LỜI NÓI ĐẦU
Hiện nay trong cuộc sống hàng ngày,thông tin liên lạc đóng vai trò rất quan trọng không thể thiếu được ,nó quyết định nhiều mặt hoạt động của xã hội, giúp con người nắm bắt nhanh chóng các giá trị văn hoá, kinh tế, khoa học kỹ thuật rất đa dạng và phong phú. Bằng những bước phát triển thần kỳ,các thành tựu công nghệ của Điện tử -Viễn thông làm thay đổi cuộc sống con người từng giờ từng phút ,nó tạo ra một trào lưu trong mọi lĩnh vực ở thế kỷ XXI.
Lĩnh vực thông tin di động cũng không nằm ngoài trào lưu đó. Cùng với nhiều công nghệ khác nhau thông tin di động đang không ngừng phát triển đáp ứng nhu cầu thông tin ngày càng tăng cả về số lượng và chất lượng, tạo nhiều thuận lợi về thời gian cũng như không gian. Chắc chắn trong tương lai không xa, thông tin di dộng sẽ có nhiều thành tựu nổi bật , hoàn thiện hơn nữa để thoả mãn nhu cầu thông tin tự nhiên của con người.
42 trang |
Chia sẻ: lvcdongnoi | Lượt xem: 2581 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Đề tài Vô tuyến số – Giao tiếp vô tuyến số, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
bị riêng, ở trường hợp hai thì giao tiếp giữa MSC và IWF được để mở.
Để thiết lập một cuộc gọi đến người sử dụng GSM, trước hết cuộc gọi phải được định tuyến đến một tổng đài cổng GMSC mà không cần biết đến hiện thời thuê bao đang ở đâu. Các tổng đài cổng có nhiệm vụ lấy thông tin về vị trí của thuê bao và định tuyến cuộc gọi đến tổng đài đang quản lý thuê bao ở thời điểm hiện thời (MSC tạm trú). Để vậy trước hêt các tổng đài cổng phải dựa trên số thoại danh bạ của thuê bao để tìm đúng HLR cần thiết và hỏi HLR này. Tổng đài cổng có một giao diện với các mạng bên ngoài với mạng GSM. Về phương diện kinh tế, không phải bao giờ tổng đài cổng cũng đứng riêng mà thường được kết hợp với MSC.
1.2.1.2. Bộ ghi định vị thường trú HLR
Là cơ sở dữ liệu quan trọng nhất của mạng GSM, lưu trữ các số liệu và địa chỉ nhận dạng cũng như các thông số nhận thực của thuê bao trong mạng. Các thông tin lưu trữ trong HLR gồm: nhận dạng thuê bao IMSI, MSISDN, VLR hiện thời, trạng thái thuê bao, khoá nhận thực và chức năng nhận thực, số lưu động trạm di động MSRN.
HLR chứa những cơ sở dữ liệu bậc cao của tất cả các thuê bao trong GSM. Những dữ liệu này được truy nhập từ xa bởi các MSC và VLR của mạng.
1.2.1.3. Bộ ghi định vị tạm trú VLR
VLR là cơ sở dữ liệu thứ hai trong mạng GSM. Nó được nối với một hay nhiều MSC và có nhiệm vụ lưu giữ tạm thời số liệu thuê bao của các thuê bao hiện đang nằm trong vùng phục vụ của MSC tương ứng và đồng thời lưu giữ số liệu về vị trí của các thuê bao nói trên ở mức độ chính xác hơn HLR. Các chức năng VLR thường được liên kết với các chức năng MSC.
1.2.1.4. Trung tâm nhận thực AUC
AUC quản lý các thông tin nhận thực và mật mã liên quan đến từng cá nhân thuê bao dựa trên một khoá nhận dạng bí mật Ki để đảm bảo toàn số liệu cho các thuê bao được phép. Khoá này cũng được lưu giữ vĩnh cửu và bí mật trong bộ nhớ ở MS. Bộ nhớ này có dang Simcard có thể rút ra và cắm lại được. AUC có thể được đặt trong HLR hoặc MSC hoặc độc lập với cả hai.
Khi đăng ký thuê bao, khoá nhận thực Ki được ghi nhớ vào Simcard của thuê bao cùng với IMSI của nó. Đồng thời khoá nhận thực Ki cũng được lưu giữ ở trung tâm nhận thực AUC để tạo ra bộ ba thông số cần thiết cho quá trình nhận thực và mật mã hoá:
- Số ngẫu nhiên RAND
- Mật khẩu SRES được tạo ra từ Ki và số ngẫu nhiên RAND bằng thuật toán A3.
- Khoá mật mã Kc được tạo ra từ Ki và số ngẫu nhiên RAND bằng thuật toán A8
1.2.1.5. Bộ đăng ký nhận dạng thiết bị EIR
Quản lý thiết bị di động được thực hiện bởi bộ đăng ký nhận dạng thiết bị EIR. EIR lưu giữ tất cả các dữ liệu liên quan đến phần thiết bị di động ME của trạm di động MS. EIR được nối với MSC thông qua đường báo hiệu để kiểm tra sự được phép của thiết bị bằng cách so sánh tham số nhận dạng thiết bị di động quốc tế IMEI (International Mobile Equipment Identity) của thuê bao gửi tới khi thiết lập thông tin với số IMEI lưu giữ trong EIR phòng trường hợp đây là những thiết bị đầu cuối bị đánh cắp, nếu so sánh không đúng thì thiết bị không thể truy nhập vào mạng được.
1.2.2. Phân hệ trạm gốc BSS
BSS thực hiện nhiệm vụ giám sát các đường ghép nối vô tuyến, liên kết kênh vô tuyến với máy phát và quản lý cấu hình của các kênh này. Đó là:
- Điều khiển sự thay đổi tần số vô tuyến của đường ghép nối (Frequency Hopping) và sự thay đổi công suất phát vô tuyến.
- Thực hiện mã hoá kênh và tín hiệu thoại số, phối hợp tốc độ truyền thông tin.
- Quản lý quá trình Handover.
- Thực hiện bảo mật kênh vô tuyến.
Phân hệ BSS gồm hai khối chức năng: bộ điều khiển trạm gốc (BSC: Base Station Controller) và các trạm thu phát gốc (BTS: Base Transceiver Station). Nếu khoảng cách giữa BSC và BTS nhỏ hơn 10m thì các kênh thông tin có thể được kết nối trực tiếp (chế độ Combine), ngược lại thì phải qua một giao diện A-bis (chế độ Remote). Một BSC có thể quản lý nhiều BTS theo cấu hình hỗn hợp của 2 loại trên.
1.2.2.1. Trạm thu phát gốc BTS
Một BTS bao gồm các thiết bị phát thu, anten và xử lý tín hiệu đặc thù cho giao diện vô tuyến. Có thể coi BTS là các Modem vô tuyến phức tạp có thêm một số các chức năng khác. Một bộ phận quan trọng của BTS là TRAU (Transcoder and Rate Adapter Unit: khối chuyển đổi mã và thích ứng tốc độ). TRAU là thiết bị mà ở đó quá trình mã hoá và giải mã tiếng đặc thù riêng cho GSM được tiến hành, ở đây cũng thực hiện thích ứng tốc độ trong trường hợp truyền số liệu. TRAU là một bộ phận của BTS, nhưng cũng có thể đặt cách xa BTS và thậm chí trong nhiều trường hợp được đặt giữa BSC và MSC.
BTS có các chức năng sau:
- Quản lý lớp vật lý truyền dẫn vô tuyến
- Quản lý giao thức cho liên kết số liệu giữa MS và BSC
- Vận hành và bảo dưỡng trạm BTS
- Cung cấp các thiết bị truyền dẫn và ghép kênh nối trên giao tiếp A-bis
1.2.2.2. Bộ điều khiển trạm gốc BSC
BSC có nhiệm vụ quản lý tất cả giao diện vô tuyến qua các lệnh điều khiển từ xa BTS và MS. Các lệnh này chủ yếu là các lệnh ấn định, giải phóng kênh vô tuyến và quản lý chuyển giao (Handover). Một phía BSC được nối với BTS còn phía kia nối với MSC của SS. Trong thực tế, BSC là một tổng đài nhỏ có khả năng tính toán đáng kể. Một BSC có thể quản lý vài chục BTS tuỳ theo lưu lượng các BTS này. Giao diện giữa BSC và MSC là giao diện A, còn giao diện giữa nó với BTS là giao diện A-bis.
Nhân viên khai thác có thể từ trung tâm khai thác và bảo dưỡng OMC nạp phần mềm mới và dữ liệu xuống BSC, thực hiện một số chức năng khai thác và bảo dưỡng, hiển thị cấu hình của BSC. BSC có thể thu thập số liệu đo từ BTS và BIE (Base Station Interface Equipment: Thiết bị giao diện trạm gốc), lưu trữ chúng trong bộ nhớ và cung cấp chúng cho OMC theo yêu cầu.
1.2.2.3. Bộ chuyển đổi mã và thích ứng tốc độ TRAU
Trong GSM, tín hiệu thoại trên giao diện vô tuyến được mã hoá ở tốc độ 13Kbps sử dụng mã hoá tiền định tuyến LPC. Để thích ứng tốc độ này các tốc độ mạng hội thoại cố định PSTN cần có bộ chuyển đổi mã TRAU để chuyển đổi giữa 13Kbps PCM giữa MS và MSC. TRAU có thể được đặt tại BTS, BSC hoặc tại MSC. Để giảm thiểu chi phí truyền dẫn, thường TRAU đặt ở MSC. Khi đó cần thêm báo hiệu bổ xung vào tiếng thoại 13Kbps để truyền thông tin điều khiển từ bộ chuyển đổi mã từ xa đặt ở BTS đến TRAU.
1.2.3. Trạm di động MS
Trạm di động là thiết bị duy nhất mà người sử dụng có thể thường xuyên nhìn thấy của hệ thống. MS có thể là: máy cầm tay, máy xách tay hay máy đặt trên ô tô. Ngoài việc chứa các chức năng vô tuyến chung và xử lý cho giao diện vô tuyến MS còn phải cung cấp các giao diện với người sử dụng (như micrô, loa, màn hiển thị, bàn phím để quản lý cuộc gọi) hoặc giao diện với môt số các thiết bị khác (như giao diện với máy tính cá nhân, Fax…). Hiện nay, người ta đang cố gắng sản xuất các thiết bị đầu cuối gọn nhẹ để đấu nối với trạm di động. Ba chức năng chính của MS:
- Thiết bị đầu cuối thực hiện các chức năng không liên quan đến mạng GSM.
- Kết cuối trạm di động thực hiện các chức năng liên quan đến truyền dẫn ở giao diện vô tuyến.
- Bộ thích ứng đầu cuối làm việc như một cửa nối thông thiêt bị đầu cuối với kết cuối di động. Cần sử dụng bộ thích ứng đầu cuối khi giao diện ngoài trạm di động tuân theo tiêu chuẩn ISDN để đấu nối đầu cuối, còn thiết bị đầu cuối lại có thể giao diện đầu cuối – modem.
- Máy di động MS gồm hai phần: Module nhận dạng thuê bao SIM( Subscriber Identity Module) và thiết bị di động ME (Mobile Equipment).
Để đăng ký và quản lý thuê bao, mỗi thuê bao phải có một bộ phận gọi là SIM. SIM là một module riêng được tiêu chuẩn hoá trong GSM. Tất cả các bộ phận thu, phát, báo hiệu tạo thành thiết bị ME. ME không chứa các tham số liên quan đến khách hàng, mà tất cả các thông tin này được lưu trữ trong SIM. SIM thường được chế tạo bằng một vi mạch chuyên dụng gắn trên thẻ gọi là Simcard. Simcard có thể rút ra hoặc cắm vào MS.
Sim đảm nhiệm các chức năng sau:
- Lưu giữ khoá nhận thực thuê bao Ki cùng với số nhận dạng trạm di động quốc tế IMSI nhằm thực hiện các thủ tục nhận thực và mật mã hoá thông tin.
- Khai thác và quản lý số nhận dạng cá nhân PIN(Personal IdentityNumber) để bảo vệ quyền sử dụng của người sở hữu hợp pháp. PIN là một số gồm từ 4 đến 8 chữ số, được nạp bởi nhà khai thác khi đăng ký lần đầu.
1.2.4. Phân hệ khai thác OSS
Phân hệ khai thác OSS thực hiện ba chức năng chính sau:
Khai thác và bảo dưỡng mạng:
Khai thác là các hoạt động cho phép nhà khai thác mạng theo dõi hành vi của mạng như: tải của hệ thống, mức độ chặn, số lượng chuyển giao giữa hai ô…, nhờ vậy nhà khai thác có thể giám sát được toàn bộ chất lượng của dịch vụ mà họ cung cấp cho khách hàng và kịp thời xử lý các sự cố. Khai thác cũng bao gồm việc thay đổi cấu hình để giảm những vấn đề xuất hiện ở thời điểm hiện tại, để chuẩn bị lưu lượng cho tương lai, để tăng vùng phủ. Ở hệ thống viễn thông hiện đại, khai thác được thực hiện bằng máy tính và được tập trung ở một trạm.
Bảo dưỡng có nhiệm vụ phát hiện, định vị và sửa chữa các sự cố hỏng hóc. Nó có một số quan hệ với khai thác. Bảo dưỡng cũng bao gồm cả các hoạt động tại hiện trường nhằm thay thế thiết bị có sự cố.
Hệ thống khai thác và bảo dưỡng có thể được xây dựng trên nguyên lý TMN (Telecommunication Management Network: Mạng quản lý viễn thông). Lúc này, một mặt hệ thống khai thác và bảo dưỡng được nối đến các phần tử của mạng viễn thông ( các MSC, BSC, HLR và các phần tử mạng khác trừ BTS, vì thâm nhập đến BTS được thực hiện qua BSC). Mặt khác, hệ thống khai thác và bảo dưỡng lại được nối đến một máy tính chủ đóng vai trò giao tiếp người máy. Theo tiêu chuẩn GSM, hệ thống được gọi là OMC (Operation and Maintenance Center: Trung tâm khai thác và bảo dưỡng).
Quản lý thuê bao:
Bao gồm các hoạt động quản lý đăng ký thuê bao. Nhiệm vụ đầu tiên là nhập và xóa thuê bao khỏi mạng. Đăng ký thuê bao cũng có thể rất phức tạp, bao gồm nhiều dịch vụ và các tính năng bổ sung. Nhà khai thác phải có thể thâm nhập được tất cả các thông số nói trên. Một nhiệm vụ quan trọng khác của khai thác là tính cước các cuộc gọi. Cước phí phải được tính và gửi đến thuê bao. Quản lý thuê bao ở GSM chỉ liên quan đến HLR và một số thiết bị OSS riêng chẳng hạn mạng nối HLR với các thiết bị giao tiếp người máy ở các trung tâm giao dịch với thuê bao. Simcard cũng đóng vai trò như một bộ phận của hệ thống quản lý thuê bao.
Quản lý thiết bị di động:
Quản lý thiết bị di động được bộ đăng ký nhận dạng thiết bị EIR thực hiện. EIR lưu giữ tất cả các dữ liệu liên quan đến trạm di động MS. EIR được nối đến MSC qua đường báo hiệu để kiểm tra sự được phép của thiết bị. Một thiết bị không được phép sẽ bị cấm. Trong hệ thống GSM, EIR được coi là hệ thống con SS.
CHƯƠNG 2. VÔ TUYẾN SỐ – GIAO TIẾP VÔ TUYẾN SỐ
2.1. Vô tuyến số tổng quát
Ở phần này đề cập đến việc sử dụng thiết bị vô tuyến để truyền thông tin giữa trạm di động và mạng PLMN GSM thay vì dùng dây. Một số vấn đề quan trọng khi quy hoạch tần số là sự hạn chế bởi đại lượng nhiễu của hệ thống tổ ong.
2.1.1. Suy hao đường truyền và pha đinh
Suy hao đường truyền là quá trình mà ở đó tín hiệu thu yếu dần do khoảng cách giữa trạm di động và trạm gốc tăng mà không có mặt vật cản giữa anten phát và thu. Suy hao trong không gian tự do:
Ls » d2.f2
Ls (dB) = 33,4 (dB) + 20logF(MHz) + 20logd(km)
d: là khoảng cách giữa anten phát Tx và thu Rx.
f: tần số phát
(Công thức trên chỉ đúng với các hệ thống vô tuyến di động gần BS.)
Môi trường sử dụng của MS thường có chướng ngại vật gây hiệu ứng che tối làm giảm cường độ tín hiệu thu. Khi di động cùng với đài di động cường độ tín hiệu giảm và tăng dù giữa Tx và Rx có hay không có chướng ngại. Hiệu ứng này gọi là pha đinh chuẩn log. Thời gian giữa 2 chỗ trũng pha đinh khoảng vài giây khi máy di động MS là loại lắp trên xe và chuyển động.
Trong trường hợp môi trường thông tin có mật độ thuê bao dày và nhiều chướng ngại ta có pha đinh nhiều tia hay raile, xảy ra khi tín hiệu truyền nhiều đường từ anten Tx đến Rx.
Ở hiện tượng pha đinh raile, tín hiệu thu được là tổng các tín hiệu phản xạ khác pha, khác biên độ. Những tín hiệu này khi cộng lại như các véctơ tạo nên một véctơ tổng gần bằng không có nghiã là cường độ tín hiệu bằng 0. Đây là chỗ trũng pha đinh nghiêm trọng. Khoảng thời gian giữa hai chỗ trũng pha đinh phụ thuộc vào tốc độ chuyển động và tần số phát.
MS
Hình 2 :Pha đinh Raile
Ở một khoảng cách nhất định (x mét) so với anten phát Tx, tín hiệu thu được minh hoạ như sau:
Độ nhạy máy thu
m
X + 15
X + 10
X
Dự trữ padinh
Giá trị trung bình cục bộ
Chỗ trũng padinh
Giá trị trung bình chung
Cường độ tín hiệu thu (Rx), Fc = 900MHz
Độ nhạy máy thu là mức tín hiệu vào yếu nhất cần thiết cho một tín hiệu ra qui định. Khi quy hoạch hệ thống, để chống lại pha đinh thì giá trị trung bình chung được lấy lớn hơn độ nhạy máy thu lượng Y(dB) bằng chỗ trũng pha phađinh mạnh nhất, Y(dB) được gọi là dự trữ pha đinh.
2.1.2. Phân tán thời gian
Hiện tượng này có nguồn gốc từ phản xạ từ một vật ở xa anten thu Rx vài km. Nó dần đến giao thoa giữa các ký hiệu ISI tức là giao thoa giữa các ký hiệu lân cận với nhau dẫn đến phía thu khó quyết định nhận được ký hiệu nào.
Ở GMS tốc độ bit là 270kb/s, mỗi bit tương ứng với 3,7ms và tương ứng với khoảng cách là 1,1km. Khi có phản xạ từ 1km phía sau trạm di động thì tín hiệu phản xạ phải qua quãng đường dài hơn tín hiệu đi thẳng là 2km. Tín hiệu phản xạ sẽ trộn tín hiệu mong muốn với tín hiệu trễ 2bit.
Hệ thống GSM được thiết kế có thể hạn chế phân tán thời gian nhờ sử dụng một bộ cân bằng mà có thể thực hiện cân bằng một số nhất định tín hiệu phản xạ nhưng không phải là tất cả. Bộ cân bằng của GSM có thể đạt được sự cân bằng cho các tín hiệu phản xạ chậm khoảng 4 bít so vơí tín hiệu đến trực tiếp, tương ứng với 15 ms. Tuy nhiên nếu tín hiệu phản xạ mà đến trễ hơn thế thì bộ cân bằng không thể đáp ứng được. Giai đoạn mà bộ cân bằng có thể đáp ứng được gọi là cửa số thời gian. Trong cửa sổ thời gian đó sẽ tăng cường độ tín hiệu đến trực tiếp. Tổng các tín hiệu phản xạ có thể nhỏ hơn 15ms phải ít nhất nhỏ hơn 9 lần tổng các tín hiệu trong cửa sổ. Tỉ số này gọi là tỉ số sóng mang trên sóng phản xạ (C/R). C/R được tính bằng tỉ số giữa năng lượng trong cửa sổ C và năng lượng ngoài cửa sổ R của bộ cân bằng. C/R càng nhỏ thì chất lượng càng kém. Vị trí đặt BTS ảnh hưởng rất lớn đến tỉ số này nên đặt không hợp lí sẽ gây nên phân tán thời gian lớn. Các vùng có địa hình như miền núi, thành phố nhiều nhà cao tầng, vùng hồ xây dựng nhiều thềm, bậc thường có tỉ số C/R nhỏ.
Thông thường tín hiệu phản xạ phải đi qua quãng đường lớn hơn 4,5 Km so với tín hiệu trực tiếp thì mới có trễ hơn 15ms tuy nhiên nếu tín hiệu phản xạ đó không mạnh tức là tỉ số C/R lớn hơn 1 số cho phép thì không ảnh hưởng đến vùng sóng phục vụ.
Ngược lại nếu tín hiệu phản xạ mạnh nhưng trễ vẫn thuộc cửa sổ thì sẽ tăng độ mạnh của tín hiệu đi thẳng. Chỉ khi C/R nhỏ phân tán thời gian lớn thì mới có yêu cầu thay đổi vi trí BTS, hoặc dùng phương pháp đặt thêm BTS phụ trợ.
* Nhiễu đồng kênh:
Nhiễu giao thoa đồng kênh là nhiễu do tín hiệu thu không mong muốn có cùng tần số với tín hiệu thu mong muốn. Tỉ số giữa mức sóng mang mong muốn và không mong muốn là tỉ số nhiễu giao thoa đồng kênh (C/I). Tỉ số này phụ thuộc vào những yếu tố như:
+ Mẫu sử dụng lại tần số: khoảng cách giữa hai Cell cùng tần số ảnh hưởng lẫn nhau.
+ Vị trí địa hình.
+ Các vùng phản xạ địa phương.
+ Kiểu Angten, tính định hướng, chiều cao Angten.
+ Các sóng gây nhiễu địa phương có cùng tần số.
Tỉ số này gây ảnh hưởng rất mạnh đến chất lượng tín hiệu, dẫn đến sai tín hiệu, giải mã sai gây nên sót cuộc gọi hoặc thất bại trên đường nối vô tuyến. Tiêu chuẩn GSM cho phép C/I nhỏ nhất là 10. Ngoài ra trong thông tin vô tuyến tín hiệu còn bị ảnh hưởng các kênh lân cận là các kênh gần tần số với tín hiệu thu, dải tần của chúng trùng lên nhau ở mức lớn. Trong trường hợp này cũng gây nhiễu gọi là nhiễu giao thoa kênh lân cận (C/A) trong thực tế các tần số của các BTS cùng vị trí thường gây ảnh hưởng cho nhau.
Tín hiệu thu được khi đo đạc thường gồm rất nhiều loại tín hiệu và nhiễu như đã kể trên.
BTS
0
0
1
1
Hình 3. Phân tán thời gian
2.1.3. Các phương pháp phòng ngừa suy hao truyền dẫn do pha đinh
Để cải thiện máy thu và chất lượng của tín hiệu thu, có 4 phương án để thực hiện như sau:
Phân tập anten (phân tập không gian):
Do 2 anten thu ít có nguy cơ bị chỗ trũng phađinh sâu cùng một lúc, nên ta sử dụng 2 anten Rx độc lập thu cùng tín hiệu rồi kết hợp các tín hiệu này lại ta sẽ có một tín hiệu ra khỏi bộ kết hợp ít bị phađinh hơn. Khoảng cách giữa hai anten phải đủ lớn để tương quan giữa các tín hiệu ở hai anten nhỏ.
2
1
Tín hiệu 1
Tín hiệu 2
CĐTH
SS
Anten
Nhảy tần:
Với pha đinh raile, mẫu phađinh phụ thuộc vào tần số nghĩa là chỗ trũng phađinh xảy ra ở các vị trí khác nhau đối với các tần số khác nhau. Như vậy ta có thể thay đổi tần số sóng mang trong một số tần số khi cuộc gọi đang tiến hành, khi gặp chỗ trũng phađinh chỉ một phần thông tin bị mất.
Mã hoá kênh:
Ở truyền dẫn số người ta đo chất lượng của tín hiệu được chủ yếu bằng số lượng các bit thu được chính xác, dẫn đến biểu diễn tỷ số bit lỗi BER. BER không thể bằng không do đường truyền dẫn luôn luôn thay đổi. Nghĩa là ta phải cho phép một lượng lỗi nhất định và có khả năng khôi phục thông tin này hoặc có thể phát hiện tránh sử dụng thông tin lỗi. BER quan trọng với phát số liệu hơn Voice.
Ở phương pháp mã hoá kênh ta phải phát đi một lượng thông tin có số bit lớn hơn nhưng sẽ đạt độ an toàn chống lỗi cao hơn. Mã hoá kênh có thể phát hiện và sửa lỗi ở từng bit thu.
Ví dụ: Khi muốn gửi một bit “0” hay “1” để được bảo vệ ta bổ xung thêm ba bit như sau:
Thông tin
0
1
Bổ xung
000
111
Gửi đi
0000
1111
Khối mã 0000 sẽ đúng với 0 và 1111 sẽ đúng với 1. Tỷ lệ là 1:4, bảo vệ sẽ xảy ra như sau:
Thu được : 0000 0010 0110 0111 1110
Quyết định: 0 0 x 1 1
Riêng cụm 0110 không xác định được cụ thể, trạm 0111 và 1110 được phát hiện là lỗi và có thể sửa.
Mỗi kênh kiểm tra lỗi được chia thành mã khối và mã xoắn. Ở mã khối, một số bit kiểm tra được bổ xung vào một số bit thông tin nhất định. Các bit kiểm tra chỉ phụ thuộc vào các bit thông tin ở khối bản tin. Ở mã hoá xoắn, bộ mã hoá tạo ra khối các bit mã không chỉ phụ thuộc vào các bit của khối bản tin hiện thời được dịch vào bộ mã hoá mà còn phụ thuộc vào các bit của khối trước.
Mã hoá khối thường được sử dụng khi có báo hiệu định hướng theo khối và sử dụng để phát hiện lỗi khi thực hiện “Yêu cầu tự động phát” ARQ. Mã hoá xoắn liên quan nhiều hơn đến sửa sai lỗi. Cả hai mã này được sử dụng ở GSM. Hai bước mã hoá được dùng cho cả tiếng và số liệu.
Ghép xen:
Các lỗi bit thường xảy ra theo từng cụm do các chỗ trũng phađinh lâu làm ảnh hưởng nhiều bit liên tiếp. Để giải quyết hiện tượng lỗi bit quá dài ta dùng phương pháp ghép kênh xen để tách các bit liên tiếp của một bản tin sao cho các bit này gửi đi không liên tiếp.
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
Các khối bán tin ghép xen
Các khối bán tin được ghép xen
Một khung
Khi truyền dẫn khung 2 có thể mất nếu không ghép xen toàn bộ khối bản tin sẽ mất nhưng ghép xen sẽ đảm bảo chỉ thị thứ hai ở từng khối là bị mắc lỗi:
1
x
3
4
1
x
3
4
1
x
3
4
1
x
3
4
Mã hoá kênh có thể khôi phục lại thông tin của tất cả các khối. Ở GMS bộ mã hoá kênh cung cấp 456 bit cho từng 20ms tiếng và đựoc ghép xen để tạo ra các khối 57bit.
2.1.4. Phương pháp chống phân tán thời gian
Mô hình truyền dẫn:
Máy phát
Máy thu
tối ưu
Kênh
Máy thu tối ưu là máy thu hiểu rõ kênh. Ta lập mô hình toán học của kênh và điều chỉnh máy thu đến mô hình. Kênh được xét như một bộ lọc và được kích thích bởi một tín hiệu biết trước. So sánh đầu ra với đầu vào ta có đáp ứng xung của bộ lọc. Đáp ứng xung của bộ lọc cho ta biết được tín hiệu ra đối với tín hiệu vào, như vậy ta có thể tìm được đáp ứng xung của kênh và lập mô hình kênh khi phân tích một tín hiệu thu được. Đáp ứng xung khi không có phản xạ (a) và có một phản xạ (b).
(a) Không có phản xạ
(b) có một phản xạ
0
D(t)
t
t
Xét nguyên lý làm việc của một bộ cân bằng: Sau khi lập mô hình kênh ta sẽ phải tạo ra tất cả các chuỗi bit có thể có rồi đưa chúng qua mô hình kênh chuỗi đầu vào mà từ đó nhận được chuỗi đầu ra giống nó nhất gọi là chuỗi nguyên thuỷ hay chuỗi phát. Theo quy định của GMS, một bộ cân bằng cần có khả năng xử lý một tín hiệu phản xạ trễ đến 14,8ms tương ứng với thời gian của 4bit. Lúc này ngay cả tín hiệu phản xạ cũng bị ảnh hưởng bởi phađinh raile, nhưng do tín hiệu này có mẫu phađinh độc lập so với tín hiệu đi thẳng nên nó được lợi dụng để đạt hiệu quả cao hơn. Vậy với các tín hiệu phản xạ trễ dưới 15ms nó cho ta thêm năng lượng để cải tạo tín hiệu thu.
Trên thực tế độ dài chuỗi N thường lớn lên phải được thực hiện nhiều so sánh và mất nhiều thời gian tính toán gây một sự chậm trễ không cho phép. Để khắc phục khó khăn này người ta phải sử dụng đến thuật toán Viterbi mà ở đó không cần phải thử tất cả các chuỗi. Nguyên lý là khi tính toán ta loại bỏ các tổ hợp không có khả năng là tín hiệu vào nhờ đó giảm được số lượng tính toán cần thiết.
2.1.5. Truyền dẫn số và tín hiệu tương tự
Trong trường hợp truyền tiếng nói là dạng sóng liên tục khác với truyền số liệu ta phải thực hiện lấy mẫu tín hiệu tương tự, lượng tử và mã hoá tín hiệu ở dạng số “1” và “0”. Các mẫu tương tự được trình bày bằng một tập hợp hữu hạn các mức được xác định bởi số các bit ta cần sử dụng để trình bày một mẫu.
Ở hệ thống viễn thông số chọn số mức rời rạc hoá =256 mức (8bit) với mỗi mẫu ta trình bày giá trị tương tự bằng một giá trị đã được lượng tử hoá ở 8bit. Với tốc độ lấy mẫu 8kHz ta có tốc độ bit: 8000mẫu/s x 8bit = 64kb/s. Quá trình này được gọi là điều chế xung mã PCM gồm 3 bước:
Lượng tử
Lấy mẫu
Mã hoá
Đường truyền PCM 64 kb/s
Ta đặt nhiều kênh trên cùng một đường truyền PCM (ghép kênh) để tránh lãng phí. Nếu ghép 32 kênh trên một đường truyền PCM thì tốc độ bit của nó là 32x64kb/s=2,048Mb/s. Thiết bị ghép kênh điều khiển việc gán các khe thời gian 0,1 gửi đi ở khe 1,...Trong 32 kênh truyền thì kênh 0 dùng cho đồng bộ, kênh 16 dùng cho báo hiệu còn 30 kênh còn lại dùng cho tiếng thoại. Phần trình bày trên là ví dụ về đa thâm nhập phân chia theo thời gian TDMA.
Một phương pháp khác với TDMA là FDMA (đa thâm nhập phân chia tần số) được dùng ở quảng bá vô tuyến, mỗi kênh được dành cho một băng tần riêng. Kỹ thuật này được sử dụng ở hệ thống di động tổ ong tương tự, mỗi cuộc gọi ở một ô sử dụng một băng tần (hai băng khi truyền song công). Sau đây là so sánh giữa TDMA và FDMA:
FDMA
0
1
2
3
4
5
6
7
MS1
MS2
MS2
MS5
TDMA
Đồng bộ thời gian:
Khi sử dụng TDMA ở vô tuyến, mỗi trạm di động sử dụng khe thời gian Ts của mình nhưng khi khoảng cách giữa MS và BTS tăng lên gây trễ thời gian truyền tín hiệu và trễ này lớn quá thì thông tin phát đi từ MS ở khe Ts n sẽ trùng với tín hiệu thu được của BTS tại khe Ts n+1 của MS khác. Để kiểm tra thời gian đến và các lệnh được gửi đến MS ta có quá trình định trước thời gian mỗi khi MS di chuyển ra xa.
Mã hoá tiếng:
Ở một số hệ thống di động tổ ong FDMA khoảng cách giữa các kênh là 25kHz (NMT, TACS) và ở GMS khoảng cách này bằng 200kHz. So sánh TDMA 200kHz và FDMA 25kHz ta có hiệu quả sử dụng tần số như nhau. Khi sử dụng phương pháp điều chế pha tối thiểu Gauss (GMSK) độ rộng băng thông bị chiếm sẽ rất lớn. Để đảm bảo băng tần cho phép ta giảm tối thiểu tốc độ bit cho từng kênh tiếng bằng cách mã hoá tiếng (Vocodes) và mã hoá theo dạng sóng.
Mã hoá theo kiểu phát âm Vocodes giúp ta nhận biết được tiếng nói nhưng rất “tổng hợp” và ta khó nhận ra ai phát âm.
Sử dụng mã hoá sóng (mã hoá PCM đồng đều) thông tin trực tiếp của chính thực dạng sóng được phát đi với tốc độ đòi hỏi cao và cho ta một chất lượng cũng rất cao. Tốc độ bit ở bộ mã hoá dạng sóng thay đổi từ gần 16kb/s đến 64kb/s đối với bộ mã hoá PCM đồng đều.
Ngoài ra ta còn có các bộ mã hoá cho phép được mô tả như một sự pha trộn giữa Vocodes và mã hoá dạng sóng. Các bộ mã hoá lai ghép lấp kín chỗ trống giữa các bộ mã hoá Vocodes và dạng sóng với tốc độ bit từ 5kb/s, chất lượng theo tốc độ bit. GMS sử dụng bộ mã hoá ghép lai gọi là mã hoá tiền định tuyến tính-Tiền định thời gian dài-kích thích xung đều: bộ LPC-LPT-RPE.
2.2. Nguyên tắc khi chia kênh theo khe thời gian
2.2.1. Khái niệm kênh
Mạng GSM/PLMN dành 124 sóng mang song công ở dải tần:
- Đường lên (MS – BTS): 890 – 915Mhz
- Đường xuống (BTS – MS): 935 – 960Mhz
Khoảng cách giữa sóng mang 200Khz, trên mỗi sóng mang thực hiện ghép kênh theo thời gian ứng với mỗi khung TDMA, mỗi khung gồm 8 khe thời gian (Time Slot). Số kênh ở GSM là 124x8(khe) =922kênh.
2.2.1.1. Kênh vật lý
Một khe thời gian ở một tần số vô tuyến dành để truyền tải thông tin ở đường vô tuyến của GSM là một kênh vật lý. Mỗi một kênh tần số vô tuyến được tổ chức thành các khung TDMA dài 4,62ms gồm có 8 khe thời gian (mỗi khe dài 577ms). Tại BTS, các khung TDMA ở các kênh tần số ở cả đường lên và đường xuống đều được đồng bộ, tuy nhiên khung đường lên trễ 3 khe so với khung đường xuống. Nhờ có trễ này mà có thể sử dụng một khe thời gian có cùng số thứ tự ở cả đường lên lẫn đường xuống để truyền tin bán song công.
Về mặt thời gian, các kênh vật lý ở một kênh tần số được tổ chức theo cấu trúc khung, đa khung, siêu đa khung, siêu siêu khung.
Một siêu siêu khung được chia thành 2048 siêu khung với thời gian là 6,12s. Siêu khung lại được chia thành các đa khung, có hai loại đa khung:
- Đa khung 26 khung chứa 26 khung TDMA. Đa khung này được sử dụng để mang TCH (và SACCH cộng FACCH). 51 đa khung này tạo nên một siêu khung.
- Đa khung 51 khung chứa 51 khung TDMA. Đa khung này sử dụng để mang BCH và CCH. 26 đa khung này tạo nên một siêu khung.
2.2.1.2 Kênh logic
Các kênh logic được đặc trưng bởi thông tin truyền giữa BTS và MS. Kênh logic được chia làm hai loại:
Kênh lưu thông (TCH): mang tiếng được mã hoá hoặc số liệu của người sử dụng, gồm hai dạng kênh:
- Bm hay kênh toàn tốc TCH mang thông tin ở tốc độ 22,8Kbps.
- Lm hay kênh bán tốc TCH mang thông tin ở tốc độ 11,4Kbps.
Các kênh điều khiển: mang tín hiệu báo hiệu hay số liệu đồng bộ, gồm ba loại sau:
- Các kênh quảng bá (BCH):
+ Kênh hiệu chỉnh tần số (FCCH): mang thông tin để hiệu chỉnh tần số của MS.
+ Kênh đồng bộ (SCH): mang thông tin để đồng bộ khung (số khung TDMA) của MS và nhận dạng BTS (BSIC).
+ Kênh điều khiển quảng bá (BCCH): phát quảng bá thông tin chung trên cơ sở một kênh cho một BTS.
- Các kênh điều khiển riêng (DCCH):
+ Kênh điều khiển riêng đứng một mình (SDCCH): được sử dụng để báo hiệu hệ thống khi thiết lập một cuộc gọi trước khi ấn định một TCH. Kênh đường lên/xuống, điểm đến điểm.
+ Kênh điều khiển liên kết chậm (SACCH): liên kết với một TCH hay một SDCCH, là kênh số liệu liên tục mang thông tin liên tục như các thông báo đo đạc từ trạm di động về cường độ tín hiệu thu từ ô hiện thời và các ô lân cận. Thông tin này cần cho chức năng chuyển giao. Kênh này cũng được sử dụng để điều chỉnh công suất của MS và để đồng bộ thời gian. Kênh đường lên/xuống, điểm đến điểm.
+ Kênh điều khiển liên kết nhanh (FACCH): là kênh liên kết với TCH. FACCH làm việc ở chế độ lấy cắp bằng cách thay đổi lưu lượng tiếng hay số liệu bằng báo hiệu.
- Các kênh điều khiển chung (CCCH):
+ Kênh tìm gọi (PCH): được sử dụng để tìm gọi MS.
+ Kênh thâm nhập ngẫu nhiên (RACH): MS sử dụng kênh này để yêu cầu dành SDCCH hoặc để trả lời tìm gọi, hoặc để thâm nhập khi khởi đầu, hoặc đăng ký cuộc gọi MS.
+ Kênh cho phép thâm nhập (AGCH): được sử dụng để dành một SDCCH hay trực tiếp một TCH cho một MS.
2.2.2. Cụm
Cụm là mẫu thông tin ở một khe thời gian trên kênh TDMA, cứ 8 khe thời gian một lần ở kênh TDMA được phát đi thì có 1 cụm của một loại thông tin.
-Cụm bình thường ( NB): mang thông tin ở TCH và các kênh điều khiển trừ RACH, SCH và FCCH.
TB
3
Các bit được mật mã
58
Chuỗi hướng dẫn
26
Các bit được mật mã
58
TB
3
GP
8,25
0,577 ms
156,25 bit
+ Các bit được mật mã gồm 57bit số liệu hay tiếng và một “cờ lấy cắp”.
+ Chuỗi hướng dẫn là mẫu bit biết trước để bộ cân bằng có thể thành lập một mô hình kênh.
+ Các bit đuôi TB luôn là “0,0,0” giúp bộ cân bằng xác định đầu và cuối mẫu bit.
+ Khoảng bảo vệ GP là một khoảng trống cho phép máy phát dịch lên hay dịch xuống trong giới hạn do khuyến nghị GMS qui định.
- Cụm hiệu chỉnh tần số(FB): Điều chỉnh tần số của MS, nó tương đương sóng mang chưa bị điều chế. Lặp lại của một cụm gọi là FCCH.
TB
3
TB
3
GP
8,25
0,577 ms
156,25 bit
Các bit cố định “0”
142
- Cụm đồng bộ (SB): Dùng để đồng bộ thời gian của MS
TB
3
Các bit được mật mã
39
Chuỗi đồng bộ
64
Các bit được mật mã
39
TB
3
GP
8,25
+ Khối đồng bộ dài dễ dàng nhận biết và mang thông tin số khung TDMA cùng mã nhận dạng trạm cơ sở BS. Lặp lại của cụm gọi là SHC.
Số khung TDMA giúp MS biết loại kênh lôgíc nào đang được truyền ở kênh điều khiển. Một chu trình đánh số khung là 3,5 giờ với mỗi khung TDMA thời gian là 6,615ms.
- Cụm thâm nhập (AB): Sử dụng để thâm nhập ngẫu nhiên và có GP để dành cho phát cụm từ trạm di động.
TB
3
Chuỗi đồng bộ
41
Các bit được mật mã
36
TB
3
GP
8,25
- Cụm giả: Được phát đi từ BTS và không chứa thông tin khuôn mẫu giống như cụm bình thường với các bit mật mã được thay bởi các bit hỗn hợp có mẫu bit xác định.
2.2.3. Chia kênh logic theo khe thời gian
Xét một BTS với n sóng mang (song công) ký hiệu là C0, C1,…, Cn, mỗi sóng mang có 8 khe thời gian lần lượt là Ts0, Ts1,…, Ts7.
Các kênh logic được sắp xếp ở C0 như sau:
- Các kênh điều khiển BCCH, FCCH, SCH, PCH, AGCH được sắp xếp trên Ts0 đường xuống, còn kênh RACH ở Ts0 đường lên. Chu kỳ lặp 51 Ts.
- Ts1 được sử dụng để sắp xếp các kênh điều khiển riêng SDCCH và SACCH, chu kỳ lặp 102 Ts.
- Từ Ts2 đến Ts7 là các kênh lưu thông TCH, chu kỳ lặp 26Ts.
Các sóng mang khác (C1 – Cn): chỉ được sử dụng cho kênh lưu lượng TCH, nghĩa là Ts0 đến Ts7 đều là TCH.
7
0
1
2
...
0
1
2
7
...
0
1
2
...
B
S
F
F
C
S
F
C
C
C
S
C
C
S
F
C
BCH
CCCH đường xuống
Hình 4. Ghép các BCH và CCCH ở Ts0
F (FCCH): tại đây trạm di động đồng bộ tần số của mình
S (SCH): trạm di động đọc số khung TDMA và BSIC
B (BCCH): trạm di động đọc các thông tin chung về ô này
C (CCCH): có thể tìm gọi một trạm di động và dành một SDCCH
Các Ts 2-7 của C0 sử dụng cho các kênh lưu thông TCH được sắp xếp ở các kênh vật lý như hình 5. Hình vẽ TS2, đường xuống ở C0. Thông tin ở Ts 2 tạo thành một TCH.
Tất cả có 26 Ts. Sau Ts để trống lại bắt đầu lại.
T (TCH): chứa tiếng hay số liệu được mã hoá.
A (SACCH): nằm ở Ts 13, là báo hiệu điều khiển.
Cấu trúc đường lên cũng tương tự như đường xuống. Điểm khác nhau duy nhất là sự dịch về mặt thời gian, Ts2 ở đường xuống không xảy ra ở cùng thời gian như Ts2 ở đường lên. Thời gian dịch là ba khe thời gian.
CHƯƠNG 3. NGUYÊN TẮC SỬ DỤNG TẦN SỐ- CÁC TRƯỜNG HỢP VÀ THỦ TỤC THÔNG TIN
3.1. Nguyên tắc sử dụng tần số theo chia ô
3.1.1. Sử dụng tần số
Thông tin di động bị hạn chế về tần số, vì vậy sử dụng hiệu quả tần số vô tuyến là yếu tố quan trọng nhất để phục vụ càng nhiều thuê bao càng tốt. Người ta đã đưa ra các phương pháp sau để sử dụng hiệu quả tần số:
- Giảm độ rộng băng tần của một kênh càng nhiều càng tốt.
- Sử dụng hiệu quả các kênh vô tuyến bằng cách tạo ra khả năng cho nhiều đầu cuối sử dụng chung nhiều kênh vô tuyến trong một ô vô tuyến.
- Sử dụng lại tần số đã dùng trong một ô vào một ô vô tuyến bằng cách giữ các ô này cách nhau lớn hơn một khoảng cách nhất định.
- Cực tiểu hoá kích thước ô.
3.1.2. Sự tái sử dụng tần số trên mạng
3.1.2.1. Cơ sở lí thuyết
Nguyên lí cơ sở khi thiết kế các hệ thống tổ ong là các mẫu được gọi là các mẫu sử dụng lại tần số.
Theo định nghĩa thì mẫu sử dụng lại tần số là sử dụng các kênh vô tuyến trên cùng một tần số mang để phủ cho các vùng địa lí khác nhau. Các vùng này phải được cách nhau ở cự li đủ lớn để mọi nhiễu giao thoa đồng kênh chấp nhận được.
Nếu có thể biết trước, một ô đặc biệt sẽ sử dụng những kênh mà cũng được dùng trong những ô khác, tại một khoảng cách sử dụng lại.
Tóm lại mức độ bao phủ cơ bản được giới hạn bởi điều này nhiều hơn nhiều từ tín hiệu trường ngoài. Một vấn đề trong thiết kế hệ thống Cellular là điều khiển nhiễu này đến mức độ chấp nhận được. Nó có thể làm được bằng sự điều khiển khoảng cách tái sử dụng kênh. Khi khoảng cách này càng lớn suy ra mức độ nhiễu càng ít.
Mức độ tín hiệu thu được C của sóng mang mong muốn sẽ cao hơn mức độ nhiễu I của tất cả các kênh và mức độ nhiễu A của các kênh lân cận. Sự hoạt động của tín hiệu thu mong muốn sẽ cao hơn sự hoạt động của tín hiệu phản xạ R.
Những giá trị được tiến cử hệ thống GSM là : C/A> -9 dB ; C/I³ 10dB.
C/A: Khi 1 tần số được tái sử dụng như mô hình 3/9 thì một số năng lượng của tần số lân cận sẽ lọt ra ngoài ô phục vụ và là nguyên nhân nhiễu. Sự liên hệ giữa tín hiệu nhiễu và tín hiệu hữu ích là tỉ số C/A.
3.1.2.2. Mẫu sử dụng lại tần số
Sử dụng lại tần số là sử dụng các kênh vô tuyến ở cùng một tần số mang để phủ cho các vùng địa lý khác nhau. Các vùng này phải được cách nhau ở cự ly đủ lớn để mọi nhiễu giao thoa đồng kênh chấp nhận được.
Nếu toàn bộ số kênh quy định N được chia thành F nhóm thì mỗi nhóm sẽ chứa N/F kênh. Vì tổng số kênh N là cố định nên số nhóm tần số F nhỏ hơn sẽ dẫn đến nhiều kênh hơn ở một nhóm và ở một đài trạm. Vì vậy việc giảm số lượng các nhóm tần số sẽ cho phép mỗi đài trạm tăng lưu lượng nhờ vậy giảm tổng số các đài trạm cần thiết cho tải lưu lượng định trước. Tuy nhiên giảm số lượng các nhóm tần số và giảm cự ly đồng kênh sẽ dẫn đến phân bố C/I trung bình thấp hơn ở hệ thống.
Có ba kiểu mẫu sử dụng lại tần số phổ biến là: 7/21, 4/12 và 3/9 sử dụng cho các trạm gốc có anten phát 3 hướng, mỗi hướng dành cho một ô và góc phương vị phân cách nhau 1200. Mỗi ô sử dụng các anten phát 600 và hai anten thu phân tập 600 cho một góc phương vị. Mỗi ô được xấp xỉ hoá là hình lục giác, có bán kính R (bằng cạnh hình lục giác và bằng 1/3 khoảng cách giữa các trạm).
Ta coi lưu lượng phân bố đồng nhất ở các ô. Bình thường kích thước ô được xác định như là khoảng cách giữa hai đài trạm lân cận.
Sơ đồ 3/9 ô sử dụng các nhóm 9 tần số, trong một mẫu sử dụng lại tần số 3 đài trạm:
Hình 5.Mẫu ô 3/9
Sơ đồ 4/12 ô sử dụng các nhóm 12 tần số, trong một mẫu sử dụng lại tần số 4 đài:
Hình 6. Mẫu ô 4/12
Sơ đồ 7/21 ô sử dụng các nhóm 21 tần số, trong một mẫu sử dụng lại tần số 7 đài như sau:
Hình 7. Mẫu ô 7/21
Trong thực tế, do sự tăng trưởng dung lượng không ngừng trong một ô nào đó tới mức chất lượng phục vụ giảm sút quá mức, người ta phải thực hiện việc chia tách ô thành các ô nhỏ hơn. Với chúng, người ta dùng công suất nhỏ hơn và mẫu sử dụng lại tần số được dùng ở tỷ lệ xích nhỏ hơn.
Thông thường các cuộc gọi có thể không xong trong một ô (1 cell), vì vậy hệ thống thông tin di động tế bào phải có khả năng điều khiển, chuyển mạch để chuyển giao cuộc gọi từ ô này sang ô khác mà cuộc gọi được chuyển giao không bị ảnh hưởng gì. Yêu cầu đó làm cho mạng di động có cấu trúc khác biệt với các mạng cố định.3.2. Các trường hợp và thủ tục thông tin
3.2.1. Tổng quan
Trước khi khảo sát các thủ tục thông tin khác nhau, hãy khảo sát các tình huống đặc biệt của 1 PLMN có tất cả các thuê bao di động, vì thế ta quan sát MS ở một số tình huống sau:
- Tắt máy:
Mạng sẽ không thể tiếp cận đến máy vì MS không trả lời thông báo tìm gọi. Nó sẽ không báo cho hệ thống về vùng định vị (nếu có) và MS sẽ được coi là rời mạng.
- MS bật máy, trạng thái rỗi:
Hệ thống có thể tìm gọi MS thành công, MS được coi là nhập mạng. Trong khi chuyển động, MS luôn kiểm tra rằng nó được nối đến một kênh quảng bá được thu phát tốt nhất. Quá trình này được gọi là lưu động(Roaming). MS cần thông báo cho hệ thống về các thay đổi vùng định vị, quá trình này được gọi là cập nhật vị trí.
- MS bận:
Mạng vô tuyến có một kênh thông tin (kênh tiếng) dành cho luồng số liệu tới và từ MS trong quá trình chuyển động MS phải có khả năng chuyển đến một kênh thông tin khác. Quá trình này được gọi là chuyển giao (Handover). Để quyết định chuyển giao hệ thống phải diễn giải thông tin nhận đuợc từ MS và BTS. Quá trình này được gọi là định vị.
3.2.2. Lưu động và cập nhật vị trí:
Coi rằng MS ở trạng thái tích cực, rỗi và đang chuyển động theo một phương liên tục MS được khoá đến một tần số vô tuyến nhất định có CCCH và BCH ở TSo. Khi MS rời xa BTS nối với nó cường độ tín hiệu sẽ giảm. Ở một thời điểm nào đó không xa biên giới lý thuyết giữa hai ô lân cận nhau cường độ tới mức mà MS quyết định chuyển đến một tần số mới thuộc một trong các ô lân cận nó. Để chọn tần số tốt nhất nó liên tục đo cường độ tín hiệu của từng tần số trong số tần số nhất định của ô lân cận. Thường MS phải tìm được tần số BCH/CCCH từ BTS có cường độ tín hiệu tốt hơn tần số cũ. Sau khi tự khoá đến tần số mới này, MS tiếp tục nhận thông bao tìm gọi các thông báo quảng bá chừng nào tín hiệu của tần số mới vẫn đủ tốt. Quyết định việc thay đổi tần số BCH/CCCH sẽ được thực hiện mà không cần thông báo cho mạng. Nghĩa là mạng mặt đất không tham gia vào quá trình này.
Khả năng chuyển động vô định đồng thời với việc thay đổi nối thông MS ở giao tiếp vô tuyến tại thời điểm cần thiết để đảm bảo chất lượng thu được gọi là lưu động “Roaming”.
- Khi MS chuyển động đến giữa hai cell thuộc 2 BTS khác nhau:
Ta biết rằng MS không hề biết cấu hình của mạng chứa nó. Để gửi cho MS thông tin về vị trí chính xác của nó hệ thống gửi đi nhận dạng vùng định vị (LAI) liên tục ở giao tiếp vô tuyến bằng BCCH.
Khi đi vào cell thuộc BSC khác MS sẽ nhận thấy vùng mới bằng cách thu BCCH. Vì thông tin về vị trí có tầm quan trọng lớn nên mạng phải thông báo về sự thay đổi này, ở điện thoại di động quá trình này được gọi là “ đăng ký cưỡng bức”. MS không còn cách nào khác là phải cố gắng thâm nhập vào mạng để cập nhật vị trí của mình ở MSC/VLR. Quá trình này được gọi là cập nhật vị trí.
Sau khi đã phát vị trí mới của mình lên mạng, MS tiếp tục chuyển động ở trong vùng mới như đã mô tả ở trên.
- Khi MS chuyển động giữa hai vùng phục vụ khác nhau:
Trong trường hợp có một cuộc gọi vào cho MS, việc chuyển từ một vùng phục vụ MSC/VLR này sang một vùng phục vụ MSC/VLR khác có nghĩa là tuyến thông tin đi qua mạng cũng sẽ khác. Để tìm được định tuyến đúng, hệ thống phải tham khảo bộ ghi định vị thường trú HLR vì thế MSC/VLR sẽ phải cập nhật HLR về vị trí của MSC/VLR cho MS của chúng ta.
Quá trình cập nhật vị trí như sau:
MSC
HLR
VLR
MSC
VLR
(5) xoá vị trí
(6) tiếp nhận xoá
(2) Yêu cầu cập nhật vị trí
(3) tiếp nhận vị trí
(1) Yêu cầu nhật vị trí
(4) Công nhận cập nhật vị trí
Sau khi cập nhật vị trí thành công ở HLR hệ thống sẽ huỷ bỏ vị trí cũ, HLR thông báo huỷ bỏ vị trí cho tổng đài MSC/VLR cũ để xoá vị trí cũ của MS có liên quan.
3.2.3. Thủ tục nhập mạng đăng ký lần đầu
Khi MS bật máy nó sẽ quét giao tiếp vô tuyến để tìm ra tần số đúng, tần số mà MS tìm kiếm sẽ chứa thông tin quảng bá cũng như thông tin tìm gọi BCH/CCCH có thể có. MS tự khoá đến tần số đúng nhờ việc hiệu chỉnh tần số thu và thông tin đồng bộ
Vì đây là lần đầu MS sử dụng nên phần mạng chịu trách nhiệm xử lý thông tin tới / từ MS hoàn toàn không có thông tin về MS này, MS không có chỉ thị nào về nhận dạng vùng định vị mới . Khi MS cố gắng thâm nhập tới mạng và thông báo với hệ thống rằng nó là MS mới ở vùng định vị này bằng cách gửi đi một thông báo “ Cập nhật vị trí mạng” đến MSC/VLR.
Từ giờ trở đi MSC/VLR sẽ coi rằng MS hoạt động và đánh dấu trường dữ liệu của MS này bằng 1 cờ “nhập mạng” cờ này liên quan đến IMSI.
3.2.4. Thủ tục rời mạng
Thủ tục rời mạng liên quan đến IMSI. Thủ tục rời mạng của IMSI cho phép thông báo với mạng rằng thuê bao di động sẽ tắt nguồn , lúc này tìm gọi MS bằng thông báo tìm gọi sẽ không xảy ra.
Một MS ở trạng thái hoạt động được đánh dấu là “đã nhập mạng”. Khi tắt nguồn MS gửi thông báo cuối cùng đến mạng, thông báo này chứa yêu cầu thủ tục rời mạng. Khi thu được thông báo rời mạng MSC/VLR đánh dấu cờ IMSI đã rời mạng tương ứng.
3.2.5. Tìm gọi
Cuộc gọi đến MS được định tuyến đến MSC/VLR nơi MS đăng ký. Khi đó MSC/VLR sẽ gửi đi một thông báo tìm gọi đến MS, thông báo này được phát quảng bá trên toàn bộ vùng định vị LA nghĩa là tất cả các BTS trong LA sẽ gửi thông báo tìm gọi MS. Khi chuyển động ở LA và “nghe” thông tin CCCH MS sẽ “nghe thấy” thông báo tìm gọi và trả lời ngay lập tức.
3.2.6. Gọi từ MS
Giả sử MS rỗi và muốn thiết lập một cuộc gọi, thuê bao này sẽ quay tất cả các chữ số của thuê bao bị gọi và bắt đầu thủ tục này bằng cách ấn phím “ phát “ . Khi này MS gửi đi một thông báo đầu tiên đến mạng bằng CCCH để yêu cầu thâm nhập . Trước hết MSC/VLR sẽ giành riêng cho MS một kênh riêng , kiểm tra thể loại của thuê bao bị gọi và đánh dấu thuê bao này ở trạng thái bận . Nếu thuê bao gọi được phép sử dụng mạng MSC/VLR sẽ công nhận yêu cầu thâm nhập . Bây giờ MS sẽ gửi đi một thông báo để thiết lập cuộc gọi, tuỳ theo thuê bao bị gọi là cố định hay di động số của nó sẽ được phân tích trực tiếp ở MSC/VLR hoặc gửi đến một tổng đài chuyển tiếp của mạng PSTN cố định . Ngay khi đường nối đến thuê bao bị gọi đã sẵn sàng thông báo thiết lập cuộc gọi sẽ được công nhận, MS cũng sẽ được chuyển đến một kênh thông tin riêng. Bây giờ tín hiệu cuối cùng sẽ là sự khẳng định thuê bao.
3.2.7. Gọi đến thuê bao MS
Giả sử có một thuê bao A thuộc mạng cố định PSTN yêu cầu thiết lập cuộc gọi với thuê bao B thuộc mạng di động.
- Thuê bao A quay mã nơi nhận trong nước để đạt tới vùng GSM/PLMN. Nối thông được thiết lập từ tổng đài nội hạt của thuê bao A đến GMSC của mạng GSM/PLMN.
- Thuê bao A quay số của thuê bao B, số thuê bao được phân tích ở GMSC. Bằng chức năng hỏi đáp GMSC gửi MSISDN cùng với yêu cầu về số lưu động (MSRN) đến bộ ghi định vị thường trú (HLR)
- HLR dịch số thuê bao của MS được quay vào nhận dạng GSM/PLMN: MSISDN Þ IMSI
- HLR chỉ cho MS vùng phục vụ và gửi IMSI của MS đến VLR của vùng phục vụ đồng thời yêu cầu về MSRN.
- VLR sẽ tạm thời gán số lưu động MSRN cho thuê bao bị gọi và gửi nó ngược trở về HLR, HLR sẽ gửi nó về tổng đài cổng GMSC.
- Khi nhận được MSRN đúng tổng đài GMSC sẽ có khả năng thiết lập cuộc gọi đến vùng phục vụ MSC/VLR nơi thuê bao B hiện đang có mặt.
- VLR sẽ chỉ cho thuê bao này vùng định vị (LAI) ở giai đoạn quá trình thiết lập cuộc gọi hệ thống muốn rằng thông báo tìm gọi thuê bao bị gọi được phát quảng bá trên vùng phủ sóng của tất cả các ô của vùng định vị này. Vì vậy MSC/VLR gửi thông báo tìm gọi đến tất cả các BTS trong vùng định vị.
- Khi nhận được thông tin tìm gọi, BTS sẽ phát nó lên đưòng vô tuyến ở kênh tìm gọi PCH. Khi MS ở trạng thái rỗi và “nghe” ở kênh PCH của một trong số các ô thuộc vùng định vị LA, nó sẽ nhận thông tin tìm gọi , nhận biết dạng IMSI và gửi trả lời về thông báo tìm gọi.
- Sau các thủ tục về thiết lập cuộc gọi và sau khi đã gán cho một kênh thông tin cuộc gọi nói trên được nối thông đến MS ở kênh vô tuyến.
3.2.8. Cuộc gọi đang tiến hành, định vị
Bây giờ ta xem xét điều gì sẽ xảy ra khi một trạm di động ở trạng thái bận chuyển động xa dần BTS mà nó nối đến ở đường vô tuyến. Như ta vừa thấy MS sử dụng một kênh TCH riêng để trao đổi số liệu/tín hiệu của mình với mạng. Khi càng rời xa BTS, suy hao đường truyền cũng như ảnh hưởng của phadinh sẽ làm hỏng chất lượng truyền dẫn vô tuyến số. Tuy nhiên hệ thống có khả năng đảm bảo chuyển sang BTS bên cạnh.
Quá trình thay đổi đến một kênh thông tin mới trong quá trình thiết lập cuộc gọi hay ở trạng thái bận được gọi là chuyển giao. Mạng sẽ quyết định về sự thay đổi này. MS gửi các thông tin liên quan đến cường độ tín hiệu và chất lượng truyền dẫn đến BTS quá trình này được gọi là cập nhật. MS và mạng có khả năng trao đổi thông tin về báo hiệu trong quá trình cuộc gọi để có thể đồng bộ chuyển vùng. Trong quá trình hội thoại ở kênh TCH dành riêng, MS phải tập trung lên TCH này vì thế không thể một kênh khác dành riêng cho báo hiệu. Một lý do khác nữa là số lượng kênh có hạn nên hệ thống không sử dụng 2 kênh cho cùng một hướng, việc tổ chức truyền dẫn số liệu trên kênh TCH sao cho cuộc nói chuyện cũng như thông tin về báo hiệu được gửi đi trên 1 kênh. Luồng số liệu sẽ được phát đi theo một trình tự chính xác để cả MS lẫn BTS có thể phân biệt giữa cuộc nói chuyện và các thông tin báo hiệu.
Bây giờ ta quay lại việc định vị, trước hết BTS sẽ thông báo cho MS về các BTS lân cận và các tần số BCH/CCCH. Nhờ thông tin này MS có thể đo cường độ tín hiệu ở các tần số BCH/CCCH của trạm gốc lân cận, MS đo cả cường độ tín hiệu lẫn chất lượng truyền dẫn ở TCH “bận “ của mình. Tất cả các kết quả đo này được gửi đến mạng để phân tích sâu hơn. Cuối cùng BTS sẽ quyết định chuyển vùng. BSC sẽ phân tích các kết quả đo do BTS thực hiện ở TCH “bận” . Tóm lại BSC sẽ giải quyết 2 vấn đề :
+ Khi nào cần thực hiện chuyển vùng
+ Phải thực hiện chuyển vùng tới BTS nào
Sau khi đánh giá chính xác tình huống và bắt đầu quá trình chuyển vùng, BSC sẽ chịu trách nhiệm thiết lập một đường nối thông đến BTS mới. Có các trường hợp chuyển vùng sau:
- Chuyển giao trong vùng 1 BSC:
Ở trường hợp này BSC phải thiết lập một đường nối đến BTS mới, dành riêng một TCH của mình và ra lệnh cho MS phải chuyển đến 1 tần số mới đồng thời cũng chỉ ra một TCH mới. Tình huống này không đòi hỏi thông tin gửi đến phần còn lại của mạng. Sau khi chuyển giao MS phải nhận được các thông tin mới và các ô lân cận. Nếu như việc thay đổi đến BTS mới cũng là thay đổi vùng định vị thì MS sẽ thông báo cho mạng về LAI mới của mình và yêu cầu cập nhật vị trí.
- Chuyển giao giữa hai BSC khác nhau nhưng cùng một MSC/VLR:
Trường hợp này cho thấy sự chuyển giao trong cùng một vùng phục vụ nhưng giữa hai BSC khác nhau. Mạng can thiệp nhiều hơn khi quyết định chuyển giao. BSC phải yêu cầu chuyển giao từ MSC/VLR. Sau đó có một đường nối thông mới (MSC/VLR Û BSC mới Û BTS mới) phải được thiết lập và nếu có TCH rỗi, TCH này phải được dành cho chuyển giao. Sau đó khi MS nhận được lệnh chuyển đến tần số mới và TCH mới. Ngoài ra sau khi chuyển giao MS được thông báo về các ô lân cận mới. Nếu việc này thay đổi BTS đi cùng với việc thay đổi vùng định vị MS sẽ gửi đi yêu cầu cập nhật vị trí trong quá trình cuộc gọi hay sau cuộc gọi.
- Chuyển giao giữa hai vùng phục vụ MSC/VLR:
Đây là trường hợp chuyển giao phức tạp nhất nhiều tín hiệu được trao đổi nhất trước khi thực hiện chuyển giao.
Ta sẽ xét 2 MSC/VLR. Gọi MSC/VLR cũ (tham gia cuộc gọi trước khi chuyển giao) là tổng đài phục vụ và MSC/VLR mới là tổng đài đích. Tổng đài cũ sẽ gửi yêu cầu chuyển giao đến tổng đài đích sau đó tổng đài đích sẽ đảm nhận việc chuẩn bị nối ghép tới BTS mới. Sau khi thiết lập đường nối giữa hai tổng đài tổng đài cũ sẽ gửi đi lệnh chuyển giao đến MS.
CHƯƠNG 4. CÁC DỊCH VỤ CỦA GSM
4.1. Dịch vụ thoại
Là dịch vụ quan trọng nhất của GSM. Nó cho phép các cuộc gọi hai hướng diễn ra giữa người sử dụng GSM với thuê bao bất kỳ ở một mạng điện thoại nói chung nào. Tốc độ truyền thoại trong GSM là 13kbps.
Dịch vụ cuộc gọi khẩn là một loại dịch vụ khác bắt nguồn từ dịch vụ thoại. Nó cho phép người dùng có thể liên lạc với các dịch vụ khẩn cấp như cảnh sát hay cứu hoả mà có thể có hay không có SIM card trong máy di động.
4.2. Dịch vụ số liệu
GSM được thiết kế để đưa ra rất nhiều dịch vụ số liệu. Các dịch vụ số liệu được phân biệt với nhau bởi người sử dụng phương tiện (người sử dụng các mạng điện thoại PSTN, ISDN,…), bởi bản chất các luồng thông tin đầu cuối (dữ liệu thô, fax, videotex, teletex…), bởi phương tiện truyền dẫn (gói hay mạch, đồng bộ hay không đồng bộ…) và bởi bản chất thiết bị đầu cuối.
Tốc độ truyền số liệu trên mạng GSM là 9,6kbps.
4.3. Dịch vụ nhắn tin ngắn SMS
Là một loại dịch vụ số liệu. Dịch vụ nhắn tin ngắn SMS cho phép các thuê bao GSM gửi cho nhau các bản tin chữ dài không quá 160 kí tự.
Có thể sử dụng một trung tâm dịch vụ để một thuê bao đọc bản tin đến đó. Sau đó bản tin sẽ được phát đến thuê bao. Nếu thuê bao ở ngoài vùng phủ của hệ thống hay tắt nguồn, bản tin sẽ được lưu giữ và gửi đI khi thuê bao lại sẵn sàng. Có thể thu hay gửi đi các thông báo ngắn ở trạng tháI rỗi hay trong quá trình cuộc gọi.
4.4. Dịch vụ Wap
Dịch vụ Wap được bắt đầu xây dựng và triển khai lần đầu tiên cách đây ba năm ( vào giữa năm 1997). Dịch vụ giao thức ứng dụng không đây (Wap) ngày nay đã trở nên phổ biến. Tiêu chí của dịch vụ rất đơn giản: cho phép thuê bao dùng điện thoại di động, máy nhắn tin hoặc những thiết bị viễn thông khác có hỗ trợ Wap có thể truy cập một cách có giới hạn vào các trang wed để xem thông tin về thị trường chứng khoán, xem tin tức, gửi và nhận email v.v…
Mặc dù Wap sử dụng các công nghệ và khái niệm từ thế giới wed và Internet nhưng các thiết bị Wap không thể truy cập trực tiếp vào các nguồn tài nguyên wed trên Internet mà phải nhờ qua Wap gateway.
4.5. Các dịch vụ mới của GSM 2,5G
Cuối năm 2003 các nhà cung cấp dịch vụ điện thoại di động ở Việt Nam đã đưa ra hai dịch vụ mới trên nền GSM 2,5G là dịch vụ vô tuyến gói chung (GPRS) và nhắn tin đa phương tiện (MMS).
Dịch vụ vô tuyến gói chung (GPRS: General Packet Radio Service):
GPRS là dịch vụ truyền dữ liệu chuyển mạch gói được phát triển trên nền tảng công nghệ GSM, cho phép người dùng có thể chuyển các gói dữ liệu tốc độ cao qua máy di động. Do vậy GPRS sẽ là nền tảng cho việc phát triển các ứng dụng thương mại di động và dịch vụ MMS, truy cập WAP-Internet tốc độ cao. GPRS cho phép truyền dữ liệu có thể đạt tới 171,2kbps.
Dịch vụ nhắn tin đa phương tiện (MMS: Multimedia Messaging Service):
Dịch vụ nhắn tin đa phương tiện MMS cho phép những người dùng điện thoại di động có thể trao đổi những bức ảnh tĩnh (JPG) hoặc các hình động (GIF), âm thanh hoặc giọng nói, những đoạn video (Streaming video) và văn bản lên đến 1000 kí tự. Với dịch vụ MMS, các tin nhắn không chỉ được gửi giữa các máy điện thoại di động mà còn từ máy điện thoại di động gửi đến email và ngược lại
****Các mạng điện thoại GSM ở Việt Nam
Ở Việt Nam và các nước trên Thế giới , mạng điện thoại GSM vẫn chiếm đa số, Việt Nam có 3 mạng điện thoại GSM đó là :
- Mạng Vinaphone : 091 => 094 ...
- Mạng Mobiphone : 090 => 093 ..
- Mạng Vietel 098 ...
MỤC LỤC
Các file đính kèm theo tài liệu này:
- CD125.doc