- Việc thiết kế và tính toán một hệ thống cô đặc là việc làm phức tạp, đòi hỏi tính tỉ mỉ và lâu dài . Nó không những yêu cầu người thiết kế phải có kiến thức thực sự sâu về quá trình cô dặc mà còn phải biết một số lĩnh vực khác như: Cấu tạo các thiết bị phụ khác, các quy chuẩn trong bản vẽ kĩ thuật
- Công thức tính toán không còn gò bó như những môn học khác mà được mở rộng dựa trên các giả thiết về điều kiện, chế độ làm việc của thiết bị . Bởi trong khi tính toán , người thiết kế đã tính toán đến một số ảnh hưởng ở điều kiện thực tế, nên khi đem vào hoạt động thì hệ thống sẽ làm việc ổn định .
67 trang |
Chia sẻ: lylyngoc | Lượt xem: 3042 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Đồ án Môn học quá trình thiết bị, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ĐỒ ÁN MÔN HỌC QUÁ TRÌNH THIẾT BỊ
Mục lục
BỘ CÔNG THƯƠNG
TRƯỜNG ĐH CÔNG NGHIỆP HÀ NỘI
KHOA CÔNG NGHỆ HÓA HỌC
CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM
Độc lập -Tự do-Hạnh phúc
ĐỒ ÁN MÔN HỌC QUÁ TRÌNH THIẾT BỊ
Số…………..
Giáo viên hướng dẫn : NGUYỄN XUÂN HUY
Sinh viên thực hiện : Phạm Thị Xuân
Lớp : ĐH Công Nghệ Hóa 1 – K3
Khoa : Công Nghệ Hóa Học
NỘI DUNG
Thiết kế hệ thống cô đặc hai nồi xuôi chiều thiết bị cô đặc ống tuần hoàn ngoài dùng cho cô đặc dung dịch KOH với năng suất 11000 kg/h , chiều cao ống gia nhiệt h =2m .
Các số liệu ban đầu :
- Nồng độ đầu của dung dịch là 8%
- Nồng độ cuối là : 30 %
- Áp suất hơi đốt nồi 1 là : 4,1 at
- Áp suất hơi ngưng tụ là : 0,2 at
TT
Tên bản vẽ
Khổ giấy
Số lượng
1
Dây chuyền sản xuất
A
01
2
Nồi cô đặc
A
01
PHẦN THUYẾT MINH
1 . Mở đầu
2 . Vẽ và thuyết minh dây chuyền sản xuất
3 . Tính toán thiết bị chính
4 . Tính toán thiết bị phụ
5 . Tính toán cơ khí
6 . Tỏng kết
Ngày giao đề :……………………ngày hoàn thành:…………………..
TRƯỞNG KHOA
GIÁO VIÊN HƯỚNG DẪN
NHẬN XÉT CỦA GIÁO VIÊN HƯỚNG DẪN
*********
Hà Nội , Ngày … Tháng … Năm 2011
Người nhận xét
1. Giới thiệu chung
Lời mở đầu và giới thiệu dung dịch KOH
- Lời mở đầu
Trong kỹ thuật sản xuất công nghiệp hóa chất và các ngành khác, thường phải làm việc với các hệ dung dịch rắn tan trong lỏng , hoặc lỏng trong lỏng . Để nâng cao nồng độ của dung dịch theo yêu cầu của sản xuất kỹ thuật người ta cần dùng biện pháp tách bớt dung môi ra khỏi dung dịch . Phương pháp phổ biến là dùng nhiệt để làm bay hơi còn chất rắn tan không bay hơi , khi đó nồng độ dung dịch sẽ tăng lên theo yêu cầu mong muốn .
Thiết bị dùng chủ yếu là thiết bị cô đặc ống tuần hoàn trung tâm , tuần hoàn cưỡng bức , phòng đốt ngoài , …trong đó thiết bị cô đặc có tuần hoàn có ống tuần hoàn ngoài được dùng phổ biến vì thiết bị này có nguyên lý đơn giản , dễ vận hành và sửa chữa , hiệu suất sử dụng cao… dây truyền thiết bị có thể dùng 1 nồi , 2 nồi , 3 nồi…nối tiếp nhau để tạo ra sản phẩm theo yêu cầu. trong thực tế người ta thường xử dụng thiết hệ thống 2 nồi hoặc 3 nồi để có hiệu suất sử dụng hơi đốt cao nhất , giảm tổn thất trong quá trình sản xuất .
Để bước đầu làm quen với công việc của một kỹ sư hóa chất là thiết kế một thiết bị hay hệ thống thực hiện một nhiệm vụ trong sản xuất , em được nhận đồ án môn học : “Quá trình và thiết bị Công nghệ Hóa học”. Việc thực hiện đồ án là điều rất có ích cho mỗi sinh viên trong việc từng bước tiếp cận với việc thực tiễn sau khi đã hoàn thành khối lượng kiến thức của giáo trình “Cơ sở các quá trình và thiết bị Công nghệ Hóa học “ trên cơ sở lượng kiến thức đó và kiến thức của một số môn khoa học khác có liên quan , mỗi sinh viên sẽ tự thiết kế một thiết bị , hệ thống thiết bị thực hiện một nhiệm vụ kĩ thuật có giới hạn trong quá trình công nghệ . Qua việc làm đồ án môn học này , mỗi sinh viên phải biết cách sử dụng tài liệu trong việc tra cứu , vận dụng đúng những kiến thức , quy định trong tính toán và thiết kế , tự nâng cao kĩ năng trình bày bản thiết kế theo văn bản khoa học và nhìn nhận vấn đề một cách có hệ thống .
Trong đồ án môn học này, em cần thực hiện là thiết kế hệ thống cô đặc hai nồi xuôi chiều , thiết bị cô đặc ống tuần hoàn ngoài dùng cho cô đặc dung dịch KOH , năng suất 11000kg/h , nồng độ dung dịch ban đầu 8% , nồng độ sản phẩm 30%
- Giới thiệu về dung dịch KOH
As proven experts, Ward Chemical can produce various concentrations of liquid calcium chloride . Uses of Calcium Chlor
The innate properties of liquid calcium chloride CaCl2 lend this substance to a variety of applications.KOH có dạng tinh thể không màu , tnc = 404oC , ts = 1324oC. Dễ tan trong nước và phát nhiệt mạnh : ở 20oC, 100 g nước hoà tan được 112 g KOH . Thuộc loại kiềm mạnh ; hấp thụ nước và khí cacbonic (CO2) trong không khí , tạo thành kali cacbonat (K2CO3) . Dung dịch nước KOH ăn mòn thủy tinh ; KOH nóng chảy ăn mòn sứ (trong môi trường có không khí) , platin . Điều chế bằng cách điện phân dung dịch kali clorua (KCl) có màng ngăn . Dùng trong phòng thí nghiệm , sản xuất xà phòng mềm, các muối kali ; KOH ăn da và rất nguy hiểm khi bắn vào mắt .
Antifreeze for recreation vehicles, curling & skating
Sơ đồ dây chuyền sản xuất và thuyết minh
Hệ thống cô đặc hai nồi xuôi chiều làm việc liên tục :
Dung dịch đầu KOH 8% được bơm (2) đưa vào thùng cao vị (3) từ thùng chứa (1) , sau đó chảy qua lưu lượng kế (4) vào thiết bị trao đổi nhiệt (5) . Ở thiết bị trao đổi nhiệt dung dich được đun nóng sơ bộ đến nhiệt độ sôi rồi đi vào nồi (6). Ở nồi này dung dich tiếp tục được dung nóng bằng thiết bị đun nóng kiểu ống chùm , dung dịch chảy trong các ống truyền nhiệt hơi đốt được đưa vào buồng đốt để đun nóng dung dịch . Một phần khí không ngưng được đưa qua của tháo khí không ngưng . Nước ngưng được đưa ra khỏi phòng đốt bằng của tháo nước ngưng . Dung dịch sôi , dung môi bốc lên trong phòng bốc gọi là hơi thứ . Hơi thứ trước khi ra khỏi nồi cô đặc được qua bộ phận tách bọt nhằm hồi lưu phần dung dịch bốc hơi theo hơi thứ qua ống dẫn bọt .
Dung dịch từ nồi (6) tự di chuyển qua nồi thứ 2 do đó sự chênh lệch áp suất làm việc giữa các nồi , áp suất nồi sau < áp suất nồi trước . Nhiệt độ của nồi trước lớn hơn của nồi sau do đó dung dịch đi vào nồi thứ (2) có nhiệt độ cao hơn nhiệt độ sôi , kết quả là dung dịch sẽ được làm lạnh đi và lượng nhiệt này sẽ làm bốc hơi một lượng nước gọi là quá trình tự bốc hơi .
Dung dịch sản phẩm của nồi (7) được đưa vào thùng chứa sản phẩm (10) . Hơi thứ bốc ra khỏi nồi (7) được đưa vào thiết bị ngưng tụ Baromet (8) . Trong thiết bị ngưng tụ , nước làm lạnh từ trên đi xuống , ở đây hời thứ được ngưng tụ lại thành lỏng chảy qua ống Baromet ra ngoài còn khí không ngưng đi qua thiết bị thu hồi bọt (9) rồi đi vào bơm hút chân không (11)
SƠ ĐỒ DÂY CHUYỀN SẢN XUẤT
Chú thích
1. Thùng chứa dung dịch đầu
2. Bơm
3. Thùng cao vị
4. Lưu lượng kế
5. Thiết bị gia nhiệt hỗn hợp đầu
6,7. Thiết bị cô đặc
8. Thùng chứa nước
9. Thùng chứa sản phẩm
10.Thiết bị ngưng tụ Baromet
11. Thiết bị tách bọt
12. Bơm chân không
13. Ống tuần hoàn
2. Tính toán thiết bị chính
Các số liệu ban đầu:
Năng suất tính theo dung dịch đầu : Gđ = 11000 kg/h
Nồng độ đầu : xđ = 8 %
xc = 30%
P hơi đốt nồi 1 = 4,1 at .
P hơi ngưng tụ = 0,2 at .
*Cân bằng vật liệu
tính toán lượng hơi thứ ra khỏi hệ thống
từ công thức: ( VI.1 - Tr.55 - Stttt2 )
Lượng hơi thứ ra khỏi mỗi nồi
Chọn tỷ lệ hơi thứ:
Nồng độ cuối của dung dịch
Nồi 1:
(VI.2a - Tr57 - Stttt2)
(khối lượng )
Nồi 2:
== 30% ( khối lượng)
W: tổng lượng hơi thứ của hệ thống
W1: lượng hơi thứ ra khỏi nồi 1
W2: lượng hơi thứ ra khỏi nồi 2
: nồng độ cuối của dung dịch ra khỏi nồi 1
: nồng độ cuối của dung dịch ra khỏi nồi
*Tính nhiệt độ, áp suất
Chênh lệch áp suất chung của cả hệ thống (∆Р)
(at ) (1)
Рhd1: áp suất hơi đốt nồi 1
Рng áp suất hơi nước ngưng
Nhiệt độ, áp suất hơi đốt
Ta có: chọn tỉ số phân phối áp suất giữa các nồi :
= (at) (2)
từ (1) và(2) ta có hệ phương trình :
Giải ra ta được :
Áp suất hơi đốt nồi 2 :
-= 4,1- 2,68125 = 1,41875 (at)
Trong đó:
: chênh lệch áp suất của nồi 1 và nồi 2
: chênh lệch áp suất của nồi 2 và thiết bị ngưng
Hơi đốt nồi 1 được được cấp từ nồi hơi , hơi thứ ra khỏi nồi 1 được đưa sang nồi 2 làm hơi đốt để tận dụng nhiệt . Tra bảng (I.251 - Tr 314 – stttt1) ta có :
Nồi
Phdi
at
Thdi
oC
ihdi
J/kg
rhdi
J/kg
1
4,1
143
2744010
2140995,8
2
1,41875
109
2691285,5
2235326,4
ngưng
0,2
59,7
2596000
2358000
Nhiệt độ và áp suất hơi thứ :
Theo sơ đồ nồi cô dặc , nhiệt độ hơi thứ nồi 1(Tht1) bằng nhiệt độ hơi đốt nồi 2 (Thd2) . Nhưng do quá trình truyền khối cố sự tổn thất nhiệt do trở lực đường ống ()
chọn = 1°C
= 1°C
Nhiệt độ hơi thứ của nồi 1(Tht1)
= oC
Nhiệt độ hơi thứ của nồi 2(Tht2)
=oC
(*)Tra bảng I.251-Tr314-Stttt1.
Nồi
Phti
at
Thti
oC
ihti
J/kg
rhti
J/kg
1
1,461
110
2696000
2234000
2
0,210366
60,7
2609588
2356000
- Tổn thất nhiệt :
Tổn thất do nhiệt độ sôi của dung dịch cao hơn dung môi ()
Ta có :
(VI.10 - Tr.59 - Stttt2)
(VI.11 - Tr59 - Stttt2)
Ti: nhiệt độ sôi của dung môi ở áp suất hơi thứ
r: ẩn nhiệt hóa hơi của nước
Giá trị được tra từ bảng ( VI.2 – Tr.63 – Stttt2 )
Nồi 1:
x=12,6316% =3,4C
Nồi 2 :
x=30% = 12,2C
- Tổn thất do tăng áp suất thủy tĩnh ()
(VI.12 - Tr.60 -Stttt2)
Phti: áp suất hơi thứ nồi i
h1i: chiều cao dung dịch trong ống truyền nhiệt , =0,5 (m)
h2: chiều cao ống truyền nhiệt , = 2 (m)
khối lượng riêng của dung dịch khi sôi . Lấy gần đúng bằng ½ khối
lượng riêng của dung dịch ở 15C
Tra bảng I.21 - Tr33 - Sttt1 ta có :
= 1116,844( kg/m³)
= 1291 (kg/m³)
Tra bảng I.251 - Tr314 - Sttt1 :
Tổng tổn thất nhiệt của cả hệ thống là :
Hiệu số nhiệt độ hữu ích(:
-Cân bằng nhiệt lượng
W2 ;i2
Sơ đồ cân bằng nhiệt lượng của hệ thống
D: lượng hơi đốt vào nồi 1 (kg/h)
I: hàm nhiệt của hơi đốt (j/kg)
t: nhiệt độ của dung dịch (C)
θ: nhiệt độ nước ngưng (C)
i: hàm nhiệt của hơi thứ (j/kg)
Nhiệt dung riêng của nước ngưng tính theo áp suất của hơi đốt
( bảng I.249 - Tr.311- Stttt1)
(J/kg.độ)
(J/kg.độ)
Nhiệt dung riêng của KOH tính theo công thức ( I.41- Tr.152 - Stttt1 )
M.C=.+.+.
= + +
= 936,25 (J/kg.độ)
Đối với dung dịch loãng có nồng độ nhỏ hơn 20% tính theo công thức
( I.43 - Tr.152 - Stttt1)
Đối với dung dịch có nồng độ lớn hơn 20% tính theo công thức ;
( I.44 - Tr.152 - Stttt1 )
Trong đó n : là số nguyên tử của nguyên tố K, H, O trong KOH
: là nhiệt dung riêng của dung dịch KOH ở nồng độ x
x: là nồng độ % phần khối lượng của
: khối lượng mol của
: nhiệt dung nguyên tử tra bảng (I.141-tr.152-Stttt1)
C=26000 ; C=16800 ; C=9630
Phương trình cân bằng vật liệu nồi 1:
Phương trình cân bằng vật liệu nồi 2:
Ta có :
Hàm nhiệt của hơi đốt nồi 1 và nồi 2 :
I =2744010 (J/kg)
=2691285,5 (J/kg)
Hàm nhiệt hơi thứ :
=2696000 (J/ kg)
=2609588 (J/ kg)
Nhiệt độ nước ngưng nồi 1 và nồi 2 lấy bằng nhiệt độ hơi đốt :
=143C
=109C
Nhiệt dung riêng của nước ngưng :
=4294,5 ( J/ kg)
=4233 ( J/ kg)
Nhiệt độ đầu vào, ra khỏi nồi1, ra khỏi nồi 2 của dung dịch :
=116,8296C
=84,739C
=116,8296 C
Nhiệt dung riêng của dung dịch :
= 3851,12 (J/kg. độ)
=3657,24122 (J/kg. độ)
=3211,075 (J/kg. độ)
Ta có :
Thay số vào ta được :
=3985,2537 (kg/h)
=8066,6667 -=4081,413 (kg/h)
Lượng hơi đốt tính được :
Thay số vào ta được : D = 4345,3013 (kg/h)
Kiểm tra giả thiết phân bố hơi thứ ở các nồi :
Chọn
Cân bằng vật liệu
Sai số
W1=4033,3333 (kg/h)
W1=3985,2537 (kg/h)
W2=4033,3334 (kg/h)
W2=4081,413 (kg/h)
Giả thiết phân bố áp suất hơi thứ ban đầu chấp nhận được
(*) lấy nhiệt độ của nước ngưng bằng nhiệt độ của hơi đốt
hệ số truyền nhiệt
Nhiệt độ sôi của dung dịch ở từng nồi tính theo công thức :
Nồi 1: = - =143 - 26,1704 = 116,8296C
Nồi 2: = - = 109 - 24,261 = 84,739C
Chênh lệch nhiệt độ giữa hơi đốt và dung dịch
Hơi nước sau khi ngưng tụ sẽ bám lên thành ống truyền nhiệt tạo thành lớp màng mỏng , với những thiết bị thường gặp như loại phòng đốt trong tuần hoàn ngoài , phòng đốt trong tuần hoàn trung tâm , phòng đốt treo đều là trường hợp hơi đốt đi bên ngoài ống truyền nhiệt ( hơi đốt là hơi bão hòa không chứa khí trơ) , màng nước ngưng chảy thành dòng thì hệ số cấp nhiệt phía hơi đốt được tính theo công thức : (V.101 - Tr.28 - Stttt2 )
( V.101 - Tr28 - Stttt2 )
Trong đó là hệ cấp nhiệt từ hơi đốt
chênh lệch nhiệt độ nước ngưng và mặt ngoài ống
A: hệ số phụ thuộc màng nước ngưng
ri : ẩn nhiệt ngưng tụ ( lấy bằng ẩn nhiệt hóa hơi )
=chiều cao ống truyền nhiệt , h = 2 m
Nồi 1 :
Giả thiết
Từ bảng ( Tr.29-Stttt2 ) suy ra A1= 194,2625
Thiết bị sau một thời gian sử dụng sẽ có cặn bẩn bám ở phía trong và phía ngoài ống truyền nhiệt gây tổn thất nhiệt .
Giá trị này được tra ở bảng (V.1- Tr.4 - Stttt2 ) (bề dày các chất này là 0.0005m)
Hơi nước có
Cặn bẩn có rcặn
Chọn vật liệu chế tạo ống truyền nhiệt là thép X18H10T dày 0.002m, từ bảng (XII.7- Tr.362 - Stttt2 ) có (W/m.độ) và khối lượng riêng (kg/m3)
Khi đó có trở lực là : (m2.độ/W)
Tổn thất nhiệt qua tường ống đó là :
Hệ số cấp nhiệt từ ống truyền nhiệt đến dung dịch trong nồi 1 là :
(
P : áp suất làm việc (áp suất hơi thứ) at
: Hiệu số nhiệt độ giữa thành ống và dung dịch sôi
: Hệ số hiệu chỉnh , tính theo công thức (VI.27 - Tr.71 - Stttt2 )
là các hằng số vật lý của nước theo nhiệt độ sôi dung dịch
là các hằng số vật lý của dung dịch
Tổng hợp ta có bảng sau :
T=116,8296oC
(w/m.độ)
(kg/m3)
(N.s/m2)
(J/kg.độ)
Nước
0,6778
945,6046
4244,61
Dung dịch
0,56176
1116,6844
3657,24122
Hệ số dẫn nhiệt của dung dịch KOH tính theo công thức ( I.32 - Tr.123 - Stttt1)
(1 )
(w/m.độ)
hệ số phụ thuộc mức độ liên kết của chất lỏng liên kết
M : khối lượng phân tử mol của dung dịch
phần trăm theo mol
( phần mol ) (1)
(g/mol)
Vậy giá trị có thể chấp nhận .
Nồi 2.
Giả thiết
Từ bảng ( Tr.29 - Sttt2 ) suy ra A2 = 182,578175
(m2.độ/W) theo trên
Tổn thất nhiệt qua tường ống đó là :
Hệ số cấp nhiệt từ ống truyền nhiệt đến dung dịch trong nồi 2 là
: hệ số hiệu chỉnh, tính theo công thức ( VI.27 - Tr.71 - Stttt2 )
T=84,739oC
(w/m.độ)
(kg/m3)
(N.s/m2)
(J/kg.độ)
Nước
0,68536
968,767
4202,5824
Dung dịch
0,57158
1291
3211,075
Hệ số dẫn nhiệt của dung dịch KOH tính theo công thức ( I..32 –Tr.123 - Stttt1)
(w/m.độ)
hệ số phụ thuộc mức độ liên kết của chất lỏng liên kết
M: khối lượng phân tử mol của dung dịch
Áp dụng công thức (1)
(g/mol)
Vậy giá trị có thể chấp nhận
Hệ số truyền nhiệt giữa hai lưu thể :
(w/m2.độ)
hiệu số nhiệt độ hữu ích nồi i
nhiệt tải riêng trung bình nồi i
Cân bằng nhiệt trong từng nồi của hệ thống :
Phân bố nhệt độ hữu ích trong từng nồi :
Nồi
1
2
Tổng bề mặt truyền nhiệt các nồi tương ứng :
Nồi
Bề mặt truyền nhiệt bằng nhau
Tổng bề mặt truyền nhiệt bé nhất
1
2
Kiểm tra:
Kiểm tra:
Sai số nồi 1 :
Sai số nồi 2 :
Nồi
Bề mặt truyền nhiệt bằng nhau, m2
Tổng bề mặt truyền nhiệt bé nhất, m2
1
2
Chọn theo phương pháp bề mặt truyền nhiệt bằng nhau F=108,86 m2 (buồng đốt)
Tuy nhiên, theo bảng (VI.6 - Tr.80 - Stttt2) thì Fchuẩn lấy bằng 125(m2) .
3.Tính toán thiết bị phụ
Thiết bị gia nhiệt hỗn hợp đầu :
Chọn thiết bị gia nhiệt hỗn hợp đầu vào là thiết bị đun nóng loại ống chùm ngược chiều dùng hơi nước bão hoà ở 4,1at , hơi nước đi bên ngoài ống từ trên xuống dưới . Hỗn hợp nguyên liệu đi trong ống từ dưới lên . Hỗn hợp đầu vào thiết bị gia nhiệt ở nhiệt độ phòng (25C) khi ra ở nhệt độ sôi 116,8296C
*) Nhiệt lượng trao đổi : ( Q)
Q = F.Cp.(tF – tf) [W]
Trong đó :
F: lưu lượng hỗn hợp đầu F = 11000(kg/h)
: Nhiệt độ sôi của hỗn hợp tF = 116,8296 (oC)
Cp: Nhiệt dung riêng của hỗn hợp Cp= 3657,24122 (J/kg )
tF: Nhiệt độ môi trường
Thay số :
Q= .3657,24122.(116,8296-24,1) = 1036244,353 (W)
*) Hiệu số nhiệt độ hữu ích :
Hiệu số nhiệt độ lớn :
Chọn thđ = t1 = 143 (0C)
=> Δ td = 143 – 24,1 = 118,9 (0C)
Hiệu số nhiệt độ bé :
Δ tc = 151 – 116,8296 = 26,1704 (0 C)
Do =
Nên nhiệt độ trung bình giữa hai lưu thể là :
ttb = = (V.8-Stttt2)
Hơi đốt :
t1 tb = 143 (0C)
Phía hỗn hợp :
t2 tb = 143 – 61,262 = 81,738 (0C)
*) Tính hệ số cấp nhiệt cho từng lưu thể :
Hệ số cấp nhiệt phía hơi nước ngưng tụ :
Công thức tính : α1 = 2,04.A.()0,25
Trong đó:
r: ẩn nhiệt ngưng tụ lấy theo nhiệt độ hơi bão hòa
r = 2135.103 (J/Kg).
Δt1 : Chênh lệch nhiệt độ giữa nhiệt độ hơi đốt và nhiệt độ thành ống truyền nhiệt .
Giả sử: Δt1 = 3,2 (0C)
H: Chiều cao ống truyền nhiệt ; H = 2(m)
A: Hằng số tra theo nhiệt độ màng nước ngưng
Ta có :
tm = 143 - = 141,4 (0 C)
Tra bảng (Tr.29 – Stttt2 ) => A = 194,21
Thay số : α1= 2,04.194,21.( = 9521,5188 (W/m2.độ)
*) Nhiệt tải riêng về phía hơi ngưng tụ :
Công thức tính :
q1 = α1.Δt1 [W/m2]
Thay số :
q1 = 9521,5188.3,2 = 30468,86 (W/m2 )
*) Hệ số cấp nhiệt phía hỗn hợp chảy xoáy :
Công thức tính : Nu = 0,021.εk.Re0,8.Pr0,43.()0,25 ( V.40-tr24-Stttt2)
α2 = 0,021..k.Re0,8.Pr0,43.()0,25
Trong đó :
Prt: Chuẩn số Prand tính theo nhiệt độ trung bình của tường
εk : Hệ số hiệu chỉnh tính đến ảnh hưởng của tỉ số giữa chiều dài L và đường kính d của ống .
Chọn d = 38(mm) ; L = 2(m)
Ta có:
= = 58,8 > 5m → εk= 1 theo (V-2-Tr15-Stttt2)
Tính chuẩn số Pr :
Pr =
Trong đó :
Cp: Nhiệt dung riêng của hỗn hợp ở ttb = 81,6690C
Cp= 3657,24122 (J/kg. độ)
Tra bảng (I.107 – Tr 101 – Stttt1) ta có :
µ =
p: khối lượng riêng của hỗn hợp ở ttb ρ =1073 kg/m3
Theo công thức (I.32 – Tr.123 – Stttt1 ) ta có :
λ1 = ε.Cp.p.3 Với ε=3,58 .10-8 (I.32- Tr.123 – Stttt1)
=3,58.10-8.1073.3657,24122. = 0,53868 (W/m.độ )
Thay số :
Pr = = 2,41249
Hiệu số nhiệt độ ở 2 phía thành ống :
Δtt = tt- tt= q1.∑rt
Trong đó :
tt: Nhiệt độ thành ống phía hỗn hợp
∑rt : Tổng nhiệt trở ở 2 bên ống truyền nhiệt
∑rt = (m2.độ/W)
Thay số :
Δtt =
=>tt2 = tt1 – Δtt = 143- 3,2- 20,1856=119,6144 0C
Δt2 = - t2tb= 119,6144 – 81,669 = 37,9454 0C
- Tính chuẩn số P:
Pr= .
Trong đó :
Cp : Nhiệt dung riêng của hỗn hợp
Cp = 3657,24122(j/kg. độ)
µ : Độ nhớt của hỗn hợp
µ =(N.s/)
λ2 : hệ số dẫn nhiệt của hỗn hợp ở tt2
λ2 = ε.Cp.p.3
Trong đó :
p : khối lượng riêng của hỗn hợp ở tt=81,7380C , ρ= 1073 (kg/m3)
λ2 = 3,58.10-8.3657,24122.1073.= 0,53868 ( W/m2.độ)
Thay số :
Pr= = 1,3137
Vậy hệ số cấp nhiệt phía hỗn hợp chảy xoáy :
α2 = 0,021..(10500)0,8. (2,41249)0,43.()0,25= 830,769
*) Nhiệt tải riêng về phía dung dịch :
q2 = . = 830,769.37,8764=31466,85333 ( W/m2)
- Kiểm tra sai số :
<5%
Sai số chấp nhận được
*) Bề mặt truyền nhiệt :
Công thức tính :
F =
Trong đó :
Nhiệt lượng trao đổi Q = 1026186,939 (W)
q tb:Nhiệt tải riêng trung bình về phía dung dịch
qtb = =30967,85667 ( W/m)
Thay số :
= 33,137 m2
*) Số ống truyền nhiệt :
Công thức tính :
n=
Trong đó :
F: Bề mặt truyền nhiệt , F=33,137 (m2)
d : đường kính trong của ống truyền nhiệt d = 0,038 (m)
H: Chiều cao ống truyền nhiệt , H = 2 (m)
Thay số :
= 138,787
Qui chuẩn n = 169 ống .
Theo bảng ( V.11 – Tr 48 – Stttt2) ta có bảng số liệu :
Số hình 6 cạnh
Sắp xếp ống theo hình 6 cạnh
Số ống trên đường xuyên tâm 6 cạnh
Tổng số ống không kể các ống trong các hình viên phân
Tổng ống trong tất cả các hình viên phân
Tổng ống trong thiết bị
Dãy 1
Dãy 2
Dãy 3
7
15
169
3
-
-
-
169
*) Đường kính trong của thiết bị đun nóng
D = t.(b – 1) + 4.dn
Trong đó :
dn : Đường kính ngoài của ống truyền nhiệt , dn = d + 2.S = 0,038 (m)
t : Bước ống , lấy t = 1,2 dn ; t = 1,2 .0,038 = 0,0456
b : số ống trên đường xuyên tâm của hình 6 cạnh , b= 15
Thay số :
D =0,0456.(15-1) + 4.0,038 = 0,7904 (m)
Qui tròn : D = 800 (mm)
Tính lại vận tốc và chia ngăn :
- Xác định lại vận tốc thực :
n=169 ống
Xác định vận tốc giả thiết :
Vì :
Do đó cần chia ngăn để quá trình cấp nhịêt ở chế độ xoáy.
Số ngăn cần thiết : (ngăn)
Quy chuẩn : 5 ngăn
Tính lại chuẩn số Reynols :
Vậy các kích thước thiết bị đun nóng hỗn hợp đầu :
Bề mặt truyền nhiệt : F=33
Số ống truyền nhiệt : n=169 (ống )
Đường kính trong của thiết bị : D= 800 (mm )
Chiều cao ống truyền nhiệt : H=2 (m )
Chiều cao thùng cao vị :
Áp suất toàn phần cần để khắc phục sức cản thủy lực trong hệ thống khi dòng chảy đẳng nhiệt :
P = ( II.56 - Tr376 - Stttt1 )
Trong đó :
: áp suất cần thiết để tạo tốc độ cho dòng chảy ra khỏi ống dẫn
Với:
: khối lượng riêng của chất lỏng
w : vận tốc của lưu thể.
: áp suất khắc phục trở lực khi dòng chảy ổn định trong ống thẳng .
=
Với:
dtd điều kiện của ống
L: chiều dài ống dẫn
: hệ số ma sát.
: áp suất cần thiết để khắc phục trở lực cục bộ:
với : hệ số trở lực cục bộ
: áp suất cần thiết khắc phục trở lực trong thiết bị . =0
: áp suất bổ sung ở cuối đường ống , =0
*)Trở lực của đoạn ống từ thiết bị gia nhiệt hỗn hợp đầu đến cô đặc :
Áp suất động học, công thức :
có 1056 (kg/m³)
Chọn đường kính ống dẫn liệu là d= 800 (mm)
Vậy :
=
Áp suất để khắc phục trở lực ma sát :
=
Chọn chiều dài ống dẫn là l =3m , dtd= 0,08m . Chỉ số Reynold :
Re =
: độ nhớt của hỗn hợp đầu ở nhiệt độ sôi ( nhiệt độ cuối khi ra nhiệt) có : = (N.s/m²)
>
Do đó nhiệt độ chảy của hỗn hợp đầu trong ống l38 là chế độ chảy xoáy.
Chọn ống làm bằng thép X18H10T ct tra bảng (II.15 - Tr 381 - Stttt1)
mm . Chọn 0,1
Có:
Ta có: Regh= ( II.60- Tr378 - Sttt1)
Ren= 220 ( II.62 - Tr379 - Sttt1)
Do Regh<Re <Ren nên hệ số ma sát tính theo công thức sau :
Vậy :
Trở lực cục bộ trên đường ống :
Chiều dài tương đương cho trở lực cục bộ gồm 1 van tiêu chuẩn và 3 khuỷu 90°, với d= 0,08m thì =1,1 (đồ thị pl3- bttt1)
Vậy : (N/m²)
*(Trở lực dẫn từ thùng cao vị đén thiết bị gia nhiệt hỗn hợp đầu :
-Áp suất động học :
Trong đó:
: khối lượng riêng ở nhiệt độ đầu
= 1073 kg/m³
Chọn d= 800mm
Thay số :
- Áp suất để khắc phục trở lực ma sát :
=
Chọn L= 5m
Chỉ số Reynold :
Re =
: Độ nhớt của hỗn hợp đầu ở nhiệt độ sôi ( nhiệt độ cuối khi ra nhiệt )
= (N.s/m²)
Ta có: Regh=
Ren= 220
Nhận thấy Regh<Re <Ren nên :
Vậy :
-Trở lực cục bộ :
Công thức tính :
Số van trên đường ống dẫn 1
Chọn van tiêu chuẩn tra bảng ( II.16 - Tr 399 - Stttt1 ) có =0,5
hai khuỷu tạo góc 90 độ tra bảng ( pl3 - Sbttt1 )
Vậy :
*)Trở lực của thiết bị gia nhiệt hỗn hợp đầu :
Áp suất động học:
Trong đó :
: là khối lượng riêng của hỗ hợp ở : 81,738°C , = 1073(kg/m³)
w: vận tốc của hỗn hợp :
w=
=
- Áp suất để khắc phục trở lực ma sát :
=
Chỉ số Reynold :
Ta có:
Regh=4691,05
Ren= 220
Nhận thấy Regh<Re <Ren nên :
0,0274
Chiều dài tương đương :
Ltd = 2.5= 10 (m)
Vậy
- Trở lực cục bộ :
Vì dung dịch trong ống chùm nên hướng dòng chảy khi vào và khi ra ống tuyền nhiệt đa dạng và có đột mở , đột thu . Tiết diện ống dẫn dung dịch ra và vào thiết bị là :
Tiết diện ống hơi truyền nhiệt trong mỗi ngăn :
Khi chất lỏng chảy vào thiết bị (đột mở) :
Khi chất lỏng chảy từ khoảng trống vào :
Tra bảng (N13.II.16 -Tr.388 - Stttt1) ,
Khi chất lỏng chảy từ ngăn ra khoảng trống vào đột mở :
Khi chất lỏng chảy ra khỏi thiết bị (đột thu) ta có :
Tra bảng (N13.II.16 –Tr388 – Stttt1) ,
Vậy :
=0,823+5.(0,2785+0,2089)+0,4723=3,7323
3,7323.4,624=17,2582(N/m²)
- Trở lực thủy tĩnh :
1073.9,81. 2= 21052,26(N/m²)
Tổng tổn thất do ma sát và áp lực cục bộ là :
Coi chất lỏng chảy hết thùng cao vị thì chất lỏng chảy xuống từ mặt cắt 1-1
Áp dụng pt Becnuli cho mặt cắt 1-1 và 2-2 . Chọn mặt cắt 0-0 làm chuẩn :
Trong đó :
Tính thiết bị ngưng tụ
Chọn thiết bị ngưng tụ Baromet - thiết bị ngưng tụ trực tiếp loại khô ngược chiều chân cao .
Nguyên lý làm việc chủ yếu trong các thiết bị ngưng tụ trực tiếp là phun nước lạnh vào trong hơi , hơi tỏa ẩn nhiệt đun nóng nước và ngưng tụ lại . Do đó thiết bị ngưng tụ trực tiếp chỉ để ngưng tụ hơi nước hoặc hơi của các chất lỏng không có giá trị hoặc không tan trong nước vì chất lỏng sẽ trộn lẫn với nước làm nguội .
Sơ đồ nguyên lý làm việc của thiết bị ngưng tụ Baromet ngược chiều loại khô được mô tả như hình vẽ . Thiết bị gồm thân hình trụ (1) có gắn những tấm ngăn hình bán nguyệt (4) có lỗ nhỏ và ống Baromet (3) để tháo nước và chất lỏng đã ngưng tụ ra ngoài .
Hơi vào thiết bị đi từ dưới lên , nước chảy từ trên xuống , chảy trần qua cạnh tấm ngăn , đồng thời một phần chui qua các lỗ của tấm ngăn . Hỗn hợp nước làm nguội cà chất lỏng đã ngưng tụ chảy xuống ống Baromet , khí không ngưng đi lên qua ống (5) sang thiết bị thu hồi bọt (2) và tập trung chảy xuống ống Baromet . Khí không ngưng được hút ra qua phía trên bằng bơm chân không .
Ống Baromet thường cao H>10,5m để khi độ chân không trong thiết bị có tăng thì nước cũng không dâng lên ngập thiết bị .
Loại này có ưu điểm là : nước tự chảy ra được không cần bơm nên tốn ít năng lượng , năng suất lớn .
Trong công nghiệp hóa chất , thiết bị ngưng tụ Baromet chân cao ngược chiều loại khô thường được sử dụng trong hệ thống cô đặc nhiều nồi , đặt ở vị trí cuối hệ thống vì nồi cuối thường làm việc ở áp suất chân không .
Sơ đồ thiết bị Baromet :
Các thông số vật lý của hơi nước khi ra khỏi nồi 2 được liệt kê ở bảng dưới :
W2
Kg/h
P
at
oC
J/kg
J/kg
4081,413
0,210366
60,7
2609588
2356000
Áp suất ở thiết bị ngưng tụ là : 0,2(at) tương đương nhiệt độ 59,7oC
W2
Kg/h
P
at
oC
J/kg
Cn
J/kg.độ
4081,413
0,2
59,7
2596000
2358000
- Lượng nước lạnh (Gn) cần thiết cung cấp cho thiết bị ngưng tụ tính theo công thức ( VI.51 - Tr.84 - Stttt2 )
(kg/h)
Trong đó : i là nhiệt lượng riêng của hơi ngưng
t2d; t2c là nhiệt độ của nước lạnh vào và ra khỏi thiết bị ngưng tụ
chọn t2d=25oC , t2c=50oC
Cn nhiệt dung riêng của nước:
C
Lượng không khí cần hút ra khỏi thiết bị ngưng tụ trực tiếp được tính theo công thức ( VI.47 - Tr.84 - Stttt2 )
Thể tích không khí cần hút ra khỏi thiết bị ngưng tụ :
Thiết bị ngưng tụ trực trực tiếp loại ướt lấy :
tkk=t2d +4+0,1.( t- t) = 25 + 4 + 0,1. (50 – 25) = 31,5°C
Ph=0.0475 áp suất riêng phần của hơi nước bão hòa tra bảng ( I.250 - Tr.314 - Sttt1 )
Đường kính trong của thiết bị ngưng tụ (Dtr) tính theo công thức (VI.52 - Tr.84- Stttt2 )
Theo quy chuẩn thì lấy Dng=0,6(m)
Trong đó :
ρh là khối lượng riêng hơi thứ ở 59,7oC
wh =35(m/s) là vận hơi trong thiết bị ngưng tụ
- Kích thước tấm ngăn :
Chiều rộng tấm ngăn hình viên phân tính theo công thức ( VI.53 - Tr.85 - Stttt2 )
Trên tấm ngăn có đục nhiều lỗ nhỏ, nước làm nguội là nước không sạch nên lấy đường kính lỗ là 5(mm)
Chọn chiều dày tấm ngăn
Tổng diện tích bề mặt của các lỗ trong toàn bộ bề mặt cắt ngang của thiết bị ngưng tụ tính theo công thức ( VI.54 - Tr.85 -Stttt2 )
tốc độ của tia nước , khi chiều cao gờ tấm ngăn bằng 40mm thì lấy = 0,62(m/s)
Gn lưu lượng nước
khối lượng riêng hơi thứ
Các lỗ được xếp theo hình lục giác đều , bước ống tính theo công thức :
( VI.55 - Tr.85 – Stttt2 )
Trong đó :
dlỗ=5 (mm) đường kính của lỗ
chọn
Mức độ đun nóng được xác định theo công thức VI.56-tr.85-T2
(lấy tbh=tng)
Tra bảng VI.7-tr.86-T2 có: số bậc là 4
Số ngăn là 8
Khoảng cách trung bình giữa các ngăn là 400mm
Chiều cao hữu ích của thiết bị ngưng tụ là:
Thực tế khi hơi đi trong thiết bị ngưng tụ từ dưới lên thì thể tích của nó sẽ giảm dần, do đó khoảng cách hợp lý nhất giữa các ngăn cũng giảm dần theo hướng từ dưới lên khoảng chừng 50mm cho mỗi ngăn.
Tra bảng VI.8 có khoảng cách từ ngăn trên cùng đến nắp thiết bị a=1300(mm) và khoảng cách từ ngăn cuối cùng đến đáy thiết bị P=1200(mm)
Đường kính trong của ống barômet tính theo công thức VI.57-tr.86-T2
Chọn d=0,3(m)
- Chiều cao của ống baromet tính theo ( VI.58 - Tr.83 - Stttt2 )
H=h1+h2+0,5
h1 chiều cao cột nước trong ống baromet cân bằng với hiệu số giữa áp suất khí quyển và áp suất trong thiết bị ngưng tụ :
b(at) : độ chân không của thiết bị
h2 : là chiều cao cột nước trong ống baromet cần để khắc phục toàn bộ trở lực khi nước chảy trong ống.
( VI.61 - Tr87 - Stttt2 )
d : là đường kính trong ống baromet
hệ số trở lực ma sát khi nước chảy trong ống
(công thức baziut)
; ;
Tra theo bảng ( I.249 - Tr.310 - Stttt1 ) ở nhiệt độ ttb=37,5oC
Khi đó :
Thay vào H ta có :
Chọn H=10,5(m) , h=8,33(m) . Trong đó 0,5m là chiều cao dự trữ để ngăn ngừa nước tăng lên trong ống và chảy tràn vào đường ống dẫn hơi khi áp suất khí quyển tăng .
- Công suất của bơm chân không tính theo công thức :
Trong đó: m=1,25 hệ số biến dạng
Pk=Pck-Ph=0,2-0,0475=0,1525(at)
P1=Png=0,2(at)
P2=Pkk=1(at)
hiệu suất
Dựa vào Nb chọn bơm quy chuẩn bảng ( II.58 - Tr.513 - Stttt1 )
Chọn bơm chân không vòng nước PMK-1có thông số :
Số vòng quay : 1450(vòng/phút)
Công suất yêu cầu trên trục bơm : 3,75 (kw)
Công suất động cơ điện : 4,5 (kw)
Lưu lượng nước:0,01 (m3/h)
Kích thước : dài 575 (m)
rộng 410m
cao 390m
Khối lượng : 93kg
Bảng số liệu cơ bản của thiết bị ngưng tụ ( Bảng VI.8 – Tr88 - Stttt2 )
Ký hiệu các kích thước
Dtr=600(mm)
Tra bảng
Chiều dày thành thiết bị
S
5
Khoảng cách từ ngăn trên cùng đến nắp thiết bị
a
1300
Khoảng cách từ ngăn cuối cùng đến đáy thiết bị
P
1200
Bề rộng của tấm ngăn
b
-
Khoảng cách giữa tâm của thiết
bị ngưng tụ và thiết bị thu hồi
K1
K2
725
-
Chiều cao của hệ thống thiết bị
H
10500
Chiều rộng của hệ thống thiết bị
T
1400
Đường kính của thiết bị thu hồi
D1
400
Chiều cao của thiết bị thu hồi
h1(h)
1400
Đường kính của thiết bị thu hồi
D2
-
Chiều cao của thiết bị thu hồi
h2
-
Khoảng cách giữa các ngăn
a1
a2
a3
a4
a5
260
300
360
400
430
Đường kính các cửa ra và vào
Hơi vào
Nước vào
Hỗn hợp khí và hơi ra
Nối với ống barômét
Hỗn hợp khí; hơi vào t.bị thu hồi
Hỗn hợp khí; hơi ra t.bị thu hồi
Nối từ thiết bị thu hồi với ống barô met
d1
d2
d3
d4
d5
d6
d7
d8
350
125
100
150
100
70
50
-
Tính bơm :
Do dung dịch KOH làm việc với áp suất thường và trong công nghiệp bơm li tâm được sử dụng rất rộng rãi với những ưu điểm là thiết bị đơn giản , lưu lượng cung cấp đều , quay nhanh (có thể nối trực tiếp với động cơ) .
1 - Xác định áp suất toàn phần do bơm tạo ra :
Áp dụng công thức (II.185-Tr.438- Stttt1)
(m)
Trong đó :
H- áp suất toàn phần do bơm tạo ra, tính bằng chiều cao cột chất lỏng cần bơm (m)
-áp suất trên bề mặt chất lỏng trong không gian hút và đẩy
H - chiều cao nâng chất lỏng , chọn H=12m
H - áp suất tiêu tốn để thắng toàn bộ trở lực trong đường ống hút và đẩy
+Xác định trở lực dường ồng từ thùng chứa đến thùng cao vị :
Trong đó :
F: năng suất hỗn hợp đầu vào F = 11000(kg/h)
: khối lượng riêng dung dịch , = 1073 (kg/h)
d : đường kính ống dẫn dung dịch d = 0,08m
+ Trở lực tiêu tốn để thắng toàn bộ trở lực trên đường ống đẩy và ống hút :
Trong đó :
P : áp suất toàn phần để thắng tất cả sức cản thủy lực trên đường ống khi dòng chảy đẳng nhiệt .
Theo phần trước ta đã tính ta có :
Áp suất động học :
=172,191
Áp suất để khắc phục trở lực ma sát :
= =
Áp suất cần thiết đển khắc phục trở lực cục bộ :
=
Tổng trở lực của cả hệ thống là :
P = =1239,7752+172,191+743,9943 = 2155,9605
Vậy tổn thất áp suất để khắc phục trở lực trong hệ thống ống dẫn từ nguyên liệu đầu vào thùng cao vị :
= = = 0,2048 (m)
Vậy :
H=12+0,2048 = 12,2048 (m)
Vậy chọn bơm có áp suất toàn phần H > 13m
Theo bảng (II.36 - tr.444 – Stttt1) chọn bơm OIIB có năng suất :
(2-150).1000, áp suất toàn phần từ 3 đến 20 , số vòng quay từ 250 đến 960 vòng/phút , nhiệt độ <35 , bánh guồng làm bằng thép 20X18H9T .
2 - Năng suất yêu cầu trên trục bơm :
Công thức tính yêu cầu trên rục bơm :
(II.189 - Tr.439 – Stttt1)
Trong đó :
H : áp suất toàn phần của bơm (m)
F : Năng suất của bơm (kg/h)
g : gia tốc trọng trường
: hiệu suất toàn phần của bơm,
Tra bảng ( II.32- Tr.439 – Stttt1 )có :
: là hiệu suất thể tích do hao hụt khi chuyển từ áp suất cao xuống áp suất thấp bằng 0,9
-hiệu suất thủy lực tính đến ma sát và sự tạo dòng xoáy trong bơm bằng 0,85
- hiệu suất cơ khí , tính đến ma sát cơ khí ở ổ bi lót trục bằng 0,94
Vậy hiệu suất toàn phần của bơm là : 0,9.0,85.0,94=0,72
3- công suất động cơ điện :
Ta có ( II.190 - Tr439 – Stttt1 )
Thông thường để đảm bảo an toàn , người ta chọn động cơ có công suất lớn hơn công suất tính toán , lượng dự trữ dựa vào khả năng quá tải của bơm :
( II.191-Tr.439 – Stttt1 )
theo bảng ( II.33 - Tr.439 – Stttt1 ) Do đó ta có
Vậy ta chọn bơm có công suất 1,1kw
4. Tính toán cơ khí và lựa chọn
Tính buồng đốt :
-Số ống truyền nhiệt trong buồng đốt (n) của cả hai nồi bằng nhau và được tính theo công thức :
F: bề mặt trao đổi nhiệt của nồi (m2)
dtr: đường kính ống truyền nhiệt (m)
h2: chiều cao ống truyền nhiệt (m)
Từ bảng VI.6-tr.80-T2 chọn
(ống)
Số ống quy chuẩn sắp xếp theo hình sáu cạnh (bảng V.11 - Tr.48 - Stttt2) thì n=613 (ống)
Ta có bảng số liệu sau :
Số hình
6 cạnh
Số ống trên đường xuyên tâm của hình sáu cạnh
Tổng số ống không kể các ống trong các hình viên phân
Số ống trong các hình viên phân
Tổng số ống trong tất cả các hình viên phân
Tổng số ống của thiết bị
Ở dãy thứ nhất
Ở dãy thứ hai
Ở dãy thứ ba
13
27
547
9
2
-
66
613
- Đường kính trong của buồng đốt :
Dtr=t.(b-1) +4d ( VI.140 - Tr49 - Sttt2 )
b- số ống trên đường chéo của hình 6 cạnh , b= 27 ống
d: đường kính ngoài của ống truyền nhiệt , d= 31 mm
t: bước ống : t= 1,2d=1,2.0,031 = 0.0372 (m)
Dtr= 0.0372.(27-1) + 4.0,031 = 1.0912(m)
Chọn Dtr theo tiêu chuẩn là : 1(m) =1000 (mm)
-Chiều dày của buồng đốt (S)
: hệ số bền, ứng suất chịu kéo nén
Tra bảng (XII.4 - Tr.309 - Stttt2 ) đối với thép X18H10T có :
Ứng suất cho phép của thép theo giới hạn bền xác định theo công thức (XIII.1) và bảng XIII.3
ứng suất cho phép giới hạn chảy tính theo công thức XIII.2 và bảng XIII.3
thiết bị thuộc nhóm 2 loại II (bảng XIII.2)
giá trị hệ số an toàn bền (bảng XIII.3)
Chọn (giá trị nhỏ)
: hệ số bền của thành hình trụ theo phương dọc . Nếu hàn bằng tay với >700 mm , thép cácbon X18H10T thì (tra bảng XIII.8 - Tr.362 - Stttt2)
P: áp suất làm việc của thiết bị (lấy bằng áp suất hơi đốt)
C=C1+C2+C3 hệ số bổ xung (XIII.17 - Tr363 - Stttt2)
C1: hệ số bổ xung do ăn mòn, xuất phát từ điều kiện ăn mòn vật liệu của môi trường và thời gian làm việc của thiết bị .
C2: bổ xung do hao mòn cần tính khi nguyên vật liệu chứa hạt rắn chuyển động
chọn vật liệu là thép X18H10T , tốc độ gỉ 0,06mm/năm có C1=1mm ; C2=0
C3 : bổ xung do dung sai của chiều dày (chọn theo bảng XIII.9 - Tr.364 - Stttt2)
Chọn
Theo bảng XIII.9 lấy
- Kiểm tra độ bền theo áp suất thử :
Theo bảng (XIII.5 - Tr358-Stttt2) . Định mức áp suất thủy lực khi thử thiết bị làm việc ở áp suất P, ta có (N/)
Công thức (XIII.10 - Tr360 - Stttt2)
= ;
độ bền an toàn
- Chiều dày đáy lồi buồng đốt tính theo công thức (XIII.47 - Tr385 - Stttt2)
(đáy dạng elip có gờ) , chọn vật liệu thép X18H10T là hợp kim bền chịu nhiệt
Đk: (*)
Trong đó :
hb=0.25(m) chiều cao phần lồi của đáy bảng( XIII.10 - Tr382 - Stttt2 )
k- là hằng số bền của đáy được tính theo công thức :
Đáy có một cửa ra cho dung dịch ra hình tròn đường kính d :
(VII.42 - Tr74 - Stttt2)
V- Lưu lượng dung dịch ra khỏi nồi 1()
()
: Vận tốc thích hợp của dung dịch trong ống với dung dịch nhớt
chọn : 0,55
(m)
Vậy
Đk: =
P : áp suất hơi thứ ra khỏi buồng đốt P = 1,461 at
Vậy thỏa mãn :
(m)
Có (S-C)<10mm nên thêm 2mm cho đại lượng bổ sung C, C =3+2=5 (mm)
Quy chuẩn
Kiểm tra độ bền của đáy thiết bị :
Ta có :
Độ bền đảm bảo an toàn, chiều dày đáy buồng đốt mm
- Tính toán lưới đỡ ống và chọn lưới đỡ :
Lưới đỡ ống phải đảm bảo giữ chặt ống sau trong quá trình thiết bị làm việc
Chiều dày tối thiểu của mạng ống là :
- Bền với môi trường hóa chất cũng như hơi nước :
- Giữ nguyên hình dạng của mạng khi gia công cũng như khi hoạt động
Đảm bảo tiết diện dọc giới hạn bởi ống là :
Trong đó :
bước ống
Vậy
- Bền dưới tác dụng của các loại ứng suất
Kiểm tra mạng ống theo giới hạn bền uốn với điều kiện :
: áp suất làm việc
dn=38 (mm) : đường kính ngoài ống truyền nhiệt
Vậy thỏa mãn điều kiện nên chọn bề dày lưới đỡ là : 13(mm)
Tính buồng bốc
- Thể tích của không gian hơi (Vb) xác định theo công thức :
(VI.32-Tr.71 - Stttt2)
Trong đó:
W : lượng hơi thứ ra khỏi thiết bị (kg/h)
: khối lượng riêng của hơi thứ (kg/m3)
Utt: cường độ hơi bốc cho phép trong khoảng không gian hơi (m3/m3.h)
Ta có : ( VI.33 - Tr72 - Stttt2)
Chọn
ở 1 fat có f=0,95
f - hệ số hiệu chỉnh xác định theo đồ thị tra đồ thị ( VI.3 - Tr72-Stttt2 )
(VI.33 - Tr.72 - Stttt2)
Mối quan hệ giữa chiều cao (Hb) và đường kính (Db) của buồng bốc được biểu diễn qua công thức (VI.34 - Tr.72 - Stttt2)
- đường kính trong buồng bốc . Chọn theo đường kính trong của buồng đốt.
Chọn Db=1,4(m) theo tiêu chuẩn Hb=3(m)
Vì dung dịch khi sôi tạo bọt mạnh nên chọn Hb=3m (Tr.73-Stttt2)
- Chiều dày buồng bốc :
( XIII.8 - Tr380 - Stttt2)
Xét
Bỏ qua giá trị Pht1 ở mẫu, khi đó :
-Kiểm tra độ bền theo áp suất thử :
Thiết bị an toàn, chọn S=5 mm
-Tính chiều dày nắp buồng bốc :
Chiều dày nắp buồng bốc tính theo công thức :
(XIII.47-Tr385-Stttt2)
Ta có :
Trong đó: hb=0,25(m) chiều cao phần lồi của nắp bảng (XIII.10-Tr382-Stttt2)
(m)
V: lưu lượng hơi ra khỏi nồi
khối lượng riêng hơi nồi 1,=0,8254 (kg/h)
W: lượng hơi thứ ra khỏi nồi 1(kg/h)
: vận tốc thích hợp của hơi trong thiết bị.đối với hơi bão hòa chọn =25(m/s)
(
(m)
Xét
Có (S-C)<10mm nên thêm 5(mm) vào
Quy chuẩn
Kiểm tra độ bền của nắp thiết bị :
Độ bền đảm bảo an toàn
Chiều cao gờ h = 50(mm) tra theo bảng (XIII.12-Tr.385-Stttt2)
mặt bích
-Tra bích của buồng đốt :
(bảng XIII.27-Tr.421-Sttttt2. kiểu I có 0.3 < py=0.3924 < 0.6)
Dtr
(mm)
Kích thước nối
D
(mm)
Db
(mm)
Dt
(mm)
D0
(mm)
Bu lông
h
(mm)
db
Z(cái)
1000
1140
1090
1060
1013
M20
28
22
Cấu tạo mặt bích :
-Tra bích của buồng bốc :
(bảng XIII.27-Tr.421-Stttt2. kiểu I có 0.1 < py=0.14 < 0.3)
Dtr
(mm)
Kích thước nối
D
(mm)
Db
(mm)
Dt
(mm)
D0
(mm)
Bu lông
h
(mm)
db
Z(cái)
1400
1540
1490
1460
1413
M20
32
25
đường kính ống dẫn
- Ống dẫn hơi đốt vào :
Từ công thức : (VI-Tr42-Stttt2)
Trong đó :
w=20(m/s) vận tốc thích hợp của hơi đốt quá nhiệt trong ống
lưu lượng hơi đốt trong thiết bị
Quy chuẩn (m) , tra bảng ( XIII.32 - Tr434 - Stttt2 ) có l = 130 (mm)
- Ống dẫn dung dịch vào :
Lưu lượng dung dịch vào thiết bị :
G: lưu lượng dung dịch đầu
: khối lượng riêng của dung dịch đầu
Quy chuẩn dtr = 80(mm) , l = 110 (mm)
-Ống dẫn dung dịch ra
Lưu lượng dung dịch ra tính theo công thức:
Khi đó đường kính trong của ống dẫn dung dịch ra là :
Quy chuẩn dtr = 0,07(m) , l = 110 mm
- Ống tháo nước ngưng và xả khí không ngưng
Ống tháo nước ngưng
Trong quá trình thiết bị hoạt động , khi hơi nước truyền nhiệt sẽ ngưng tụ và di chuyển xuống dưới . Việc tháo nước ngưng tránh được tổn thất nhiệt của hơi , giảm áp suất tổng của thiết bị,… nên cần tháo triệt để . Chọn kiểu ống tháo nước ngưng ở đáy(lưới đỡ ống) chọn đường kính trong của ống dẫn là 10mm và cửa ra là 20mm
- Cửa xả khí không ngưng :
Trong hơi nước đưa vào thiết bị có chứa một phần khí , khi hơi nước ngưng tụ thì khí này tách ra và ở trong thiết bị sẽ làm tăng áp suất tổng , giảm áp suất riêng phần của hơi thứ nên cần định kỳ xả khí không ngưng . Chọn đường kính trong bằng 50mm .
-Ống dẫn hơi thứ ra
Quy chuẩn dtr = 300 mm , l = 140 mm
-Đường kính ngoài của ống tuần hoàn :
Diện tích thiết diện của ống tuần hoàn lấy bằng 8%-10% thiết diện của buồng đốt, ta có :
Quy chuẩn : 300 mm , chọn chiều dày theo chiều dày buồng đốt s = 5(mm)
Chọn đoạn cao h = 400 mm để nối ống tuần hoàn .
- Chọn bích ghép vào các ống dẫn vào thiết chính :
Bích nối liền bằng kim loại đen để nối các bộ phận thiết bị và ống dẫn
Tra bảng (XIII-26 – Tr414 – Stttt2)
Tên thiết bị nối
Dy
(mm)
ống
Dn
(mm)
Kích thước nối
Kiểu 1
h
(mm)
D
(mm)
Dδ
(mm)
Dt
(mm)
Bu lông
db
Z(cái)
Hơi thứ
300
325
435
395
365
M20
12
22
Dd vào
80
89
185
150
128
M16
4
20
Dd ra
70
76
160
130
110
M12
4
14
Nước ngưng
50
57
140
110
90
M12
4
12
Ống t.hoàn
300
325
435
395
365
M20
12
22
Hơi đốt
200
219
290
255
232
M16
8
16
Tính tai treo và chọn tai treo :
Tính khối lượng nồi khi thử thủy lực :
Gnk là khối lượng nồi không (N)
Gnd là khối lượng nước đổ đầy nồi (N)
tính Gnk
-Khối lượng thân buồng đốt :
là khối lượng riêng của thép X18H10T
là thể tích thân buồng đốt
h2=2(m) là chiều cao của buồng đốt
- Khối lượng 4 bích ghép thân và đáy buồng đốt :
- Tính khối lượng thân buồng bốc :
là thể tích thành thân buồng bốc
hb=3(m) chiều cao buồng bốc
Dnbb; Dtrbb là đường kính ngoài và trong của buồng bốc
- Khối lượng nắp và đáy nón elip:
Tra bảng XIII.11 - Tr384 - Stttt2 ta có thì m=79(kg); thì m=56(kg)
-khối lượng 2 bích ghép thân và đáy lồi buồng bốc:
- Khối lượng 2 lưới đỡ :
khối lượng riêng của kim loại không rỉ
- Khối lượng các ống truyền nhiệt :
- Khối lượng đoạn thu hẹp trung gian nối buồng đốt và buồng bốc :
Trong đó :
: khối lượng riêng của thép X18H10T, = 7850 (kg/m3)
V : thể tích nón cụt
V = .( Dn2 – Dtr2). h
Với :
Dtr : đường kính trong phần nón cụt
Dtr = . ( Dtrbd + Dtrbb ) = 1,1(m)
Dn : đường kính ngoài phần nón cụt
Dn = .( Dnbb + Dnbd ) = 1,11(m)
h : chiều cao phần nón cụt, ta chọn h = 0,4 (m)
=> = .( 1,112 – 1,12 ).0,4= ()
Thay số :
= 68,093 (kg)
- Khối lượng ống tuần hoàn ngoài :
Tổng khối lượng nồi không :
Gnk=9,81.( 297,1711 + 191,854 + 415,265 + 135 + 110,678 + 98,722 + 3650,876 + 68,093 + 72,715 ) = 49446,06992 (N)
Tính Gnd
- Thể tích không gian buồng đốt và buồng bốc
Tính gần đúng theo biểu thức :
Trong đó :
htg=0,4(m) là chiều cao của đoạn nối buồng đốt và buồng bốc
hb=3(m) là chiều cao buồng bốc
hd=2(m) là chiều cao buồng đốt
- Khối lượng nước chứa đầy nồi là :
Khối lượng nồi khi thử thủy lực :
Gtl=Gnk+Gnd= 66720,16 + 49446,06992 = 116166,2299 (N)
Tải trọng phân bố trên mỗi tai treo là :
Tra bảng (XIII.36-Tr.438-Sttttt2)
Tải trọng cho phép trên 1 tai treo G.
(N/m)
Bề mặt đỡ F.
(m)
Tải trọng cho phép lên bề mặt đỡ q.10
(N/m)
Khối lượng 1 tai treo
(Kg)
L
B
B1
H
S
l
a
d
mm
2,5
173
1,45
3,48
150
120
130
215
8
60
20
3
Tính thiết bị phụ khác :
1-Đoạn côn nối buồng đốt và buồng bốc :
Đoạn côn này có 1 mặt bích như của buồng đốt và 1 mặt bích như của buồng bốc để ghép nối buồng bốc với buồng đốt . Chọn chiều dài là 0,4m .
2-Kính quan sát :
Chọn vật liệu làm kính bằng thủy tinh silicat có
Tra bảng ( XIII.26 - Tr.403 - Sttttt2 )
Bích liền kim loại đen để nối các bộ phận thiết bị và ống dẫn cho ở bảng sau:
Pb.10
(N/m2)
Dy ,
mm
Kích thước ống
Kiểu bích
Dn
mm
D
mm
D
mm
D1
mm
Bu lông
1
Db
mm
Z
cái
h
mm
0,6
300
325
435
395
365
M20
12
22
3-Tính bề dày lớp cách nhiệt
theo công thức (VI.66 - Tr.92 - Stttt2 )
Trong đó :
-hệ số cấp nhiệt từ bề mặt ngoài của lớp cách nhiệt đến không khí
- nhiệt độ bề mặt lớp cách nhiệt về phía không khí vào khoảng 40 đến 50 độ
- nhiệt độ lớp cách nhiệt tiếp giáp bề mặt thiết bị ( vì trở lực nhiệt tường thiết bị rất nhỏ so với trở lực nhiệt của lớp cách nhiệt ) nên có thể lấy bằng nhiệt độ hơi đốt là 143C
- nhiệt độ không khí .Tra bảng VII.1 , ta có nhiệt độ trung bình của Hà Nội cả năm là 23,4 độ
-hệ số dẫn nhiệt của chất cách nhiệt , chọn vật liệu cách nhiệt là đất sét thì ta có
KẾT LUẬN
Hệ thống thiết bị cô đặc hai nồi xuôi chiều loại thiết bị cô đặc ống tuần hoàn ngoài dùng để cô đặc dung dịch KOH có các thông số kỹ thuật như sau :
Nồng độ dung dịch
D.d đầu
xđ ,%
8
D.d sản phẩm
xc , %
30
Năng suất tính theo dung dịch đầu
Gđ ,kg/h
11000
Lượng hơi đốt vào nồi 1
D, kg/h
4345,3013
Lượng hơi thứ bốc ra ở từng nồi
Nồi 1
W1, kg/h
3985,2537
Nồi 2
W2, kg/h
4081,413
Nhiệt độ sôi của dung dịch trong mỗi nồi
Nồi 1
ts1,oC
116,8296
Nồi 2
ts2,oC
84,739
Hệ số truyền nhiệt trong mỗi nồi
Nồi 1
K1, W/m2.độ
951,87796
Nồi 2
K2, W/m2.độ
891,762
Hiệu số nhiệt độ hữu ích của hệ thống
Nồi 1
24,94
Nồi 2
25,4913
Bề mặt truyền nhiệt của các nồi
Nồi 1
F1 = F2, m2
125
Nồi 2
-Cấu tạo thiết bị :
Các thông số
Đường kính trong
Chiều cao
Chiều dày
Dtr
h
S
mm
Các chi tiết chính
Thân buồng đốt
1000
2000
5
Lưới đỡ ống
-
-
13
Đáy lồi phòng đốt
-
-
6
Ống truyền nhiệt
31
2000
2
Buồng bốc hơi
1400
3000
4
Nắp buồng bốc
-
-
6
Các chi tiết phụ
Ống dẫn hơi đốt
200
-
-
Ống dẫn dung dịch vào
80
-
-
Ống dẫn hơi thứ
300
-
-
Ống dẫn dung dịch ra
70
-
-
Ống tháo nước ngưng
50
-
-
5.Tổng kết
Sau một thời gian cố gắng tìm đọc, tra cứu tài liệu tham khảo , cùng với sự giúp đỡ tận tình của thầy cô bộ môn và thầy hướng dẫn em đã hoàn thành nhiệm vụ thiết kế được giao . Qua quá trình tiến hành em đã rút ra được một số nhận xét sau :
Việc thiết kế và tính toán một hệ thống cô đặc là việc làm phức tạp, đòi hỏi tính tỉ mỉ và lâu dài . Nó không những yêu cầu người thiết kế phải có kiến thức thực sự sâu về quá trình cô dặc mà còn phải biết một số lĩnh vực khác như: Cấu tạo các thiết bị phụ khác, các quy chuẩn trong bản vẽ kĩ thuật…
Công thức tính toán không còn gò bó như những môn học khác mà được mở rộng dựa trên các giả thiết về điều kiện, chế độ làm việc của thiết bị . Bởi trong khi tính toán , người thiết kế đã tính toán đến một số ảnh hưởng ở điều kiện thực tế, nên khi đem vào hoạt động thì hệ thống sẽ làm việc ổn định .
Không chỉ có vậy , việc thiết kế đồ án môn quá trình thiết bị này còn giúp em củng cố thêm nhưng kiến thức về quá trình cô đặc nói riêng và các quá trình khác nhằm nâng cao kĩ năng tra cứu tính toán và sử lý số liệu
Viêc thiết kế đồ án môn “ Quá trình và thiết bị trong công nghệ hóa chất và thực phẩm ” là một cơ hội cho sinh viên ngành hóa nói chung và bản thân em nói riêng làm quen vói công việc của một kỹ sư hóa chất.
Để hoàn thành nhiệm vụ thiết kế được giao em xin chân thành cảm ơn thầy Nguyễn Xuân Huy là giáo viên hướng dẫn trực tiếp và thầy Vũ Minh Khôi là giáo viên giảng dạy bộ môn “ Quá trình và thiết bị trong công nghệ hóa chất và thực phẩm” đã cung cấp những kiến thức cơ bản về các quá trình và các thiết bị chủ yếu.
Mặc dù dã cố gắng hoàn thành tốt nhiệm vụ song do hạn chế về tài liệu , kinh nghiệm thực tế nên không tránh khỏi những thiếu sót trong quá trình thiết kế . Em mong được thầy cô xem xét và chỉ dẫn thêm .
Em xin chân thành cảm ơn !
Sinh viên
Phạm Thị Xuân
6.Tài liệu tham khảo:
Sổ tay quá trình & thiết bị công nghệ hóa chất. tập 1
Sổ tay quá trình & thiết bị công nghệ hóa chất. tập 2
Cơ sở các quá trình & thiết bị công nghệ hóa chất & thực phẩm .tập1,3,4
Tính toán quá trình & thiết bị trong công nghệ hóa chất và thực phẩm tập 1,2
Cơ sở thiết kế máy hóa chất
Chuyển đổi đơn vị thường gặp
1 N = 1kg.m/s2
1 Nm = 1 J = 1Ws
1 Cal = 4,1868 J
1 Ns/m2 = 10 P = 1000 cP
1 at = 9,81.104 = 735,5 mmHg = 1 kp/cm2
Các file đính kèm theo tài liệu này:
- _n_m_n_h_c_qu_tr_nh_thi_t_b_koh_hoan_chinh_1__7815.doc