Luận án Nghiên cứu chế tạo vật liệu compozit trên cơ sở cacbon, coban ferrit và Mxene-Ti₃C₂ ứng dụng làm điện cực trong siêu tụ điện

Đặc tính điện hóa trong hệ siêu tụ điện 2 cực của vật liệu cacbon aerogel được trình bày trên Hình 3.5a. Đường cong quét thế tuần hoàn (CV) của mẫu cacbon aerogel ở các tốc độ quét 5 mV/s, 10 mV/s và 20 mV/s đều có dạng gần giống hình chữ nhật với sóng cực âm và cực dương có tính đối xứng tốt. Điều này cho thấy vật liệu điện cực có tính thuận nghịch cao trong dung dịch điện ly KOH. Đường cong CV trơn, không có sự xuất hiện của các đỉnh oxi hóa khử, cho thấy cacbon aerogel có hành vi điện hóa đặc trưng của vật liệu lớp kép. Ngoài ra, trên đường cong CV tại các vị trí điện thế cao, không xuất hiện sự tăng vọt của dòng điện, cho thấy không xảy ra quá trình phân cực khi điện cực làm việc tại các điện thế này. Chứng tỏ rằng vật liệu điện cực cacbon aerogel có độ ổn định cao trong toàn bộ khoảng điện áp làm việc. Đồ thị phóng nạp dòng không đổi (GCD) của cacbon aerogel ở các mật độ dòng khác nhau được thể hiện trên Hình 3.4b. Khi mật độ dòng tăng, thời gian nạp - phóng có xu hướng giảm mạnh. Khi mật độ dòng đạt từ 0,2 A/g trở lên, đường GCD có dạng tam giác cân khi thời gian phóng nạp cân bằng nhau. Điều này cho thấy vật liệu cacbon aerogel có tính thuận nghịch cao trong quá trình phóng nạp. Kết quả tính toán điện dung riêng theo đồ thị GCD theo mật độ dòng 0,1 A/g, 0,2 A/g; 0,3 A/g; 0,5 A/g và 1,0 A/g lần lượt đạt 94 F/g; 90 F/g; 85 F/g; 84 F/g và 78 F/g. Khi mật độ dòng điện tăng từ 10 lần từ 0,1 A/g đến 1,0 A/g, giá trị điện dung riêng vẫn giữ được 83% so với ban đầu, chứng tỏ điện cực có khả năng làm việc ở tốc độ phóng nạp cao.

pdf131 trang | Chia sẻ: Kim Linh 2 | Ngày: 09/11/2024 | Lượt xem: 30 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu chế tạo vật liệu compozit trên cơ sở cacbon, coban ferrit và Mxene-Ti₃C₂ ứng dụng làm điện cực trong siêu tụ điện, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
yst", Applied Catalysis B: Environmental. 267, p. 118379. 27. Chou, Pai and Kim, Sehwan (2023), "Techniques for Maximizing Efficiency of Solar Energy Harvesting Systems (Invited Paper)". 107 28. Da Silva, Leonardo, et al. (2019), "Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials", Energy Storage Materials. 27. 29. Dao, Van-Duong, et al. (2019), "A facile synthesis of ruthenium/reduced graphene oxide nanocomposite for effective electrochemical applications", Solar Energy. 191, pp. 420-426. 30. De, Bibekananda, et al. (2020), "Transition Metal Oxides as Electrode Materials for Supercapacitors", in Kar, Kamal K., Editor, Handbook of Nanocomposite Supercapacitor Materials II: Performance, Springer International Publishing, Cham, pp. 89-111. 31. Down, Michael P., et al. (2018), "Fabrication of Graphene Oxide Supercapacitor Devices", ACS Applied Energy Materials. 1(2), pp. 707-714. 32. Dubal, D. P., et al. (2015), "Hybrid energy storage: the merging of battery and supercapacitor chemistries", Chemical Society Reviews. 44(7), pp. 1777- 1790. 33. Eftekhari, Ali, Li, Lei, and Yang, Yang (2017), "Polyaniline supercapacitors", Journal of Power Sources. 347, pp. 86-107. 34. Emiru, Tarko and Ayele, Delele (2016), "Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production", Egyptian Journal of Basic and Applied Sciences. 4. 35. Fan, Yuancheng, et al. (2019), "Graphene Plasmonics: A Platform for 2D Optics", Advanced Optical Materials. 7(3), p. 1800537. 36. Fang, Baizeng, et al. (2005), "High Capacity Supercapacitors Based on Modified Activated Carbon Aerogel", Journal of Applied Electrochemistry. 35, pp. 229-233. 37. Feng, Xuansheng, et al. (2018), "Hierarchical CoFe2O4/NiFe2O4 nanocomposites with enhanced electrochemical capacitive properties", Journal of Materials Science. 53. 38. Gao, Hongyan, Xiang, Junjie, and Cao, Yan (2017), "Hierarchically porous CoFe2O4 nanosheets supported on Ni foam with excellent electrochemical properties for asymmetric supercapacitors", Applied Surface Science. 413, pp. 351-359. 39. Gao, Xiang, et al. (2020), "Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage", Nature Communications. 11(1), p. 6160. 40. Gao, Zhiyong, et al. (2018), "ZnCo2O4 -reduced graphene oxide composite with balanced capacitive performance in asymmetric supercapacitors", Applied Surface Science. 442, pp. 138-147. 41. Ghamry, Mohamed A., et al. (2023), "Employment of Co(II)–Fe(III) layered double hydroxide as magnetic adsorbent for rapid recovery of molybdenum- 108 99", Journal of Radioanalytical and Nuclear Chemistry. 332(10), pp. 4101- 4112. 42. Ghidiu, Michael, et al. (2014), "Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance", Nature. 516(7529), pp. 78- 81. 43. Ghosh, Arunabha and Lee, Young Hee (2012), "Carbon-Based Electrochemical Capacitors", ChemSusChem. 5(3), pp. 480-499. 44. Gonçalves, R., et al. (2021), "Carbon nitride/polypyrrole composite supercapacitor: Boosting performance and stability", Electrochimica Acta. 368, p. 137570. 45. Gosalawit−Utke, Rapee, et al. (2012), "2LiBH4–MgH2 in a Resorcinol– Furfural Carbon Aerogel Scaffold for Reversible Hydrogen Storage", The Journal of Physical Chemistry C. 116(1), pp. 1526-1534. 46. Gu, Hongbo, et al. (2021), "Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption", Advanced Composites and Hybrid Materials. 4(3), pp. 459-468. 47. Guan, Jiehao, et al. (2020), "Multicomponent design of Fe3O4 nanosheet- based binder-free anodes with a special substrate for supercapacitors", Journal of Power Sources. 469, p. 228307. 48. Guo, Bingyan, et al. (2020), "A binder-free electrode based on Ti3C2Tx-rGO aerogel for supercapacitors", Colloids and Surfaces A: Physicochemical and Engineering Aspects. 595, p. 124683. 49. Guo, Jia, et al. (2019), "P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor", Applied Surface Science. 475, pp. 56-66. 50. Halim, Joseph, et al. (2014), "Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films", Chemistry of Materials. 26(7), pp. 2374-2381. 51. Hebalkar, N., et al. (2005), "Study of correlation of structural and surface properties with electrochemical behaviour in carbon aerogels", Journal of Materials Science. 40(14), pp. 3777-3782. 52. Hoa, Nguyen Van, et al. (2021), "A hierarchical porous aerogel nanocomposite of graphene/NiCo2S4 as an active electrode material for supercapacitors", Journal of Science: Advanced Materials and Devices. 6(4), pp. 569-577. 53. Hou, Wentao, et al. (2021), "Mixed-dimensional heterostructure of few-layer MXene based vertical aligned MoS2 nanosheets for enhanced supercapacitor performance", Journal of Alloys and Compounds. 859, p. 157797. 54. Hu, Minmin, et al. (2020), "Emerging 2D MXenes for supercapacitors: Status, challenges and prospects", Chemical Society Reviews. 49. 109 55. Hua, Ye, Tezel, F. Handan, and Miller, Elizabeth (2018), "Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors", The Journal of Energy Storage. 20. 56. Huang, Huajie, et al. (2015), "Controlled growth of nanostructured MnO2 on carbon nanotubes for high-performance electrochemical capacitors", Electrochimica Acta. 152, pp. 480-488. 57. Huang, Ke-Jing, et al. (2013), "Layered MoS2–graphene composites for supercapacitor applications with enhanced capacitive performance", International Journal of Hydrogen Energy. 38(32), pp. 14027-14034. 58. Huang, Ming, et al. (2015), "MnO2-based nanostructures for high- performance supercapacitors", Journal of Materials Chemistry A. 3(43), pp. 21380-21423. 59. Isacfranklin, M., et al. (2022), "ZnCo2O4/CNT composite for efficient supercapacitor electrodes", Ceramics International. 48(17), pp. 24745- 24750. 60. Jiang, Hao, et al. (2011), "High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires", Energy & Environmental Science. 4(5), pp. 1813- 1819. 61. Karthikeyan, A., et al. (2023), "High electrochemical performance of Co3O4- PVDF-NMP-based supercapacitor electrode", Journal of Materials Science: Materials in Electronics. 34(8), p. 728. 62. Keshari, Achal Singh and Dubey, Prashant (2022), "Amorphous MnOx Nanostructure/Multiwalled Carbon Nanotube Composites as Electrode Materials for Supercapacitor Applications", ACS Applied Nano Materials. 5(6), pp. 8566-8582. 63. Khot, A. C., et al. (2021), "Ti3C2 -Based MXene Oxide Nanosheets for Resistive Memory and Synaptic Learning Applications", ACS Applied Materials & Interfaces. 13, pp. 5216–5227. 64. Kim, Yong-Jae, et al. (2021), "Etching Mechanism of Monoatomic Aluminum Layers during MXene Synthesis", Chemistry of Materials. 33(16), pp. 6346-6355. 65. Kotutha, Isara, et al. (2019), "Electrochemical properties of rGO/CoFe2O4 nanocomposites for energy storage application", Ionics. 25(11), pp. 5401- 5409. 66. Lai, Haihong, et al. (2024), "Defect reduction to enhance the mechanical strength of nanocellulose carbon aerogel", Chinese Chemical Letters. 35(1), p. 108331. 67. Lee, Chongmin, Chang, Hankwon, and Jang, Hee Dong (2018), "Preparation of CoFe2O4-Graphene Composites Using Aerosol Spray Pyrolysis for 110 Supercapacitors Application", Aerosol and Air Quality Research. 19, pp. 443-448. 68. Lee, Chongmin, Chang, Hankwon, and Jang, Hee Dong (2019), "Preparation of CoFe2O4-Graphene Composites Using Aerosol Spray Pyrolysis for Supercapacitors Application", Aerosol and Air Quality Research. 19(3), pp. 443-448. 69. Lee, Hee Y. and Goodenough, J. B. (1999), "Supercapacitor Behavior with KCl Electrolyte", Journal of Solid State Chemistry. 144(1), pp. 220-223. 70. Lee, Jong-Hoon, Lee, Seul-Yi, and Park, Soo-Jin (2023), "Highly Porous Carbon Aerogels for High-Performance Supercapacitor Electrodes", Nanomaterials. 13(5), p. 817. 71. Li, Jien, et al. (2019), "Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors", Nano Energy. 57, pp. 379-387. 72. Li, Xin-Liang and Guo, Jian-Gang (2019), "Theoretical Investigation on Failure Strength and Fracture Toughness of Precracked Single-Layer Graphene Sheets", Journal of Nanomaterials. 2019, p. 9734807. 73. Li, Xinliang, et al. (2022), "MXene chemistry, electrochemistry and energy storage applications", Nature Reviews Chemistry. 6. 74. Li, Youbing, et al. (2020), "A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non- aqueous electrolyte", Nature Materials. 19(8), pp. 894-899. 75. Li, Yue, et al. (2017), brication of reduced graphene oxide/activated carbon / MnO2 hybrids with excellent electrochemical performance for supercapacitors. 76. Li, Yue, et al. (2017), "Hydrothermal fabrication of reduced graphene oxide/activated carbon/MnO2 hybrids with excellent electrochemical performance for supercapacitors", RSC Adv. 7, pp. 39024-39033. 77. Li, Zhengyang, et al. (2015), "Synthesis and thermal stability of two- dimensional carbide MXene Ti3C2", Materials Science and Engineering: B. 191, pp. 33-40. 78. Liu, Fanfan, et al. (2016), "Preparation and methane adsorption of two- dimensional carbide Ti2C", Adsorption. 22(7), pp. 915-922. 79. Liu, Huayu, et al. (2022), "Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor", Advanced Composites and Hybrid Materials. 5(2), pp. 1168-1179. 80. Liu, Jingquan, et al. (2019), "Fabrication of Cobaltosic Oxide Nanoparticle- Doped 3D MXene/Graphene Hybrid Porous Aerogels for All-Solid-State Supercapacitors", Chemistry. 25. 111 81. Liu, Panbo, et al. (2019), "Recent advancements of polyaniline-based nanocomposites for supercapacitors", Journal of Power Sources. 424, pp. 108-130. 82. Liu, Ping, et al. (2017), "Novel method of preparing CoFe2O4/graphene by using steel rolling sludge for supercapacitor", Electrochimica Acta. 231, pp. 565-574. 83. Liu, Qiang, et al. (2020), "Fabrication of a fibrous MnO2@MXene/CNT electrode for high-performance flexible supercapacitor", Ceramics International. 46(8, Part B), pp. 11874-11881. 84. Lokhande, C. D., Dubal, D. P., and Joo, Oh-Shim (2011), "Metal oxide thin film based supercapacitors", Current Applied Physics. 11(3), pp. 255-270. 85. Lu, Ming, et al. (2019), "Integrated MXene&CoFe2O4 electrodes with multi- level interfacial architectures for synergistic lithium-ion storage", Nanoscale. 11(32), pp. 15037-15042. 86. Lu, Zan, et al. (2017), "High-performance hybrid carbon nanotube fibers for wearable energy storage", Nanoscale. 9(16), pp. 5063-5071. 87. Lukatskaya, Maria, et al. (2013), "Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide", Science (New York, N.Y.). 341, pp. 1502-5. 88. Lukatskaya, Maria R., et al. (2017), "Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides", Nature Energy. 2(8), p. 17105. 89. Luo, Wenlong, et al. (2023), "Binder-free flexible Ti3C2Tx MXene/reduced graphene oxide/carbon nanotubes film as electrode for asymmetric supercapacitor", Chemical Engineering Journal. 474, p. 145553. 90. Luo, Yangyang, et al. (2021), "2D hierarchical nickel cobalt sulfides coupled with ultrathin titanium carbide (MXene) nanosheets for hybrid supercapacitors", Journal of Power Sources. 482, p. 228961. 91. Lv, Huizhen, et al. (2020), "A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors", Nano- Micro Letters. 12. 92. Lv, Yan, et al. (2020), "Coal-based 3D hierarchical porous carbon aerogels for high performance and super-long life supercapacitors", Scientific Reports. 10(1), p. 7022. 93. Meng, Qiufeng, et al. (2017), "Research progress on conducting polymer based supercapacitor electrode materials", Nano Energy. 36, pp. 268-285. 94. Mevada, Chirag and Mukhopadhyay, Mausumi (2023), "Introduction to Supercapacitors", in Kar, Kamal K., Editor, Handbook of Nanocomposite Supercapacitor Materials IV: Next-Generation Supercapacitors, Springer International Publishing, Cham, pp. 1-17. 112 95. Naguib, Michael, et al. (2015), "Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”", Dalton Transactions. 44(20), pp. 9353-9358. 96. Nguyen, Nghia V., et al. (2020), "Facile Synthesis of a NiCo2O4 Nanoparticles Mesoporous Carbon Composite as Electrode Materials for Supercapacitor", ChemistrySelect. 5(23), pp. 7060-7068. 97. Noori, Abolhassan, et al. (2019), "Towards establishing standard performance metrics for batteries, supercapacitors and beyond", Chemical Society Reviews. 48(5), pp. 1272-1341. 98. Ouda, Emtinan, et al. (2023), "Electrochemical properties of MnO2-based carbon nanomaterials for energy storage and electrochemical sensing", Journal of Materials Science: Materials in Electronics. 34(8), p. 731. 99. Pan, Jing, et al. (2021), "The NiFe2O4/NiCo2O4/GO composites electrode material derived from dual-MOF for high performance solid-state hybrid supercapacitors", Colloids and Surfaces A: Physicochemical and Engineering Aspects. 609, p. 125650. 100. Pan, Wei, et al. (2022), "Conductive Fe@Fe2O3/FeOOH necklace-like nanowires of high electrochemical performances for a supercapacitor application", Materials Research Bulletin. 145, p. 111549. 101. Panda, Pritam, et al. (2020), "Progress in Supercapacitors: Roles of Two Dimensional Nanotubular Materials". 2, pp. 70-108. 102. Pandolfo, A. G. and Hollenkamp, A. F. (2006), "Carbon properties and their role in supercapacitors", Journal of Power Sources. 157(1), pp. 11-27. 103. Patra, A., et al. (2022), "Enhanced charge storage performance of MXene based all-solid-state supercapacitor with vertical graphene arrays as the current collector", JOURNAL OF ENERGY STORAGE. 54. 104. Patra, Abhinandan, et al. (2022), "Enhanced charge storage performance of MXene based all-solid-state supercapacitor with vertical graphene arrays as the current collector", Journal of Energy Storage. 54, p. 105355. 105. Persson, Ingemar, et al. (2020), "How Much Oxygen Can a MXene Surface Take Before It Breaks?", Advanced Functional Materials. 30(47), p. 1909005. 106. Poudeh, Leila Haghighi, et al. (2019), "Three-Dimensional Graphene-Based Structures: Production Methods, Properties, and Applications", Handbook of Graphene Set, pp. 359-387. 107. Purkait, Taniya, et al. (2018), "High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks", Scientific Reports. 8(1), p. 640. 108. Qu, Yuanduo, et al. (2020), "All-solid-state flexible supercapacitor using graphene/g-C3N4 composite capacitor electrodes", Journal of Materials Science. 55. 113 109. Rani, Barkha and Sahu, Niroj Kumar (2020), "Electrochemical properties of CoFe2O4 nanoparticles and its rGO composite for supercapacitor", Diamond and Related Materials. 108, p. 107978. 110. Reddy, K. Suresh Kumar, Al Shoaibi, Ahmed, and Srinivasakannan, C. (2012), "A comparison of microstructure and adsorption characteristics of activated carbons by CO2 and H3PO4 activation from date palm pits", New Carbon Materials. 27(5), pp. 344-351. 111. Rehman, Zia Ur, et al. (2022), "6-Metal oxide–carbon composites for supercapacitor applications", in Chaudhry, Muhammad Akram, Hussain, Rafaqat, and Butt, Faheem K., Editors, Metal Oxide-Carbon Hybrid Materials, Elsevier, pp. 133-177. 112. Ren, Xiaohu, et al. (2018), "Hierarchical Co3O4/PANI hollow nanocages: Synthesis and application for electrode materials of supercapacitors", Applied Surface Science. 441, pp. 194-203. 113. Ruxue, Yang, et al. (2022), "Recent Research Progress in the Structure, Fabrication, and Application of MXene-Based Heterostructures", Nanomaterials. 12, p. 1907. 114. S, Chetana, et al. (2023), "A facile supercritical fluid synthesis of cobalt sulfide integrated with MXene and PANI/PEDOT nanocomposites as electrode material for supercapacitor applications", FlatChem. 37, p. 100456. 115. Salanne, M., et al. (2016), "Efficient storage mechanisms for building better supercapacitors", Nature Energy. 1(6), p. 16070. 116. Salleh, Nor Azmira, et al. (2023), "Electrode polymer binders for supercapacitor applications: A review", Journal of Materials Research and Technology. 23, pp. 3470-3491. 117. Sarycheva, Asia and Gogotsi, Yury (2020), "Raman Spectroscopy Analysis of the Structure and Surface Chemistry of Ti3C2Tx MXene", Chemistry of Materials. 32(8), pp. 3480-3488. 118. Sengupta, Iman, et al. (2018), "Thermal reduction of graphene oxide: How temperature influences purity", Journal of Materials Research. 33(23), pp. 4113-4122. 119. Shah, Syed Shaheen, Aziz, Abdul, and Oyama, Munetaka (2023), "Electrochemical Techniques for Supercapacitors", Biomass ‐ Based Supercapacitors, pp. 81-92. 120. Shahriary, Leila and Athawale, Anjali (2014), "Graphene oxide synthesized by using modified Hummers approach", Renew. Energy Environ. Eng. 2. 121. Shang, Yizheng, et al. (2020), "Flower-like ternary metal of Ni-Co-Mn hydroxide combined with carbon nanotube for supercapacitor", Ionics. 26. 122. Shanmugavani, A., et al. (2015), "Influence of pH and fuels on the combustion synthesis, structural, morphological, electrical and magnetic 114 properties of CoFe2O4 nanoparticles", Materials Research Bulletin. 71, pp. 122-132. 123. Sharma, Pawan and Bhatti, T. S. (2010), "A review on electrochemical double-layer capacitors", Energy Conversion and Management. 51(12), pp. 2901-2912. 124. Shi, Fan, et al. (2014), "Metal oxide/hydroxide-based materials for supercapacitors", RSC Advances. 4(79), pp. 41910-41921. 125. Shuck, Christopher E., et al. (2020), "Scalable Synthesis of Ti3C2Tx MXene", Advanced Engineering Materials. 22(3), p. 1901241. 126. Simon, Patrice and Gogotsi, Yury (2008), "Materials for electrochemical capacitors", Nature Materials. 7(11), pp. 845-854. 127. Snook, Graeme A., Kao, Pon, and Best, Adam S. (2011), "Conducting- polymer-based supercapacitor devices and electrodes", Journal of Power Sources. 196(1), pp. 1-12. 128. Stankovich, Sasha, et al. (2007), "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide", Carbon. 45(7), pp. 1558-1565. 129. Syamsai, Ravuri, et al. (2017), "Synthesis and properties of 2D-titanium carbide MXene sheets towards electrochemical energy storage applications", Ceramics International. 43(16), pp. 13119-13126. 130. Tao, Li, et al. (2015), "Supercapacitor electrode with a homogeneously Co3O4-coated multiwalled carbon nanotube for a high capacitance", Nanoscale research letters. 10, p. 208. 131. Thanh Tam, Le Thi, et al. (2022), "High electrochemical performance of ink solution based on manganese cobalt sulfide/reduced graphene oxide nano- composites for supercapacitor electrode materials", RSC Advances. 12(31), pp. 20182-20190. 132. Thomas, Jasmine, et al. (2017), "Synthesis of cobalt ferrite nanoparticles by constant pH co-precipitation and their high catalytic activity in CO oxidation", New Journal of Chemistry. 41(15), pp. 7356-7363. 133. Thu, Tran Viet, et al. (2019), "Graphene-MnFe2O4-polypyrrole ternary hybrids with synergistic effect for supercapacitor electrode", Electrochimica Acta. 314, pp. 151-160. 134. Tu, Phan Minh, et al. (2023), "Nipa palm shell-derived magnetic carbon aerogel for absorbents and storage energy", Journal of Non-Crystalline Solids. 615, p. 122424. 135. Tung, Doan Thanh, et al. (2021), "Freeze gelation 3D printing of rGO- CuCo2S4 nanocomposite for high-performance supercapacitor electrodes", Electrochimica Acta. 392, p. 138992. 136. Urbankowski, Patrick, et al. (2016), "Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)", Nanoscale. 8(22), pp. 11385-11391. 115 137. Wang, Bo, et al. (2020), "Graphene-based composites for electrochemical energy storage", Energy Storage Materials. 24, pp. 22-51. 138. Wang, Guixin, et al. (2023), "Solvent-assisted assembly of reduced graphene oxide/MXene-polypyrrole composite film for flexible supercapacitors", Journal of Colloid and Interface Science. 630, pp. 817-827. 139. Wang, Jian-Gan, Kang, Feiyu, and Wei, Bingqing (2015), "Engineering of MnO2-based nanocomposites for high-performance supercapacitors", Progress in Materials Science. 74, pp. 51-124. 140. Wang, Junbing, et al. (2008), "The porous structures of activated carbon aerogels and their effects on electrochemical performance", Journal of Power Sources. 185(1), pp. 589-594. 141. Wang, S. X., Jin, C. C., and Qian, W. J. (2014), "Bi2O3 with activated carbon composite as a supercapacitor electrode", Journal of Alloys and Compounds. 615, pp. 12-17. 142. Wang, Shuangbao, et al. (2023), "Effect of HF etching on titanium carbide (Ti3C2Tx) microstructure and its capacitive properties", Chemical Engineering Journal. 452, p. 139512. 143. Wang, Wei, et al. (2024), "Sandwich-like high-performance Ti3C2Tx MXene/NiCo2O4 nanosphere composites for asymmetric supercapacitor application", Journal of Energy Storage. 86, p. 111097. 144. Wang, Weiyang, et al. (2019), "T4,4,4-graphyne: A 2D carbon allotrope with an intrinsic direct bandgap", Solid State Communications. 293, pp. 23-27. 145. Wang, Xin, et al. (2016), "Efficiently dense hierarchical graphene based aerogel electrode for supercapacitors", Journal of Power Sources. 324, pp. 188-198. 146. Wang, Yitong and Wang, Yuhua (2023), "Recent progress in MXene layers materials for supercapacitors: High-performance electrodes", SmartMat. 4(1), pp. 1-35. 147. Wang, Yonggang, Song, Yanfang, and Xia, Yongyao (2016), "Electrochemical capacitors: Mechanism, materials, systems, characterization and applications", Chemical Society reviews. 45. 148. Wang, Zifeng, et al. (2020), "Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage", Materials Science and Engineering: R: Reports. 139, p. 100520. 149. Wayu, Mulugeta (2021), "Manganese Oxide Carbon-Based Nanocomposite in Energy Storage Applications", Solids. 2(2), pp. 232-248. 150. Wei, Guidan, et al. (2016), "Dielectric relaxation and hopping conduction in reduced graphite oxide", Journal of Applied Physics. 119, p. 224102. 151. Winter, Martin and Brodd, Ralph J. (2004), "What Are Batteries, Fuel Cells, and Supercapacitors?", Chemical Reviews. 104(10), pp. 4245-4270. 116 152. Wu, Chien-Wei, et al. (2020), "Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application", Energy Storage Materials. 25, pp. 563-571. 153. Wu, Qianghong, et al. (2021), "Cyclic Stability of Supercapacitors: Materials, Energy Storage Mechanism, Test Methods, and Device", Journal of Materials Chemistry A. 9. 154. Wu, Xiaozhong, et al. (2012), "High-rate capacitive performance of graphene aerogel with a superhigh C/O molar ratio", Journal of Materials Chemistry. 22(43), pp. 23186-23193. 155. Xia, Kaisheng, et al. (2008), "Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials", Carbon. 46(13), pp. 1718-1726. 156. Xiao-ning, - TANG, et al. (2021), "- Charge storage mechanisms of manganese dioxide-based supercapacitors: A review", - NEW CARBON MATERIALS. - 36(- 4), pp. - 702. 157. Xie, Jiale, et al. (2018), "Puzzles and confusions in supercapacitor and battery: Theory and solutions", Journal of Power Sources. 401, pp. 213-223. 158. Xie, Kaijun, et al. (2022), "Facile preparation of 3D porous agar-based heteroatom-doped carbon aerogels for high-energy density supercapacitors", RSC Advances. 12(32), pp. 20975-20982. 159. Xie, Lijing, et al. (2015), "Self-Assembled 3D Graphene-Based Aerogel with Co3O4 Nanoparticles as High-Performance Asymmetric Supercapacitor Electrode", ChemSusChem. 8(17), pp. 2917-2926. 160. Xu, Jingsheng, et al. (2022), "MXenes serving aqueous supercapacitors: Preparation, energy storage mechanism and electrochemical performance enhancement", Sustainable Materials and Technologies. 33, p. e00490. 161. Xu, Juan, et al. (2018), "Preparing hierarchical porous carbon aerogels based on enzymatic hydrolysis lignin through ambient drying for supercapacitor electrodes", Microporous and Mesoporous Materials. 265, pp. 258-265. 162. Xu, Xueqin, et al. (2022), "MXenes with applications in supercapacitors and secondary batteries: A comprehensive review", Materials Reports: Energy. 2(1), p. 100080. 163. Yan, Bing, et al. (2023), "Nitrogen-doped carbon layer on cellulose derived free-standing carbon paper for high-rate supercapacitors", Applied Surface Science. 608, p. 155144. 164. Yang, Chao, et al. (2019), "Phase-field model of graphene aerogel formation by ice template method", Applied Physics Letters. 115(11). 165. Yang, L., et al. (2019), "Freestanding nitrogen-doped d-Ti3C2/reduced graphene oxide hybrid films for high performance supercapacitors", Electrochimica Acta. 300, pp. 349-356. 117 166. Yang, Xi, et al. (2018), "Porous nanoplatelets wrapped carbon aerogels by pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor electrodes", Carbohydrate Polymers. 180, pp. 385-392. 167. Yildirim Kalyon, Hilal, et al. (2022), "Novel composite materials consisting of polypyrrole and metal organic frameworks for supercapacitor applications", Journal of Energy Storage. 48, p. 103699. 168. Yin, Jian, et al. (2020), "Synthesis Strategies of Porous Carbon for Supercapacitor Applications", Small Methods. 4(3), p. 1900853. 169. Yu, Dingshan, et al. (2014), "Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage", Nature Nanotechnology. 9(7), pp. 555-562. 170. Yu, Guihua, et al. (2011), "Enhancing the Supercapacitor Performance of Graphene/MnO2 Nanostructured Electrodes by Conductive Wrapping", Nano Letters. 11(10), pp. 4438-4442. 171. Yu, Lanyong, et al. (2018), "MXene-Bonded Activated Carbon as a Flexible Electrode for High-Performance Supercapacitors", ACS Energy Letters. 3(7), pp. 1597-1603. 172. Yue, Yang, et al. (2018), "Highly Self-Healable 3D Microsupercapacitor with MXene–Graphene Composite Aerogel", ACS Nano. 12(5), pp. 4224- 4232. 173. Zeng, Yinxiang, et al. (2016), "Iron-Based Supercapacitor Electrodes: Advances and Challenges", Advanced Energy Materials. 6(24), p. 1601053. 174. Zhang, Chonghao, et al. (2022), "Cellulose-derived carbon aerogels: A novel porous platform for supercapacitor electrodes", Materials & Design. 219, p. 110778. 175. Zhang, Qi, et al. (2019), "Nanocellulose-Enabled, All-Nanofiber, High- Performance Supercapacitor", ACS Applied Materials & Interfaces. 11(6), pp. 5919-5927. 176. Zhang, Qun-Zheng, et al. (2018), "Research Progress in MnO2–Carbon Based Supercapacitor Electrode Materials", Small. 14(24), p. 1702883. 177. Zhang, Sanliang and Pan, Ning (2015), "Supercapacitors Performance Evaluation", Advanced Energy Materials. 5(6), p. 1401401. 178. Zhang, Yong, et al. (2015), "Synthesis and electrochemical performance of MnO2/BC composite as active materials for supercapacitors", Journal of Analytical and Applied Pyrolysis. 111, pp. 233-237. 179. Zhao, Gongyuan, et al. (2018), "One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors", Nano Energy. 47, pp. 547-555. 180. Zhao, Jie, et al. (2022), "Ultra-Fine Ruthenium Oxide Quantum Dots/Reduced Graphene Oxide Composite as Electrodes for High- Performance Supercapacitors", Nanomaterials. 12(7), pp. 1207-1210. 118 181. Zhao, Meng-Qiang, et al. (2015), "Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance", Advanced Materials. 27(2), pp. 339-345. 182. Zheng, Lingxia, et al. (2018), "One-pot synthesis of CoFe2O4/rGO hybrid hydrogels with 3D networks for high capacity electrochemical energy storage devices", RSC Advances. 8, pp. 8607-8614. 183. Zheng, Ting, et al. (2020), "Polyaniline-decorated hyaluronic acid-carbon nanotube hybrid microfiber as a flexible supercapacitor electrode material", Carbon. 159, pp. 65-73. 184. Zheng, Xin, et al. (2016), "Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes", Journal of Colloid and Interface Science. 466, pp. 291-296. 185. Zhou, Botong, et al. (2019), "Synthesis of Ultrathin MnO2 Nanosheets/Bagasse Derived Porous Carbon Composite for Supercapacitor with High Performance", Journal of Electronic Materials. 48. 186. Zhou, Yi, et al. (2010), "Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials", Electrochimica Acta. 55(12), pp. 3904-3908. 187. Zu, Guoqing, et al. (2016), "Nanocellulose-derived highly porous carbon aerogels for supercapacitors", Carbon. 99, pp. 203-211. 188. Wang, Y., et al. (2015), "Mesoporous Transition Metal Oxides for Supercapacitors", Nanomaterials (Basel). 5(4), pp. 1667-1689.

Các file đính kèm theo tài liệu này:

  • pdfluan_an_nghien_cuu_che_tao_vat_lieu_compozit_tren_co_so_cacb.pdf
  • pdfQD cấp Viện NCS Ngô Văn Hoành.pdf
  • docxThongTin KetLuanMoi LuanAn NCS NgoVanHoanh.docx
  • pdfTomTat LuanAn NCS NgoVanHoanh_TiengAnh.pdf
  • pdfTomTat LuanAn NCS NgoVanHoanh_TiengViet.pdf
  • docxTrichYeu LuanAn NCS NgoVanHoanh.docx
Luận văn liên quan