Doanh nghiệp có phần vốn góp của nhà nước có trách nhiệm cung cấp đầy đủ các
Hồ sơ tài liệu, thông tin liên quan đến tình hình hoạt động sản xuất kinh doanh, về
việc đầu tư, tình hình tài chính, những nội dung khác (nếu có) cho Người đại diện
khi được yêu cầu theo quy định của Luật Doanh nghiệp, Điều lệ của doanh nghiệp.
2. Người đại diện khi gửi báo cáo cho Chủ sở hữu phần vốn nhà nước và các cơ quan
quản lý nhà nước thì đồng thời gửi báo cáo đó cho doanh nghiệp. Trường hợp doanh
nghiệp có ý kiến khác với nội dung báo cáo, đánh giá nhận xét của Người đại diện
thì trong thời hạn 10 ngày làm việc kể từ ngày nhận được báo cáo của Người đại
diện, doanh nghiệp phải có văn bản gửi đến Chủ sở hữu phần vốn nhà nước để được
xem xét.
3. Người đại diện tại doanh nghiệp mà nhà nước nắm giữ trên 50% vốn điều lệ trước
khi gửi báo cáo cho Chủ sở hữu phần vốn nhà nước lấy ý kiến của doanh nghiệp.
Trường hợp doanh nghiệp có ý kiến khác với nội dung báo cáo, đánh giá nhận xét
của Người đại diện thì doanh nghiệp trực tiếp bàn bạc, giải thích các nội dung khác
đó với Người đại diện để có sự đồng thuận trong báo cáo đánh giá, nhận xét. Sau khi
bàn bạc nếu còn ý kiến khác nhau thì thực hiện theo quy định tại Khoản 2 Điều này.
200 trang |
Chia sẻ: phamthachthat | Lượt xem: 1415 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Ảnh hưởng của dòng tiền, rủi ro hệ thống, rủi ro phi hệ thống và tính thanh khoản chứng khoán đến đầu tư của doanh nghiệp Việt Nam, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ge) nomata small twostep robust
> sk l(1).SysDumGov l(2).idiorisk l(0,1,3).IdioDumGov l(1,4).turn l(0/3).LiquiDumGov l(1/2).cfk l(0,1,3).CFDumGov l(0,1,3).q l(1,3).sale l(0/3)
. xtabond2 ik l.ik cfk CFDumGov sysrisk SysDumGov idiorisk IdioDumGov turn LiquiDumGov q size lev sale return age,gmm(l(1/4).ik l(1/3).sysri
30
PHỤ LỤC 4.14: KẾT QUẢ ƯỚC LƯỢNG CỘT 1 – BẢNG 4.12
.
(Robust, but weakened by many instruments.)
Hansen test of overid. restrictions: chi2(69) = 64.42 Prob > chi2 = 0.634
(Not robust, but not weakened by many instruments.)
Sargan test of overid. restrictions: chi2(69) = 151.49 Prob > chi2 = 0.000
Arellano-Bond test for AR(2) in first differences: z = -1.04 Pr > z = 0.299
Arellano-Bond test for AR(1) in first differences: z = -2.63 Pr > z = 0.009
L4.size return L.return L2.return L3.return L4.return) collapsed
L4.CFRateGov q L.q L2.q L3.q L4.q sale L4.sale L.lev L2.lev size L.size
L.turn L3.turn L4.turn L2.cfk L3.cfk L4.cfk L2.CFRateGov L3.CFRateGov
D.(L.ik L2.ik L3.ik L.sysrisk L2.sysrisk L3.sysrisk L.idiorisk L2.idiorisk
GMM-type (missing=0, separate instruments for each period unless collapsed)
age
_cons
Standard
Instruments for levels equation
collapsed
size L.size L4.size return L.return L2.return L3.return L4.return)
L3.CFRateGov L4.CFRateGov q L.q L2.q L3.q L4.q sale L4.sale L.lev L2.lev
L2.idiorisk L.turn L3.turn L4.turn L2.cfk L3.cfk L4.cfk L2.CFRateGov
L(1/.).(L.ik L2.ik L3.ik L.sysrisk L2.sysrisk L3.sysrisk L.idiorisk
GMM-type (missing=0, separate instruments for each period unless collapsed)
D.age
Standard
Instruments for first differences equation
_cons -2.098833 .5851968 -3.59 0.000 -3.252609 -.9450572
age -.0105972 .1818439 -0.06 0.954 -.3691212 .3479268
return -.1086087 .0468648 -2.32 0.021 -.2010074 -.0162099
sale -.0475381 .0545183 -0.87 0.384 -.1550266 .0599503
lev .8621745 .2955203 2.92 0.004 .2795256 1.444823
size .2413582 .0765157 3.15 0.002 .0904996 .3922168
q -.0630448 .106452 -0.59 0.554 -.2729259 .1468362
turn 30.51263 10.01965 3.05 0.003 10.75785 50.26741
idiorisk .8285851 .4919446 1.68 0.094 -.1413345 1.798505
sysrisk -.1787841 .1059688 -1.69 0.093 -.3877126 .0301444
CFRateGov .0084498 .0049327 1.71 0.088 -.0012755 .0181752
cfk .299221 .1710445 1.75 0.082 -.0380109 .6364528
L1. .0537639 .0309989 1.73 0.084 -.0073537 .1148816
ik
ik Coef. Std. Err. t P>|t| [95% Conf. Interval]
Corrected
Prob > F = 0.000 max = 5
F(11, 205) = 6.07 avg = 4.14
Number of instruments = 82 Obs per group: min = 1
Time variable : year Number of groups = 206
Group variable: firm Number of obs = 853
Dynamic panel-data estimation, two-step system GMM
Performing specification tests.
> .............................................................................................................
Computing Windmeijer finite-sample correction..................................................................................................
Estimating.
51 instrument(s) dropped because of collinearity.
Building GMM instruments...................................
> l(2/4).cfk l(2/4).CFRateGov l(0/4).q l(0,4).sale l(1/2).lev l(0,1,4).size l(0/4).return,collapse) iv(age) nomata small twostep robust
. xtabond2 ik l.ik cfk CFRateGov sysrisk idiorisk turn q size lev sale return age,gmm(l(1/3).ik l(1/3).sysrisk l(1/2).idiorisk l(1,3,4).turn
31
PHỤ LỤC 4.15: KẾT QUẢ ƯỚC LƯỢNG CỘT 2 – BẢNG 4.11
(Robust, but weakened by many instruments.)
Hansen test of overid. restrictions: chi2(78) = 65.03 Prob > chi2 = 0.853
(Not robust, but not weakened by many instruments.)
Sargan test of overid. restrictions: chi2(78) = 195.39 Prob > chi2 = 0.000
Arellano-Bond test for AR(2) in first differences: z = -1.14 Pr > z = 0.256
Arellano-Bond test for AR(1) in first differences: z = -2.67 Pr > z = 0.008
return L.return L2.return L3.return) collapsed
L2.cfk L3.cfk L.CfkDumGov42 q sale L.sale L4.sale lev L.lev L4.lev size
L.IdioDumGov42 L4.turn LiquiDumGov42 L2.LiquiDumGov42 L3.LiquiDumGov42
L2.SysDumGov42 L3.SysDumGov42 L2.idiorisk L3.idiorisk IdioDumGov42
D.(L.ik L2.ik L3.ik L4.ik L.sysrisk L3.sysrisk SysDumGov42 L.SysDumGov42
GMM-type (missing=0, separate instruments for each period unless collapsed)
age
_cons
Standard
Instruments for levels equation
L.lev L4.lev size return L.return L2.return L3.return) collapsed
L3.LiquiDumGov42 L2.cfk L3.cfk L.CfkDumGov42 q sale L.sale L4.sale lev
IdioDumGov42 L.IdioDumGov42 L4.turn LiquiDumGov42 L2.LiquiDumGov42
L.SysDumGov42 L2.SysDumGov42 L3.SysDumGov42 L2.idiorisk L3.idiorisk
L(1/.).(L.ik L2.ik L3.ik L4.ik L.sysrisk L3.sysrisk SysDumGov42
GMM-type (missing=0, separate instruments for each period unless collapsed)
D.age
Standard
Instruments for first differences equation
_cons -1.920351 .8326334 -2.31 0.022 -3.561974 -.2787283
age .0695091 .271088 0.26 0.798 -.4649689 .6039871
return -.1111345 .0471073 -2.36 0.019 -.2040114 -.0182576
sale -.0419074 .0813451 -0.52 0.607 -.2022877 .118473
lev 1.569919 .5653221 2.78 0.006 .4553282 2.68451
size .1228119 .1334321 0.92 0.358 -.1402634 .3858871
q .0534739 .1115683 0.48 0.632 -.1664945 .2734424
LiquiDumG~42 -45.19442 26.91328 -1.68 0.095 -98.25672 7.867891
turn 36.02853 16.32429 2.21 0.028 3.843499 68.21356
IdioDumGov42 -1.22815 .4640306 -2.65 0.009 -2.143035 -.3132662
idiorisk 1.139377 .6853149 1.66 0.098 -.2117921 2.490547
SysDumGov42 .5588936 .2597412 2.15 0.033 .046787 1.071
sysrisk -.3129169 .1666048 -1.88 0.062 -.6413955 .0155617
CfkDumGov42 .5962781 .3550934 1.68 0.095 -.1038253 1.296381
cfk .2782876 .1648068 1.69 0.093 -.046646 .6032212
L1. .065031 .0314838 2.07 0.040 .0029574 .1271046
ik
ik Coef. Std. Err. t P>|t| [95% Conf. Interval]
Corrected
Prob > F = 0.000 max = 5
F(14, 205) = 4.58 avg = 4.14
Number of instruments = 94 Obs per group: min = 1
Time variable : year Number of groups = 206
Group variable: firm Number of obs = 853
Dynamic panel-data estimation, two-step system GMM
Performing specification tests.
> ...................................................................................................................
Computing Windmeijer finite-sample correction............................................................................................
Estimating.
49 instrument(s) dropped because of collinearity.
Building GMM instruments..................................
> 42 l(0).q l(0,1,4).sale l(0,1,4).lev l(0).size l(0,1,2,3).return,collapse) iv(age) nomata small twostep robust
> ik l(1,3).sysrisk l(0,1,2,3).SysDumGov42 l(2/3).idiorisk l(0,1).IdioDumGov42 l(4).turn l(0,2,3).LiquiDumGov42 l(2,3).cfk l(1).CfkDumGov
. xtabond2 ik l.ik cfk CfkDumGov42 sysrisk SysDumGov42 idiorisk IdioDumGov42 turn LiquiDumGov42 q size lev sale return age,gmm(l(1/4).
32
PHỤ LỤC 4.16: KẾT QUẢ ƯỚC LƯỢNG CỘT 3 – BẢNG 4.11
(Robust, but weakened by many instruments.)
Hansen test of overid. restrictions: chi2(85) = 76.24 Prob > chi2 = 0.740
(Not robust, but not weakened by many instruments.)
Sargan test of overid. restrictions: chi2(85) = 181.92 Prob > chi2 = 0.000
Arellano-Bond test for AR(2) in first differences: z = -0.50 Pr > z = 0.618
Arellano-Bond test for AR(1) in first differences: z = -2.59 Pr > z = 0.010
L3.return) collapsed
L2.sale L3.sale L2.lev L3.lev L4.lev size L.size return L2.return
L3.cfk L4.cfk L.CfkDumGov51 L3.CfkDumGov51 q L.q L3.q L4.q sale L.sale
IdioDumGov51 L3.IdioDumGov51 L.turn L2.turn L3.turn L4.turn LiquiDumGov51
L2.SysDumGov51 L3.SysDumGov51 idiorisk L2.idiorisk L3.idiorisk
D.(L.ik L3.ik L.sysrisk L3.sysrisk SysDumGov51 L.SysDumGov51
GMM-type (missing=0, separate instruments for each period unless collapsed)
age
_cons
Standard
Instruments for levels equation
L3.return) collapsed
L2.sale L3.sale L2.lev L3.lev L4.lev size L.size return L2.return
L3.cfk L4.cfk L.CfkDumGov51 L3.CfkDumGov51 q L.q L3.q L4.q sale L.sale
IdioDumGov51 L3.IdioDumGov51 L.turn L2.turn L3.turn L4.turn LiquiDumGov51
L2.SysDumGov51 L3.SysDumGov51 idiorisk L2.idiorisk L3.idiorisk
L(1/.).(L.ik L3.ik L.sysrisk L3.sysrisk SysDumGov51 L.SysDumGov51
GMM-type (missing=0, separate instruments for each period unless collapsed)
D.age
Standard
Instruments for first differences equation
_cons -2.068218 .7774733 -2.66 0.008 -3.601087 -.5353488
age -.0069414 .2009501 -0.03 0.972 -.4031353 .3892525
return -.0944417 .039955 -2.36 0.019 -.1732171 -.0156664
sale -.061915 .0849916 -0.73 0.467 -.2294848 .1056548
lev .6204761 .3123422 1.99 0.048 .0046611 1.236291
size .2740774 .1134015 2.42 0.017 .0504946 .4976601
q .0625039 .108112 0.58 0.564 -.1506501 .2756578
LiquiDumG~51 -7.052552 22.82221 -0.31 0.758 -52.0489 37.9438
turn 37.04869 13.56356 2.73 0.007 10.30672 63.79066
IdioDumGov51 -.896919 .4078852 -2.20 0.029 -1.701107 -.092731
idiorisk .577896 .3501934 1.65 0.100 -.1125465 1.268338
SysDumGov51 .3106896 .1870372 1.66 0.098 -.0580736 .6794527
sysrisk -.3029647 .144706 -2.09 0.038 -.5882674 -.0176619
CfkDumGov51 .7674529 .4570101 1.68 0.095 -.1335898 1.668496
cfk .3062731 .148959 2.06 0.041 .0125851 .5999611
L1. .0521648 .031428 1.66 0.098 -.0097987 .1141283
ik
ik Coef. Std. Err. t P>|t| [95% Conf. Interval]
Corrected
Prob > F = 0.000 max = 5
F(14, 205) = 6.24 avg = 4.14
Number of instruments = 101 Obs per group: min = 1
Time variable : year Number of groups = 206
Group variable: firm Number of obs = 853
Dynamic panel-data estimation, two-step system GMM
Performing specification tests.
> ...................................................................................................................
Computing Windmeijer finite-sample correction............................................................................................
Estimating.
57 instrument(s) dropped because of collinearity.
Building GMM instruments.......................................
> l(0,1,3,4).q l(0/3).sale l(2,3,4).lev l(0,1).size l(0,2,3).return,collapse) iv(age) nomata small twostep robust
> k l(1,3).sysrisk l(0/3).SysDumGov51 l(0,2,3).idiorisk l(0,3).IdioDumGov51 l(1/4).turn l(0).LiquiDumGov51 l(3/4).cfk l(1,3).CfkDumGov51
. xtabond2 ik l.ik cfk CfkDumGov51 sysrisk SysDumGov51 idiorisk IdioDumGov51 turn LiquiDumGov51 q size lev sale return age,gmm(l(1,3).i
33
PHỤ LỤC 4.17: KẾT QUẢ ƯỚC LƯỢNG CỘT 2 – BẢNG 4.13
.
(Robust, but weakened by many instruments.)
Hansen test of overid. restrictions: chi2(64) = 57.94 Prob > chi2 = 0.689
(Not robust, but not weakened by many instruments.)
Sargan test of overid. restrictions: chi2(64) = 222.57 Prob > chi2 = 0.000
Arellano-Bond test for AR(2) in first differences: z = -0.91 Pr > z = 0.360
Arellano-Bond test for AR(1) in first differences: z = -2.80 Pr > z = 0.005
collapsed
L2.lev L4.lev size L3.size L4.size return L.return L2.return L4.return)
L2.idiorisk L2.turn L4.turn cfk q L2.q L3.q L4.q L.sale L2.sale lev L.lev
D.(L.ik L2.ik L3.ik L2.sysrisk L3.sysrisk L.SysRateGov L.idiorisk
GMM-type (missing=0, separate instruments for each period unless collapsed)
L.age
_cons
Standard
Instruments for levels equation
collapsed
L2.lev L4.lev size L3.size L4.size return L.return L2.return L4.return)
L2.idiorisk L2.turn L4.turn cfk q L2.q L3.q L4.q L.sale L2.sale lev L.lev
L(1/.).(L.ik L2.ik L3.ik L2.sysrisk L3.sysrisk L.SysRateGov L.idiorisk
GMM-type (missing=0, separate instruments for each period unless collapsed)
D.L.age
Standard
Instruments for first differences equation
_cons -1.867208 .87587 -2.13 0.034 -3.594076 -.1403394
age .2802719 .2812843 1.00 0.320 -.2743092 .834853
return -.1746309 .0444713 -3.93 0.000 -.2623107 -.0869511
sale .1130078 .1888273 0.60 0.550 -.2592848 .4853005
lev .9272541 .5411817 1.71 0.088 -.1397416 1.99425
size .1363402 .1438666 0.95 0.344 -.1473077 .4199882
q .0722593 .1160612 0.62 0.534 -.1565674 .301086
turn 43.59959 14.58771 2.99 0.003 14.83841 72.36076
idiorisk .982392 .478174 2.05 0.041 .0396224 1.925162
SysRateGov .0069756 .0038299 1.82 0.070 -.0005754 .0145267
sysrisk -.4652014 .1965496 -2.37 0.019 -.8527193 -.0776834
cfk .2013774 .1101716 1.83 0.069 -.0158372 .4185921
L1. .1317525 .0377034 3.49 0.001 .0574164 .2060886
ik
ik Coef. Std. Err. t P>|t| [95% Conf. Interval]
Corrected
Prob > F = 0.000 max = 5
F(11, 205) = 12.09 avg = 4.14
Number of instruments = 77 Obs per group: min = 1
Time variable : year Number of groups = 206
Group variable: firm Number of obs = 853
Dynamic panel-data estimation, two-step system GMM
Performing specification tests.
> .............................................................................................................
Computing Windmeijer finite-sample correction..................................................................................................
Estimating.
39 instrument(s) dropped because of collinearity.
Building GMM instruments.............................
> t
> k l(2,4).turn l(0).cfk l(0,2,3,4).q l(1/2).sale l(0,1,2,4).lev l(0,3,4).size l(0,1,2,4).return,collapse) iv(l.age) nomata small twostep robus
. xtabond2 ik l.ik cfk sysrisk SysRateGov idiorisk turn q size lev sale return age,gmm(l(1/3).ik l(2/3).sysrisk l(1).SysRateGov l(1/2).idioris
34
PHỤ LỤC 4.18: KẾT QUẢ ƯỚC LƯỢNG CỘT 3 – BẢNG 4.13
.
(Robust, but weakened by many instruments.)
Hansen test of overid. restrictions: chi2(69) = 72.09 Prob > chi2 = 0.376
(Not robust, but not weakened by many instruments.)
Sargan test of overid. restrictions: chi2(69) = 176.63 Prob > chi2 = 0.000
Arellano-Bond test for AR(2) in first differences: z = -1.19 Pr > z = 0.235
Arellano-Bond test for AR(1) in first differences: z = -2.55 Pr > z = 0.011
return L2.return L3.return L4.return) collapsed
L3.cfk L.q L2.q sale L.sale L2.sale L3.sale L4.sale lev L.lev size L4.size
L.idiorisk L2.idiorisk IdioRateGov L.IdioRateGov L.turn L4.turn L2.cfk
D.(L.ik L2.ik L3.ik sysrisk L.sysrisk L2.sysrisk L3.sysrisk L4.sysrisk
GMM-type (missing=0, separate instruments for each period unless collapsed)
age
_cons
Standard
Instruments for levels equation
L4.size return L2.return L3.return L4.return) collapsed
L2.cfk L3.cfk L.q L2.q sale L.sale L2.sale L3.sale L4.sale lev L.lev size
L4.sysrisk L.idiorisk L2.idiorisk IdioRateGov L.IdioRateGov L.turn L4.turn
L(1/.).(L.ik L2.ik L3.ik sysrisk L.sysrisk L2.sysrisk L3.sysrisk
GMM-type (missing=0, separate instruments for each period unless collapsed)
D.age
Standard
Instruments for first differences equation
_cons -1.663758 .7609062 -2.19 0.030 -3.163964 -.1635528
age -.3573676 .2168587 -1.65 0.101 -.7849269 .0701918
return -.0747099 .0366087 -2.04 0.043 -.1468878 -.002532
sale -.0131646 .078412 -0.17 0.867 -.1677619 .1414328
lev .8951205 .415935 2.15 0.033 .0750615 1.715179
size .252793 .1185034 2.13 0.034 .0191513 .4864348
q -.0318319 .1291571 -0.25 0.806 -.2864784 .2228146
turn 18.89981 9.953877 1.90 0.059 -.72529 38.52491
IdioRateGov -.0173627 .0093511 -1.86 0.065 -.0357994 .001074
idiorisk 1.060233 .6176808 1.72 0.088 -.157589 2.278054
sysrisk -.24823 .1156803 -2.15 0.033 -.4763057 -.0201544
cfk .5397136 .150188 3.59 0.000 .2436024 .8358249
L1. .0548281 .0300478 1.82 0.070 -.0044143 .1140705
ik
ik Coef. Std. Err. t P>|t| [95% Conf. Interval]
Corrected
Prob > F = 0.000 max = 5
F(11, 205) = 7.76 avg = 4.14
Number of instruments = 82 Obs per group: min = 1
Time variable : year Number of groups = 206
Group variable: firm Number of obs = 853
Dynamic panel-data estimation, two-step system GMM
Performing specification tests.
> .............................................................................................................
Computing Windmeijer finite-sample correction..................................................................................................
Estimating.
49 instrument(s) dropped because of collinearity.
Building GMM instruments................................
> teGov l(1,4).turn l(2/3).cfk l(1/2).q l(0/4).sale l(0,1).lev l(0,4).size l(0,2,3,4).return,collapse) iv(age) nomata small twostep robust
. xtabond2 ik l.ik cfk sysrisk idiorisk IdioRateGov turn q size lev sale return age,gmm(l(1/3).ik l(0/4).sysrisk l(1/2).idiorisk l(0/1).IdioRa
35
PHỤ LỤC 4.19: KẾT QUẢ ƯỚC LƯỢNG CỘT 4 – BẢNG 4.13
.
(Robust, but weakened by many instruments.)
Hansen test of overid. restrictions: chi2(63) = 67.99 Prob > chi2 = 0.311
(Not robust, but not weakened by many instruments.)
Sargan test of overid. restrictions: chi2(63) = 161.80 Prob > chi2 = 0.000
Arellano-Bond test for AR(2) in first differences: z = -0.81 Pr > z = 0.416
Arellano-Bond test for AR(1) in first differences: z = -2.71 Pr > z = 0.007
L4.size return L3.return L4.return) collapsed
sale L.sale L4.sale lev L.lev L2.lev L3.lev L4.lev size L.size L3.size
L2.idiorisk L3.idiorisk L4.turn L.LiquiRateGov L4.LiquiRateGov L3.cfk L.q
D.(L.ik L2.ik L3.ik L4.ik L.sysrisk L2.sysrisk L3.sysrisk L.idiorisk
GMM-type (missing=0, separate instruments for each period unless collapsed)
age L.age
_cons
Standard
Instruments for levels equation
L4.size return L3.return L4.return) collapsed
sale L.sale L4.sale lev L.lev L2.lev L3.lev L4.lev size L.size L3.size
L2.idiorisk L3.idiorisk L4.turn L.LiquiRateGov L4.LiquiRateGov L3.cfk L.q
L(1/.).(L.ik L2.ik L3.ik L4.ik L.sysrisk L2.sysrisk L3.sysrisk L.idiorisk
GMM-type (missing=0, separate instruments for each period unless collapsed)
D.(age L.age)
Standard
Instruments for first differences equation
_cons -1.945104 .7937981 -2.45 0.015 -3.510159 -.380049
age -.3339645 .2210758 -1.51 0.132 -.7698382 .1019092
return -.0918861 .04754 -1.93 0.055 -.1856161 .001844
sale .0074831 .0636448 0.12 0.907 -.1179992 .1329653
lev .938745 .3985479 2.36 0.019 .1529667 1.724523
size .2591817 .1148397 2.26 0.025 .0327634 .4856
q -.087202 .140677 -0.62 0.536 -.3645613 .1901573
LiquiRateGov -.6228828 .3422152 -1.82 0.070 -1.297595 .0518299
turn 50.08811 16.23861 3.08 0.002 18.072 82.10422
idiorisk 1.075272 .6499564 1.65 0.100 -.2061846 2.356728
sysrisk -.2527804 .151973 -1.66 0.098 -.5524108 .0468501
cfk .4267267 .140521 3.04 0.003 .149675 .7037785
L1. .0648052 .0283879 2.28 0.023 .0088356 .1207748
ik
ik Coef. Std. Err. t P>|t| [95% Conf. Interval]
Corrected
Prob > F = 0.000 max = 5
F(11, 205) = 8.55 avg = 4.14
Number of instruments = 76 Obs per group: min = 1
Time variable : year Number of groups = 206
Group variable: firm Number of obs = 853
Dynamic panel-data estimation, two-step system GMM
Performing specification tests.
> .............................................................................................................
Computing Windmeijer finite-sample correction..................................................................................................
Estimating.
42 instrument(s) dropped because of collinearity.
Building GMM instruments...............................
> ust
> (1,4).LiquiRateGov l(3).cfk l(1).q l(0,1,4).sale l(0/4).lev l(0,1,3,4).size l(0,3,4).return,collapse) iv(l(0/1).age) nomata small twostep rob
. xtabond2 ik l.ik cfk sysrisk idiorisk turn LiquiRateGov q size lev sale return age,gmm(l(1/4).ik l(1/3).sysrisk l(1/3).idiorisk l(4).turn l
36
PHỤ LỤC 4.20: KẾT QUẢ ƯỚC LƯỢNG CỘT 5 – BẢNG 4.13
.
(Robust, but weakened by many instruments.)
Hansen test of overid. restrictions: chi2(81) = 81.83 Prob > chi2 = 0.453
(Not robust, but not weakened by many instruments.)
Sargan test of overid. restrictions: chi2(81) = 216.34 Prob > chi2 = 0.000
Arellano-Bond test for AR(2) in first differences: z = -1.16 Pr > z = 0.246
Arellano-Bond test for AR(1) in first differences: z = -2.62 Pr > z = 0.009
return L2.return) collapsed
L3.CFRateGov q L3.q L.sale L2.sale lev L2.lev L3.lev size L.size L3.size
L.LiquiRateGov L3.LiquiRateGov L.cfk L2.cfk CFRateGov L.CFRateGov
IdioRateGov L3.IdioRateGov L.turn L2.turn L4.turn LiquiRateGov
D.(L.ik L2.ik L3.ik L4.ik L.sysrisk L2.sysrisk L2.SysRateGov L.idiorisk
GMM-type (missing=0, separate instruments for each period unless collapsed)
age
_cons
Standard
Instruments for levels equation
return L2.return) collapsed
L3.CFRateGov q L3.q L.sale L2.sale lev L2.lev L3.lev size L.size L3.size
L.LiquiRateGov L3.LiquiRateGov L.cfk L2.cfk CFRateGov L.CFRateGov
L.idiorisk IdioRateGov L3.IdioRateGov L.turn L2.turn L4.turn LiquiRateGov
L(1/.).(L.ik L2.ik L3.ik L4.ik L.sysrisk L2.sysrisk L2.SysRateGov
GMM-type (missing=0, separate instruments for each period unless collapsed)
D.age
Standard
Instruments for first differences equation
_cons -2.014815 .9063687 -2.22 0.027 -3.801815 -.2278154
age .166331 .3182255 0.52 0.602 -.4610834 .7937455
return -.1295223 .0403057 -3.21 0.002 -.2089891 -.0500555
sale -.1441442 .2005506 -0.72 0.473 -.5395504 .2512621
lev 1.485499 .6278935 2.37 0.019 .2475421 2.723456
size .1348333 .1416153 0.95 0.342 -.1443761 .4140426
q -.008835 .135995 -0.06 0.948 -.2769631 .2592932
LiquiRateGov -1.09364 .6447782 -1.70 0.091 -2.364887 .1776075
turn 55.85335 22.4854 2.48 0.014 11.52106 100.1856
IdioRateGov -.035839 .0115955 -3.09 0.002 -.0587008 -.0129771
idiorisk 1.797106 .6979896 2.57 0.011 .4209474 3.173265
SysRateGov .0176689 .0073852 2.39 0.018 .0031082 .0322295
sysrisk -.6723897 .2542185 -2.64 0.009 -1.173608 -.1711717
CFRateGov .0120582 .0071115 1.70 0.091 -.0019628 .0260792
cfk .2890824 .1718796 1.68 0.094 -.0497959 .6279608
L1. .0972537 .035105 2.77 0.006 .0280406 .1664668
ik
ik Coef. Std. Err. t P>|t| [95% Conf. Interval]
Corrected
Prob > F = 0.000 max = 5
F(14, 205) = 4.26 avg = 4.14
Number of instruments = 97 Obs per group: min = 1
Time variable : year Number of groups = 206
Group variable: firm Number of obs = 853
Dynamic panel-data estimation, two-step system GMM
Performing specification tests.
> .............................................................................................................
Computing Windmeijer finite-sample correction..................................................................................................
Estimating.
49 instrument(s) dropped because of collinearity.
Building GMM instruments..................................
> l(0,2,3).lev l(0,1,3).size l(0,2).return,collapse) iv(age) nomata small twostep robust
> risk l(2).SysRateGov l(1).idiorisk l(0,3).IdioRateGov l(1,2,4).turn l(0,1,3).LiquiRateGov l(1/2).cfk l(0,1,3).CFRateGov l(0,3).q l(1/2).sale
. xtabond2 ik l.ik cfk CFRateGov sysrisk SysRateGov idiorisk IdioRateGov turn LiquiRateGov q size lev sale return age,gmm(l(1/4).ik l(1/2).sys
37
PHỤ LỤC 4.21: ĐẶC ĐIỂM TÀI CHÍNH CỦA CÁC DOANH NGHIỆP HẠN CHẾ TÀI
CHÍNH ĐƯỢC XÁC ĐỊNH THEO QUY MÔ TỔNG TÀI SẢN
Biến Toàn mẫu Nhóm FC Nhóm (PFC+NFC)
I/K 41.85% 41.23% 42.22%
CF/K 60.71% 69.55% 55.47%
SysRisk 0.93 0.86 0.96
IdioRisk 42.99% 48.57% 39.69%
Turn 4.70 5.21 4.39
M/B 1.02 0.97 1.05
Lev 48.78% 40.90% 53.45%
Sale 17.00% 13.18% 19.26%
Return -13.46% -13.37% -13.51%
Age (năm) 7.37 8.06 6.96
Gov 30.96% 31.02% 30.92%
ROE 14.94% 14.94% 14.93%
EPS (Đồng/cp) 3,262 3,101 3,358
i
TÀI LIỆU THAM KHẢO
Danh mục tài liệu tiếng Việt:
1. Hoàng Ngọc Nhậm và cộng sự, 2008 - Giáo trình Kinh tế lượng, NXB Lao động
xã hội
2. Dương Nguyễn Thanh Tâm, 2013. Mối độ nhạy cảm của dòng tiền với đầu tư.
Tạp chí công nghệ ngân hàng, số 92, trang 14-21
3. Nguyễn Anh Phong, 2012. Tác động của thanh khoản đến suất sinh lời các cổ
phiếu niêm yết trên thị trường chứng khoán VN. Tạp chí Phát triển Kinh tế, số
264, trang 33-39.
4. Báo cáo thường niên doanh nghiệp Việt Nam năm 2014, VCCI.
5. Trần Ngọc Thơ và cộng sự, 2007. Giáo trình Tài chính doanh nghiệp hiện đại.
NXB Thống kê.
Danh mục tài liệu tiếng Anh:
6. Abel, A. B. (1983). Optimal investment under uncertainty. The American
Economic Review, 73(1), 228-233.
7. Aivazian, V. A., Ge, Y., & Qiu, J. (2005). The impact of leverage on firm
investment: Canadian evidence. Journal of corporate finance, 11(1), 277-291..
8. Akerlof, G. (1995). The market for “lemons”: Quality uncertainty and the market
mechanism. In Essential Readings in Economics (pp. 175-188). Macmillan
Education UK..
9. Akgiray, V. (1989). Conditional heteroscedasticity in time series of stock returns:
Evidence and forecasts. Journal of business, 55-80.
10. Allayannis, G., & Mozumdar, A. (2004). The impact of negative cash flow and
influential observations on investment–cash flow sensitivity estimates. Journal of
Banking & Finance, 28(5), 901-930.
11. Allen, F., Qian, J., & Qian, M. (2005). Law, finance, and economic growth in
China. Journal of financial economics, 77(1), 57-116.
12. Almeida, H., & Campello, M. (2007). Financial constraints, asset tangibility, and
corporate investment. Review of Financial Studies, 20(5), 1429-1460.
13. Almeida, H., Campello, M., & Weisbach, M. S. (2004). The cash flow sensitivity
of cash. The Journal of Finance, 59(4), 1777-1804.
14. Alti, A. (2003). How sensitive is investment to cash flow when financing is
frictionless?. The journal of finance, 58(2), 707-722.
ii
15. Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of
corporate bankruptcy. The journal of finance, 23(4), 589-609.
16. Amihud, Y. (2002). Illiquidity and stock returns: cross-section and time-series
effects. Journal of financial markets, 5(1), 31-56.
17. Amihud, Y., & Mendelson, H. (1986). Asset pricing and the bid-ask
spread.Journal of financial Economics, 17(2), 223-249.
18. Amihud, Y., & Mendelson, H. (2012). Liquidity, the value of the firm, and
corporate finance. Journal of Applied Corporate Finance, 24(1), 17-32.
19. Andrade, G., & Kaplan, S. N. (1998). How costly is financial (not economic)
distress? Evidence from highly leveraged transactions that became distressed.The
Journal of Finance, 53(5), 1443-1493.
20. Arellano, M., & Bond, S. (1991). Some tests of specification for panel data:
Monte Carlo evidence and an application to employment equations. The review of
economic studies, 58(2), 277-297.
21. Banerjee, S., Gatchev, V. A., & Spindt, P. A. (2007). Stock market liquidity and
firm dividend policy. Journal of Financial and Quantitative Analysis, 42(02),
369-397.
22. Barro, R. J. (1990). The stock market and investment. Review of Financial
Studies, 3(1), 115-131.
23. Bauwens, L., Laurent, S., & Rombouts, J. V. (2006). Multivariate GARCH
models: a survey. Journal of applied econometrics, 21(1), 79-109.
24. Becker‐Blease, J. R., & Paul, D. L. (2006). Stock liquidity and investment
opportunities: Evidence from index additions. Financial Management, 35(3), 35-
51.
25. Bera, A. K., & Higgins, M. L. (1993). ARCH models: properties, estimation and
testing. Journal of economic surveys, 7(4), 305-366.
26. Berk, J. B., Green, R. C., & Naik, V. (1999). Optimal investment, growth options,
and security returns. The Journal of Finance, 54(5), 1553-1607.
27. Bernanke, B., & Gertler, M. (1989). Agency costs, net worth, and business
fluctuations. The American Economic Review, 14-31.
28. Bernanke, B., & Gertler, M. (1990). Financial Fragility and Economic
Performance. Quarterly Journal of Economics, 97- 114.
29. Bhagat, S., Moyen, N., & Suh, I. (2005). Investment and internal funds of
distressed firms. Journal of Corporate Finance, 11(3), 449-472.
iii
30. Bharath, S. T., Pasquariello, P., & Wu, G. (2009). Does asymmetric information
drive capital structure decisions?. Review of Financial Studies, 22(8), 3211-3243.
31. Blanchard, O., Rhee, C., & Summers, L. H. (1993). The Stock Market.
32. Bloom, N., Bond, S., & Van Reenen, J. (2007). Uncertainty and investment
dynamics. The review of economic studies, 74(2), 391-415.
33. Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in
dynamic panel data models. Journal of econometrics, 87(1), 115-143.
34. Bollerslev, T., Chou, R. Y., & Kroner, K. F. (1992). ARCH modeling in finance:
A review of the theory and empirical evidence. Journal of econometrics, 52(1-2),
5-59.
35. Bond, S. R., & Cummins, J. G. (2004). Uncertainty and investment: an empirical
investigation using data on analysts' profits forecasts..
36. Bond, S. R., Hoeffler, A., & Temple, J. R. (2001). GMM estimation of empirical
growth models.
37. Boyle, G. W., & Guthrie, G. A. (2003). Investment, uncertainty, and liquidity.The
Journal of finance, 58(5), 2143-2166.
38. Brennan, M. J., & Tamarowski, C. (2000). Investor relations, liquidity, and stock
prices. Journal of Applied Corporate Finance, 12(4), 26-37.
39. Brennan, M. J., Chordia, T., & Subrahmanyam, A. (1998). Alternative factor
specifications, security characteristics, and the cross-section of expected stock
returns. Journal of Financial Economics, 49(3), 345-373.
40. Bulan, L. T. (2005). Real options, irreversible investment and firm uncertainty:
new evidence from US firms. Review of Financial Economics, 14(3), 255-279.
41. Bun, M. J., & Windmeijer, F. (2010). The weak instrument problem of the system
GMM estimator in dynamic panel data models. The Econometrics Journal, 13(1),
95-126.
42. Butler, A. W., Grullon, G., & Weston, J. P. (2005). Stock market liquidity and the
cost of issuing equity. Journal of Financial and Quantitative Analysis,40(02),
331-348.
43. Byrne, J. P., Spaliara, M. E., & Tsoukas, S. (2016). Firm Survival, Uncertainty,
and Financial Frictions: Is There a Financial Uncertainty Accelerator?.Economic
Inquiry, 54(1), 375-390.
iv
44. Cai, J. F. (2013). Does corporate governance reduce the overinvestment of free
cash flow? Empirical evidence from China. Journal of Finance and Investment
Analysis, 2(3), 97-126.
45. Calomiris, C. W., Fisman, R., & Wang, Y. (2010). Profiting from government
stakes in a command economy: Evidence from Chinese asset sales. Journal of
Financial Economics, 96(3), 399-412.
46. Calomiris, C. W., Himmelberg, C. P., & Wachtel, P. (1995, June). Commercial
paper, corporate finance, and the business cycle: a microeconomic perspective.
In Carnegie-Rochester Conference Series on Public Policy (Vol. 42, pp. 203-250).
North-Holland.
47. Campa, J. M. (1993). Entry by foreign firms in the United States under exchange
rate uncertainty. The Review of Economics and Statistics, 614-622.
48. Campa, J., & Goldberg, L. S. (1995). Investment in manufacturing, exchange rates
and external exposure. Journal of International Economics, 38(3), 297-320.
49. Carruth, A., Dickerson, A., & Henley, A. (2000). Econometric modelling of UK
aggregate investment: the role of profits and uncertainty. The Manchester
School, 68(3), 276-300.
50. Carruth, A., Dickerson, A., & Henley, A. (2000). What do we know about
investment under uncertainty?. Journal of Economic Surveys, 14(2), 119-154.
51. Chen, G., Firth, M., & Xu, L. (2009). Does the type of ownership control matter?
Evidence from China’s listed companies. Journal of Banking & Finance, 33(1),
171-181.
52. Chen, H., Miao, J., & Wang, N. (2010). Entrepreneurial finance and
nondiversifiable risk. Review of Financial Studies, 23(12), 4348-4388.
53. Childs, P. D., Mauer, D. C., & Ott, S. H. (2005). Interactions of corporate
financing and investment decisions: The effects of agency conflicts. Journal of
financial economics, 76(3), 667-690.
54. Chordia, T., Sarkar, A., & Subrahmanyam, A. (2005). An empirical analysis of
stock and bond market liquidity. Review of Financial Studies, 18(1), 85-129.
55. Chordia, T., Subrahmanyam, A., & Anshuman, V. R. (2001). Trading activity and
expected stock returns. Journal of Financial Economics, 59(1), 3-32.
56. Chow, C. K. W., & Fung, M. K. Y. (1998). Ownership structure, lending bias, and
liquidity constraints: evidence from Shanghai's manufacturing sector.Journal of
Comparative Economics, 26(2), 301-316.
v
57. Chow, C. K. W., & Fung, M. K. Y. (2000). Small businesses and liquidity
constraints in financing business investment: Evidence from shanghai's
manufacturing sector. Journal of Business Venturing, 15(4), 363–383
58. Cleary S. (1999). The Relationship between Firm Investment and Financial Status.
The Journal of Finance, 54(2), 673–692.
59. Cleary, S., Povel, P., & Raith, M. (2007). The U-shaped investment curve: Theory
and evidence. Journal of financial and quantitative analysis, 42(01), 1-39.
60. Cull, R., & Xu, L. C. (2003). Who gets credit? The behavior of bureaucrats and
state banks in allocating credit to Chinese state-owned enterprises. Journal of
Development Economics, 71(2), 533-559.
61. Cummins, J. G., Hassett, K. A., & Oliner, S. D. (2006). Investment behavior,
observable expectations, and internal funds. The American Economic
Review,96(3), 796-810.
62. Datar, V. T., Naik, N. Y., & Radcliffe, R. (1998). Liquidity and stock returns: An
alternative test. Journal of Financial Markets, 1(2), 203-219.
63. Degryse, H., & De Jong, A. (2006). Investment and internal finance: Asymmetric
information or managerial discretion?. International Journal of Industrial
Organization, 24(1), 125-147.
64. Denis, D. J., & Sibilkov, V. (2010). Financial Constraints, Investment, and the
Value of Cash Holdings. Review of Financial Studies, 23(1), 247-269.
65. Devereux, M., & Schiantarelli, F. (1990). Investment, financial factors, and cash
flow: Evidence from UK panel data. In Asymmetric information, corporate
finance, and investment (pp. 279-306). University of Chicago Press.
66. Dixit A. K. (1989). Entry and exit decisions under uncertainty. Journal of political
Economy, 620-638.
67. Dixit A. K., and Pindyck R. S. (1994). Investment under uncertainty. Princeton
university press.
68. Driver, C., & Moreton, D. (1991). The influence of uncertainty on UK
manufacturing investment. The Economic Journal, 101(409), 1452-1459.
69. Driver, C., & Moreton, D. (1992). Investment, Expectations and Uncertainty.
Oxford: Blackwell.
70. Duffee G. R. (2005). Time variation in the covariance between stock returns and
consumption growth. The Journal of Finance, 60(4), 1673-1712.
vi
71. Episcopos A. (1995). Evidence on the relationship between uncertainty and
irreversible investment. Quarterly Review of Economics and Finance, 35(1), 41-
52.
72. Erickson T. & Whited T.M. , (2000). Measurement Error and the Relationship
between Investment and q. Journal of Political Economy, 108 (5), 1027-1057.
73. Fazzari S.M., Hubbard R. G., & Petersen B. C (2000). Investment-Cash Flow
Sensitivities Are Useful: A Comment on Kaplan and Zingales. Quarterly Journal
of Economics, 115(4), 695–705.
74. Fazzari S.M., Hubbard R. G., & Petersen B. C., (1988). Financing Constraints and
Corporate Investment. Brookings Papers on Economic Activity, 1, 141-195.
75. Ferderer P. J. (1993). The impact of uncertainty on aggregate investment
spending: An empirical analysis. Journal of Money, Credit and Banking, 25(1),
30-48.
76. Ferderer, J. P., & Zalewski, D. A. (1994). Uncertainty as a propagating force in
the Great Depression. The Journal of Economic History, 54(04), 825-849.
77. Firth M., Chen L. & Wong S. ML (2008). Leverage and investment under a state-
owned bank lending environment: Evidence from China. Journal of Corporate
Finance, 14(5), 642-653.
78. Firth M., Malatesta P. H., Xin Q. & Xu L. (2012). Corporate investment,
government control, and financing channels: Evidence from China's Listed
Companies. Journal of Corporate Finance, 18(3), 433–450.
79. Floros C. (2008). Modelling volatility using GARCH models: evidence from
Egypt and Israel. Middle Eastern Finance and Economics, 2(2), 31-41.
80. Franzoni F. (2009). Underinvestment vs. overinvestment: Evidence from price
reactions to pension contributions. Journal of Financial Economics, 92(3), 491-
518.
81. French, K. R., Schwert, G. W., & Stambaugh, R. F. (1987). Expected stock
returns and volatility. Journal of financial Economics, 19(1), 3-29.
82. Ghosal V. & Loungani, P. (1996). Product market competition and the impact of
price uncertainty on investment: some evidence from US manufacturing
industries. Journal of Industrial Economics, 44(2), 217-228.
83. Ghosal, V., & Loungani, P. (2000). The differential impact of uncertainty on
investment in small and large businesses. Review of Economics and
Statistics, 82(2), 338-343.
vii
84. Gilchrist, S., & Himmelberg, C. P. (1995). Evidence on the role of cash flow for
investment. Journal of monetary Economics, 36(3), 541-572.
85. Gilchrist, S., Sim, J. W., & Zakrajšek, E. (2014). Uncertainty, financial frictions,
and investment dynamics (No. w20038). National Bureau of Economic Research.
86. Goldberg, L. S. (1993). Exchange rates and investment in United States
industry. The Review of Economics and Statistics, 575-588.
87. Gopalan, R., Kadan, O., & Pevzner, M. (2012). Asset liquidity and stock
liquidity. Journal of Financial and Quantitative Analysis, 47(02), 333-364.
88. Goyal A. & Santa-Clara P. (2003). Idiosyncratic Risk Matters! The Journal of
Finance, 58(3), 975–1008.
89. Greene W. H., (2002). Econometric analysis, Fifth edition, New York University.
90. Greenwald B.C., Stiglitz J. E. & Weiss A. (1984). Informational imperfections in
the capital market and macro-economic fluctuations. No. w1335. National Bureau
of Economic Research.
91. Gregoriou A. & Ngoc Dung N. (2010). Stock liquidity and investment
opportunities: New evidence from FTSE 100 index deletions. Journal of
International Financial Markets, Institutions and Money, 20(3), 267–274.
92. Griffith R., Harrison R. & Reenen J. V. (2006). How special is the special
relationship? Using the impact of U.S. R&D spillovers on U.K. firms as a test of
technology sourcing. American Economic Review, 96, 1859–1875
93. Guariglia A. , Liu X. & Song L. (2011). Internal finance and growth:
Microeconometric evidence on Chinese firms. Journal of Development
Economics, 96(1), 79–94.
94. Guariglia, A. (2008). Internal financial constraints, external financial constraints,
and investment choice: Evidence from a panel of UK firms. Journal of Banking &
Finance, 32(9), 1795-1809.
95. Guiso L. & Parigi G., 1999. Investment and Demand Uncertainty. Quarterly
Journal of Economics, 114(1), 185-227.
96. Hameed, A., Kang, W., & Viswanathan, S. (2010). Stock market declines and
liquidity. The Journal of Finance, 65(1), 257-293.
97. Hansen P. R. & Lunde A. (2005). A forecast comparison of volatility models:
does anything beat a GARCH (1,1)?. Journal of applied econometrics, 20(7), 873-
889.
viii
98. Hartman R. (1972). The effects of price and cost uncertainty on investment,
Journal of Economic Theory, 5(2), 258-266.
99. Hayakawa K. (2007). Small sample bias properties of the system GMM estimator
in dynamic panel data models. Economics Letters, 95(1), 32–38.
100. Hirth S. & Viswanatha M. (2011). Financing constraints, cash-flow risk, and
corporate investment. Journal of Corporate Finance, 17(5), 1496–1509.
101. Hoshi T., Kashyap A. & David Scharfstein D. (1991). Corporate Structure,
Liquidity, and Investment: Evidence from Japanese Industrial Groups. The
Quarterly Journal of Economics, 106(1), 33-60.
102. Hovakimian G., 2009. Determinants of Investment Cash Flow Sensitivity.
Financial Management, 38(1), 161–183.
103. Hovakimian, G., & Titman, S. (2006). Corporate Investment with Financial
Constraints: Sensitivity of Investment to Funds from voluntary Asset Sales.
Journal of Money, Credit and Banking, 38, 357-374.
104. Huizinga J. (1993). Inflation uncertainty, relative price uncertainty, and
investment in U.S. manufacturing. Journal of Money, Credit and Banking, 25(3),
521-549.
105. Jensen, M. C. (1986). Agency cost of free cash flow, corporate finance, and
takeovers. Corporate Finance, and Takeovers. American Economic Review,76(2).
106. Jensen, M. C., & Meckling, W. H. (1976). Theory of the firm: Managerial
behavior, agency costs and ownership structure. Journal of financial
economics, 3(4), 305-360.
107. John, K., Lang, L. H., & Netter, J. (1992). The voluntary restructuring of large
firms in response to performance decline. The Journal of Finance, 47(3), 891-917.
108. Kaplan, S. N., & Zingales, L. (1997). Do investment-cash flow sensitivities
provide useful measures of financing constraints?. The Quarterly Journal of
Economics, 169-215.
109. Kashyap, A. K., Stein, J. C., & Lamont, O. (1994). Credit Conditions and the
Cyclical Behavior of lnventories.". Quarterly Journal of Economics, 109, 565-592
110. Kim, C. S., Mauer, D. C., & Sherman, A. E. (1998). The determinants of
corporate liquidity: Theory and evidence. Journal of financial and quantitative
analysis, 33(03), 335-359.
ix
111. Knopf, J. D., Nam, J., & Thornton Jr, J. H. (2002). The volatility and price
sensitivities of managerial stock option portfolios and corporate hedging. The
Journal of Finance, 57(2), 801-813.
112. Koetse, M. J., de Groot, H. L., & Florax, R. J. (2009). A Meta‐Analysis of the
Investment‐Uncertainty Relationship. Southern Economic Journal, 76(1), 283-
306.
113. Koetse, M. J., Van der Vlist, A. J., & De Groot, H. L. (2006). The impact of
perceived expectations and uncertainty on firm investment. Small Business
Economics, 26(4), 365-376.
114. Koontz, H. & Weihrich, H., (2010). Essentials of Management:
An International and Leadership Perspective, (8th edition), New Delhi: Tata
McGraw Hill Education Private Limited
115. Lamont, O. (1997). Cash flow and investment: Evidence from internal capital
markets. The Journal of Finance, 52(1), 83-109.
116. Lang, L., Ofek, E., & Stulz, R. (1996). Leverage, investment, and firm
growth.Journal of financial Economics, 40(1), 3-29.
117. Leahy, J. V., & Whited, T. M. (1996). The effects of uncertainty on
investment: Some stylized facts. Journal of Money, Credit and Banking, 28(1),
64-83.
118. Lensink, R., Steen, P. V., & Sterken, E. (2000). Is size important for the
investment-uncertainty relationship?: an empirical analyses for Dutch firms(No.
00E03). University of Groningen, Research Institute SOM (Systems,
Organisations and Management).
119. Lensink, R., Van Steen, P., & Sterken, E. (2005). Uncertainty and Growth of
the Firm. Small Business Economics, 24(4), 381-391.
120. Lesmond, D. A., O'Connor, P. F., & Senbet, L. W. (2008). Capital structure
and equity liquidity. Robert H. Smith School Research Paper No. RHS, 06-067.
121. Lettau, M., & Ludvigson, S. (2001). Consumption, aggregate wealth, and
expected stock returns. the Journal of Finance, 56(3), 815-849.
122. Levine R., Loayza N. & Beck T. (2000). Financial intermediation and growth:
causality and causes. Journal of Monetary Economics, 46, 31–77.
123. Levinsohn J. & Petrin A. (2003). Stimating production functions using inputs
to control for unobservables. The Review of Economic Studies, 70(2), 317-341.
x
124. Lipson M. L., & Mortal S. (2009). Liquidity and capital structure. Journal of
Financial Markets, 12(4), 611-644.
125. Luboš P. & Stambaugh R. F., (2003). Liquidity risk and expected stock
returns. Journal of Political Economy, 111, 642-685.
126. Lyandres E. & Zhdanov A. (2005). Underinvestment or overinvestment: the
effects of financial leverage on investment. EFA 2006 Zurich Meetings.
127. Mauer D. C. &. Ott S.H, (1995). Investment under uncertainty: the case of
replacement investment decisions. Journal of Financial and Quantitative
Analysis. 30(4), 581-606
128. Mauer, D. C., & Sarkar S. (2005). Real options, agency conflicts, and optimal
capital structure. Journal of banking & Finance, 29(6), 1405-1428.
129. McDonald, R. and Siegel D. (1986). The value of waiting to invest.
Quarterly Journal of Economics, CI, 707-727.
130. Merton, R. C., (1980). On estimating the expected return on the market: An
exploratory investigation. Journal of Financial Economics, 8(4), 323-361.
131. Morck, R., Shleifer, A., Vishny, R. W., Shapiro, M., & Poterba, J. M. (1990).
The stock market and investment: is the market a sideshow?. Brookings papers on
economic Activity, 1990(2), 157-215.
132. Morck, R., Yavuz, M. D., & Yeung, B. Y. (2013). State-controlled banks and
the effectiveness of monetary policy. NBER Working Paper, (w19004).
133. Moyen N. (2004). Investment-cash Flow Sensitivities: Constrained versus
Unconstrained Firms. The Journal of Finance, 59(5), 2061–2092.
134. Muñoz F. (2013). Liquidity and Firm Investment: Evidence for Latin
America. Journal of Empirical Finance, 20, 18–29.
135. Myers, S. C., & Majluf, N. S. (1984). Corporate financing and investment
decisions when firms have information that investors do not have. Journal of
financial economics, 13(2), 187-221.
136. Myers, S. C., (1984). The capital structure puzzle. The journal of
finance, 39(3), 574-592.
137. Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of
bankruptcy. Journal of accounting research, 109-131.
138. Oliner, S. D., & Rudebusch, G. D. (1992). Sources of the financing hierarchy
for business investment. The Review of Economics and Statistics, 643-654.
xi
139. Panousi V. & Papanikolaou D. (2012). Investment, Idiosyncratic Risk, and
Ownership. The Journal of Finance, 67(3), 1113–1148.
140. Pattillo C. (1998) - Investment, Uncertainty, and Irreversibility in Ghana. Staff
Papers. International Monetary Fund, 45(3), 522-553.
141. Piazzesi M. (2001). An econometric model of the yield curve with
macroeconomic jump effects. No. w8246. National Bureau of Economic
Research.
142. Picone, G. A., Sloan F. & Trogdon J. G. (2004). The effect of the tobacco
settlement and smoking bans on alcohol consumption. Health Economics, 13,
1063–1080.
143. Pindyck R. S. (1986). Capital risk and models of investment behavior. Sloan
School of Management, MIT.
144. Pindyck R. S., (1982). Adjustment Costs, Uncertainty, and the Behavior of the
Firm. The American Economic Review, 72(3), 415-427
145. Polk C. & Sapienza P. (2008). The Stock Market and Corporate investment: A
Test of Catering Theory. Review of Financial Studies, 22(1), 187-217.
146. Povel P. & Raith M. (2001). Optimal investment underfinancial constraints:
The roles of internal funds and asymmetric information. Institute of Financial
Studies, Carlson School of Management. Working paper, University of Chicago.
AFA 2002 Atlanta Meetings.
147. Price S. (1995). Aggregate uncertainty, capacity utilisation and manufacturing
investment. Applied Economics, 27(2), 147-154.
148. Price S. (1996). Aggregate uncertainty, investment and asymmetric adjustment
in the UK manufacturing sector. Applied Economics, 28(11), 1369-1379.
149. Restoy F. & Weil P. (2011). Approximate Equilibrium Asset Prices. Review of
Finance, 15(1), 1-28.
150. Richardson S. (2006). Over-investment of free cash flow. Review of
accounting studies, 11(3), 159-189.
151. Roodman D. (2009). How to do xtabond2: An introduction to difference and
system GMM in Stata. The Stata journal, 9(1), 86-136.
152. Ross S. A (1977). The determination of financial structure: the incentive-
signalling approach. The bell journal of economics, 23-40.
153. Sarkar, S. (2000). On the investment–uncertainty relationship in a real options
model. Journal of Economic Dynamics and Control,24(2), 219-225.
xii
154. Sarkar, S. (2003). The effect of mean reversion on investment under
uncertainty. Journal of Economic Dynamics and Control 28(2), 377-396.
155. Sengupta, K., & Dasgupta, S. (2002). Financial constraints, investment and
capital structure: Implications from a multi-period model. Hong Kong University
of Science and Technology Working Paper.
156. Sheshinski, E., & López-Calva, L. F. (2003). Privatization and its benefits:
theory and evidence. CESifo Economic Studies, 49(3), 429-459..
157. Shleifer, A., & Vishny, R. W. (1994). Politicians and firms. The Quarterly
Journal of Economics, 995-1025.
158. Stevenson S. (2002). An examination of volatility spillovers in REIT returns.
Journal of Real Estate Portfolio Management. 8(3), 229-238.
159. Stulz, R. M. (1999). Golbalization, corporate finance, and the cost of
capital.Journal of applied corporate finance, 12(3), 8-25.
160. Temple, P., Urga, G., & Driver, C. (2001). The influence of uncertainty on
investment in the UK: a macro or micro phenomenon?. Scottish Journal of
Political Economy, 48(4), 361-382.
161. Wang, Y., Chen, C. R., & Huang, Y. S. (2014). Economic policy uncertainty
and corporate investment: Evidence from China. Pacific-Basin Finance
Journal, 26, 227-243.
162. Whited T. M. (1992). Debt, Liquidity Constraints, and Corporate Investment:
Evidence from Panel Data. The Journal of Finance, 47(4), 1425–1460.
163. Whited, T. M., & Wu, G. (2006). Financial constraints risk. Review of
Financial Studies, 19(2), 531-559.
164. Xu, L., Wang, J., & Xin, Y. (2010). Government control, uncertainty, and
investment decisions in china's listed companies. China Journal of Accounting
Research, 3, 131-157.
165. Zhang X. F., (2006). Information Uncertainty and Stock Returns. The Journal
of Finance, 61(1), 105–137.
166. Zhang, Y. (2009). Are debt and incentive compensation substitutes in
controlling the free cash flow agency problem?. Financial Management, 38(3),
507-541.
Các file đính kèm theo tài liệu này:
- anh_huong_cua_dong_tien_rui_ro_he_thong_rui_ro_phi_he_thong_va_tinh_thanh_khoan_chung_khoan_den_dau.pdf