Sau các cuộc khủng hoảng tài chính toàn cầu và đặc biệt là những bê bối tài chính liên quan đến các ngân hàng lớn như Lehman Brother hay BearStem, Northern Rock.các nhà làm chính sách cũng như công chúng đặc biệt quan tâm tới tính đáng tin cậy hay chất lượng của thông tin kế toán công bố nói chung và đặc biệt là chỉ tiêu lợi nhuận kế toán các NHTM công bố. Tuy nhiên, các nghiên cứu về chất lượng thông tin lợi nhuận kế toán nói chung và trong lĩnh vực ngân hàng nói riêng, tập trung chủ yếu ở các nước phát triển. Do đó nghiên cứu về chất lượng thông tin lợi nhuận công bố của các NHTM ở một nền kinh tế đang phát triển và chuyển đổi như Việt Nam đem lại những thông tin bổ sung có ý nghĩa cả về mặt lý thuyết và thực tiễn.
Luận án đã đưa ra các bằng chứng thống kê cho thấy các NHTM Việt Nam đã điều chỉnh số liệu kế toán, trong đó có chi phí DPRRTD, để tránh báo cáo lỗ và hạn chế sự biến động của lợi nhuận báo cáo. Hơn nữa, các bằng chứng cũng cho thấy khả năng các NHTM Việt Nam trích lập DPRRTD không đầy đủ, đặc biệt trong giai đoạn điều kiện kinh doanh diễn biến xấu và rủi ro tăng cao. Điều này cũng đồng nghĩa với việc các khoản lỗ và thất thoát không được ghi nhận một cách kịp thời. Lợi nhuận báo cáo gần như không phản ánh được những đặc điểm về tình hình tài chính của đơn vị. Hệ quả tất yếu của việc điều chỉnh số liệu nhằm có số liệu báo cáo tốt hơn, ghi nhận các khoản lỗ và thất thoát không kịp thời là lợi nhuận báo cáo gần như không có ý nghĩa nhiều trong việc đánh giá kết quả hoạt động thực của đơn vị và dự báo về tương lai. Những nguyên nhân có thể của tình trạng trên là quản trị công ty chưa tốt và xu hướng khuyến khích việc chấp nhận rủi ro của các ngân hàng, các cơ quan quản lý thường chấp nhận việc lùi hoặc giãn dự phòng rủi ro của các NHTM. về môi trường chung, văn hóa quốc gia của Việt Nam được đánh giá là có xu hướng chấp nhận rủi ro cao, chủ nghĩa cá nhân thấp, hệ thống luật pháp theo dân luật và hệ thống NHTM là kênh huy động vốn chính của nền kinh tế.
về mặt phương pháp, do đặc thù trong hoạt động kinh doanh nên trong phần lớn các mô hình nghiên cứu về chất lượng thông tin lợi nhuận kế toán công bố của các NHTM (tính bền vững, khả năng dự báo luồng tiền, chất lượng các khoản dồn tích.), việc sử dụng những biến kiểm soát nào không hoàn toàn thống nhất giữa các nghiên cứu trước, và về cơ bản không có một mô hình tối ưu cho mọi trường hợp. Do đó, để xây dựng mô hình nghiên cứu, luận án đã kết hợp giữa tổng hợp từ các nghiên cứu trước với phân tích trên bộ số liệu thực tế của các NHTM Việt Nam để lựa chọn các biến và thang đo cho phù hợp. Cách thức xây dựng mô hình này là một hướng tham khảo cho việc tiếp tục phát triển các nghiên cứu về chất lượng thông tin cho lĩnh vực ngân hàng trong tương lai không chỉ ở Việt Nam mà còn cả ở các nước đang phát triển khác.
Mặc dù được xây dựng trên nền tảng lý thuyết chắc chắn và có sự đầu tư trong xây dựng khung lý thuyết cũng như khảo sát thực tế, nhưng do là một trong những nghiên cứu thực chứng đầu tiên đánh giá về chất lượng thông tin lợi nhuận kế toán công bố của các NHTM Việt Nam nên luận án vẫn còn những khoảng trống để tiếp tục phát triển các hướng nghiên cứu tiếp theo trong tương lai. Trong đó hai hướng phát triển quan trọng nhất là (1) khai thác đề tài theo chiều sâu để đánh giá về tác động của một hoặc một số nhân tố đến chất lượng thông tin lợi nhuận báo cáo của các NHTM Việt Nam. Việc khai thác theo chiều sâu này sẽ là cơ sở hữu ích để các nhà quản lý lựa chọn lĩnh vực ưu tiên trong các giải pháp nâng cao chất lượng thông tin lợi nhuận báo cáo nói riêng và thông tin kế toán nói chung. (2) phát triển nghiên cứu này theo chiều rộng, bằng việc sử dụng các thước đo chất lượng thông tin đã có, nhưng xem xét ở các mẫu nghiên cứu khác để so sánh chất lượng thông tin lợi nhuận kế toán công bố của các NHTM Việt Nam với các đối tượng khác. Việc so sánh này giúp ta có cái nhìn chi tiết hơn về chất lượng thông tin lợi nhuận báo cáo, đồng thời, những đặc điểm khác nhau giữa các mẫu khảo sát cũng giúp ta đánh giá được tác động của một số nhân tố đến chất lượng thông tin.
252 trang |
Chia sẻ: yenxoi77 | Lượt xem: 626 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu chất lượng thông tin lợi nhuận kế toán công bổ của các ngân hàng thương mại Việt Nam, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
growth
0.091762
0.038304
2.396
0.0179 *
## ovh -0.832518 2.388362 -0.349 0.7279
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 0.1 ' '1
##
## Residual standard error: 0.1197 on 146 degrees of freedom
## (27 observations deleted due to missingness)
## Multiple R-squared: 0.5633, Adjusted R-squared: 0.5453
## F-statistic: 31.38 on 6 and 146 DF, p-value: < 2.2e-16
vif(cpm)
## cfo ebt deposit loan growth ovh
## 1.453234 1.123167 1.543974 1.602391 1.744049 1.601306
bgtest(cpm)
## Breusch-Godfrey test for serial correlation of order up to 1
## data: cpm
## LM test = 10.342, df = 1, p-value = 0.0013
dwtest(cpm,alternative = "two.sided")
## Durbin-Watson test
## data: cpm
## DW = 2.2995, p-value = 0.09187
## alternative hypothesis: true autocorrelation is not 0
bptest(cpm)
## studentized Breusch-Pagan test
## data: cpm
## BP = 8.2971, df = 6, p-value = 0.2171
bptest(cpm,varformula=~fitted.values(cpm),studentize=TRUE,data=CashpredicP)
## studentized Breusch-Pagan test
## data: cpm
## BP = 1.6986, df = 1, p-value = 0.1925
resettest(c pm,type="fitted")
## RESET test
## data: cpm
## RESET = 0.76074, dfl = 2, df2 = 144, p-value = 0.4692
RELAIMPO - CASH PREDICTION MODEL
cpm.rela<-calc.relimp(cpm)
print(cpm.rela)
## Response variable: acfol
## Total response variance: 0.0315031
## Analysis based on 153 observations
## 6 Regressors:
##
Img
##
cfo
0.480689565
##
ebt
0.005118003
##
deposit
0.002949513
##
loan
0.021700723
##
growth
0.034642170
##
ovh
0.018174575
##
Average
coefficients for different model sizes:
##
##
IX
2Xs 3Xs 4Xs
##
cfo
-1.2575751 -1.291658178
-1.32575745
-1.35677999
-1
##
ebt
0.9668024 1.359068845
1.66051427
1.80758364
1
##
deposit
0.1306306 0.006620732
-0.04989937
-0.05728476
-0
##
loan
0.2994243 0.231076295
0.19704576
0.17659859
0
##
growth
-0.1352461 -0.079651727
-0.03099040
0.01282859
0
##
ovh
8.2057841 5.346253008
3.07948431
1.31415034
0
##
6Xs
##
cfo
-1.407879705
##
ebt
1 793768888
##
deposit
0.007009316
##
loan
0.130359867
##
growth
0.091762433
##
ovh
-0.832517524
## cfo ebt deposit loan growth ovh
## Proportion of variance explained by model: 56.33% ## Metrics are not normalized (rela=FALSE).
## Relative importance metrics:
5Xs
.384155020
.835295596
.034489318
.156564916
.053435464
006239135
plot(cpm.rela)
Relative importances for acfol
Method LMG
o
£ s n —
ro
o s -
UỈ 1 J
c
o -
GO _
<D o _
° o - I I I I I
o’-
cfo ebt depo loan grow ovh
R2 = 5633%, metrics are not normalized.
KẾT QUẢ HÔI QUY CHO GIAI ĐOẠN 1: TỪ2008 - 2011
cpml <-lm(acfol~cfo+ebt+deposỉt+loan+growth+ovh,data=CashpredỉcPl) summary(cpml) ## Call:
## lm(formula = acfol ~ cfo + ebt + deposit + loan + growth + ovh,
## data = CashpredỉcPl)
##
## Residuals:
## Min IQ Median 3Q Max
## -0.24988 -0.09022 -0.00797 0.07727 0.51197
##
## Coefficients:
##
Estimate std. Error t value Pr(>|t1)
##
(Intercept)
-0.05852
0.09709
-0.603
0.548
##
cfo
-1.48863
0.19891
-7.484
7.73e-ll ***
##
ebt
0.73610
2.19890
0.335
0 739
##
deposit
0.20632
0 17857
1.155
0.251
##
loan
0.08464
0.17658
0.479
0.633
##
growth
0.06892
0.05235
1.316
0.192
##
ovh
-3.67793
4.76292
-0.772
0.442
##
—
##
Signif. codes: 0 '***' 0.001 '**
' 0.01
0.05 '.' 0.1
##
## Residual standard error: 0.1442 on 81 degrees of freedom ## Multiple R-squared: 0.4958, Adjusted R-squared: 0.4585 ## F-statistic: 13.28 on 6 and 81 DF, p-value: 2.048e-10
vif(cpml)
## cfo ebt deposit loan growth ovh
## 1.553949 1.069025 1.707157 2.541650 1.517749 1.865223 bgtest(cpml)
## Breusch-Godfrey test for serial correlation of order up to 1 ## data: cpml
## LM test = 2.9235, df = 1, p-value = 0.0873
dwtest(cpml,alternative = "two.sided")
## Durbin-Watson test
## data: cpml
## DW = 2.2281, p-value = 0.3642
## alternative hypothesis: true autocorrelation is not 0
bptest(cpml)
## studentized Breusch-Pagan test
## data: cpml
## BP = 1.6465, df = 6, p-value = 0.9492bptest(cpml,varformula = ~ fitted.values(cpml),studentize = TRUE,data=Cashp redicPl)
## studentized Breusch-Pagan test
## data: cpml
## BP = 0.14478, df = 1, p-value = 0.7036
resettest(cpml,type="fitted") ## RESET test
## data: cpml
## RESET = 0.61835, dfl = 2, df2 = 79, p-value = 0.5414
RELAIMPO - CASH PREDICTION MODEL 2008-2011
cpml.rela<-calc.relimp(cpml)
print(cpml.rela) ## Response variable: acfol
## Total response variance: 0.03839251
## Analysis based on 88 observations
##
## 6 Regressors:
## cfo ebt deposit loan growth ovh
## Proportion of variance explained by model: 49.58%
## Metrics are not normalized (rela=FALSE).
##
## Relative importance metrics:
##
##
Img
##
cfo
0.393568212
##
ebt
0.001189728
##
deposit
0.012129597
##
loan
0.049795203
##
growth
0.024246406
##
ovh
0.014914049
##
##
Average
coefficients
i for different model sizes:
##
##
IX
2Xs
3Xs 4Xs
5Xs
##
cfo
-1.3817829 -
1.39107896
-1.41058563 -1.43520680
-1.46191397
##
ebt
1.2748769
0.74084781
0.73618137 0.82054009
0 87098856
##
deposit
0 2933768
0.14288665
0.09062836 0.09705649
0.13745253
##
loan
0.4988327
0.41472281
0.34022726 0.26731644
0.18655234
##
growth
-0.1313544 -
0.07153283
-0.02697240 0.00815250
0.03858959
##
ovh
9.9335461
4.56998126
0.64605058 -2.06110774
-3.58890100
##
6Xs
##
cfo
-1.48862574
##
ebt
0 73609788
##
deposit
0.20631682
##
loan
0.08463802
##
growth
0.06891587
##
ovh
-3.67792987
plot(cpml.rela)
Relative importances for acfo!
Method LMG
R2 = 49.58%, metrics are not normalized.
KÉT QUẢ HÒI QUY CHO GIAIĐOẠN2: TỪ2012 ĐÉN 2015
cpm2 <-lm(acfol~cfo+ebt+deposit+loan+growth+ovh,data=CashpredicP2) summary(cpm2)
## Call:
## lm(formula = acfol ~ cfo + ebt + deposit + loan + growth + ovh, ## data = CashpredicP2)
##
##
##
Residuals:
3Q
Max
Min
IQ
Median
##
-0.169623 -0
.047860
0.000522 0.
042350
0.191839
##
##
Coefficients
I
##
Estimate
std. Error t
value
Pr(>|t|)
##
(Intercept)
-0.04158
0.06394
-0.650
0.518089
##
cfo
-1.42435
0.10690 -
13.324
< 2e-16 ***
##
ebt
1.08512
1.73528
0.625
0.534208
##
deposit
-0 15787
0.10406
-1.517
0.134680
##
loan
0.10943
0.08699
1.258
0.213437
##
growth
0.19902
0.05664
3.514
0.000864 ***
##
ovh
3.78459
1.96840
1.923
0.059437 .
##
—
##
Signif. codes: 0 '***' 0.001 '**
' 0.01
0.05 '.' 0.1
##
## Residual standard error: 0.07128 on 58 degrees of freedom ## (23 observations deleted due to missingness)
## Multiple R-squared: 0.7936, Adjusted R-squared: 0.7722
## F-statistic: 37.16 on 6 and 58 DF, p-value: < 2.2e-16
vif(cpm2)
## cfo ebt deposit loan growth ovh
## 1.448983 1.340653 1.339480 1.593809 1.477848 1.335115
bgtest(cpm2)
## Breusch-Godfrey test for serial correlation of order up to 1
## data: cpm2
## LM test = 1.2825, df = 1, p-value = 0.2574
dwtest(cpm2,alternative = "two.sided")
## Durbin-Watson test
## data: cpm2
## DW = 2.2469, p-value = 0.4435
## alternative hypothesis: true autocorrelation is not 0
bptest(cpm2)
## studentized Breusch-Pagan test
## data: cpm2
## BP = 3.7559, df = 6, p-value = 0.7097
bptest(cpm2,varformula = ~fitted.values(cpm2),studentize = TRUE,data=Cashpr edicP2)
## studentized Breusch-Pagan test
## data: cpm2
## BP = 0.013571, df = 1, p-value = 0.9073
resettest(c pm2,type="fitted")
## RESET test
## data: cpm2
## RESET = 0.067232, dfl = 2, df2 = 56, p-value = 0.9351
RELAIMPO - CASH PREDICTION MODEL 2012 - 2015
cpm2.rela<-calc.relimp(cpm2)
print(cpm2.rela)
## Response variable: acfol
## Total response variance: 0.022307
## Analysis based on 65 observations
##
## 6 Regressors:
## cfo ebt deposit loan growth ovh
## Proportion of variance explained by model: 79.36%
## Metrics are not normalized (rela=FALSE).
##
## Relative importance metrics:
##
Img
##
cfo
0.671574688
##
ebt
0.011012268
##
deposit
0.016819366
##
loan
0.004902236
##
growth
0.056183996
##
ovh
0.033070366
##
##
Average
coefficients for different model sizes:
##
##
IX 2Xs
3Xs
4Xs
5Xs
##
cfo
-1.26847252 -1.29734387
-1.328094517
-1.35925120
-1.39109007
##
ebt
3.53621119 3.28863901
2.970366345
2.49647051
1.87486416
##
deposit
-0.21781722 -0.22512323
-0.209103119
-0.18866459
-0.16988444
##
loan
-0.02411531 -0.01817961
0.006932275
0.03971601
0.07411951
##
growth
-0 22828367 -0 13927796
-0.049248964
0.03707929
0.11944533
##
ovh
7.20204116 6.25656675
5.239759488
4.40416695
3.88864576
##
6Xs
##
cfo
-1.4243513
##
ebt
1.0851217
##
deposit
-0.1578661
##
loan
0.1094263
##
growth
0.1990167
##
ovh
3.7845900
plot(cpm2.rela)
Relative importances for acfoi
Method LMG
<D
o c ra
ra
>
<D
tn
C
O
<n
q>
L
O
...p
O-
cfo ebt depo loan grow ovh
2 i - i 1- I
R = 79.36%, metrics are not normalized.
PHẦN 3: KẾT QUẢ HỒI QUY DỮ LIỆU BẢNG - PANEL DATA
library(plm)
## Loading required package: Formula
pcash<-pirn.data(CashpredicP,indexes=c("bank","year"))
MÔ HÌNH TÁC ĐỘNG Gộp (POOLING MODEL)
cmpool<-plm(acfol~cfo+ebt+loan+deposỉt+growth+ovh,data=pcash,model="pooling ") z \
summary(cmpool)
## Oneway (individual) effect Pooling Model
## Call:
## plm(formula = acfol ~ cfo + ebt + loan + deposit + growth + ovh,
##
data =
pcash, model
= "pooling")
##
##
Unbalanced
Panel: n=22,
T=6-7, N=153
##
Residuals :
##
Min. 1st Qu. Median
3rd Qu.
Max.
##
-0.2730 -0.
0657 -0.0165
0.0528 0
.5240
##
##
Coefficients :
##
Estimate !
std. Error
t-value
Pr(>|t|)
##
(Intercept)
-0.0555261
0.0615477
-0.9022
0.36846
##
cfo
-1.4078797
0.1144966
-12.2963
< 2e-16 ***
##
ebt
1 7937689
1.3811463
1 2988
0.19608
##
loan
0.1303599
0.0910340
1.4320
0.15428
##
deposit
0.0070093
0.1006590
0.0696
0.94458
##
growth
0.0917624
0.0383042
2.3956
0.01786 *
##
ovh
-0.8325175
2.3883623
-0.3486
0.72791
##
—
##
Signif. codes: 0 '***'
0.001 '**'
0.01 '*'
0.05 '.' 0.1
##
##
Total Sum of Squares:
4.7885
##
Residual Sum of Squares
: 2.0912
##
R-Squared:
0.56327
## Adj. R-Squared: 0.5375
## F-statistic: 31.3844 on 6 and 146 DF, p-value: < 2.22e-16
DIAGNOSTIC TEST FOR POOLING MODEL
pdwtest(cmpool)
## Durbin-Watson test for serial correlation in panel models
## data: acfol ~ cfo + ebt + loan + deposit + growth + ovh
## DW = 2.2995, p-value = 0.9541
## alternative hypothesis: serial correlation in idiosyncratic errors pbgtest(cmpool)
## Breusch-Godfrey/Wooldridge test for serial correlation in panel models
## data: acfol ~ cfo + ebt + loan + deposit + growth + ovh
## chisq = 14.612, df = 6, p-value = 0.0235
## alternative hypothesis: serial correlation in idiosyncratic errors
bptest(cmpool)
## studentized Breusch-Pagan test
## data: cmpool
## BP = 8.2971, df = 6, p-value = 0.2171
MÔ HÌNH TÁC ĐỘNG CÓ ĐỊNH- FIXED EFFECT MODEL (FEM)
cmfe<-plm(acfol~cfo+ebt+loan+deposit+growth+ovh,model="within",data=pcash) summary(cmfe)
## Oneway (individual) effect Within Model
## Call:
## plm(formula = acfol ~ cfo + ebt + loan + deposit + growth + ovh,
## data = pcash, model = "within")
##
## Unbalanced Panel: n=22, T=6-7, N=153
##
## Residuals :
## Min. 1st Qu. Median 3rd Qu. Max.
## -0.2830 -0.0529 -0.0014 0.0549 0.4180
##
## Coefficients :
##
Estimate
std. Error
t-value
Pr(>|t|)
##
cfo
-1.377109
0.115318
-11.9418
< 2.2e-16
***
##
ebt
3.018402
1.730821
1.7439
0.08363
•
##
loan
0.625820
0.146440
4.2736
3.779e-05
***
##
deposit
-0.188805
0.133845
-1.4106
0.16084
##
growth
0.100388
0.042214
2 3781
0.01892
*
##
ovh
3.607522
3 327037
1.0843
0 28032
##
...
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 0.1 ' '1
##
## Total Sum of Squares: 4.6996
## Residual Sum of Squares: 1.6532
## R-Squared: 0.64823
## Adj. R-Squared: 0.5296
## F-statistic: 38.3907 on 6 and 125 DF, p-value: < 2.22e-16
DIAGNOSTIC TEST FOR FIXED MODEL
pdwtest(cmfe)
## Durbin-Watson test for serial correlation in panel models
## data: acfol ~ cfo + ebt + loan + deposit + growth + ovh
## DW = 2.3709, p-value = 0.9898
## alternative hypothesis: serial correlation in idiosyncratic errors
pbgtest(cmfe)
## Breusch-Godfrey/Wooldridge test for serial correlation in panel models
## data: acfol ~ cfo + ebt + loan + deposit + growth + ovh
## chisq = 31.82, df = 6, p-value = 1.766e-05
## alternative hypothesis: serial correlation in idiosyncratic errors
bptest(cmfe)
## studentized Breusch-Pagan test
## data: cmfe
## BP = 8.2971, df = 6, p-value = 0.2171
MÔ HÌNH TÁC ĐỘNG NGẪU NHIÊN - RANDOM EFFECT MODEL
cmre<-plm(acfol~cfo+ebt+loan+deposit+growth+ovh,model="random",data=pcash) summary(cmre)
## Oneway (individual) effect Random Effect Model
## (Swamy-Arora's transformation)
##
## Call:
## plm(formula = acfol ~ cfo + ebt + loan + deposit + growth + ovh,
## data = pcash, model = "random")
##
## Unbalanced Panel: n=22, T=6-7, N=153
##
## Effects:
## Warning in sqrt(sigma2): NaNs produced
## var std.dev share
## idiosyncratic 0.013225 0.115002 1.107
## individual -0.001279 NA -0.107
## theta :
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.7588 -0.7588 -0.7588 -0.7503 -0.7588 -0.5431
##
## Residuals :
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.28900 -0.06860 -0.01430 0.00033 0.06520 0.53600
##
## Coefficients :
t-value
Pr(>|t|)
##
Estimate std. Error
##
(Intercept)
-0.026777
0.050080
-0.5347
0.593686
##
cfo
-1.336053
0.117859
-11.3361
< 2.2e-16
***
##
ebt
1.450847
1.167095
1.2431
0.215813
##
loan
0.025983
0.066661
0 3898
0.697266
##
deposit
0.068793
0.082445
0.8344
0.405413
##
growth
0.099653
0 036677
2.7170
0.007384
**
##
ovh
-1.551793
1.843389
-0.8418
0.401268
##
—
##
Signif. codes: 0 '***
' 0.001 '**
' 0.01 '*
' 0.05 '.'
0.1
##
## Total Sum of Squares: 4.9688
## Residual Sum of Squares: 2.4363
## R-Squared: 0.50968
## Adj. R-Squared: 0.48636
## F-statistic: 25.2937 on 6 and 146 DF, p-value: < 2.22e-16
DIAGNOSTIC TEST FOR RANDOM MODEL
pdwtest(cmre)
## Durbin-Watson test for serial correlation in panel models
## data: acfol ~ cfo + ebt + loan + deposit + growth + ovh
## DW = 2.2223, p-value = 0.8739
## alternative hypothesis: serial correlation in idiosyncratic errors pbgtest(cmre)
## Breusch-Godfrey/Wooldridge test for serial correlation in panel models
## data: acfol ~ cfo + ebt + loan + deposit + growth + ovh
## chisq = 8.2262, df = 6, p-value = 0.222
## alternative hypothesis: serial correlation in idiosyncratic errors
bptest(cmre)
## studentized Breusch-Pagan test
## data: cmre
## BP = 8.2971, df = 6, p-value = 0.2171
CÁC KIỀM ĐỊNH LựA CHỌN MÔ HÌNH TÓI ưu
FIXED EFFECT MODEL vs. POOLING MODEL (p value is small => fixed effect model)
pFtest(cmfe,cmpool)
## F test for individual effects
## data: acfol ~ cfo + ebt + loan + deposit + growth + ovh
## F = 1.5773, dfl = 21, df2 = 125, p-value = 0?06514
## alternative hypothesis: significant effects
FIXED EFFECT MODEL vs. RANDOM EFFECT MODEL
phtest(cmfe,cmre)
## Hausman Test
## data: acfol ~ cfo + ebt + loan + deposit + growth + ovh
## chisq = 321.1, df = 6, p-value < 2.2e-16
## alternative hypothesis: one model is inconsistent
RANDOM EFFECT vs. OLS (pvalue is small => random effect model)
plmtest(cmpool)
## Lagrange Multiplier Test - (Honda)
## data: acfol ~ cfo + ebt + loan + deposit + growth + ovh
## normal = -0.8403, p-value = 0.4007
## alternative hypothesis: significant effects
PHỤ LỤC 7. KẾT QUẢ HỒI QUY MÔ HÌNH 3 - ĐIỀU CHỈNH Dự
PHÒNG RỦI RO TÍN DỤNG
PHẦN 1. TÍNH TOÁN CÁC BIẾN
smoothing <- readXL("D:/Luan an/DRAFT/6.2016/Dulỉeu06.2016.xlsx", rownames= FALSE, header=TRUE, na="", sheet="Panel", strỉngsAsFactors=TRUE) smoothỉng$ebtllp <- with(smoothing, log(Ebtllp))
smoothỉng$llp <- wỉth(smoothing, log(Llp)) Warning in log(Llp): NaNs produc ed
smoothỉng$bllp <- with(smoothing, Bllp/Bloan) smoothỉng$bllplog <- with(smoothỉng, log(Bllp)): NaNs produced smoothỉng$npl <- with(smoothing, Npl/Loan) smoothỉng$npllog <- with(smoothing, log(Npl)) smoothỉng$bloan <- with(smoothing,log(Bloan)) smoothỉng$dloan <- with(smoothing,Dloan/Asset) smoothỉng$loan <- with(smoothing, Loan/Asset) smoothỉng$loanlog <- with(smoothỉng,log(Loan)) smoothỉng$equỉty <- with(smoothing, Equỉty/Asset)
smooth=2012)
PHẦN 2: KẾT QUẢ HỒI QUY OLS
GIAI ĐOẠN 2008 - 2015
sm <-lm(llp~bllp+ebtllp+equỉty+npllog+gdp,data=smooth) summary(sm)
## Call:
## lm(formula = lip ~ blip + ebtllp + equity + npllog + gdp, data = smooth) ## Residuals:
## Min IQ Median 3Q Max
## -2.02762 -0.30951 0.07956 0.31948 1.28924
## Coefficients:
##
Estimate std. Error t value Pr(>|t1)
##
(Intercept) -3.60533
0.78925
-4.568
9.67e-06
***
##
blip
30.64969
6.66903
4.596
8.59e-06
***
##
ebtllp
0.55780
0.05069
11.004
< 2e-16
***
##
equity
-0.76665
0.91132
-0.841
0.401
##
npllog
0.61796
0.05731
10 782
< 2e-16
***
##
gdp
-2.66559
7.11883
-0.374
0.709
##
—
##
Signif. 1
codes: 0 '***' 0.001
**' 0.01
0.05
' . ' 0.1
##
Residual
standard error: 0.525 (
an 163 degrees of
freedom
##
(11 observations deleted due to missingness)
##
Multiple
R-squared:
0.9105, Adjusted R-squared:
0.9078
## F-statistic: 331.7 on 5 and 163 DF, p-value: < 2.2e-16
DIAGNOSTIC TEST
vif(sm)
## blip ebtllp equity npllog gdp
## 1.284242 3.193828 1.715020 3.361711 1.015700
bgtest(sm)
## Breusch-Godfrey test for serial correlation of order up to 1
## data: sm
## LM test = 0.12099, df = 1, p-value = 0.728
dwtest(sm)
## Durbin-Watson test
## data: sm
## DW = 2.0389, p-value = 0.5364
## alternative hypothesis: true autocorrelation is greater than 0
bptest(sm)
## studentized Breusch-Pagan test
## data: sm
## BP = 2.6211, df = 5, p-value = 0.7582
bptest(sm,varformula = ~fitted.values(sm),studentize = TRUE,data=smooth)
## studentized Breusch-Pagan test
## data: sm
## BP = 2.0947, df = 1, p-value = 0.1478
resettest(sm,type="regressor")
## RESET test
## data: sm
## RESET = 0.88092, dfl = 10, df2 = 153, p-value = 0.5525
resettest(sm,type="fitted")
## RESET test
## data: sm
## RESET = 0.45078, dfl = 2, df2 = 161, p-value = 0.6379
RELAIMPO - SMOOTHING MODEL
sm.rela<-calc.relimp.Im(sm)
print(sm.rela)
## Response variable: lip
## Total response variance: 2.988335
## Analysis based on 169 observations
## 5 Regressors: blip ebtllp equity npllog gdp
## Proportion of variance explained by model: 91.05%
## Metrics are not normalized (rela=FALSE).
## Relative importance metrics:
# Img
## blip 0.0899983866
## ebtllp 0.3481218662
## equity 0.1163609371
## npllog 0.3555267548
## gdp 0.0005121439
##
##
Average
coefficients for different model
sizes:
##
IX
2Xs
3Xs
4Xs
5Xs
##
blip
126.932673
78.3650309
50.5215389
36.8452253
30.6496898
##
ebtllp
1.085502
0.9190972
0.7744552
0.6534125
0.5578028
##
equity
-17.898679
-9.8222619
-4.7110751
-1.9116425
-0.7666545
##
npllog
1.209632
1.0440742
0 8872586
0.7437907
0.6179597
##
gdp
-6 627223
-4.1790995
-3.3978813
-2 8988192
-2.6655892
plot(sm.rela)
Relative importances for lip
Method LMG
2 ___ . - a a- I
R = 91.05%, metrics are not normalized.
GIAI ĐOẠN TỪ2008 ĐẾN 2011
sml <-lm(llp~bllp+ebtllp+equity+npllog+gdp,data=smoothpl) summary(sml) ## Call:
## lm(formula = lip ~ blip + ebtllp + equity + npllog+gdp, data = smoothpl)
## Residuals:
## Min IQ Median 3Q Max
## -1.92952 -0.27423 0.07398 0.33006 1.19062
## Coefficients:
##
Estimate std. Error t value Pr(>|t1)
##
(Intercept)
-3.10838
1.07745
-2.885
0.005 **
##
blip
12.88129
14.68981
0.877
0.383
## ebtllp
0.57910
0.08317
6.963 7.58e-10 ***
##
equity
-0.80539
1.12500
-0.716
0.476
##
npllog
0.58912
0.09600
6.136
2.85e-08 ***
##
gdp
-9 87128
10.21010
-0.967
0.336
##
—
##
Signif.
codes: 0 '***'
' 0.001 '**
' 0.01
0.05 '.' 0.1
## Residual standard error: 0.5424 on 82 degrees of freedom
## Multiple R-squared: 0.9003, Adjusted R-squared: 0.8942
## F-statistic: 148.1 on 5 and 82 DF, p-value: < 2.2e-16
DIAGNOSTIC TEST
vif(sml)
## blip ebtllp equity npllog gdp
## 1.479442 4.355729 1.806039 4.154619 1.012291
bgtest(sml)
## Breusch-Godfrey test for serial correlation of order up to 1
## data: sml
## LM test = 0.23988, df = 1, p-value = 0.6243
dwtest(sml)
## Durbin-Watson test
## data: sml
## DW = 1.8858, p-value = 0.265
## alternative hypothesis: true autocorrelation is greater than 0
bptest(sml)
## studentized Breusch-Pagan test
## data: sml
## BP = 1.3718, df = 5, p-value = 0.9274
bptest(sml,varformula=~ fitted.values(sml),studentize = TRUE,data=smoothpl)
## studentized Breusch-Pagan test
## data: sml
## BP = 0.0058901, df = 1, p-value = 0.9388
resettest(sml,type="regressor")
## RESET test
## data: sml
## RESET = 0.90613, dfl = 10, df2 = 72, p-value = 0.5323
resettest(sml,type="fitted")
## RESET test
## data: sml
## RESET = 0.63283, dfl = 2, df2 = 80, p-value = 0.5337
RELAIMPO - SMOOTHING MODEL
sml.rela<-calc•relimp.Im(sml)
print(sml.rela)
## Response variable: lip
## Total response variance: 2.781423
## Analysis based on 88 observations
## 5 Regressors: ## blip ebtllp equity npllog gdp
## Proportion of variance explained by model: 90.03%
## Metrics are not normalized (rela=FALSE).
## Relative importance metrics:
## Img
## blip 0.0826840310
## ebtllp 0.3547947533
## equity 0.1237212394
## npllog 0.3381566363
## gdp 0.0009563398
## Average coefficients for different model sizes:
##
IX
2Xs
3Xs
4Xs
5Xs
## blip
182.782275
91.6287167
42.1740172
20.5752839
12.8812897
## ebtllp
1.046881
0.9114817
0 7883701
0.6774991
0.5790958
## equity
-15.162719
-8.1736019
-3.8964895
-1.6629153
-0.8053896
## npllog
1.222225
1.0328839
0.8642960
0.7162487
0.5891239
## gdp
-7.486676
-5.5417713
-7.6124919
-9.3061670
-9 8712783
plot(sml.rela)
Relative importances for lip
R2 = 90.03%, metrics are not normalized.
GIAI ĐOẠN 2012 ĐÉN 2015
sm2 <-lm(llp~bllp+ebtllp+equity+npllog+gdp,data=smoothp2) summary(sm2)
## Call:
## lm(formula = lip ~ blip + ebtllp + equity + npllog + gdp, data=smoothp2)
## Residuals:
## Min IQ Median 3Q Max
## -1.00183 -0.23735 -0.00561 0.26632 0.78851
## Coefficients:
##
Estimate std. Error t value Pr(>|t1)
##
(Intercept) -3.34155
1.17027
-2.855
0.00556
**
##
blip
22.79973
6 72380
3.391
0.00111
**
##
ebtllp
0.70348
0.06235
11.283
< 2e-16
***
##
equity
-0.67800
1.67384
-0.405
0.68659
##
npllog
0.38074
0.08881
4.287
5.32e-05
***
##
gdp
18.82451
9.08134
2 073
0.04162
*
##
—
##
Signif. 1
codes: 0 '***' 0.001 ”1
|e*' 0.01
0.05
'.' 0.1
##
Residual
standard error: 0.4244
on 75 degrees of
freedom
##
(7 observations deleted due to missingness)
##
Multiple
R-squared:
0.9208, Adjusted R-squared:
0.9155
## F-statistic: 174.3 on 5 and 75 DF, p-value: < 2.2e-16
DIAGNOSTIC TEST
vif(sm2)
## blip ebtllp equity npllog gdp
## 1.196060 3.187835 2.058255 4.026566 1.099096
bgtest(sm2)
## Breusch-Godfrey test for serial correlation of order up to 1
## data: sm2
## LM test = 2.1308, df = 1, p-value = 0.1444
dwtest(sm2)
## Durbin-Watson test
## data: sm2
## DW = 1.6727, p-value = 0.04678
## alternative hypothesis: true autocorrelation is greater than 0
bptest(sm2)
## studentized Breusch-Pagan test
## data: sm2
## BP = 9.8642, df = 5, p-value = 0.07918
bptest(sm2,varformula= ~fitted.values(sm2),studentize = TRUE,data=smoothp2)
## studentized Breusch-Pagan test
## data: sm2
## BP = 2.4108, df = 1, p-value = 0.1205
resettest(sm2,type="regressor")
## RESET test
## data: sm2
## RESET = 1.4492, dfl = 10, df2 = 65, p-value = 0.1793
resettest(sm2,type="fitted")
## RESET test
## data: sm2
## RESET = 1.7067, dfl = 2, df2 = 73, p-value = 0.1886
RELAIMPO - SMOOTHING MODEL
sm2.rela<-calc.relimp.Im(sm2)
print(sm2.rela)
## ## ## ##
## ##
##
##
Response variable: lip
Total response variance: 2.13136 Analysis based on 81 observations
5 Regressors: ## blip ebtllp equity npllog Proportion of variance explained by model: Metrics are not normalized (rela=FALSE). Relative importance metrics:
Img
0.05648723
0.43721120
0.10068431
0.31013970
0.01625120
coefficients for different model
## blip
## ebtllp ## equity ## npllog ## gdp
## Average ##
## blip
## ebtllp ## equity ## npllog ## gdp
IX
66.519582
1.005918 -19.552828
1.167496
58.020702
2Xs
49.8020501
0.9221918 -10.4075487
0.9601426
31.6849927
3Xs
37.0775597 0.8396605 -4.4709145 0 7572983 22.1585977
gdp
92.08%
sizes:
4Xs
27.3586909 0.7640478 -1.2811661 0.5639565 20.9694159
5Xs
22.7997274 0.7034810 -0.6780001 0.3807378 18.8245147
plot(sm2.rela)
Relative importances for lip
R = 92.08%, metrics are not normalized.
PHẦN 3 - KẾT QUẢ HỒI QUY DỮ LIỆU BẢNG (PANEL DATA)
library(plm)
## Loading required package: Formula
psmooth<-plm.data(smooth,indexes=c("bank","year"))
MÔ HÌNH TẢCĐỘNG Gộp
smpool<-plm(llp~bllp+ebtllp+equity+npllog+gdp,data=psmooth,model="pooling") summary(smpool)
## Oneway (individual) effect Pooling Model
##
## Call:
## plm(formula = lip ~ blip + ebtllp + equity + npllog + gdp, data = psmoot h,
##
model =
"pooling")
##
##
Unbalanced
Panel: n=22,
T=6-8, N=
=169
##
##
Residuals :
##
Min. 1st
Qu. Median
3rd Qu.
Max.
##
-2.0300 -0.
3100 0.0796
0.3190
1.2900
##
##
Coefficients :
##
Estimate std. Error
t-value
Pr(>|t|)
##
(Intercept)
-3.605329
0.789254
-4.5680
9.669e-06
***
##
blip
30.649690
6.669026
4.5958
8.595e-06
***
##
ebtllp
0.557803
0.050690
11.0042
< 2.2e-16
***
##
equity
-0.766654
0.911323
-0.8413
0.4014
##
npllog
0.617960
0.057314
10.7821
< 2.2e-16
***
##
gdp
-2.665589
7.118830
-0.3744
0.7086
##
—
##
Signif. codes: 0 '***'
0.001 '*=•
" 0.01 '
'*• 0.05 '.
' 0
##
##
Total Sum of Squares:
502.04
##
Residual Sum of Squares:
: 44.923
##
R-Squared:
0.91052
## Adj. R-Squared: 0.87819
## F-statistic: 331.728 on 5 and 163 DF, p-value: < 2.22e-16
DIGNOSTIC TEST FOR POOLING MODEL
pbgtest(smpool) ## Breusch-Godfrey/Wooldridge test for serial correlation in panel models ## data: lip ~ blip + ebtllp + equity + npllog + gdp
## chisq = 2.0168, df = 6, p-value = 0.9181
## alternative hypothesis: serial correlation in idiosyncratic errors bptest(smpool)
## studentized Breusch-Pagan test
## data: smpool
## BP = 2.6211, df = 5, p-value = 0.7582
MÔ HÌNH TẢC ĐỘNG CÓ ĐỊNH (FEM)
smfe<-plm(llp~bllp+ebtllp+equỉty+npllog+gdp,model="wỉthỉn",data=psmooth) summary(smfe)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = lip ~ blip + ebtllp + equity + npllog + gdp, data = psmoot
h,
## model = "within")
##
## Unbalanced Panel: n=22, T=6-8, N=169
##
## Residuals :
## Min. 1st Qu. Median 3rd Qu. Max.
## -1.8000 -0.2810 0.0452 0.3370 1.2300
##
## Coefficients :
##
Estimate std. Error t-value
Pr(>|t|)
##
blip
14.507128
7.762764
1.8688
0.06371
•
##
ebtllp
0.600462
0.075542
7.9487
5.308e-13
***
##
equity
-0.121487
1.177842
-0.1031
0.91799
##
npllog
0.730106
0.065368
11.1692
< 2.2e-16
***
##
gdp
-2.683100
6.979501
-0.3844
0.70124
##
—
##
Signif.
codes: 0
'***' 0.001 '**' 0
1.01 0.
05
##
## Total Sum of Squares: 155.1
## Residual Sum of Squares: 37.177
## R-Squared: 0.76031
## Adj. R-Squared: 0.63884
## F-statistic: 90.0867 on 5 and 142 DF, p-value: < 2.22e-16
DIGNOSTIC TEST FOR FEM
pbgtest(smfe)
## Breusch-Godfrey/Wooldridge test for serial correlation in panel models
## data: lip ~ blip + ebtllp + equity + npllog + gdp
## chisq = 15.559, df = 6, p-value = 0.01633
## alternative hypothesis: serial correlation in idiosyncratic errors
bptest(smfe)
## studentized Breusch-Pagan test
## data: smfe
## BP = 2.6211, df = 5, p-value = 0.7582
MÔ HÌNH TẢC ĐỘNG NGẪU NHIÊN (REM)
smre<-plm(llp~bllp+ebtllp+equity+npllog+gdp,model="random",data=psmooth) summary(smre)
## Oneway (individual) effect Random Effect Model
## (Swamy-Arora's transformation)
##
## Call:
## plm(formula = lip ~ blip + ebtllp + equity + npllog + gdp, data = psmoot h,
## model = "random")
##
## Unbalanced Panel: n=22, T=6-8, N=169
##
## Effects:
## Warning in sqrt(sigma2): NaNs produced
##
var
std.dev
share
##
idiosyncratic 0.26181
0.51167
1.045
##
individual -0.01131
NA
-0.045
##
theta :
##
Min. 1st Qu. Median
Mean
3rd Qu.
Max.
##
-0.2361 -0.2361 -0.2361
-0.2254
-0.2361
-0.1618
##
## Residuals :
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -2.06000 -0.32600 0.04770 -0.00115 0.34600 1.35000 ##
## Coefficients :
##
Estimate std. Error t-value
Pr(>|t|)
##
(Intercept)
-3.261725
0.750998
-4.3432
2.460e-05
***
##
blip
35.437866
6.410403
5.5282
1.261e-07
***
##
ebtllp
0.561132
0.047875
11.7208
< 2.2e-16
***
##
equity
-0.968146
0.856489
-1.1304
0.2600
##
npllog
0.586918
0.055714
10.5344
< 2.2e-16
***
##
gdp
-2.507903
7.326281
-0.3423
0.7326
##
—
##
Signif. codes: 0 '***'
0.001 '**
' 0.01 1
0.05 '.
' 0
##
##
Total Sum of
Squares:
750.57
##
Residual Sum
of Squares
: 47.762
##
R-Squared:
0.93638
##
Adj. R-Squared: 0.90314
##
F-statistic:
479.703 on
5 and 163
DF, p-value: < 2.
22e
DIGNOSTIC TEST FOR REM
pbgtest(smre)
## Breusch-Godfrey/Wooldridge test for serial correlation in panel models ##
## data: lip ~ blip + ebtllp + equity + npllog + gdp
## chỉsq = 0.93188, df = 6, p-value = 0.9881
## alternative hypothesis: serial correlation in idiosyncratic errors
bptest(smre)
## studentized Breusch-Pagan test
## data: smre
## BP = 2.6211, df = 5, p-value = 0.7582
CÁC KIỀM ĐỊNH LựA CHỌN MÔ HÌNH TÓI ưu
FIXED EFFECT MODEL vs. POOLING MODEL (P value is small =>Fixed effect model) pFtest(smfe,smpool)
##
## F test for individual effects
##
## data: lip ~ blip + ebtllp + equity + npllog + gdp
## F = 1.4088, dfl = 21, df2 = 142, p-value = 0.1234
## alternative hypothesis: significant effects
FIXED EFFECT MODEL vs. RANDOM EFFECT MODEL (p value is small =fixed effect model)
phtest(smfe,smre)
##
## Hausman Test
##
## data: lip ~ blip + ebtllp + equity + npllog + gdp
## chisq = 28.981, df = 5, p-value = 2.339e-05
## alternative hypothesis: one model is inconsistent
RANDOM EFFECT vs. POOLING MODEL (pvalue is small => random effect model) plmtest(smpool)
## Lagrange Multiplier Test - (Honda)
##
## data: lip ~ blip + ebtllp + equity + npllog + gdp
## normal = 0.34703, p-value = 0.7286
## alternative hypothesis: significant effects
PHỤ LỤC 8. KẾT QUẢ HỒI QUY MÔ HÌNH DAO ĐỘNG LUỒNG TIỀN
VÀ LỢI NHUẬN
PHẦN 1. KẾT QUẢ HỒI QUY MÔ HÌNH Độ DAO ĐỘNG LUỒNG TIỀN
GIAI ĐOẠN TỪ2008 ĐÉN 2015
cm <-lm(dcash~bcfo+bebt+deposỉt+ovh+loan+growth,data=Var) summary(cm)
## Call:
## lm(formula = deash ~ bcfo + bebt + deposit + ovh + loan + growth,
## data = Van)
## Residuals:
## Min IQ Median 3Q Max
## -0.28380 -0.05094 -0.00319 0.04432 0.39987
##
Estimate
std. Error
t value
Pr(>|t|)
##
(Intercept)
0.04848
0.04049
1.197
0.2329
##
bcfo
-1.34877
0 07370
-18.301
<2e-16
***
##
bebt
2.34427
1.01574
2.308
0.0222
*
##
deposit
0.06851
0.06020
1.138
0.2568
##
ovh
-3.19356
1.59695
-2.000
0.0472
*
##
loan
-0.13661
0.05934
-2 302
0.0226
*
##
growth
0.29349
0.03009
9.753
<2e-16
***
##
—
##
Signif. codes: 0 '***' 0.001 ■ =1
|e*' 0.01
0.05
0.1
## Coefficients:
## Residual standard error: 0.09781 on 166 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.7382, Adjusted R-squared: 0.7287
## F-statistic: 78.01 on 6 and 166 DF, p-value: < 2.2e-16
DIAGNOSTIC TEST FOR CM
vif(cm)
## bcfo bebt deposit ovh loan growth
## 1.073735 1.163129 2.318072 1.465930 2.447562 1.706712
dwtest(cm)
## Durbin-Watson test
## data: cm
## DW = 2.2049, p-value = 0.8835
## alternative hypothesis: true autocorrelation is greater than 0
bgtest(cm)
## Breusch-Godfrey test for serial correlation of order up to 1 ## data: cm
## LM test = 3.3657, df = 1, p-value = 0.06657
bptest(cm)
## studentized Breusch-Pagan test
## data: cm
## BP = 28 855, df = 6, p-value = 6.482e-05
bptest(cm,varformula = ~fitted.values(cm),studentize = TRUE,data=Var)
## studentized Breusch-Pagan test
## data: cm
## BP = 0.081549, df = 1, p-value = 0.7752
resettest(cm,type="fitted")
## RESET test
## data: cm
## RESET = 0.47028, dfl = 2, df2 = 164, p-value = 0.6257
RELAIMPO -CASH MODEL
cm.rela<-calc.relimp(cm)
print(cm.rela)
## Response variable: deash
## Total response variance: 0.03526867
## Analysis based on 173 observations
##
## 6 Regressors:
## befo bebt deposit ovh loan growth
## Proportion of variance explained by model: 73.82%
## Metrics are not normalized (rela=FALSE).
##
## Relative importance metrics: ##
##
Img
##
befo
0.507965284
##
bebt
0.006118172
##
deposit
0.033002360
##
ovh
0.012081594
##
loan
0.018830116
##
growth
0.160207631
##
##
Average
coefficients
i for different model sizes:
##
##
IX
2Xs
3Xs 4Xs
5Xs
##
befo
-1.2793084 -
1.2650683
-1.27818256 -1.30231132
-1.32653171
##
bebt
1 6587207
1.1916237
1.26576921 1.57244563
1.95185077
##
deposit
0.3029049
0.2254084
0.16742389 0.12390690
0.09168498
##
ovh
6.4974477
3.2092020
0.81471859 -0 86982293
-2.09842770
##
loan
0.2324043
0.1239518
0.03200797 -0.04230544
-0.09845039
##
growth
0.2591282
0.2540758
0.26191471 0.27439978
0.28537507
##
6Xs
##
befo
-1.3487735
##
bebt
2.3442719
##
deposit
0.0685081
##
ovh
-3.1935612
## loan -0.1366144
## growth 0.2934852
plot(cm.rela)
Relative importances for deash
Method LMG
R2 = 73 82%, metrics are not normalized.
GIAI ĐOẠN TỪ2008 ĐÉN 2011
cml <-lm(dcash~bcfo+bebt+deposỉt+ovh+loan+growth,data=Varl) summary(cml)
## Call:
##
lm(formula =
deash ~
befo + bebt
+ deposit + ovh
+ loan ■
##
data = Vari)
##
Residuals:
##
Min
IQ Median
3Q
Max
##
-0.26865 -0.
06099 0,
.00064 0.04747 0.36411
##
##
Coefficients
I
##
Estimate
std. Error t
value
Pr(>|t|)
##
(Intercept)
0.08324
0.06422
1.296
0.19870
##
befo
-1.46940
0.12476 -
11 778
< 2e-16
***
##
bebt
1.71842
1.56628
1.097
0.27592
##
deposit
0.21094
0.09981
2.113
0 03772
*
##
ovh
-2 31727
3.05447
-0.759
0.45032
##
loan
-0.30627
0.10551
-2.903
0.00479
**
##
growth
0.26598
0.04502
5.907
8.34e-08
***
##
—
##
Signif. codes: 0 '***' 0.001 '**
' 0.01
0.05
'.' 0.1
##
## Residual standard error: 0.1127 on 79 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.7286, Adjusted R-squared: 0.708
## F-statistic: 35.35 on 6 and 79 DF, p-value: < 2.2e-16
DIAGNOSTIC TEST FOR CM1
vif(cml)
## bcfo bebt deposit ovh loan growth
## 1.129039 1.030178 2.887863 2.098580 3.396329 1.825758
dwtest(cml)
## Durbin-Watson test
## data: cml
## DW = 2.1265, p-value = 0.6735
## alternative hypothesis: true autocorrelation is greater than 0
bgtest(cml)
## Breusch-Godfrey test for serial correlation of order up to 1
## data: cml
## LM test = 0.92726, df = 1, p-value = 0.3356
bptest(cml)
## studentized Breusch-Pagan test
## data: cml
## BP = 15.415, df = 6, p-value = 0.01727
bptest(cml,varformula = ~ fitted.values(cml),studentize = TRUE,dat=Varl)
## studentized Breusch-Pagan test
## data: cml
## BP = 0.12382, df = 1, p-value = 0.7249
resettest(cml,type="regressor")
## RESET test
## data: cml
## RESET = 1.2939, dfl = 12, df2 = 67, p-value = 0.243
resettest(cml,type="fitted")
## RESET test
## data: cml
## RESET = 1.7219, dfl = 2, df2 = 77, p-value = 0.1855
RELAIMPO -CASH MODEL
cml.rela<-calc.relimp(cml)
print(cml.rela)
## Response variable: deash
## Total response variance: 0.04351478
## Analysis based on 86 observations
##
## 6 Regressors:
## befo bebt deposit ovh loan growth
## Proportion of variance explained by model: 72.86% ## Metrics are not normalized (rela=FALSE).
##
## Relative importance metrics:
##
## Img
## bcfo 0.461691047
## bebt 0.003448727
## deposit 0.059776290
## ovh 0.015978261
## loan 0 028352298
## growth 0.159382942
##
## Average coefficients for different model sizes: ##
##
IX
2Xs
3Xs
4Xs
5Xs
##
bcfo
-1.4060845
-1.36283795
-1.37925057
-1.4152130
-1.4472569
##
bebt
1.5551312
1.34492683
1.39958063
1.5312639
1.6408298
##
deposit
0.3756777
0 29737628
0.25753080
0.2392347
0.2278543
##
ovh
8.6249729
3 68892391
0.65413202
-0.9953740
-1.7976917
##
loan
0.2505038
0.08735735
-0.05643429
-0.1740177
-0.2592030
##
growth
0.2757853
0.25908784
0.26106198
0 2667682
0.2685176
##
6Xs
##
bcfo
-1.4694027
##
bebt
1.7184191
##
deposit
0.2109442
##
ovh
-2.3172735
##
loan
-0.3062652
##
growth
0.2659787
plot(cml.rela)
Relative importances for deash
Method LMG
R2 = 72.86%, metrics are not normalized.
GIAI ĐOẠN TỪ2012 ĐÉN 2015
cm2 <-lm(dcash~bcfo+bebt+deposỉt+ovh+loan+growth,data=Var2)
summary(cm2)
## Call:
## lm(formula = deash ~ befo + bebt + deposit + ovh + loan + growth,
## data = Var2)
##
## Residuals:
## Min IQ Median 3Q Max
## -0.196897 -0.034964 0.001906 0.032627 0.240967
##
## Coefficients:
##
Estimate std. Error t value Pr(>|t1)
##
(Intercept)
-0.0169128
0.0546430
-0.310
0.75773
##
befo
-1.3233471
0.0837980
-15.792
< 2e-16 ***
##
bebt
0.5490166
1.3645909
0.402
0.68851
##
deposit
0.0008785
0 0876398
0.010
0.99203
##
ovh
-1.0095604
1.7253180
-0.585
0.56010
##
loan
0.0135551
0.0758542
0.179
0.85863
##
growth
0.2179600
0.0685830
3 178
0.00211 **
##
—
##
Signif. codes: 0 '***■
0.001 '**'
' 0.01 '*
' 0.05 '.' 0.1
##
## Residual standard error: 0.0768 on 80 degrees of freedom ## (1 observation deleted due to missingness)
## Multiple R-squared: 0.7922, Adjusted R-squared: 0.7766
## F-statistic: 50.84 on 6 and 80 DF, p-value: < 2.2e-16
DIAGNOSTIC TEST FOR CM2
vif(cm2)
## bcfo bebt deposit ovh loan growth
## 1.054774 1.357913 3.171440 1.332476 2.271640 2.287288
dwtest(cm2)
## Durbin-Watson test
## data: cm2
## DW = 2.0231, p-value = 0.4564
## alternative hypothesis: true autocorrelation is greater than 0
bgtest(cm2)
## Breusch-Godfrey test for serial correlation of order up to 1
## data: cm2
## LM test = 0.022622, df = 1, p-value = 0.8804
bptest(cm2)
## studentized Breusch-Pagan test
## data: cm2
## BP = 21.42, df = 6, p-value = 0.001541
bptest(cm2,varformula = ~fitted.values(cm2),studentize = TRUE,data=Var2)
## studentized Breusch-Pagan test
## data: cm2
## BP = 0.31179, df = 1, p-value = 0.5766
resettest(cm2,type="fitted")
## RESET test
## data: cm2
## RESET = 3.3037, dfl = 2, df2 = 78, p-value = 0.04195
RELAIMPO -CASH MODEL
cm2.rela<-calc.relimp(cm2)
print(cm2.rela)
## Response variable: deash
## Total response variance: 0.02640569
## Analysis based on 87 observations
## 6 Regressors: befo bebt deposit ovh loan growth
## Proportion of variance explained by model: 79.22%
## Metrics are not normalized (rela=FALSE).
##
## Relative importance metrics:
## Img
## befo 0.688176783
## bebt 0.001034278
## deposit 0.015729134
## ovh 0.006943530
## loan 0.008170101
## growth 0.072174157
## Average coefficients for different model sizes:
##
IX
2Xs
3Xs
4Xs
5Xs
##
befo
-1.3697219
-1.35515608
-1.34502535
-1.33728906
-1.330345005
##
bebt
-0.2188242
-0.64108499
-0.52002498
-0.23550414
0.113361544
##
deposit
0.1975642
0.11780990
0.05955271
0.01965427
-0.000607236
##
ovh
4.3296975
2.75661241
1.59857323
0.65911208
-0.176162072
##
loan
0.1576639
0.08246534
0.04018371
0.02294709
0.017599192
##
growth
0.3198158
0.32106451
0 30867671
0 28578358
0.254913711
##
6Xs
##
befo
-1.3233471197
##
bebt
0.5490165779
##
deposit
0.0008785082
##
ovh
-1.0095604122
##
loan
0.0135550939
##
growth
0.2179600420
plot(cm2.rela)
Relative importances for deash
Method LMG
<D
Is- CD _
>
o _
CO XT £Z
o —
Ó
o'--
o —I
o -1
befo bebt depo ovh loan grow
R2 = 79.22%, metrics are not normalized.
PHẦN 2: KẾT QUẢ HỒI QUY MÔ HÌNH Độ DAO ĐỘNG CỦA LỢI NHUẬN
GIAI ĐOẠN 2008 ĐÉN 2015
dm <-lm(dnỉ~bcfo+bebt+deposỉt+ovh+loan+growth,data=Var)
summary(dm)
## Call:
## lm(formula = dnỉ ~ befo + bebt + deposit + ovh + loan + growth,
## data = Var)
## Residuals:
## Min IQ Median 3Q Max
## -0.037239 -0.004074 -0.000334 0.003532 0.050726
##
Coefficients
•
##
Estimate
std. Error
t value
Pr(>|t|)
##
(Intercept)
-0.0004358
0.0033795
-0.129
0.8975
##
bcfo
0.0140365
0.0061507
2 282
0.0238
*
##
bebt
-0.5240651
0.0847688
-6.182
4.73e-09
***
##
deposit
-0.0017977
0.0050240
-0.358
0.7209
##
ovh
0.0575243
0.1332743
0.432
0.6666
##
loan
0.0087164
0.0049523
1.760
0.0802
•
##
growth
0.0142590
0.0025114
5.678
5.97e-08
***
##
—
##
Signif. codes: 0 '***'
0.001 '**'
0.01
•• 0.05 '.
' 0.1
## Residual standard error: 0.008163 on 166 degrees of freedom ## (7 observations deleted due to missingness)
## Multiple R-squared: 0.3884, Adjusted R-squared: 0.3663
## F-statistic: 17.57 on 6 and 166 DF, p-value: 1.06e-15
DIAGNOSTIC TEST FOR DM
vif(dm)
## bcfo bebt deposit ovh loan growth
## 1.073735 1.163129 2.318072 1.465930 2.447562 1.706712 dwtest(dm)
## Durbin-Watson test
## data: dm
## DW = 1.9481, p-value = 0.3062
## alternative hypothesis: true autocorrelation is greater than 0
bgtest(dm)
## Breusch-Godfrey test for serial correlation of order up to 1
## data: dm
## LM test = 0.124, df = 1, p-value = 0.7247
bptest(dm)
## studentized Breusch-Pagan test
## data: dm
## BP = 22.014, df = 6, p-value = 0.001204
bptest(dm,varformula = ~fitted.values(dm),studentize = TRUE,data=Var)
## studentized Breusch-Pagan test
## data: dm
## BP = 0.20771, df = 1, p-value = 0.6486
resettest(dm,type="fitted")
## RESET test
## data: dm
## RESET = 1.7685, dfl = 2, df2 = 164, p-value = 0.1738
RELAIMPO - DNI MODEL
dm.rela<-calc.relimp(dm)
print(dm.rela)
## Response variable: dni
## Total response variance: 0.0001051424
## Analysis based on 173 observations
## 6 Regressors: ## bcfo bebt deposit ovh loan growth ## Proportion of variance explained by model: 38.84% ## Metrics are not normalized (rela=FALSE).
## Relative importance metrics:
##
Img
##
bcfo
0.016152502
##
bebt
0.116680457
##
deposit
0.045590567
##
ovh
0.006176212
##
loan
0.046025761
##
growth
0.157755202
##
Average
coefficients
for different model sizes:
##
IX
2Xs
3Xs
4Xs
5Xs
##
bcfo
0.009323846
0.01174139
0.01280486
0.013228608
0.013611342
##
bebt
-0.368090575
-0.42074281
-0.45238500
-0.475562455
-0.499000415
##
deposit
0.019257707
0.01573583
0.01167321
0.007259786
0.002706360
##
ovh
0.217095213
0.08150483
0.01587605
0.003709704
0.024922226
##
loan
0.016790595
0.01363617
0.01122839
0.009606026
0.008780984
##
growth
0.015035155
0.01473704
0.01438976
0.014147407
0.014107174
##
6Xs
##
bcfo
0.014036467
##
bebt
-0.524065120
##
deposit
-0.001797659
##
ovh
0.057524277
##
loan
0.008716354
##
growth
0.014258984
plot(dm.rela)
Relative importances for dni
Method LMG
bcfo bebt depo ovh loan grow
R2 = 38.84%, metrics are not normalized.
GIAI ĐOẠN TỪ2008 ĐẾN 2011
dml <-lm(dnỉ~bcfo+bebt+deposỉt+ovh+loan+growth,data=Varl) summary(dml)
## Call:
## lm(formula = dnỉ ~ bcfo + bebt + deposit + ovh + loan + growth, ## data = Vari)
## Residuals:
##
Min
IQ
Median
3Q
Max
##
-0.023302 -0
.005183 -0.
000257 0.004120 0
.049530
##
Coefficients
I
##
Estimate
std. Error
t value
Pr(>|t|)
##
(Intercept)
-0.0004042
0.0054895
-0.074
0.9415
##
bcfo
0.0038581
0.0106643
0.362
0.7185
##
bebt
-0.7487216
0.1338790
-5.593
3.1e-07 ***
##
deposit
0.0180929
0.0085317
2.121
0.0371 *
##
ovh
0.2346814
0.2610838
0.899
0.3715
##
loan
-0.0039346
0.0090187
-0.436
0.6638
##
growth
0.0070256
0.0038485
1.826
0.0717 .
##
—
##
Signif. codes: 0 '***'
0.001 '**
' 0.01 '*
' 0.05 '.' 0.1
##
## Residual standard error: 0.009635 on 79 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.4479, Adjusted R-squared: 0.406
## F-statistic: 10.68 on 6 and 79 DF, p-value: 1.153e-08
DIAGNOSTIC TEST FOR DM1
vif(dml)
## bcfo bebt deposit ovh loan growth
## 1.129039 1.030178 2.887863 2.098580 3.396329 1.825758
dwtest(dml)
## Durbin-Watson test
## data: dml
## DW = 1.8756, p-value = 0.2028
## alternative hypothesis: true autocorrelation is greater than 0
bgtest(dml)
## Breusch-Godfrey test for serial correlation of order up to 1
## data: dml
## LM test = 0.36488, df = 1, p-value = 0.5458
bptest(dml)
## studentized Breusch-Pagan test
## data: dml
## BP = 8.5807, df = 6, p-value = 0.1986
bptest(dml,varformula = ~ fitted.values(dml),studentize = TRUE,dat=Varl)
## studentized Breusch-Pagan test
## data: dml
## BP = 1.5035, df = 1, p-value = 0.2201
resettest(dml,type="fitted")
## RESET test
## data: dml
## RESET = 2.7944, dfl = 2, df2 = 77, p-value = 0.06736
RELAIMPO - DNI MODEL
dml.rela<-calc.relimp(dml) print(dml.rela) ## Response variable: dni
## Total response variance: 0.0001562766
## Analysis based on 86 observations
## 6 Regressors: ## bcfo bebt deposit ovh loan growth ## Proportion of variance explained by model: 44.79% ## Metrics are not normalized (rela=FALSE).
## Relative importance metrics:
##
Img
##
bcfo
0.001247805
##
bebt
0.223519860
##
deposit
0.095340453
##
ovh
0.016106864
##
loan
0.032168206
##
growth
0.079549075
##
Average
coefficients
for different model sizes
•
##
IX
2Xs
3Xs
4Xs
5Xs
##
bcfo
-0.00416618
0.002197624
0.004075882
0.004188767
0.0039992419
##
bebt
-0.74948768 ■
-0.757906494
-0.754148258
-0.749367490
-0.7476872061
##
deposit
0.02697414
0.025368076
0.023331820
0.021248396
0.0194264926
##
ovh
0.46342625
0.238121388
0.142060088
0.132281327
0 1728233799
##
loan
0.01863300
0.012940151
0.007803130
0.003286959
-0.0006025325
##
growth
0.01426621
0.012196654
0.010415652
0.009041588
0.0079842902
##
6Xs
##
bcfo
0.003858122
##
bebt
-0.748721551
##
deposit
0.018092875
##
ovh
0.234681350
##
loan
-0.003934595
##
growth
0.007025649
plot(dml.rela)
Relative importances for dni
Method LMG
2 J J . • ÉI 1- I
R = 44.79%, metrics are not normalized.
GIAI ĐOẠN TỪ2012 ĐÉN 2015
dm2 <-lm(dni~bcfo+bebt+deposit+ovh+loan+growth,data=Var2) summary(dm2) ## Call:
## lm(formula = dni ~ bcfo + bebt + deposit + ovh + loan + growth,
## data = Var2)
## Residuals:
##
Min
IQ
Median
3Q Max
##
-0.0101489 -
0.0026426
0.0004042
0.0028578 0.0097668
##
##
Coefficients
I
##
Estimate
std. Error
t value
Pr(>|t|)
##
(Intercept)
-0.004424
0.003103
-1.426
0.1578
##
bcfo
0.011062
0.004758
2 325
0.0226 *
##
bebt
-0.442235
0.077483
-5.708
1.87e-07 ***
##
deposit
0.004035
0.004976
0.811
0.4198
##
ovh
0.121284
0.097965
1.238
0.2193
##
loan
0.003448
0.004307
0.800
0.4258
##
growth
0.001062
0.003894
0.273
0.7858
##
—
##
Signif. codes: 0 ’***
’ 0.001 ’**
■ 0.01 ■
*■ 0.05 ■.■ 0.
##
## Residual standard error: 0.004361 on 80 degrees of freedom ## (1 observation deleted due to missingness)
## Multiple R-squared: 0.3743, Adjusted R-squared: 0.3274
## F-statistic: 7.977 on 6 and 80 DF, p-value: 9.355e-07
DIAGNOSTIC TEST FOR DM2
vif(dm2)
## bcfo bebt deposit ovh loan growth
## 1.054774 1.357913 3.171440 1.332476 2.271640 2.287288
dwtest(dm2)
## Durbin-Watson test
## data: dm2
## DW = 1.9815, p-value = 0.3811
## alternative hypothesis: true autocorrelation is greater than 0
bgtest(dm2)
## Breusch-Godfrey test for serial correlation of order up to 1
## data: dm2
## LM test = 0.0019784, df = 1, p-value = 0.9645
bptest(dm2)
## studentized Breusch-Pagan test
## data: dm2
## BP = 14.555, df = 6, p-value = 0.02401
bptest(dm2,varformula = ~fitted.values(dm2),studentize = TRUE,data=Var2)
## studentized Breusch-Pagan test
## data: dm2
## BP = 0.11774, df = 1, p-value = 0.7315
resettest(dm2,type="fitted")
## RESET test
## data: dm2
## RESET = 1.0798, dfl = 2, df2 = 78, p-value = 0.3447
RELAIMPO - DNI MODEL
dm2.rela<-calc.relimp(dm2)
print(dm2.rela)
## Response variable: dni
## Total response variance: 2.827054e-05
## Analysis based on 87 observations
## 6 Regressors:
## bcfo bebt deposit ovh loan growth
## Proportion of variance explained by model: 37.43%
## Metrics are not normalized (rela=FALSE).
## Relative importance metrics:
## Img
## bcfo 0.033958038
## bebt 0.263129347
## deposit 0.042343756
## ovh 0.009301644
## loan 0.012213302
## growth 0.013368557
##
## Average coefficients for different model sizes:
##
IX
2Xs
3Xs
4Xs
5Xs
##
bcfo
0.008342794
0.008947652
0.009519446
0.009964141
0.010425531
##
bebt
-0.376981351
-0.399748606
-0.412872266
-0.421865305
-0.431011794
##
deposit
0.008311812
0.009593354
0.009632617
0.008638796
0.006742146
##
ovh
-0.028745835
-0.020818375
0.001930175
0.036131458
0.077298489
##
loan
0.002986003
0.001819711
0.001276151
0.001394335
0.002155694
##
growth
0.004867859
0.004023384
0.002848608
0.001752998
0.001081956
##
6Xs
##
bcfo
0.011062097
##
bebt
-0.442235269
##
deposit
0.004035417
##
ovh
0.121283982
##
loan
0.003447771
##
growth
0.001061966
plot(dm2.rela)
Relative importances for dni
Method LMG
2 m jrtA/ i - i 1- I
R = 37.43%, metrics are not normalized.
Các file đính kèm theo tài liệu này:
- luan_an_nghien_cuu_chat_luong_thong_tin_loi_nhuan_ke_toan_co.docx