Luận án Ảnh hưởng của dòng tiền, rủi ro hệ thống, rủi ro phi hệ thống và tính thanh khoản chứng khoán đến đầu tư của doanh nghiệp Việt Nam

Doanh nghiệp có phần vốn góp của nhà nước có trách nhiệm cung cấp đầy đủ các Hồ sơ tài liệu, thông tin liên quan đến tình hình hoạt động sản xuất kinh doanh, về việc đầu tư, tình hình tài chính, những nội dung khác (nếu có) cho Người đại diện khi được yêu cầu theo quy định của Luật Doanh nghiệp, Điều lệ của doanh nghiệp. 2. Người đại diện khi gửi báo cáo cho Chủ sở hữu phần vốn nhà nước và các cơ quan quản lý nhà nước thì đồng thời gửi báo cáo đó cho doanh nghiệp. Trường hợp doanh nghiệp có ý kiến khác với nội dung báo cáo, đánh giá nhận xét của Người đại diện thì trong thời hạn 10 ngày làm việc kể từ ngày nhận được báo cáo của Người đại diện, doanh nghiệp phải có văn bản gửi đến Chủ sở hữu phần vốn nhà nước để được xem xét. 3. Người đại diện tại doanh nghiệp mà nhà nước nắm giữ trên 50% vốn điều lệ trước khi gửi báo cáo cho Chủ sở hữu phần vốn nhà nước lấy ý kiến của doanh nghiệp. Trường hợp doanh nghiệp có ý kiến khác với nội dung báo cáo, đánh giá nhận xét của Người đại diện thì doanh nghiệp trực tiếp bàn bạc, giải thích các nội dung khác đó với Người đại diện để có sự đồng thuận trong báo cáo đánh giá, nhận xét. Sau khi bàn bạc nếu còn ý kiến khác nhau thì thực hiện theo quy định tại Khoản 2 Điều này.

pdf200 trang | Chia sẻ: phamthachthat | Lượt xem: 1439 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Ảnh hưởng của dòng tiền, rủi ro hệ thống, rủi ro phi hệ thống và tính thanh khoản chứng khoán đến đầu tư của doanh nghiệp Việt Nam, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ge) nomata small twostep robust > sk l(1).SysDumGov l(2).idiorisk l(0,1,3).IdioDumGov l(1,4).turn l(0/3).LiquiDumGov l(1/2).cfk l(0,1,3).CFDumGov l(0,1,3).q l(1,3).sale l(0/3) . xtabond2 ik l.ik cfk CFDumGov sysrisk SysDumGov idiorisk IdioDumGov turn LiquiDumGov q size lev sale return age,gmm(l(1/4).ik l(1/3).sysri 30 PHỤ LỤC 4.14: KẾT QUẢ ƯỚC LƯỢNG CỘT 1 – BẢNG 4.12 . (Robust, but weakened by many instruments.) Hansen test of overid. restrictions: chi2(69) = 64.42 Prob > chi2 = 0.634 (Not robust, but not weakened by many instruments.) Sargan test of overid. restrictions: chi2(69) = 151.49 Prob > chi2 = 0.000 Arellano-Bond test for AR(2) in first differences: z = -1.04 Pr > z = 0.299 Arellano-Bond test for AR(1) in first differences: z = -2.63 Pr > z = 0.009 L4.size return L.return L2.return L3.return L4.return) collapsed L4.CFRateGov q L.q L2.q L3.q L4.q sale L4.sale L.lev L2.lev size L.size L.turn L3.turn L4.turn L2.cfk L3.cfk L4.cfk L2.CFRateGov L3.CFRateGov D.(L.ik L2.ik L3.ik L.sysrisk L2.sysrisk L3.sysrisk L.idiorisk L2.idiorisk GMM-type (missing=0, separate instruments for each period unless collapsed) age _cons Standard Instruments for levels equation collapsed size L.size L4.size return L.return L2.return L3.return L4.return) L3.CFRateGov L4.CFRateGov q L.q L2.q L3.q L4.q sale L4.sale L.lev L2.lev L2.idiorisk L.turn L3.turn L4.turn L2.cfk L3.cfk L4.cfk L2.CFRateGov L(1/.).(L.ik L2.ik L3.ik L.sysrisk L2.sysrisk L3.sysrisk L.idiorisk GMM-type (missing=0, separate instruments for each period unless collapsed) D.age Standard Instruments for first differences equation _cons -2.098833 .5851968 -3.59 0.000 -3.252609 -.9450572 age -.0105972 .1818439 -0.06 0.954 -.3691212 .3479268 return -.1086087 .0468648 -2.32 0.021 -.2010074 -.0162099 sale -.0475381 .0545183 -0.87 0.384 -.1550266 .0599503 lev .8621745 .2955203 2.92 0.004 .2795256 1.444823 size .2413582 .0765157 3.15 0.002 .0904996 .3922168 q -.0630448 .106452 -0.59 0.554 -.2729259 .1468362 turn 30.51263 10.01965 3.05 0.003 10.75785 50.26741 idiorisk .8285851 .4919446 1.68 0.094 -.1413345 1.798505 sysrisk -.1787841 .1059688 -1.69 0.093 -.3877126 .0301444 CFRateGov .0084498 .0049327 1.71 0.088 -.0012755 .0181752 cfk .299221 .1710445 1.75 0.082 -.0380109 .6364528 L1. .0537639 .0309989 1.73 0.084 -.0073537 .1148816 ik ik Coef. Std. Err. t P>|t| [95% Conf. Interval] Corrected Prob > F = 0.000 max = 5 F(11, 205) = 6.07 avg = 4.14 Number of instruments = 82 Obs per group: min = 1 Time variable : year Number of groups = 206 Group variable: firm Number of obs = 853 Dynamic panel-data estimation, two-step system GMM Performing specification tests. > ............................................................................................................. Computing Windmeijer finite-sample correction.................................................................................................. Estimating. 51 instrument(s) dropped because of collinearity. Building GMM instruments................................... > l(2/4).cfk l(2/4).CFRateGov l(0/4).q l(0,4).sale l(1/2).lev l(0,1,4).size l(0/4).return,collapse) iv(age) nomata small twostep robust . xtabond2 ik l.ik cfk CFRateGov sysrisk idiorisk turn q size lev sale return age,gmm(l(1/3).ik l(1/3).sysrisk l(1/2).idiorisk l(1,3,4).turn 31 PHỤ LỤC 4.15: KẾT QUẢ ƯỚC LƯỢNG CỘT 2 – BẢNG 4.11 (Robust, but weakened by many instruments.) Hansen test of overid. restrictions: chi2(78) = 65.03 Prob > chi2 = 0.853 (Not robust, but not weakened by many instruments.) Sargan test of overid. restrictions: chi2(78) = 195.39 Prob > chi2 = 0.000 Arellano-Bond test for AR(2) in first differences: z = -1.14 Pr > z = 0.256 Arellano-Bond test for AR(1) in first differences: z = -2.67 Pr > z = 0.008 return L.return L2.return L3.return) collapsed L2.cfk L3.cfk L.CfkDumGov42 q sale L.sale L4.sale lev L.lev L4.lev size L.IdioDumGov42 L4.turn LiquiDumGov42 L2.LiquiDumGov42 L3.LiquiDumGov42 L2.SysDumGov42 L3.SysDumGov42 L2.idiorisk L3.idiorisk IdioDumGov42 D.(L.ik L2.ik L3.ik L4.ik L.sysrisk L3.sysrisk SysDumGov42 L.SysDumGov42 GMM-type (missing=0, separate instruments for each period unless collapsed) age _cons Standard Instruments for levels equation L.lev L4.lev size return L.return L2.return L3.return) collapsed L3.LiquiDumGov42 L2.cfk L3.cfk L.CfkDumGov42 q sale L.sale L4.sale lev IdioDumGov42 L.IdioDumGov42 L4.turn LiquiDumGov42 L2.LiquiDumGov42 L.SysDumGov42 L2.SysDumGov42 L3.SysDumGov42 L2.idiorisk L3.idiorisk L(1/.).(L.ik L2.ik L3.ik L4.ik L.sysrisk L3.sysrisk SysDumGov42 GMM-type (missing=0, separate instruments for each period unless collapsed) D.age Standard Instruments for first differences equation _cons -1.920351 .8326334 -2.31 0.022 -3.561974 -.2787283 age .0695091 .271088 0.26 0.798 -.4649689 .6039871 return -.1111345 .0471073 -2.36 0.019 -.2040114 -.0182576 sale -.0419074 .0813451 -0.52 0.607 -.2022877 .118473 lev 1.569919 .5653221 2.78 0.006 .4553282 2.68451 size .1228119 .1334321 0.92 0.358 -.1402634 .3858871 q .0534739 .1115683 0.48 0.632 -.1664945 .2734424 LiquiDumG~42 -45.19442 26.91328 -1.68 0.095 -98.25672 7.867891 turn 36.02853 16.32429 2.21 0.028 3.843499 68.21356 IdioDumGov42 -1.22815 .4640306 -2.65 0.009 -2.143035 -.3132662 idiorisk 1.139377 .6853149 1.66 0.098 -.2117921 2.490547 SysDumGov42 .5588936 .2597412 2.15 0.033 .046787 1.071 sysrisk -.3129169 .1666048 -1.88 0.062 -.6413955 .0155617 CfkDumGov42 .5962781 .3550934 1.68 0.095 -.1038253 1.296381 cfk .2782876 .1648068 1.69 0.093 -.046646 .6032212 L1. .065031 .0314838 2.07 0.040 .0029574 .1271046 ik ik Coef. Std. Err. t P>|t| [95% Conf. Interval] Corrected Prob > F = 0.000 max = 5 F(14, 205) = 4.58 avg = 4.14 Number of instruments = 94 Obs per group: min = 1 Time variable : year Number of groups = 206 Group variable: firm Number of obs = 853 Dynamic panel-data estimation, two-step system GMM Performing specification tests. > ................................................................................................................... Computing Windmeijer finite-sample correction............................................................................................ Estimating. 49 instrument(s) dropped because of collinearity. Building GMM instruments.................................. > 42 l(0).q l(0,1,4).sale l(0,1,4).lev l(0).size l(0,1,2,3).return,collapse) iv(age) nomata small twostep robust > ik l(1,3).sysrisk l(0,1,2,3).SysDumGov42 l(2/3).idiorisk l(0,1).IdioDumGov42 l(4).turn l(0,2,3).LiquiDumGov42 l(2,3).cfk l(1).CfkDumGov . xtabond2 ik l.ik cfk CfkDumGov42 sysrisk SysDumGov42 idiorisk IdioDumGov42 turn LiquiDumGov42 q size lev sale return age,gmm(l(1/4). 32 PHỤ LỤC 4.16: KẾT QUẢ ƯỚC LƯỢNG CỘT 3 – BẢNG 4.11 (Robust, but weakened by many instruments.) Hansen test of overid. restrictions: chi2(85) = 76.24 Prob > chi2 = 0.740 (Not robust, but not weakened by many instruments.) Sargan test of overid. restrictions: chi2(85) = 181.92 Prob > chi2 = 0.000 Arellano-Bond test for AR(2) in first differences: z = -0.50 Pr > z = 0.618 Arellano-Bond test for AR(1) in first differences: z = -2.59 Pr > z = 0.010 L3.return) collapsed L2.sale L3.sale L2.lev L3.lev L4.lev size L.size return L2.return L3.cfk L4.cfk L.CfkDumGov51 L3.CfkDumGov51 q L.q L3.q L4.q sale L.sale IdioDumGov51 L3.IdioDumGov51 L.turn L2.turn L3.turn L4.turn LiquiDumGov51 L2.SysDumGov51 L3.SysDumGov51 idiorisk L2.idiorisk L3.idiorisk D.(L.ik L3.ik L.sysrisk L3.sysrisk SysDumGov51 L.SysDumGov51 GMM-type (missing=0, separate instruments for each period unless collapsed) age _cons Standard Instruments for levels equation L3.return) collapsed L2.sale L3.sale L2.lev L3.lev L4.lev size L.size return L2.return L3.cfk L4.cfk L.CfkDumGov51 L3.CfkDumGov51 q L.q L3.q L4.q sale L.sale IdioDumGov51 L3.IdioDumGov51 L.turn L2.turn L3.turn L4.turn LiquiDumGov51 L2.SysDumGov51 L3.SysDumGov51 idiorisk L2.idiorisk L3.idiorisk L(1/.).(L.ik L3.ik L.sysrisk L3.sysrisk SysDumGov51 L.SysDumGov51 GMM-type (missing=0, separate instruments for each period unless collapsed) D.age Standard Instruments for first differences equation _cons -2.068218 .7774733 -2.66 0.008 -3.601087 -.5353488 age -.0069414 .2009501 -0.03 0.972 -.4031353 .3892525 return -.0944417 .039955 -2.36 0.019 -.1732171 -.0156664 sale -.061915 .0849916 -0.73 0.467 -.2294848 .1056548 lev .6204761 .3123422 1.99 0.048 .0046611 1.236291 size .2740774 .1134015 2.42 0.017 .0504946 .4976601 q .0625039 .108112 0.58 0.564 -.1506501 .2756578 LiquiDumG~51 -7.052552 22.82221 -0.31 0.758 -52.0489 37.9438 turn 37.04869 13.56356 2.73 0.007 10.30672 63.79066 IdioDumGov51 -.896919 .4078852 -2.20 0.029 -1.701107 -.092731 idiorisk .577896 .3501934 1.65 0.100 -.1125465 1.268338 SysDumGov51 .3106896 .1870372 1.66 0.098 -.0580736 .6794527 sysrisk -.3029647 .144706 -2.09 0.038 -.5882674 -.0176619 CfkDumGov51 .7674529 .4570101 1.68 0.095 -.1335898 1.668496 cfk .3062731 .148959 2.06 0.041 .0125851 .5999611 L1. .0521648 .031428 1.66 0.098 -.0097987 .1141283 ik ik Coef. Std. Err. t P>|t| [95% Conf. Interval] Corrected Prob > F = 0.000 max = 5 F(14, 205) = 6.24 avg = 4.14 Number of instruments = 101 Obs per group: min = 1 Time variable : year Number of groups = 206 Group variable: firm Number of obs = 853 Dynamic panel-data estimation, two-step system GMM Performing specification tests. > ................................................................................................................... Computing Windmeijer finite-sample correction............................................................................................ Estimating. 57 instrument(s) dropped because of collinearity. Building GMM instruments....................................... > l(0,1,3,4).q l(0/3).sale l(2,3,4).lev l(0,1).size l(0,2,3).return,collapse) iv(age) nomata small twostep robust > k l(1,3).sysrisk l(0/3).SysDumGov51 l(0,2,3).idiorisk l(0,3).IdioDumGov51 l(1/4).turn l(0).LiquiDumGov51 l(3/4).cfk l(1,3).CfkDumGov51 . xtabond2 ik l.ik cfk CfkDumGov51 sysrisk SysDumGov51 idiorisk IdioDumGov51 turn LiquiDumGov51 q size lev sale return age,gmm(l(1,3).i 33 PHỤ LỤC 4.17: KẾT QUẢ ƯỚC LƯỢNG CỘT 2 – BẢNG 4.13 . (Robust, but weakened by many instruments.) Hansen test of overid. restrictions: chi2(64) = 57.94 Prob > chi2 = 0.689 (Not robust, but not weakened by many instruments.) Sargan test of overid. restrictions: chi2(64) = 222.57 Prob > chi2 = 0.000 Arellano-Bond test for AR(2) in first differences: z = -0.91 Pr > z = 0.360 Arellano-Bond test for AR(1) in first differences: z = -2.80 Pr > z = 0.005 collapsed L2.lev L4.lev size L3.size L4.size return L.return L2.return L4.return) L2.idiorisk L2.turn L4.turn cfk q L2.q L3.q L4.q L.sale L2.sale lev L.lev D.(L.ik L2.ik L3.ik L2.sysrisk L3.sysrisk L.SysRateGov L.idiorisk GMM-type (missing=0, separate instruments for each period unless collapsed) L.age _cons Standard Instruments for levels equation collapsed L2.lev L4.lev size L3.size L4.size return L.return L2.return L4.return) L2.idiorisk L2.turn L4.turn cfk q L2.q L3.q L4.q L.sale L2.sale lev L.lev L(1/.).(L.ik L2.ik L3.ik L2.sysrisk L3.sysrisk L.SysRateGov L.idiorisk GMM-type (missing=0, separate instruments for each period unless collapsed) D.L.age Standard Instruments for first differences equation _cons -1.867208 .87587 -2.13 0.034 -3.594076 -.1403394 age .2802719 .2812843 1.00 0.320 -.2743092 .834853 return -.1746309 .0444713 -3.93 0.000 -.2623107 -.0869511 sale .1130078 .1888273 0.60 0.550 -.2592848 .4853005 lev .9272541 .5411817 1.71 0.088 -.1397416 1.99425 size .1363402 .1438666 0.95 0.344 -.1473077 .4199882 q .0722593 .1160612 0.62 0.534 -.1565674 .301086 turn 43.59959 14.58771 2.99 0.003 14.83841 72.36076 idiorisk .982392 .478174 2.05 0.041 .0396224 1.925162 SysRateGov .0069756 .0038299 1.82 0.070 -.0005754 .0145267 sysrisk -.4652014 .1965496 -2.37 0.019 -.8527193 -.0776834 cfk .2013774 .1101716 1.83 0.069 -.0158372 .4185921 L1. .1317525 .0377034 3.49 0.001 .0574164 .2060886 ik ik Coef. Std. Err. t P>|t| [95% Conf. Interval] Corrected Prob > F = 0.000 max = 5 F(11, 205) = 12.09 avg = 4.14 Number of instruments = 77 Obs per group: min = 1 Time variable : year Number of groups = 206 Group variable: firm Number of obs = 853 Dynamic panel-data estimation, two-step system GMM Performing specification tests. > ............................................................................................................. Computing Windmeijer finite-sample correction.................................................................................................. Estimating. 39 instrument(s) dropped because of collinearity. Building GMM instruments............................. > t > k l(2,4).turn l(0).cfk l(0,2,3,4).q l(1/2).sale l(0,1,2,4).lev l(0,3,4).size l(0,1,2,4).return,collapse) iv(l.age) nomata small twostep robus . xtabond2 ik l.ik cfk sysrisk SysRateGov idiorisk turn q size lev sale return age,gmm(l(1/3).ik l(2/3).sysrisk l(1).SysRateGov l(1/2).idioris 34 PHỤ LỤC 4.18: KẾT QUẢ ƯỚC LƯỢNG CỘT 3 – BẢNG 4.13 . (Robust, but weakened by many instruments.) Hansen test of overid. restrictions: chi2(69) = 72.09 Prob > chi2 = 0.376 (Not robust, but not weakened by many instruments.) Sargan test of overid. restrictions: chi2(69) = 176.63 Prob > chi2 = 0.000 Arellano-Bond test for AR(2) in first differences: z = -1.19 Pr > z = 0.235 Arellano-Bond test for AR(1) in first differences: z = -2.55 Pr > z = 0.011 return L2.return L3.return L4.return) collapsed L3.cfk L.q L2.q sale L.sale L2.sale L3.sale L4.sale lev L.lev size L4.size L.idiorisk L2.idiorisk IdioRateGov L.IdioRateGov L.turn L4.turn L2.cfk D.(L.ik L2.ik L3.ik sysrisk L.sysrisk L2.sysrisk L3.sysrisk L4.sysrisk GMM-type (missing=0, separate instruments for each period unless collapsed) age _cons Standard Instruments for levels equation L4.size return L2.return L3.return L4.return) collapsed L2.cfk L3.cfk L.q L2.q sale L.sale L2.sale L3.sale L4.sale lev L.lev size L4.sysrisk L.idiorisk L2.idiorisk IdioRateGov L.IdioRateGov L.turn L4.turn L(1/.).(L.ik L2.ik L3.ik sysrisk L.sysrisk L2.sysrisk L3.sysrisk GMM-type (missing=0, separate instruments for each period unless collapsed) D.age Standard Instruments for first differences equation _cons -1.663758 .7609062 -2.19 0.030 -3.163964 -.1635528 age -.3573676 .2168587 -1.65 0.101 -.7849269 .0701918 return -.0747099 .0366087 -2.04 0.043 -.1468878 -.002532 sale -.0131646 .078412 -0.17 0.867 -.1677619 .1414328 lev .8951205 .415935 2.15 0.033 .0750615 1.715179 size .252793 .1185034 2.13 0.034 .0191513 .4864348 q -.0318319 .1291571 -0.25 0.806 -.2864784 .2228146 turn 18.89981 9.953877 1.90 0.059 -.72529 38.52491 IdioRateGov -.0173627 .0093511 -1.86 0.065 -.0357994 .001074 idiorisk 1.060233 .6176808 1.72 0.088 -.157589 2.278054 sysrisk -.24823 .1156803 -2.15 0.033 -.4763057 -.0201544 cfk .5397136 .150188 3.59 0.000 .2436024 .8358249 L1. .0548281 .0300478 1.82 0.070 -.0044143 .1140705 ik ik Coef. Std. Err. t P>|t| [95% Conf. Interval] Corrected Prob > F = 0.000 max = 5 F(11, 205) = 7.76 avg = 4.14 Number of instruments = 82 Obs per group: min = 1 Time variable : year Number of groups = 206 Group variable: firm Number of obs = 853 Dynamic panel-data estimation, two-step system GMM Performing specification tests. > ............................................................................................................. Computing Windmeijer finite-sample correction.................................................................................................. Estimating. 49 instrument(s) dropped because of collinearity. Building GMM instruments................................ > teGov l(1,4).turn l(2/3).cfk l(1/2).q l(0/4).sale l(0,1).lev l(0,4).size l(0,2,3,4).return,collapse) iv(age) nomata small twostep robust . xtabond2 ik l.ik cfk sysrisk idiorisk IdioRateGov turn q size lev sale return age,gmm(l(1/3).ik l(0/4).sysrisk l(1/2).idiorisk l(0/1).IdioRa 35 PHỤ LỤC 4.19: KẾT QUẢ ƯỚC LƯỢNG CỘT 4 – BẢNG 4.13 . (Robust, but weakened by many instruments.) Hansen test of overid. restrictions: chi2(63) = 67.99 Prob > chi2 = 0.311 (Not robust, but not weakened by many instruments.) Sargan test of overid. restrictions: chi2(63) = 161.80 Prob > chi2 = 0.000 Arellano-Bond test for AR(2) in first differences: z = -0.81 Pr > z = 0.416 Arellano-Bond test for AR(1) in first differences: z = -2.71 Pr > z = 0.007 L4.size return L3.return L4.return) collapsed sale L.sale L4.sale lev L.lev L2.lev L3.lev L4.lev size L.size L3.size L2.idiorisk L3.idiorisk L4.turn L.LiquiRateGov L4.LiquiRateGov L3.cfk L.q D.(L.ik L2.ik L3.ik L4.ik L.sysrisk L2.sysrisk L3.sysrisk L.idiorisk GMM-type (missing=0, separate instruments for each period unless collapsed) age L.age _cons Standard Instruments for levels equation L4.size return L3.return L4.return) collapsed sale L.sale L4.sale lev L.lev L2.lev L3.lev L4.lev size L.size L3.size L2.idiorisk L3.idiorisk L4.turn L.LiquiRateGov L4.LiquiRateGov L3.cfk L.q L(1/.).(L.ik L2.ik L3.ik L4.ik L.sysrisk L2.sysrisk L3.sysrisk L.idiorisk GMM-type (missing=0, separate instruments for each period unless collapsed) D.(age L.age) Standard Instruments for first differences equation _cons -1.945104 .7937981 -2.45 0.015 -3.510159 -.380049 age -.3339645 .2210758 -1.51 0.132 -.7698382 .1019092 return -.0918861 .04754 -1.93 0.055 -.1856161 .001844 sale .0074831 .0636448 0.12 0.907 -.1179992 .1329653 lev .938745 .3985479 2.36 0.019 .1529667 1.724523 size .2591817 .1148397 2.26 0.025 .0327634 .4856 q -.087202 .140677 -0.62 0.536 -.3645613 .1901573 LiquiRateGov -.6228828 .3422152 -1.82 0.070 -1.297595 .0518299 turn 50.08811 16.23861 3.08 0.002 18.072 82.10422 idiorisk 1.075272 .6499564 1.65 0.100 -.2061846 2.356728 sysrisk -.2527804 .151973 -1.66 0.098 -.5524108 .0468501 cfk .4267267 .140521 3.04 0.003 .149675 .7037785 L1. .0648052 .0283879 2.28 0.023 .0088356 .1207748 ik ik Coef. Std. Err. t P>|t| [95% Conf. Interval] Corrected Prob > F = 0.000 max = 5 F(11, 205) = 8.55 avg = 4.14 Number of instruments = 76 Obs per group: min = 1 Time variable : year Number of groups = 206 Group variable: firm Number of obs = 853 Dynamic panel-data estimation, two-step system GMM Performing specification tests. > ............................................................................................................. Computing Windmeijer finite-sample correction.................................................................................................. Estimating. 42 instrument(s) dropped because of collinearity. Building GMM instruments............................... > ust > (1,4).LiquiRateGov l(3).cfk l(1).q l(0,1,4).sale l(0/4).lev l(0,1,3,4).size l(0,3,4).return,collapse) iv(l(0/1).age) nomata small twostep rob . xtabond2 ik l.ik cfk sysrisk idiorisk turn LiquiRateGov q size lev sale return age,gmm(l(1/4).ik l(1/3).sysrisk l(1/3).idiorisk l(4).turn l 36 PHỤ LỤC 4.20: KẾT QUẢ ƯỚC LƯỢNG CỘT 5 – BẢNG 4.13 . (Robust, but weakened by many instruments.) Hansen test of overid. restrictions: chi2(81) = 81.83 Prob > chi2 = 0.453 (Not robust, but not weakened by many instruments.) Sargan test of overid. restrictions: chi2(81) = 216.34 Prob > chi2 = 0.000 Arellano-Bond test for AR(2) in first differences: z = -1.16 Pr > z = 0.246 Arellano-Bond test for AR(1) in first differences: z = -2.62 Pr > z = 0.009 return L2.return) collapsed L3.CFRateGov q L3.q L.sale L2.sale lev L2.lev L3.lev size L.size L3.size L.LiquiRateGov L3.LiquiRateGov L.cfk L2.cfk CFRateGov L.CFRateGov IdioRateGov L3.IdioRateGov L.turn L2.turn L4.turn LiquiRateGov D.(L.ik L2.ik L3.ik L4.ik L.sysrisk L2.sysrisk L2.SysRateGov L.idiorisk GMM-type (missing=0, separate instruments for each period unless collapsed) age _cons Standard Instruments for levels equation return L2.return) collapsed L3.CFRateGov q L3.q L.sale L2.sale lev L2.lev L3.lev size L.size L3.size L.LiquiRateGov L3.LiquiRateGov L.cfk L2.cfk CFRateGov L.CFRateGov L.idiorisk IdioRateGov L3.IdioRateGov L.turn L2.turn L4.turn LiquiRateGov L(1/.).(L.ik L2.ik L3.ik L4.ik L.sysrisk L2.sysrisk L2.SysRateGov GMM-type (missing=0, separate instruments for each period unless collapsed) D.age Standard Instruments for first differences equation _cons -2.014815 .9063687 -2.22 0.027 -3.801815 -.2278154 age .166331 .3182255 0.52 0.602 -.4610834 .7937455 return -.1295223 .0403057 -3.21 0.002 -.2089891 -.0500555 sale -.1441442 .2005506 -0.72 0.473 -.5395504 .2512621 lev 1.485499 .6278935 2.37 0.019 .2475421 2.723456 size .1348333 .1416153 0.95 0.342 -.1443761 .4140426 q -.008835 .135995 -0.06 0.948 -.2769631 .2592932 LiquiRateGov -1.09364 .6447782 -1.70 0.091 -2.364887 .1776075 turn 55.85335 22.4854 2.48 0.014 11.52106 100.1856 IdioRateGov -.035839 .0115955 -3.09 0.002 -.0587008 -.0129771 idiorisk 1.797106 .6979896 2.57 0.011 .4209474 3.173265 SysRateGov .0176689 .0073852 2.39 0.018 .0031082 .0322295 sysrisk -.6723897 .2542185 -2.64 0.009 -1.173608 -.1711717 CFRateGov .0120582 .0071115 1.70 0.091 -.0019628 .0260792 cfk .2890824 .1718796 1.68 0.094 -.0497959 .6279608 L1. .0972537 .035105 2.77 0.006 .0280406 .1664668 ik ik Coef. Std. Err. t P>|t| [95% Conf. Interval] Corrected Prob > F = 0.000 max = 5 F(14, 205) = 4.26 avg = 4.14 Number of instruments = 97 Obs per group: min = 1 Time variable : year Number of groups = 206 Group variable: firm Number of obs = 853 Dynamic panel-data estimation, two-step system GMM Performing specification tests. > ............................................................................................................. Computing Windmeijer finite-sample correction.................................................................................................. Estimating. 49 instrument(s) dropped because of collinearity. Building GMM instruments.................................. > l(0,2,3).lev l(0,1,3).size l(0,2).return,collapse) iv(age) nomata small twostep robust > risk l(2).SysRateGov l(1).idiorisk l(0,3).IdioRateGov l(1,2,4).turn l(0,1,3).LiquiRateGov l(1/2).cfk l(0,1,3).CFRateGov l(0,3).q l(1/2).sale . xtabond2 ik l.ik cfk CFRateGov sysrisk SysRateGov idiorisk IdioRateGov turn LiquiRateGov q size lev sale return age,gmm(l(1/4).ik l(1/2).sys 37 PHỤ LỤC 4.21: ĐẶC ĐIỂM TÀI CHÍNH CỦA CÁC DOANH NGHIỆP HẠN CHẾ TÀI CHÍNH ĐƯỢC XÁC ĐỊNH THEO QUY MÔ TỔNG TÀI SẢN Biến Toàn mẫu Nhóm FC Nhóm (PFC+NFC) I/K 41.85% 41.23% 42.22% CF/K 60.71% 69.55% 55.47% SysRisk 0.93 0.86 0.96 IdioRisk 42.99% 48.57% 39.69% Turn 4.70 5.21 4.39 M/B 1.02 0.97 1.05 Lev 48.78% 40.90% 53.45% Sale 17.00% 13.18% 19.26% Return -13.46% -13.37% -13.51% Age (năm) 7.37 8.06 6.96 Gov 30.96% 31.02% 30.92% ROE 14.94% 14.94% 14.93% EPS (Đồng/cp) 3,262 3,101 3,358 i TÀI LIỆU THAM KHẢO  Danh mục tài liệu tiếng Việt: 1. Hoàng Ngọc Nhậm và cộng sự, 2008 - Giáo trình Kinh tế lượng, NXB Lao động xã hội 2. Dương Nguyễn Thanh Tâm, 2013. Mối độ nhạy cảm của dòng tiền với đầu tư. Tạp chí công nghệ ngân hàng, số 92, trang 14-21 3. Nguyễn Anh Phong, 2012. Tác động của thanh khoản đến suất sinh lời các cổ phiếu niêm yết trên thị trường chứng khoán VN. Tạp chí Phát triển Kinh tế, số 264, trang 33-39. 4. Báo cáo thường niên doanh nghiệp Việt Nam năm 2014, VCCI. 5. Trần Ngọc Thơ và cộng sự, 2007. Giáo trình Tài chính doanh nghiệp hiện đại. NXB Thống kê.  Danh mục tài liệu tiếng Anh: 6. Abel, A. B. (1983). Optimal investment under uncertainty. The American Economic Review, 73(1), 228-233. 7. Aivazian, V. A., Ge, Y., & Qiu, J. (2005). The impact of leverage on firm investment: Canadian evidence. Journal of corporate finance, 11(1), 277-291.. 8. Akerlof, G. (1995). The market for “lemons”: Quality uncertainty and the market mechanism. In Essential Readings in Economics (pp. 175-188). Macmillan Education UK.. 9. Akgiray, V. (1989). Conditional heteroscedasticity in time series of stock returns: Evidence and forecasts. Journal of business, 55-80. 10. Allayannis, G., & Mozumdar, A. (2004). The impact of negative cash flow and influential observations on investment–cash flow sensitivity estimates. Journal of Banking & Finance, 28(5), 901-930. 11. Allen, F., Qian, J., & Qian, M. (2005). Law, finance, and economic growth in China. Journal of financial economics, 77(1), 57-116. 12. Almeida, H., & Campello, M. (2007). Financial constraints, asset tangibility, and corporate investment. Review of Financial Studies, 20(5), 1429-1460. 13. Almeida, H., Campello, M., & Weisbach, M. S. (2004). The cash flow sensitivity of cash. The Journal of Finance, 59(4), 1777-1804. 14. Alti, A. (2003). How sensitive is investment to cash flow when financing is frictionless?. The journal of finance, 58(2), 707-722. ii 15. Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 23(4), 589-609. 16. Amihud, Y. (2002). Illiquidity and stock returns: cross-section and time-series effects. Journal of financial markets, 5(1), 31-56. 17. Amihud, Y., & Mendelson, H. (1986). Asset pricing and the bid-ask spread.Journal of financial Economics, 17(2), 223-249. 18. Amihud, Y., & Mendelson, H. (2012). Liquidity, the value of the firm, and corporate finance. Journal of Applied Corporate Finance, 24(1), 17-32. 19. Andrade, G., & Kaplan, S. N. (1998). How costly is financial (not economic) distress? Evidence from highly leveraged transactions that became distressed.The Journal of Finance, 53(5), 1443-1493. 20. Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The review of economic studies, 58(2), 277-297. 21. Banerjee, S., Gatchev, V. A., & Spindt, P. A. (2007). Stock market liquidity and firm dividend policy. Journal of Financial and Quantitative Analysis, 42(02), 369-397. 22. Barro, R. J. (1990). The stock market and investment. Review of Financial Studies, 3(1), 115-131. 23. Bauwens, L., Laurent, S., & Rombouts, J. V. (2006). Multivariate GARCH models: a survey. Journal of applied econometrics, 21(1), 79-109. 24. Becker‐Blease, J. R., & Paul, D. L. (2006). Stock liquidity and investment opportunities: Evidence from index additions. Financial Management, 35(3), 35- 51. 25. Bera, A. K., & Higgins, M. L. (1993). ARCH models: properties, estimation and testing. Journal of economic surveys, 7(4), 305-366. 26. Berk, J. B., Green, R. C., & Naik, V. (1999). Optimal investment, growth options, and security returns. The Journal of Finance, 54(5), 1553-1607. 27. Bernanke, B., & Gertler, M. (1989). Agency costs, net worth, and business fluctuations. The American Economic Review, 14-31. 28. Bernanke, B., & Gertler, M. (1990). Financial Fragility and Economic Performance. Quarterly Journal of Economics, 97- 114. 29. Bhagat, S., Moyen, N., & Suh, I. (2005). Investment and internal funds of distressed firms. Journal of Corporate Finance, 11(3), 449-472. iii 30. Bharath, S. T., Pasquariello, P., & Wu, G. (2009). Does asymmetric information drive capital structure decisions?. Review of Financial Studies, 22(8), 3211-3243. 31. Blanchard, O., Rhee, C., & Summers, L. H. (1993). The Stock Market. 32. Bloom, N., Bond, S., & Van Reenen, J. (2007). Uncertainty and investment dynamics. The review of economic studies, 74(2), 391-415. 33. Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of econometrics, 87(1), 115-143. 34. Bollerslev, T., Chou, R. Y., & Kroner, K. F. (1992). ARCH modeling in finance: A review of the theory and empirical evidence. Journal of econometrics, 52(1-2), 5-59. 35. Bond, S. R., & Cummins, J. G. (2004). Uncertainty and investment: an empirical investigation using data on analysts' profits forecasts.. 36. Bond, S. R., Hoeffler, A., & Temple, J. R. (2001). GMM estimation of empirical growth models. 37. Boyle, G. W., & Guthrie, G. A. (2003). Investment, uncertainty, and liquidity.The Journal of finance, 58(5), 2143-2166. 38. Brennan, M. J., & Tamarowski, C. (2000). Investor relations, liquidity, and stock prices. Journal of Applied Corporate Finance, 12(4), 26-37. 39. Brennan, M. J., Chordia, T., & Subrahmanyam, A. (1998). Alternative factor specifications, security characteristics, and the cross-section of expected stock returns. Journal of Financial Economics, 49(3), 345-373. 40. Bulan, L. T. (2005). Real options, irreversible investment and firm uncertainty: new evidence from US firms. Review of Financial Economics, 14(3), 255-279. 41. Bun, M. J., & Windmeijer, F. (2010). The weak instrument problem of the system GMM estimator in dynamic panel data models. The Econometrics Journal, 13(1), 95-126. 42. Butler, A. W., Grullon, G., & Weston, J. P. (2005). Stock market liquidity and the cost of issuing equity. Journal of Financial and Quantitative Analysis,40(02), 331-348. 43. Byrne, J. P., Spaliara, M. E., & Tsoukas, S. (2016). Firm Survival, Uncertainty, and Financial Frictions: Is There a Financial Uncertainty Accelerator?.Economic Inquiry, 54(1), 375-390. iv 44. Cai, J. F. (2013). Does corporate governance reduce the overinvestment of free cash flow? Empirical evidence from China. Journal of Finance and Investment Analysis, 2(3), 97-126. 45. Calomiris, C. W., Fisman, R., & Wang, Y. (2010). Profiting from government stakes in a command economy: Evidence from Chinese asset sales. Journal of Financial Economics, 96(3), 399-412. 46. Calomiris, C. W., Himmelberg, C. P., & Wachtel, P. (1995, June). Commercial paper, corporate finance, and the business cycle: a microeconomic perspective. In Carnegie-Rochester Conference Series on Public Policy (Vol. 42, pp. 203-250). North-Holland. 47. Campa, J. M. (1993). Entry by foreign firms in the United States under exchange rate uncertainty. The Review of Economics and Statistics, 614-622. 48. Campa, J., & Goldberg, L. S. (1995). Investment in manufacturing, exchange rates and external exposure. Journal of International Economics, 38(3), 297-320. 49. Carruth, A., Dickerson, A., & Henley, A. (2000). Econometric modelling of UK aggregate investment: the role of profits and uncertainty. The Manchester School, 68(3), 276-300. 50. Carruth, A., Dickerson, A., & Henley, A. (2000). What do we know about investment under uncertainty?. Journal of Economic Surveys, 14(2), 119-154. 51. Chen, G., Firth, M., & Xu, L. (2009). Does the type of ownership control matter? Evidence from China’s listed companies. Journal of Banking & Finance, 33(1), 171-181. 52. Chen, H., Miao, J., & Wang, N. (2010). Entrepreneurial finance and nondiversifiable risk. Review of Financial Studies, 23(12), 4348-4388. 53. Childs, P. D., Mauer, D. C., & Ott, S. H. (2005). Interactions of corporate financing and investment decisions: The effects of agency conflicts. Journal of financial economics, 76(3), 667-690. 54. Chordia, T., Sarkar, A., & Subrahmanyam, A. (2005). An empirical analysis of stock and bond market liquidity. Review of Financial Studies, 18(1), 85-129. 55. Chordia, T., Subrahmanyam, A., & Anshuman, V. R. (2001). Trading activity and expected stock returns. Journal of Financial Economics, 59(1), 3-32. 56. Chow, C. K. W., & Fung, M. K. Y. (1998). Ownership structure, lending bias, and liquidity constraints: evidence from Shanghai's manufacturing sector.Journal of Comparative Economics, 26(2), 301-316. v 57. Chow, C. K. W., & Fung, M. K. Y. (2000). Small businesses and liquidity constraints in financing business investment: Evidence from shanghai's manufacturing sector. Journal of Business Venturing, 15(4), 363–383 58. Cleary S. (1999). The Relationship between Firm Investment and Financial Status. The Journal of Finance, 54(2), 673–692. 59. Cleary, S., Povel, P., & Raith, M. (2007). The U-shaped investment curve: Theory and evidence. Journal of financial and quantitative analysis, 42(01), 1-39. 60. Cull, R., & Xu, L. C. (2003). Who gets credit? The behavior of bureaucrats and state banks in allocating credit to Chinese state-owned enterprises. Journal of Development Economics, 71(2), 533-559. 61. Cummins, J. G., Hassett, K. A., & Oliner, S. D. (2006). Investment behavior, observable expectations, and internal funds. The American Economic Review,96(3), 796-810. 62. Datar, V. T., Naik, N. Y., & Radcliffe, R. (1998). Liquidity and stock returns: An alternative test. Journal of Financial Markets, 1(2), 203-219. 63. Degryse, H., & De Jong, A. (2006). Investment and internal finance: Asymmetric information or managerial discretion?. International Journal of Industrial Organization, 24(1), 125-147. 64. Denis, D. J., & Sibilkov, V. (2010). Financial Constraints, Investment, and the Value of Cash Holdings. Review of Financial Studies, 23(1), 247-269. 65. Devereux, M., & Schiantarelli, F. (1990). Investment, financial factors, and cash flow: Evidence from UK panel data. In Asymmetric information, corporate finance, and investment (pp. 279-306). University of Chicago Press. 66. Dixit A. K. (1989). Entry and exit decisions under uncertainty. Journal of political Economy, 620-638. 67. Dixit A. K., and Pindyck R. S. (1994). Investment under uncertainty. Princeton university press. 68. Driver, C., & Moreton, D. (1991). The influence of uncertainty on UK manufacturing investment. The Economic Journal, 101(409), 1452-1459. 69. Driver, C., & Moreton, D. (1992). Investment, Expectations and Uncertainty. Oxford: Blackwell. 70. Duffee G. R. (2005). Time variation in the covariance between stock returns and consumption growth. The Journal of Finance, 60(4), 1673-1712. vi 71. Episcopos A. (1995). Evidence on the relationship between uncertainty and irreversible investment. Quarterly Review of Economics and Finance, 35(1), 41- 52. 72. Erickson T. & Whited T.M. , (2000). Measurement Error and the Relationship between Investment and q. Journal of Political Economy, 108 (5), 1027-1057. 73. Fazzari S.M., Hubbard R. G., & Petersen B. C (2000). Investment-Cash Flow Sensitivities Are Useful: A Comment on Kaplan and Zingales. Quarterly Journal of Economics, 115(4), 695–705. 74. Fazzari S.M., Hubbard R. G., & Petersen B. C., (1988). Financing Constraints and Corporate Investment. Brookings Papers on Economic Activity, 1, 141-195. 75. Ferderer P. J. (1993). The impact of uncertainty on aggregate investment spending: An empirical analysis. Journal of Money, Credit and Banking, 25(1), 30-48. 76. Ferderer, J. P., & Zalewski, D. A. (1994). Uncertainty as a propagating force in the Great Depression. The Journal of Economic History, 54(04), 825-849. 77. Firth M., Chen L. & Wong S. ML (2008). Leverage and investment under a state- owned bank lending environment: Evidence from China. Journal of Corporate Finance, 14(5), 642-653. 78. Firth M., Malatesta P. H., Xin Q. & Xu L. (2012). Corporate investment, government control, and financing channels: Evidence from China's Listed Companies. Journal of Corporate Finance, 18(3), 433–450. 79. Floros C. (2008). Modelling volatility using GARCH models: evidence from Egypt and Israel. Middle Eastern Finance and Economics, 2(2), 31-41. 80. Franzoni F. (2009). Underinvestment vs. overinvestment: Evidence from price reactions to pension contributions. Journal of Financial Economics, 92(3), 491- 518. 81. French, K. R., Schwert, G. W., & Stambaugh, R. F. (1987). Expected stock returns and volatility. Journal of financial Economics, 19(1), 3-29. 82. Ghosal V. & Loungani, P. (1996). Product market competition and the impact of price uncertainty on investment: some evidence from US manufacturing industries. Journal of Industrial Economics, 44(2), 217-228. 83. Ghosal, V., & Loungani, P. (2000). The differential impact of uncertainty on investment in small and large businesses. Review of Economics and Statistics, 82(2), 338-343. vii 84. Gilchrist, S., & Himmelberg, C. P. (1995). Evidence on the role of cash flow for investment. Journal of monetary Economics, 36(3), 541-572. 85. Gilchrist, S., Sim, J. W., & Zakrajšek, E. (2014). Uncertainty, financial frictions, and investment dynamics (No. w20038). National Bureau of Economic Research. 86. Goldberg, L. S. (1993). Exchange rates and investment in United States industry. The Review of Economics and Statistics, 575-588. 87. Gopalan, R., Kadan, O., & Pevzner, M. (2012). Asset liquidity and stock liquidity. Journal of Financial and Quantitative Analysis, 47(02), 333-364. 88. Goyal A. & Santa-Clara P. (2003). Idiosyncratic Risk Matters! The Journal of Finance, 58(3), 975–1008. 89. Greene W. H., (2002). Econometric analysis, Fifth edition, New York University. 90. Greenwald B.C., Stiglitz J. E. & Weiss A. (1984). Informational imperfections in the capital market and macro-economic fluctuations. No. w1335. National Bureau of Economic Research. 91. Gregoriou A. & Ngoc Dung N. (2010). Stock liquidity and investment opportunities: New evidence from FTSE 100 index deletions. Journal of International Financial Markets, Institutions and Money, 20(3), 267–274. 92. Griffith R., Harrison R. & Reenen J. V. (2006). How special is the special relationship? Using the impact of U.S. R&D spillovers on U.K. firms as a test of technology sourcing. American Economic Review, 96, 1859–1875 93. Guariglia A. , Liu X. & Song L. (2011). Internal finance and growth: Microeconometric evidence on Chinese firms. Journal of Development Economics, 96(1), 79–94. 94. Guariglia, A. (2008). Internal financial constraints, external financial constraints, and investment choice: Evidence from a panel of UK firms. Journal of Banking & Finance, 32(9), 1795-1809. 95. Guiso L. & Parigi G., 1999. Investment and Demand Uncertainty. Quarterly Journal of Economics, 114(1), 185-227. 96. Hameed, A., Kang, W., & Viswanathan, S. (2010). Stock market declines and liquidity. The Journal of Finance, 65(1), 257-293. 97. Hansen P. R. & Lunde A. (2005). A forecast comparison of volatility models: does anything beat a GARCH (1,1)?. Journal of applied econometrics, 20(7), 873- 889. viii 98. Hartman R. (1972). The effects of price and cost uncertainty on investment, Journal of Economic Theory, 5(2), 258-266. 99. Hayakawa K. (2007). Small sample bias properties of the system GMM estimator in dynamic panel data models. Economics Letters, 95(1), 32–38. 100. Hirth S. & Viswanatha M. (2011). Financing constraints, cash-flow risk, and corporate investment. Journal of Corporate Finance, 17(5), 1496–1509. 101. Hoshi T., Kashyap A. & David Scharfstein D. (1991). Corporate Structure, Liquidity, and Investment: Evidence from Japanese Industrial Groups. The Quarterly Journal of Economics, 106(1), 33-60. 102. Hovakimian G., 2009. Determinants of Investment Cash Flow Sensitivity. Financial Management, 38(1), 161–183. 103. Hovakimian, G., & Titman, S. (2006). Corporate Investment with Financial Constraints: Sensitivity of Investment to Funds from voluntary Asset Sales. Journal of Money, Credit and Banking, 38, 357-374. 104. Huizinga J. (1993). Inflation uncertainty, relative price uncertainty, and investment in U.S. manufacturing. Journal of Money, Credit and Banking, 25(3), 521-549. 105. Jensen, M. C. (1986). Agency cost of free cash flow, corporate finance, and takeovers. Corporate Finance, and Takeovers. American Economic Review,76(2). 106. Jensen, M. C., & Meckling, W. H. (1976). Theory of the firm: Managerial behavior, agency costs and ownership structure. Journal of financial economics, 3(4), 305-360. 107. John, K., Lang, L. H., & Netter, J. (1992). The voluntary restructuring of large firms in response to performance decline. The Journal of Finance, 47(3), 891-917. 108. Kaplan, S. N., & Zingales, L. (1997). Do investment-cash flow sensitivities provide useful measures of financing constraints?. The Quarterly Journal of Economics, 169-215. 109. Kashyap, A. K., Stein, J. C., & Lamont, O. (1994). Credit Conditions and the Cyclical Behavior of lnventories.". Quarterly Journal of Economics, 109, 565-592 110. Kim, C. S., Mauer, D. C., & Sherman, A. E. (1998). The determinants of corporate liquidity: Theory and evidence. Journal of financial and quantitative analysis, 33(03), 335-359. ix 111. Knopf, J. D., Nam, J., & Thornton Jr, J. H. (2002). The volatility and price sensitivities of managerial stock option portfolios and corporate hedging. The Journal of Finance, 57(2), 801-813. 112. Koetse, M. J., de Groot, H. L., & Florax, R. J. (2009). A Meta‐Analysis of the Investment‐Uncertainty Relationship. Southern Economic Journal, 76(1), 283- 306. 113. Koetse, M. J., Van der Vlist, A. J., & De Groot, H. L. (2006). The impact of perceived expectations and uncertainty on firm investment. Small Business Economics, 26(4), 365-376. 114. Koontz, H. & Weihrich, H., (2010). Essentials of Management: An International and Leadership Perspective, (8th edition), New Delhi: Tata McGraw Hill Education Private Limited 115. Lamont, O. (1997). Cash flow and investment: Evidence from internal capital markets. The Journal of Finance, 52(1), 83-109. 116. Lang, L., Ofek, E., & Stulz, R. (1996). Leverage, investment, and firm growth.Journal of financial Economics, 40(1), 3-29. 117. Leahy, J. V., & Whited, T. M. (1996). The effects of uncertainty on investment: Some stylized facts. Journal of Money, Credit and Banking, 28(1), 64-83. 118. Lensink, R., Steen, P. V., & Sterken, E. (2000). Is size important for the investment-uncertainty relationship?: an empirical analyses for Dutch firms(No. 00E03). University of Groningen, Research Institute SOM (Systems, Organisations and Management). 119. Lensink, R., Van Steen, P., & Sterken, E. (2005). Uncertainty and Growth of the Firm. Small Business Economics, 24(4), 381-391. 120. Lesmond, D. A., O'Connor, P. F., & Senbet, L. W. (2008). Capital structure and equity liquidity. Robert H. Smith School Research Paper No. RHS, 06-067. 121. Lettau, M., & Ludvigson, S. (2001). Consumption, aggregate wealth, and expected stock returns. the Journal of Finance, 56(3), 815-849. 122. Levine R., Loayza N. & Beck T. (2000). Financial intermediation and growth: causality and causes. Journal of Monetary Economics, 46, 31–77. 123. Levinsohn J. & Petrin A. (2003). Stimating production functions using inputs to control for unobservables. The Review of Economic Studies, 70(2), 317-341. x 124. Lipson M. L., & Mortal S. (2009). Liquidity and capital structure. Journal of Financial Markets, 12(4), 611-644. 125. Luboš P. & Stambaugh R. F., (2003). Liquidity risk and expected stock returns. Journal of Political Economy, 111, 642-685. 126. Lyandres E. & Zhdanov A. (2005). Underinvestment or overinvestment: the effects of financial leverage on investment. EFA 2006 Zurich Meetings. 127. Mauer D. C. &. Ott S.H, (1995). Investment under uncertainty: the case of replacement investment decisions. Journal of Financial and Quantitative Analysis. 30(4), 581-606 128. Mauer, D. C., & Sarkar S. (2005). Real options, agency conflicts, and optimal capital structure. Journal of banking & Finance, 29(6), 1405-1428. 129. McDonald, R. and Siegel D. (1986). The value of waiting to invest. Quarterly Journal of Economics, CI, 707-727. 130. Merton, R. C., (1980). On estimating the expected return on the market: An exploratory investigation. Journal of Financial Economics, 8(4), 323-361. 131. Morck, R., Shleifer, A., Vishny, R. W., Shapiro, M., & Poterba, J. M. (1990). The stock market and investment: is the market a sideshow?. Brookings papers on economic Activity, 1990(2), 157-215. 132. Morck, R., Yavuz, M. D., & Yeung, B. Y. (2013). State-controlled banks and the effectiveness of monetary policy. NBER Working Paper, (w19004). 133. Moyen N. (2004). Investment-cash Flow Sensitivities: Constrained versus Unconstrained Firms. The Journal of Finance, 59(5), 2061–2092. 134. Muñoz F. (2013). Liquidity and Firm Investment: Evidence for Latin America. Journal of Empirical Finance, 20, 18–29. 135. Myers, S. C., & Majluf, N. S. (1984). Corporate financing and investment decisions when firms have information that investors do not have. Journal of financial economics, 13(2), 187-221. 136. Myers, S. C., (1984). The capital structure puzzle. The journal of finance, 39(3), 574-592. 137. Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research, 109-131. 138. Oliner, S. D., & Rudebusch, G. D. (1992). Sources of the financing hierarchy for business investment. The Review of Economics and Statistics, 643-654. xi 139. Panousi V. & Papanikolaou D. (2012). Investment, Idiosyncratic Risk, and Ownership. The Journal of Finance, 67(3), 1113–1148. 140. Pattillo C. (1998) - Investment, Uncertainty, and Irreversibility in Ghana. Staff Papers. International Monetary Fund, 45(3), 522-553. 141. Piazzesi M. (2001). An econometric model of the yield curve with macroeconomic jump effects. No. w8246. National Bureau of Economic Research. 142. Picone, G. A., Sloan F. & Trogdon J. G. (2004). The effect of the tobacco settlement and smoking bans on alcohol consumption. Health Economics, 13, 1063–1080. 143. Pindyck R. S. (1986). Capital risk and models of investment behavior. Sloan School of Management, MIT. 144. Pindyck R. S., (1982). Adjustment Costs, Uncertainty, and the Behavior of the Firm. The American Economic Review, 72(3), 415-427 145. Polk C. & Sapienza P. (2008). The Stock Market and Corporate investment: A Test of Catering Theory. Review of Financial Studies, 22(1), 187-217. 146. Povel P. & Raith M. (2001). Optimal investment underfinancial constraints: The roles of internal funds and asymmetric information. Institute of Financial Studies, Carlson School of Management. Working paper, University of Chicago. AFA 2002 Atlanta Meetings. 147. Price S. (1995). Aggregate uncertainty, capacity utilisation and manufacturing investment. Applied Economics, 27(2), 147-154. 148. Price S. (1996). Aggregate uncertainty, investment and asymmetric adjustment in the UK manufacturing sector. Applied Economics, 28(11), 1369-1379. 149. Restoy F. & Weil P. (2011). Approximate Equilibrium Asset Prices. Review of Finance, 15(1), 1-28. 150. Richardson S. (2006). Over-investment of free cash flow. Review of accounting studies, 11(3), 159-189. 151. Roodman D. (2009). How to do xtabond2: An introduction to difference and system GMM in Stata. The Stata journal, 9(1), 86-136. 152. Ross S. A (1977). The determination of financial structure: the incentive- signalling approach. The bell journal of economics, 23-40. 153. Sarkar, S. (2000). On the investment–uncertainty relationship in a real options model. Journal of Economic Dynamics and Control,24(2), 219-225. xii 154. Sarkar, S. (2003). The effect of mean reversion on investment under uncertainty. Journal of Economic Dynamics and Control 28(2), 377-396. 155. Sengupta, K., & Dasgupta, S. (2002). Financial constraints, investment and capital structure: Implications from a multi-period model. Hong Kong University of Science and Technology Working Paper. 156. Sheshinski, E., & López-Calva, L. F. (2003). Privatization and its benefits: theory and evidence. CESifo Economic Studies, 49(3), 429-459.. 157. Shleifer, A., & Vishny, R. W. (1994). Politicians and firms. The Quarterly Journal of Economics, 995-1025. 158. Stevenson S. (2002). An examination of volatility spillovers in REIT returns. Journal of Real Estate Portfolio Management. 8(3), 229-238. 159. Stulz, R. M. (1999). Golbalization, corporate finance, and the cost of capital.Journal of applied corporate finance, 12(3), 8-25. 160. Temple, P., Urga, G., & Driver, C. (2001). The influence of uncertainty on investment in the UK: a macro or micro phenomenon?. Scottish Journal of Political Economy, 48(4), 361-382. 161. Wang, Y., Chen, C. R., & Huang, Y. S. (2014). Economic policy uncertainty and corporate investment: Evidence from China. Pacific-Basin Finance Journal, 26, 227-243. 162. Whited T. M. (1992). Debt, Liquidity Constraints, and Corporate Investment: Evidence from Panel Data. The Journal of Finance, 47(4), 1425–1460. 163. Whited, T. M., & Wu, G. (2006). Financial constraints risk. Review of Financial Studies, 19(2), 531-559. 164. Xu, L., Wang, J., & Xin, Y. (2010). Government control, uncertainty, and investment decisions in china's listed companies. China Journal of Accounting Research, 3, 131-157. 165. Zhang X. F., (2006). Information Uncertainty and Stock Returns. The Journal of Finance, 61(1), 105–137. 166. Zhang, Y. (2009). Are debt and incentive compensation substitutes in controlling the free cash flow agency problem?. Financial Management, 38(3), 507-541.

Các file đính kèm theo tài liệu này:

  • pdfanh_huong_cua_dong_tien_rui_ro_he_thong_rui_ro_phi_he_thong_va_tinh_thanh_khoan_chung_khoan_den_dau.pdf
Luận văn liên quan