xuất cho những thuộc
tính trên:
- Luật trích xuất ảnh sản phẩm
33
Hình 19. Luật trích xuất ảnh sản phẩm
- Luật trích xuất thời gian bảo hành
Hình 20. Luật trích xuất thông tin bảo hành sản phẩm
3.3.3 Bài toán tự động trích xuất thông tin về tên và giá của sản phẩm trong
các trang kinh doanh sản phẩm
Trong những bài toán về trích xuất thông tin ở mục 2.3 thì tập mẫu huấn luyện phải
được xác định trước. Với phương pháp trích xuất bán tự động thì cần sự gán nhãn bằng
tay với tập mẫu huấn luyện này. Với phương pháp trích xuất tự động như RoadRunner thì
phải gán nhãn bằng tay kết quả đầu ra.
Trong bài toán khóa luận nêu ra dưới đây có thể tự động xác định tập mẫu huấn
luyện từ một tập các tên sản phẩm, tự động sinh ra các mẫu trích xuất tên và giá của sản
phẩm.
Với một tập hạt giống các tên sản phẩm, chúng ta có thể tự động xác định được tập
các trang liên quan đến sản phẩm, sau đó sẽ sinh ra các mẫu trích xuất thông tin về tên và
giá sản phẩm một cách tự động trong tập trang liên quan này dựa vào tập luật nêu ở 3.3.2.
34
Mô tả bài toán
- Đầu vào: Một tập hạt giống tên các sản phẩm.
- Đầu ra: Các website kinh doanh sản phẩm và các mẫu trích xuất thông tin về tên,
giá của các sản phẩm trong website đó.
Phương pháp giải quyết bài toán
Để giải quyết bài toán này khóa luận sử dụng bài toán xác định giá thực của sản
phẩm nêu ở mục 3.3.2.
- Bước 1: Xác định các trang lên quan
Với tập hạt giống các tên này, ta sẽ tạo ra các truy vấn gửi đến máy tìm kiếm, kết
quả trả về sẽ được những trang liên quan đến sản phẩm đó. Cụ thể ta sẽ giải quyết bước 1
như sau :
Với tên sản phẩm ta sẽ tạo ra những truy vấn gửi tới máy tìm kiếm, kết quả trả về
của máy tìm kiếm là các trang liên quan đến sản phẩm.
Ví dụ: với tên sản phẩm nokia 1200, ta sẽ tạo truy vấn “nokia 1200” gửi tới máy tìm
kiếm google ta sẽ xác định được các trang liên quan đến sản phẩm nokia 1200 như sau
35
Hình 21. Kết quả google trả về với truy vấn "nokia 1200"
Tuy nhiên các kết quả trả về có thể chỉ là trang giới thiệu, trang tin tức về sản phẩm,
ngay trong ví dụ trên thì kết quả đầu tiên trả về của máy tìm kiếm lại là một trang tin tức
sản phẩm.Vì vậy ta phải tối ưu những truy vấn gửi đến máy tìm kiếm để đạt được kết quả
tốt nhất, tức là số lượng trang liên quan đến kinh doanh sản phẩm nhiều nhất. Dựa vào
đặc thù của các trang kinh doanh sản phẩm chúng ta có thể tạo ra những truy vấn tốt để
gửi tới máy tìm kiếm.
Ví dụ: một truy vấn được tối ưu của “nokia 1200” là “nokia 1200” + “vnđ OR usd”
Kết quả trả về của máy tìm kiếm google là:
Trang tin tức
Trang kinh
doanh sp
36
Hình 22. Kết quả trả về của google với query "nokia 1200" + "vnđ OR usd"
Qua ví dụ này chúng tôi thấy nếu tối ưu các truy vấn gửi đến máy tìm kiếm thì kết
quả trả về những trang kinh doanh sản phẩm xuất hiện nhiều hơn, như trong ví dụ trên thì
6 trang đầu tiên này đều là trang kinh doanh sản phẩm.
- Bước 2: Lấy được mẫu trích xuất tương ứng với từng trang ở bước 1.
Với mỗi một trang liên quan được xác định ở bước 1, nó sẽ tương ứng là trang liên
quan đến một sản phẩm trong tập hạt giống. Cặp “tên sản phẩm, trang lên quan đến sản
phẩm” sẽ làm đầu vào cho “bài toán trích xuất thông tin giá của một sản phẩm xác định”,
kết quả trả về sẽ là các mẫu trích xuất tương ứng với từng trang.
- Bước 3: Xác định được website kinh doanh và các mẫu trích xuất tương ứng.
Qua bước 2 ta sẽ thống kê được những cặp mẫu trích xuất trên từng website.
Trang kinh
doanh sp
37
Để xác định được một website là kinh doanh sản phẩm. Chúng tôi sử dụng một
phương pháp thống kê đó là thống kê số lượng sản phẩm có thể trích xuất được giá trong
website đó. Nếu số lượng này lớn hơn một ngưỡng thì website này sẽ là website kinh
doanh sản phẩm. Ngưỡng này được xác định thông qua số lượng sản phẩm trong tập hạt
giống.
Sau khi đã xác định được website kinh doanh sản phẩm. Khóa luận này xác định
được các mẫu trích xuất thông tin về tên sản phẩm và giá sản phẩm tương ứng với website
đó. Thống kê sự trùng lặp của các mẫu trích xuất, nếu độ trùng lặp lớn hơn một ngưỡng
thì mẫu trích xuất đó có thể áp dụng cho các trang khác trong cùng website này.
3.4 Các bước xây dựng hệ thống
Như nhận xét nêu ở phần 3.1.3 về “vấn đề của các hệ thống hiện tại”. Khóa luận đã
xác định được việc phải xây dựng một hệ thống tìm kiếm giá cả có thể giải quyết được
những vấn đề đó. Dưới các cơ sở thực tiễn và cơ sở lý thuyết nêu ở trên, khóa luận này đã
đưa ra mô hình để xây dựng hệ thống hoàn toàn tự động, có thể tự động xác định được
các website kinh doanh sản phẩm lượng nhỏ tên sản phẩm ban đầu và có thể tự động trích
xuất thông tin về tên và giá của sản phẩm trong các website đó.
Trong phần này khóa luận đưa ra mô hình hệ thống và nêu lên được khả năng tự
động mở rộng của hệ thống.
3.4.1 Mô hình hệ thống
38
• Mô hình tổng quan
Hình 23. Mô hình tổng quan của hệ thống
Trước hết, tập hạt giống các tên sản phẩm được đưa qua “module xác định website
kinh doanh sản phẩm và mẫu trích xuất” để tạo ra một tập các website kinh doanh sản
phẩm và mẫu trích xuất tên, giá sản phẩm tại các website đó.
Các website và mẫu trích xuất tương ứng này sẽ qua “module thu thập dữ liệu và
trích xuất thông tin” để thu thập được tên sản phẩm và giá của sản phẩm, thông tin này sẽ
được cập nhật vào cơ sở dữ liệu “thông tin sản phẩm” và “tập hạt giống tên sản phẩm”.
39
• Module xác định các website kinh doanh sản phẩm và các mẫu trích xuất
Hình 24. Module xác định các website kinh doanh sản phẩm và các mẫu trích xuất
Module này được xây dựng trên cơ sở “bài toán động trích xuất thông tin về tên và
giá của các trang sản phẩm”.
Tập hạt giống ban đầu qua tiến trình “xác định các trang liên quan” để được một tập
các trang liên quan đến sản phẩm. Tập các trang liên quan sẽ được qua tiến trình “trích
xuất các mẫu trích xuất thông tin” để đạt được các mẫu trích xuất và website tướng ứng
với mẫu trích xuất đó. Các mẫu và website này sẽ được thống kê sự trùng lặp, để đạt được
website và mẫu trích xuất phù hợp với website.
40
• Module Thu thập dữ liệu và trích xuất thông tin
Hình 25. Module Thu thập dữ liệu và trích xuất thông tin
Sau khi xác định được các website và các mẫu trích xuất thông tin của website, thì
website này sẽ được thu thập dữ liệu. Sau đó tập dữ liệu thu thập này sẽ được qua module
trích xuất thông tin để lấy các thông tin về sản phẩm: tên sản phẩm và giá của sản phẩm.
Các thông tin này sẽ được cập nhật vào cơ sở dữ liệu về sản phẩm, tên của sản phẩm
sẽ được dùng để mở rộng tập hạt giống.
3.4.2 Khả năng mở rộng của hệ thống
Hệ thống có thể xác định được nhiều trang và mẫu trích xuất hay không phụ thuộc
vào kích cỡ của tập hạt giống. Do tên sản phẩm thu dược thông qua module thu thập và
trích xuất dữ liệu được cập nhật tiếp vào tập hạt giống tên sản phẩm, vì thế cơ sở dữ liệu
về “tập hạt giống sản phẩm” sẽ luôn được cập nhật. Vì vậy hệ thống luôn được mở rộng.
41
Chương 4. Thực nghiệm và đánh giá kết quả
Để đánh giá được hệ thống tìm kiếm giá cả, khóa luận sẽ tập trung đánh giá khả
năng thu thập dữ liệu về tên và giá của sản phẩm. Trong chương này khóa luận đưa ra 3
thực nghiệm để đánh giá khả năng thu thập thông tin về tên và giá sản phẩm của hệ thống,
đưa ra các bảng kết quả đạt được của từng thực nghiệm và những nhận xét, đánh giá kết
quả đó.
4.1 Môi trường phần cứng và phần mềm
4.1.1 Cấu hình phần cứng
Bảng 1. Cấu hình phần cứng sử dụng trong thực nghiệm
Thành phần Chỉ số
CPU Intel Celeron ® CPU 2.66 ghz
RAM 768 MB
OS WindowsXP Service Pack 2
Bộ nhớ ngoài 40GB
4.1.2 Công cụ phần mềm
Bảng 2.Các phần mềm sử dụng trong thực nghiệm
STT Tên phần
mềm
Tác giả Nguồn
1 Neko HTML Phân phối
bởi Apache
kohtml
2 eclipse-SDK-
3.4.1-win32
s/
42
Với các công cụ phần mềm trên khóa luận đã xây dựng chương trình để thực thi
trích xuất giá của sản phẩm. Cấu trúc chương trình được phân làm 3 gói (package) chính
như sau:
• Crawler : chức năng chính của gói này đó là thu thập dữ liệu
• GettingPattern: Chức năng của gói này là xác định mẫu trích xuất thông tin
về giá và tên sản phẩm của một trang web.
• Extracting: chức năng của gói này đó là trích là xác định các website kinh
doanh và trích xuất tên, giá sản phẩm trong website đó.
Chi tiết các lớp của 3 gói này được mô tả theo bảng 3 bên dưới.
43
Bảng 3. Mô tả chương trình thực thi để trích xuất giá sản phẩm
Packages Classes Chức năng
Crawling Thu thập dữ liệu từ một website
SEProcessing
Thu thập các url trả về từ truy vấn gửi
đến google
Crawler
StandardHTML
Loại bỏ một số thành phần không quan
trọng trong mã HTML như các đoạn mã
SCRIPT, STYLE …
ParserHTML
Phân tích mã HTML sang dạng cây
DOM (sử dụng NekoHTML)
GettingXPath
Xác định tất cả các mẫu trích xuất trỏ
đến tên và giá sản phẩm.
GettingPattern
ProcessingXPath
Xác định được mẫu trích xuất chính xác
tên và giá sản phẩm.
GettingWebsite
Xác định được website kinh doanh sản
phẩm và mẫu trích xuất của website đó
Extracting
ExtractingInformation
Trích xuất thông tin về tên, giá các sản
phẩm trong các website kinh doanh sản
phẩm
44
4.2 Kết quả thực nghiệm
4.2.1 Thực nghiệm trích xuất giá của một sản phẩm cho trước
Mô tả thực nghiệm
Mục đích của thực nghiệm này để kiểm nghiệm tính đúng đắn của “bài toán xác
định giá thực của sản phẩm” bằng các luật nêu ở mục 3.3.2.
- Đầu vào : Tên sản phẩm và trang web chứa tên sản phẩm đó.
- Đầu ra : Giá của sản phẩm nếu trang web có chứa giá.
Dữ liệu thực nghiệm
- Dữ liệu để trích xuất giá của một sản phẩm được thu thập thông qua máy tìm
kiếm google.
- Với một tên sản phẩm cho trước, ta sẽ tạo ra truy vấn gửi đến máy tìm kiếm.
o Ví dụ:
Với tên sản phẩm máy ảnh “Canon PowerShot G10” thì truy vấn gửi đến
máy tìm kiếm sẽ là : “Canon PowerShot G10” + “VNĐ OR USD”
- Lấy một lượng kết quả trả về đầu tiên của máy tìm kiếm, ta sẽ trích xuất được
tập các url từ kết quả đó
o Ví dụ:
Ứng với truy vấn “Canon PowerShot G10” + “VNĐ OR USD” thì 5 kết
quả đầu tiên trả về thông qua máy tìm kiếm google và các url tương ứng
được mô tả trong hình dưới đây :
45
Hình 26. Trích xuất các URL liên quan
- Sau đó các url này sẽ được chuẩn hóa về dạng chuẩn và được tải dữ liệu trang web
đó về.
- Dữ liệu được tải về được cho qua module trích xuất giá để sinh ra giá của sản
phẩm.
Ví dụ:
Tương ứng với 5 URL trên thì kết quả trích xuất được sẽ là:
-
o Product: canon powershot g10 Price:8.008.000 vnđ (440,00 usd)
URL
trích
xuất
46
-
o Product: canon powershot g10 Price: giá 490 usd
-
o Product: canon powershot g10 Price:644 sd
-
G10.html
o Product: máy chụp hình canon powershot g10 Price:8.550.000vnđ
-
o Product: canon powershot g10 Price:665 usd
Kết quả thực nghiệm
Khóa luận đã thực nghiệm trên tập các sản phẩm: nokia 1200, lenovo thinkpad t61,
canon powershot g103; mỗi sản phẩm này sẽ thực nghiệm trên 3 trường hợp tương ứng
với số lượng 10, 30, 100 kết quả mà google trả về. Để đánh giá kết quả thực nghiệm khóa
luận này đã sử dụng độ đo hồi tưởng (R) và độ tin cậy (P). Kết quả thực nghiệm được mô
tả theo bảng sau:
47
Bảng 4. Kết quả thực nghiệm trích xuất giá thực của một sản phẩm
Tên sản
phẩm
Query
Số
lượng
kết
quả trả
về bởi
google
Kết quả
thực tế
đúng
Kết
quả
trích
xuất
được
Kết
quả
đúng
Thời
gian
thực
thi
Độ hồi
tưởng
Độ tin
cậy
10 8 8 8
37,45
s
100% 100%
30 23 26 23
147,4
3s
100% 88,46% Nokia 1200
“Nokia
1200” +
“VNĐ OR
USD”
100 68 70 67
407,1
7s
98,53 % 95,71 %
10 10 10 9 39,67s 90% 90%
30 23 25 22
125,2
5s
95,6% 88%
Lenovo
Thinkpad
t61
“Lenovo
Thinkpad
t61” +
“VNĐ OR
USD”
100 43 46 40 1200s 93,02% 86,95%
10 9 9 9 52,92s 100% 100%
30 19 21 18 86,91s 94,74 % 85,71 %
Canon
PowerShot
G10
“Canon
PowerSho
t G10” +
“VNĐ OR
USD”
100 45 50 44
263,3
3s
97,78% 88%
48
Nhận xét
Với tất cả các kết quả đạt được thì ta có thể thấy rằng độ tin cậy thấp hơn độ hồi
tưởng. Sở dĩ có kết quả như vậy bởi vì: Có một vài trường hợp giá xuất hiện quá nhập
nhằng.
Ví dụ:
Hình 27. Trang Web có sự nhập nhằng giá cả
Với trường hợp này có thể nhận dạng nhầm thành: “nokia 1200” có giá: “599.000
đồng”
Thực tế thì nó lại muốn cung cấp thông tin về “nokia 1202” có giá: “599.000
đồng”
Độ hồi tưởng cao bởi vì hầu như các trang có giá đúng thì có thể trích xuất được
chính xác. Giá đúng là giá mà thể hiện là giá thực của sản phẩm.
Ví dụ:
49
Hình 28. Trang Web có giá cả rõ ràng
Kết quả trích xuất được sẽ là:
Tên sản phẩm: nokia 1200 black , Giá sản phẩm: 520,000 vnđ
4.2.2 Thực nghiệm xác định website kinh doanh
Mô tả thực nghiệm
Mục đích của thực nghiệm này là kiểm nghiệm sự chính xác và khả năng xác định
được các trang kinh doanh sản phẩm từ tập hạt giống tên sản phẩm ban đầu của bài toán
“tự động trích xuất thông tin về tên và giá của sản phẩm” trong mục 3.3.3
- Đầu vào : Một tập hạt giống tên các sản phẩm.
- Đầu ra : Website kinh doanh sản phẩm có bán những sản phẩm trong tập hạt giống
đó và các mẫu trích xuất tương ứng với website.
Dữ liệu thực nghiệm
- Tập hạt giống tên sản phẩm cho trước.
- Chọn máy tìm kiếm google để xác định các trang liên quan đến sản phẩm
50
- Tạo truy vấn từ tên các sản phẩm ở tập hạt giống, gửi tới google, để thu được các
trang liên quan
- Tải các trang liên quan đến sản phẩm và xác định được các mẫu trích xuất thông
tin sản phẩm, ta sẽ thu được một bộ (Website, mẫu_trích_tên sản phẩm,
mẫu_trích_giá sản phẩm)
Xác định sự trùng lặp của các bộ, nếu một bộ trùng lặp nhiều lần, thì website trong
bộ đó là website kinh doanh và các mẫu trích xuất trong bộ là mẫu trích xuất có thể áp
dụng cho website này.
Kết quả thực nghiệm
Với tập hạt giống gồm 4 tên sản phẩm như sau :
- nokia 1200
- nokia e71 white steel
- nokia 1202
- nokia 6300 silver
Chọn ngưỡng là 3 thì ta có.
51
Bảng 5. Kết quả thực nghiệm xác định website kinh doanh sản phẩm
Số lượng kết quả
từ google trả về
Thời gian
chạy
Domain bán hàng nhận
được
10 288,84s
www.123mua.com.vn
www.vatgia.com
www.chodientu.vn
www.vinacms.vn
30 708s
www.123mua.com.vn
www.vatgia.com
www.chodientu.vn
www.vinacms.vn
www.enbac.com
100 3638.76s
www.123mua.com.vn
www.vatgia.com
www.chodientu.vn
www.vinacms.vn
www.enbac.com
www.quangcaosanpham.com
www.dienthoaididong.com.vn
www.aha.vn
www.trananh.vn
52
Nhận xét
Kết quả đạt được là khả quan. Trong các website mà hệ thống xác định được thì tất
cả đều là website kinh doanh sản phẩm.
Tương ứng với các trường hợp :
- google trả về là 10 thì nhận dạng được 4 website
- google trả về là 30 thì nhận dạng được 5 website
- google trả về là 100 thì nhận dạng được 10 website
Tuy nhiên do số lượng tập hạt giống ban đầu mới chỉ có 4 tên sản phẩm nên số
lượng website kinh doanh sản phẩm nhận dạng được vẫn còn ít.
4.2.3 Thực nghiệm thu thập và trích xuất thông tin từ một website
Mô tả thực nghiệm
Mục đích của thực nghiệm này để kiểm nghiệm phương pháp trích xuất thông tin
sản phẩm nêu ở “bài toán tự động trích xuất tên và giá của sản phẩm” trong muc 3.3.3.
Thực nghiệm này cũng giúp đánh giá được tính chính xác của các mẫu trích xuất trong
thực nghiệm 4.3.2
- Đầu vào : Website kinh doanh và các mẫu trích xuất tương ứng với wesite đó ở
thực nghiệm xác định website kinh doanh.
- Đầu ra : Tên sản phẩm và giá của các sản phẩm .
Dữ liệu sử dụng
Trong thực nghiệm này chúng tôi sẽ sử dụng 2 website trong thực nghiệm 2:
- www.dienthoaididong.com.vn
- www.trananh.vn
Hai website kinh doanh sẽ được thu thập dữ liệu, với số lượng 5000 tài liệu trên một
website và trích xuất dữ liệu từ tập dữ liệu này dựa vào các mẫu trích xuất tương ứng với
từng website đó.
Kết quả đạt được
53
Bảng 6. Kết quả thực nghiệm trích xuất sản phẩm
Website Kết quả trích xuất được
www.dienthoaididong.com.vn 743 sản phẩm
www.trananh.vn 416 sản phẩm
Nhận xét
Số lượng sản phẩm trích xuất được là khá nhiều. Trong số những sản phẩm trích
xuất được thì tất cả những sản phẩm đó đều chính xác, điều đó cho thấy phương pháp
trích xuất thông tin này chính xác.
Tuy nhiên trong 416 sản phẩm của website www.trananh.vn thì chỉ có các sản phẩm
về điện thoại di động trong khi website này còn có những sản phẩm về máy vi tính,
nguyên nhân của kết quả này là do sản phẩm trên tập hạt giống đều là tên của các loại
điện thoại di động và khuôn mẫu của lĩnh vực điện thoại và máy tính ở website này là
khác nhau.
4.2.4 Thực nghiệm khả năng thu thập thông tin của hệ thống
Mô tả thực nghiệm
Mục đích thực nghiệm này là đánh giá khả năng thu thập thông tin về tên và giá sản
phẩm của hệ thống
- Đầu vào: Tập hạt giống tên sản phẩm
- Đầu ra: Tên và giá của những sản phẩm có thể trích xuất được.
Dữ liệu thực nghiệm
Tên sản phẩm trong tập hạt giống được lấy từ trang vatgia.comError! Reference
source not found.. Các tên sản phẩm này được phân bố đều nhiều loại sản phẩm như:
điện thoại, máy tính, máy ảnh, trang sức, đồ gia dụng…
Kết quả đạt được
54
Bảng 7. Kết quả thực nghiệm khả năng thu thập thông tin của hệ thống
Số lượng tên sản phẩm
trong tập hạt giống
Số lượng website kinh
doanh được xác định
Số lượng sản phẩm trích
xuất được
334 sản phẩm
125 trang kinh doanh (phụ
lục 2)
47.856 sản phẩm, trong đó có
34.012 sản phẩm không trùng
nhau
Nhận xét:
Những sản phẩm trích xuất được cũng dàn trải trên nhiều lĩnh vực như tập hạt giống.
Ví dụ một số sản phẩm tiêu biểu như:
Bảng 8. Một số sản phẩm trích xuất được
Tên sản phẩm Giá sản phẩm
nokia 2680 slide 1,530,000 vnđ
canon powershot g10 8.645.000 vnđ
dell inspiron mini 9 - r560921vn ( pc - dos ) 8,029,000 vnđ
Comple nam hiệu Cavil Klein 14.560.000 vnđ
Phấn trang điểm - Ohui 575.000 vnđ
Kết quả này cho thấy khả năng thu thập thông tin trong hệ thống đạt hiệu quả tốt.
55
Kết luận
Kết quả đạt được của khóa luận này
Từ việc nghiên cứu bài toán trích xuất thông tin cho dữ liệu bán cấu trúc, khóa luận
đã đưa ra phương pháp tự động trích xuất giá của sản phẩm. Qua những kết quả thực
nghiệm đạt được cho thấy tính hữu dụng của phương pháp này.
Về mặt nội dung, khóa luận đã đạt được những kết quả sau:
- Giới thiệu bài toán trích xuất thông tin: Khái niệm, miền dữ liệu và các hướng
tiếp cận của bài toán
- Nghiên cứu bài toán trích xuất thông tin cho dữ liệu bán cấu trúc: Nêu được
những phương pháp sử dụng trong việc trích xuất, giới thiệu hai giải thuật trích
xuất Stalker và Roadrunner đồng thời phân tích những ưu nhược điểm của các
giải thuật này nhằm xây dựng phương pháp phù hợp để giải quyết bài toán trích
xuất thông tin giá sản phẩm.
- Thông qua cơ sở lý thuyết để giải quyết bài toán trích xuất thông tin giá sản
phẩm, khóa luận đã xây dựng được mô hình hệ thống tìm kiếm giá cả sản phẩm.
- Xây dựng được chương trình để thi hành được bài toán trích xuất thông tin giá
cả sản phẩm trên ngôn ngữ Java, môi trường Eclipse để đánh giá được mô hình
hệ thống đã xây dựng.
Bên cạnh những, do hạn chế về mặt thời gian và kiến thức khóa luận vẫn còn hạn
chế sau:
- Khóa luận chưa xây dựng được giao diện người dùng và kết quả thực nghiệm
xác định giá thực chưa đạt độ chính xác như mong muốn.
Định hướng tương lai
Trong tương lai, khóa luận sẽ tiếp tục hoàn thiện những hạn chế nên trên, đồng thời
cũng cố gắng để công bố hệ thống này để phục vụ cho người sử dụng.
56
Tài liệu tham khảo
[1]. Andrew Carlson and Charles Schafer, Bootstrapping Information Extraction from
Semi-structured Web Pages, ECML/PKDD, 2008.
[2]. Bing Liu, Web Data Mining Exploring Hyperlinks, Contents, and Usage Data,
,December, 2006.
[3]. Elwin Chai, Rick Jones, Automated Price Comparison Shopping Search Engine _
PriceHunter, CSE,2001
[4]. Irmak, and T. Suel, Interactive Wrapper Generation with Minimal User Effort. In
Proc. of the 15th Intl. Conf. on World Wide Web (WWW'06), 2006.
[5]. I. Muslea, S. Minton, and C. A. Knoblock. A Hierarchical Approach to Wrapper
Induction. In Proc. of the Intl. Conf. on Autonomous Agents (AGENTS’99), pp. 190–
197, 1999.
[6]. Jaeyoung Yang, Heekuck Oh, Kyung-Goo Doh and Joongmin Choi A ,Knowledge-
Based Information Extraction System for Semi-structured Labeled Documents,
Proceedings of the Third International Conference on Intelligent Data Engineering and
Automated Learning, 2002
[7]. Robert Bo Doorenbos, Oren Etzioni, and Daniel So Weld, A Scalable Comparison-
Shopping Agent for the World-Wide Web,
www.cs.washington.edu/homes/etzioni/papers/agents97.pdf, 1997
[8]. Sergey Brin, Extracting Patterns and Relations from the World Wide Web,
WebDB Workshop at 6th International Conference on Extending Database
Technology, 1998
[9]. S. Debnath, P. Mitra, N. Pal, and C. L. Giles. Automatic Identification of
Informative , IEEE Trans. Knowl. Data Eng. 17 , 2005
[10]. S. Debnath, P. Mitra, and C. L. Giles. Automatic extraction of informative blocks
from webpages. In Proc. SAC, pages 1722-1726, 2005.
[11]. Sections of Web-pages. In TKDE, pages 1233–1246, 2005.
57
[12]. V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: Towards Automatic Data
Extraction from Large Web Sites.In Proc. of Very Large Data Bases (VLDB’01),
pp.109–118, 2001.
[13]. WIEN N. Kushmerick. Wrapper Induction for Information Extraction. Ph.D
Thesis. Dept. of Computer Science, University of Washington, TR UW-CSE-97-11-
04, 1997
[14]. W. Cohen, M. Hurst, and L. S. Jensen. A Flexible Learning System for Wrapping
Tables and Lists in Html Documents. In Proc. of the 11th Intl. World Wide Web Conf.
(WWW’02), pp. 232–241, 2002.
[15].
[16].
[17].
[18].
58
Phụ lục
Phụ lục 1: Danh sách một số website được khảo sát đặc trưng của giá sản
phẩm
Địa chỉ website
www.amazon.com
www.jr.com
www.imobilecellphones.com
www.220depot.com
www.trananh.vn
www.vatgia.com
www.rongbay.com
www.vinabook.com
www.sieuthitrangsuc.com
www.aodaiminhthu.com
www.goodsmart.vn
59
Phụ lục 2: Danh sách một số website kinh doanh xác định được trong thực
nghiệm 4.4.4
Địa chỉ website
www.ducminhmobile.net
www.gsmserver.com
www.gounlock.com
www.123mua.com.vn
www.dienthoaididong.com.vn
www.vatgia.com
www.aha.vn
www.chodientu.vn
www.raovat.net
www.trananh.vn
www.megabuy.vn
Các file đính kèm theo tài liệu này:
- Bài toán trích xuất thông tin cho dữ liệu bán cấu trúc và áp dụng xây dựng hệ thống tìm kiếm giá cả sản phẩm.pdf