Đặc tính điện hóa trong hệ siêu tụ điện 2 cực của vật liệu cacbon aerogel được trình bày trên Hình 3.5a. Đường cong quét thế tuần hoàn (CV) của mẫu cacbon aerogel ở các tốc độ quét 5 mV/s, 10 mV/s và 20 mV/s đều có dạng gần giống hình chữ nhật với sóng cực âm và cực dương có tính đối xứng tốt. Điều này cho thấy vật liệu điện cực có tính thuận nghịch cao trong dung dịch điện ly KOH. Đường cong CV trơn, không có sự xuất hiện của các đỉnh oxi hóa khử, cho thấy cacbon aerogel có hành vi điện hóa đặc trưng của vật liệu lớp kép.
Ngoài ra, trên đường cong CV tại các vị trí điện thế cao, không xuất hiện sự tăng vọt của dòng điện, cho thấy không xảy ra quá trình phân cực khi điện cực làm việc tại các điện thế này. Chứng tỏ rằng vật liệu điện cực cacbon aerogel có độ ổn định cao trong toàn bộ khoảng điện áp làm việc.
Đồ thị phóng nạp dòng không đổi (GCD) của cacbon aerogel ở các mật độ dòng khác nhau được thể hiện trên Hình 3.4b. Khi mật độ dòng tăng, thời gian nạp - phóng có xu hướng giảm mạnh. Khi mật độ dòng đạt từ 0,2 A/g trở lên, đường GCD có dạng tam giác cân khi thời gian phóng nạp cân bằng nhau. Điều này cho thấy vật liệu cacbon aerogel có tính thuận nghịch cao trong quá trình phóng nạp. Kết quả tính toán điện dung riêng theo đồ thị GCD theo mật độ dòng 0,1 A/g, 0,2 A/g; 0,3 A/g; 0,5 A/g và 1,0 A/g lần lượt đạt 94 F/g; 90 F/g; 85 F/g; 84 F/g và 78 F/g. Khi mật độ dòng điện tăng từ 10 lần từ 0,1 A/g đến 1,0 A/g, giá trị điện dung riêng vẫn giữ được 83% so với ban đầu, chứng tỏ điện cực có khả năng làm việc ở tốc độ phóng nạp cao.
131 trang |
Chia sẻ: Kim Linh 2 | Ngày: 09/11/2024 | Lượt xem: 30 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu chế tạo vật liệu compozit trên cơ sở cacbon, coban ferrit và Mxene-Ti₃C₂ ứng dụng làm điện cực trong siêu tụ điện, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
yst", Applied
Catalysis B: Environmental. 267, p. 118379.
27. Chou, Pai and Kim, Sehwan (2023), "Techniques for Maximizing Efficiency
of Solar Energy Harvesting Systems (Invited Paper)".
107
28. Da Silva, Leonardo, et al. (2019), "Reviewing the fundamentals of
supercapacitors and the difficulties involving the analysis of the
electrochemical findings obtained for porous electrode materials", Energy
Storage Materials. 27.
29. Dao, Van-Duong, et al. (2019), "A facile synthesis of ruthenium/reduced
graphene oxide nanocomposite for effective electrochemical applications",
Solar Energy. 191, pp. 420-426.
30. De, Bibekananda, et al. (2020), "Transition Metal Oxides as Electrode
Materials for Supercapacitors", in Kar, Kamal K., Editor, Handbook of
Nanocomposite Supercapacitor Materials II: Performance, Springer
International Publishing, Cham, pp. 89-111.
31. Down, Michael P., et al. (2018), "Fabrication of Graphene Oxide
Supercapacitor Devices", ACS Applied Energy Materials. 1(2), pp. 707-714.
32. Dubal, D. P., et al. (2015), "Hybrid energy storage: the merging of battery
and supercapacitor chemistries", Chemical Society Reviews. 44(7), pp. 1777-
1790.
33. Eftekhari, Ali, Li, Lei, and Yang, Yang (2017), "Polyaniline
supercapacitors", Journal of Power Sources. 347, pp. 86-107.
34. Emiru, Tarko and Ayele, Delele (2016), "Controlled synthesis,
characterization and reduction of graphene oxide: A convenient method for
large scale production", Egyptian Journal of Basic and Applied Sciences. 4.
35. Fan, Yuancheng, et al. (2019), "Graphene Plasmonics: A Platform for 2D
Optics", Advanced Optical Materials. 7(3), p. 1800537.
36. Fang, Baizeng, et al. (2005), "High Capacity Supercapacitors Based on
Modified Activated Carbon Aerogel", Journal of Applied Electrochemistry.
35, pp. 229-233.
37. Feng, Xuansheng, et al. (2018), "Hierarchical CoFe2O4/NiFe2O4
nanocomposites with enhanced electrochemical capacitive properties",
Journal of Materials Science. 53.
38. Gao, Hongyan, Xiang, Junjie, and Cao, Yan (2017), "Hierarchically porous
CoFe2O4 nanosheets supported on Ni foam with excellent electrochemical
properties for asymmetric supercapacitors", Applied Surface Science. 413,
pp. 351-359.
39. Gao, Xiang, et al. (2020), "Maximizing ion accessibility in MXene-knotted
carbon nanotube composite electrodes for high-rate electrochemical energy
storage", Nature Communications. 11(1), p. 6160.
40. Gao, Zhiyong, et al. (2018), "ZnCo2O4 -reduced graphene oxide composite
with balanced capacitive performance in asymmetric supercapacitors",
Applied Surface Science. 442, pp. 138-147.
41. Ghamry, Mohamed A., et al. (2023), "Employment of Co(II)–Fe(III) layered
double hydroxide as magnetic adsorbent for rapid recovery of molybdenum-
108
99", Journal of Radioanalytical and Nuclear Chemistry. 332(10), pp. 4101-
4112.
42. Ghidiu, Michael, et al. (2014), "Conductive two-dimensional titanium
carbide ‘clay’ with high volumetric capacitance", Nature. 516(7529), pp. 78-
81.
43. Ghosh, Arunabha and Lee, Young Hee (2012), "Carbon-Based
Electrochemical Capacitors", ChemSusChem. 5(3), pp. 480-499.
44. Gonçalves, R., et al. (2021), "Carbon nitride/polypyrrole composite
supercapacitor: Boosting performance and stability", Electrochimica Acta.
368, p. 137570.
45. Gosalawit−Utke, Rapee, et al. (2012), "2LiBH4–MgH2 in a Resorcinol–
Furfural Carbon Aerogel Scaffold for Reversible Hydrogen Storage", The
Journal of Physical Chemistry C. 116(1), pp. 1526-1534.
46. Gu, Hongbo, et al. (2021), "Nanocellulose nanocomposite aerogel towards
efficient oil and organic solvent adsorption", Advanced Composites and
Hybrid Materials. 4(3), pp. 459-468.
47. Guan, Jiehao, et al. (2020), "Multicomponent design of Fe3O4 nanosheet-
based binder-free anodes with a special substrate for supercapacitors",
Journal of Power Sources. 469, p. 228307.
48. Guo, Bingyan, et al. (2020), "A binder-free electrode based on Ti3C2Tx-rGO
aerogel for supercapacitors", Colloids and Surfaces A: Physicochemical and
Engineering Aspects. 595, p. 124683.
49. Guo, Jia, et al. (2019), "P-doped hierarchical porous carbon aerogels derived
from phenolic resins for high performance supercapacitor", Applied Surface
Science. 475, pp. 56-66.
50. Halim, Joseph, et al. (2014), "Transparent Conductive Two-Dimensional
Titanium Carbide Epitaxial Thin Films", Chemistry of Materials. 26(7), pp.
2374-2381.
51. Hebalkar, N., et al. (2005), "Study of correlation of structural and surface
properties with electrochemical behaviour in carbon aerogels", Journal of
Materials Science. 40(14), pp. 3777-3782.
52. Hoa, Nguyen Van, et al. (2021), "A hierarchical porous aerogel
nanocomposite of graphene/NiCo2S4 as an active electrode material for
supercapacitors", Journal of Science: Advanced Materials and Devices. 6(4),
pp. 569-577.
53. Hou, Wentao, et al. (2021), "Mixed-dimensional heterostructure of few-layer
MXene based vertical aligned MoS2 nanosheets for enhanced supercapacitor
performance", Journal of Alloys and Compounds. 859, p. 157797.
54. Hu, Minmin, et al. (2020), "Emerging 2D MXenes for supercapacitors:
Status, challenges and prospects", Chemical Society Reviews. 49.
109
55. Hua, Ye, Tezel, F. Handan, and Miller, Elizabeth (2018), "Materials for
energy storage: Review of electrode materials and methods of increasing
capacitance for supercapacitors", The Journal of Energy Storage. 20.
56. Huang, Huajie, et al. (2015), "Controlled growth of nanostructured MnO2 on
carbon nanotubes for high-performance electrochemical capacitors",
Electrochimica Acta. 152, pp. 480-488.
57. Huang, Ke-Jing, et al. (2013), "Layered MoS2–graphene composites for
supercapacitor applications with enhanced capacitive performance",
International Journal of Hydrogen Energy. 38(32), pp. 14027-14034.
58. Huang, Ming, et al. (2015), "MnO2-based nanostructures for high-
performance supercapacitors", Journal of Materials Chemistry A. 3(43), pp.
21380-21423.
59. Isacfranklin, M., et al. (2022), "ZnCo2O4/CNT composite for efficient
supercapacitor electrodes", Ceramics International. 48(17), pp. 24745-
24750.
60. Jiang, Hao, et al. (2011), "High–rate electrochemical capacitors from highly
graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese
oxide hybrid nanowires", Energy & Environmental Science. 4(5), pp. 1813-
1819.
61. Karthikeyan, A., et al. (2023), "High electrochemical performance of Co3O4-
PVDF-NMP-based supercapacitor electrode", Journal of Materials Science:
Materials in Electronics. 34(8), p. 728.
62. Keshari, Achal Singh and Dubey, Prashant (2022), "Amorphous MnOx
Nanostructure/Multiwalled Carbon Nanotube Composites as Electrode
Materials for Supercapacitor Applications", ACS Applied Nano Materials.
5(6), pp. 8566-8582.
63. Khot, A. C., et al. (2021), "Ti3C2 -Based MXene Oxide Nanosheets for
Resistive Memory and Synaptic Learning Applications", ACS Applied
Materials & Interfaces. 13, pp. 5216–5227.
64. Kim, Yong-Jae, et al. (2021), "Etching Mechanism of Monoatomic
Aluminum Layers during MXene Synthesis", Chemistry of Materials. 33(16),
pp. 6346-6355.
65. Kotutha, Isara, et al. (2019), "Electrochemical properties of rGO/CoFe2O4
nanocomposites for energy storage application", Ionics. 25(11), pp. 5401-
5409.
66. Lai, Haihong, et al. (2024), "Defect reduction to enhance the mechanical
strength of nanocellulose carbon aerogel", Chinese Chemical Letters. 35(1),
p. 108331.
67. Lee, Chongmin, Chang, Hankwon, and Jang, Hee Dong (2018), "Preparation
of CoFe2O4-Graphene Composites Using Aerosol Spray Pyrolysis for
110
Supercapacitors Application", Aerosol and Air Quality Research. 19, pp.
443-448.
68. Lee, Chongmin, Chang, Hankwon, and Jang, Hee Dong (2019), "Preparation
of CoFe2O4-Graphene Composites Using Aerosol Spray Pyrolysis for
Supercapacitors Application", Aerosol and Air Quality Research. 19(3), pp.
443-448.
69. Lee, Hee Y. and Goodenough, J. B. (1999), "Supercapacitor Behavior with
KCl Electrolyte", Journal of Solid State Chemistry. 144(1), pp. 220-223.
70. Lee, Jong-Hoon, Lee, Seul-Yi, and Park, Soo-Jin (2023), "Highly Porous
Carbon Aerogels for High-Performance Supercapacitor Electrodes",
Nanomaterials. 13(5), p. 817.
71. Li, Jien, et al. (2019), "Porous Fe2O3 nanospheres anchored on activated
carbon cloth for high-performance symmetric supercapacitors", Nano
Energy. 57, pp. 379-387.
72. Li, Xin-Liang and Guo, Jian-Gang (2019), "Theoretical Investigation on
Failure Strength and Fracture Toughness of Precracked Single-Layer
Graphene Sheets", Journal of Nanomaterials. 2019, p. 9734807.
73. Li, Xinliang, et al. (2022), "MXene chemistry, electrochemistry and energy
storage applications", Nature Reviews Chemistry. 6.
74. Li, Youbing, et al. (2020), "A general Lewis acidic etching route for
preparing MXenes with enhanced electrochemical performance in non-
aqueous electrolyte", Nature Materials. 19(8), pp. 894-899.
75. Li, Yue, et al. (2017), brication of reduced graphene oxide/activated carbon
/ MnO2 hybrids with excellent electrochemical performance for
supercapacitors.
76. Li, Yue, et al. (2017), "Hydrothermal fabrication of reduced graphene
oxide/activated carbon/MnO2 hybrids with excellent electrochemical
performance for supercapacitors", RSC Adv. 7, pp. 39024-39033.
77. Li, Zhengyang, et al. (2015), "Synthesis and thermal stability of two-
dimensional carbide MXene Ti3C2", Materials Science and Engineering: B.
191, pp. 33-40.
78. Liu, Fanfan, et al. (2016), "Preparation and methane adsorption of two-
dimensional carbide Ti2C", Adsorption. 22(7), pp. 915-922.
79. Liu, Huayu, et al. (2022), "Compressible cellulose nanofibrils/reduced
graphene oxide composite carbon aerogel for solid-state supercapacitor",
Advanced Composites and Hybrid Materials. 5(2), pp. 1168-1179.
80. Liu, Jingquan, et al. (2019), "Fabrication of Cobaltosic Oxide Nanoparticle-
Doped 3D MXene/Graphene Hybrid Porous Aerogels for All-Solid-State
Supercapacitors", Chemistry. 25.
111
81. Liu, Panbo, et al. (2019), "Recent advancements of polyaniline-based
nanocomposites for supercapacitors", Journal of Power Sources. 424, pp.
108-130.
82. Liu, Ping, et al. (2017), "Novel method of preparing CoFe2O4/graphene by
using steel rolling sludge for supercapacitor", Electrochimica Acta. 231, pp.
565-574.
83. Liu, Qiang, et al. (2020), "Fabrication of a fibrous MnO2@MXene/CNT
electrode for high-performance flexible supercapacitor", Ceramics
International. 46(8, Part B), pp. 11874-11881.
84. Lokhande, C. D., Dubal, D. P., and Joo, Oh-Shim (2011), "Metal oxide thin
film based supercapacitors", Current Applied Physics. 11(3), pp. 255-270.
85. Lu, Ming, et al. (2019), "Integrated MXene&CoFe2O4 electrodes with multi-
level interfacial architectures for synergistic lithium-ion storage", Nanoscale.
11(32), pp. 15037-15042.
86. Lu, Zan, et al. (2017), "High-performance hybrid carbon nanotube fibers for
wearable energy storage", Nanoscale. 9(16), pp. 5063-5071.
87. Lukatskaya, Maria, et al. (2013), "Cation Intercalation and High Volumetric
Capacitance of Two-Dimensional Titanium Carbide", Science (New York,
N.Y.). 341, pp. 1502-5.
88. Lukatskaya, Maria R., et al. (2017), "Ultra-high-rate pseudocapacitive
energy storage in two-dimensional transition metal carbides", Nature Energy.
2(8), p. 17105.
89. Luo, Wenlong, et al. (2023), "Binder-free flexible Ti3C2Tx MXene/reduced
graphene oxide/carbon nanotubes film as electrode for asymmetric
supercapacitor", Chemical Engineering Journal. 474, p. 145553.
90. Luo, Yangyang, et al. (2021), "2D hierarchical nickel cobalt sulfides coupled
with ultrathin titanium carbide (MXene) nanosheets for hybrid
supercapacitors", Journal of Power Sources. 482, p. 228961.
91. Lv, Huizhen, et al. (2020), "A Review on Nano-/Microstructured Materials
Constructed by Electrochemical Technologies for Supercapacitors", Nano-
Micro Letters. 12.
92. Lv, Yan, et al. (2020), "Coal-based 3D hierarchical porous carbon aerogels
for high performance and super-long life supercapacitors", Scientific Reports.
10(1), p. 7022.
93. Meng, Qiufeng, et al. (2017), "Research progress on conducting polymer
based supercapacitor electrode materials", Nano Energy. 36, pp. 268-285.
94. Mevada, Chirag and Mukhopadhyay, Mausumi (2023), "Introduction to
Supercapacitors", in Kar, Kamal K., Editor, Handbook of Nanocomposite
Supercapacitor Materials IV: Next-Generation Supercapacitors, Springer
International Publishing, Cham, pp. 1-17.
112
95. Naguib, Michael, et al. (2015), "Large-scale delamination of multi-layers
transition metal carbides and carbonitrides “MXenes”", Dalton Transactions.
44(20), pp. 9353-9358.
96. Nguyen, Nghia V., et al. (2020), "Facile Synthesis of a NiCo2O4
Nanoparticles Mesoporous Carbon Composite as Electrode Materials for
Supercapacitor", ChemistrySelect. 5(23), pp. 7060-7068.
97. Noori, Abolhassan, et al. (2019), "Towards establishing standard
performance metrics for batteries, supercapacitors and beyond", Chemical
Society Reviews. 48(5), pp. 1272-1341.
98. Ouda, Emtinan, et al. (2023), "Electrochemical properties of MnO2-based
carbon nanomaterials for energy storage and electrochemical sensing",
Journal of Materials Science: Materials in Electronics. 34(8), p. 731.
99. Pan, Jing, et al. (2021), "The NiFe2O4/NiCo2O4/GO composites electrode
material derived from dual-MOF for high performance solid-state hybrid
supercapacitors", Colloids and Surfaces A: Physicochemical and
Engineering Aspects. 609, p. 125650.
100. Pan, Wei, et al. (2022), "Conductive Fe@Fe2O3/FeOOH necklace-like
nanowires of high electrochemical performances for a supercapacitor
application", Materials Research Bulletin. 145, p. 111549.
101. Panda, Pritam, et al. (2020), "Progress in Supercapacitors: Roles of Two
Dimensional Nanotubular Materials". 2, pp. 70-108.
102. Pandolfo, A. G. and Hollenkamp, A. F. (2006), "Carbon properties and their
role in supercapacitors", Journal of Power Sources. 157(1), pp. 11-27.
103. Patra, A., et al. (2022), "Enhanced charge storage performance of MXene
based all-solid-state supercapacitor with vertical graphene arrays as the
current collector", JOURNAL OF ENERGY STORAGE. 54.
104. Patra, Abhinandan, et al. (2022), "Enhanced charge storage performance of
MXene based all-solid-state supercapacitor with vertical graphene arrays as
the current collector", Journal of Energy Storage. 54, p. 105355.
105. Persson, Ingemar, et al. (2020), "How Much Oxygen Can a MXene Surface
Take Before It Breaks?", Advanced Functional Materials. 30(47), p.
1909005.
106. Poudeh, Leila Haghighi, et al. (2019), "Three-Dimensional Graphene-Based
Structures: Production Methods, Properties, and Applications", Handbook of
Graphene Set, pp. 359-387.
107. Purkait, Taniya, et al. (2018), "High-performance flexible supercapacitors
based on electrochemically tailored three-dimensional reduced graphene
oxide networks", Scientific Reports. 8(1), p. 640.
108. Qu, Yuanduo, et al. (2020), "All-solid-state flexible supercapacitor using
graphene/g-C3N4 composite capacitor electrodes", Journal of Materials
Science. 55.
113
109. Rani, Barkha and Sahu, Niroj Kumar (2020), "Electrochemical properties of
CoFe2O4 nanoparticles and its rGO composite for supercapacitor", Diamond
and Related Materials. 108, p. 107978.
110. Reddy, K. Suresh Kumar, Al Shoaibi, Ahmed, and Srinivasakannan, C.
(2012), "A comparison of microstructure and adsorption characteristics of
activated carbons by CO2 and H3PO4 activation from date palm pits", New
Carbon Materials. 27(5), pp. 344-351.
111. Rehman, Zia Ur, et al. (2022), "6-Metal oxide–carbon composites for
supercapacitor applications", in Chaudhry, Muhammad Akram, Hussain,
Rafaqat, and Butt, Faheem K., Editors, Metal Oxide-Carbon Hybrid
Materials, Elsevier, pp. 133-177.
112. Ren, Xiaohu, et al. (2018), "Hierarchical Co3O4/PANI hollow nanocages:
Synthesis and application for electrode materials of supercapacitors",
Applied Surface Science. 441, pp. 194-203.
113. Ruxue, Yang, et al. (2022), "Recent Research Progress in the Structure,
Fabrication, and Application of MXene-Based Heterostructures",
Nanomaterials. 12, p. 1907.
114. S, Chetana, et al. (2023), "A facile supercritical fluid synthesis of cobalt
sulfide integrated with MXene and PANI/PEDOT nanocomposites as
electrode material for supercapacitor applications", FlatChem. 37, p. 100456.
115. Salanne, M., et al. (2016), "Efficient storage mechanisms for building better
supercapacitors", Nature Energy. 1(6), p. 16070.
116. Salleh, Nor Azmira, et al. (2023), "Electrode polymer binders for
supercapacitor applications: A review", Journal of Materials Research and
Technology. 23, pp. 3470-3491.
117. Sarycheva, Asia and Gogotsi, Yury (2020), "Raman Spectroscopy Analysis
of the Structure and Surface Chemistry of Ti3C2Tx MXene", Chemistry of
Materials. 32(8), pp. 3480-3488.
118. Sengupta, Iman, et al. (2018), "Thermal reduction of graphene oxide: How
temperature influences purity", Journal of Materials Research. 33(23), pp.
4113-4122.
119. Shah, Syed Shaheen, Aziz, Abdul, and Oyama, Munetaka (2023),
"Electrochemical Techniques for Supercapacitors", Biomass ‐ Based
Supercapacitors, pp. 81-92.
120. Shahriary, Leila and Athawale, Anjali (2014), "Graphene oxide synthesized
by using modified Hummers approach", Renew. Energy Environ. Eng. 2.
121. Shang, Yizheng, et al. (2020), "Flower-like ternary metal of Ni-Co-Mn
hydroxide combined with carbon nanotube for supercapacitor", Ionics. 26.
122. Shanmugavani, A., et al. (2015), "Influence of pH and fuels on the
combustion synthesis, structural, morphological, electrical and magnetic
114
properties of CoFe2O4 nanoparticles", Materials Research Bulletin. 71, pp.
122-132.
123. Sharma, Pawan and Bhatti, T. S. (2010), "A review on electrochemical
double-layer capacitors", Energy Conversion and Management. 51(12), pp.
2901-2912.
124. Shi, Fan, et al. (2014), "Metal oxide/hydroxide-based materials for
supercapacitors", RSC Advances. 4(79), pp. 41910-41921.
125. Shuck, Christopher E., et al. (2020), "Scalable Synthesis of Ti3C2Tx MXene",
Advanced Engineering Materials. 22(3), p. 1901241.
126. Simon, Patrice and Gogotsi, Yury (2008), "Materials for electrochemical
capacitors", Nature Materials. 7(11), pp. 845-854.
127. Snook, Graeme A., Kao, Pon, and Best, Adam S. (2011), "Conducting-
polymer-based supercapacitor devices and electrodes", Journal of Power
Sources. 196(1), pp. 1-12.
128. Stankovich, Sasha, et al. (2007), "Synthesis of graphene-based nanosheets
via chemical reduction of exfoliated graphite oxide", Carbon. 45(7), pp.
1558-1565.
129. Syamsai, Ravuri, et al. (2017), "Synthesis and properties of 2D-titanium
carbide MXene sheets towards electrochemical energy storage applications",
Ceramics International. 43(16), pp. 13119-13126.
130. Tao, Li, et al. (2015), "Supercapacitor electrode with a homogeneously
Co3O4-coated multiwalled carbon nanotube for a high capacitance",
Nanoscale research letters. 10, p. 208.
131. Thanh Tam, Le Thi, et al. (2022), "High electrochemical performance of ink
solution based on manganese cobalt sulfide/reduced graphene oxide nano-
composites for supercapacitor electrode materials", RSC Advances. 12(31),
pp. 20182-20190.
132. Thomas, Jasmine, et al. (2017), "Synthesis of cobalt ferrite nanoparticles by
constant pH co-precipitation and their high catalytic activity in CO
oxidation", New Journal of Chemistry. 41(15), pp. 7356-7363.
133. Thu, Tran Viet, et al. (2019), "Graphene-MnFe2O4-polypyrrole ternary
hybrids with synergistic effect for supercapacitor electrode", Electrochimica
Acta. 314, pp. 151-160.
134. Tu, Phan Minh, et al. (2023), "Nipa palm shell-derived magnetic carbon
aerogel for absorbents and storage energy", Journal of Non-Crystalline
Solids. 615, p. 122424.
135. Tung, Doan Thanh, et al. (2021), "Freeze gelation 3D printing of rGO-
CuCo2S4 nanocomposite for high-performance supercapacitor electrodes",
Electrochimica Acta. 392, p. 138992.
136. Urbankowski, Patrick, et al. (2016), "Synthesis of two-dimensional titanium
nitride Ti4N3 (MXene)", Nanoscale. 8(22), pp. 11385-11391.
115
137. Wang, Bo, et al. (2020), "Graphene-based composites for electrochemical
energy storage", Energy Storage Materials. 24, pp. 22-51.
138. Wang, Guixin, et al. (2023), "Solvent-assisted assembly of reduced graphene
oxide/MXene-polypyrrole composite film for flexible supercapacitors",
Journal of Colloid and Interface Science. 630, pp. 817-827.
139. Wang, Jian-Gan, Kang, Feiyu, and Wei, Bingqing (2015), "Engineering of
MnO2-based nanocomposites for high-performance supercapacitors",
Progress in Materials Science. 74, pp. 51-124.
140. Wang, Junbing, et al. (2008), "The porous structures of activated carbon
aerogels and their effects on electrochemical performance", Journal of
Power Sources. 185(1), pp. 589-594.
141. Wang, S. X., Jin, C. C., and Qian, W. J. (2014), "Bi2O3 with activated carbon
composite as a supercapacitor electrode", Journal of Alloys and Compounds.
615, pp. 12-17.
142. Wang, Shuangbao, et al. (2023), "Effect of HF etching on titanium carbide
(Ti3C2Tx) microstructure and its capacitive properties", Chemical
Engineering Journal. 452, p. 139512.
143. Wang, Wei, et al. (2024), "Sandwich-like high-performance Ti3C2Tx
MXene/NiCo2O4 nanosphere composites for asymmetric supercapacitor
application", Journal of Energy Storage. 86, p. 111097.
144. Wang, Weiyang, et al. (2019), "T4,4,4-graphyne: A 2D carbon allotrope with
an intrinsic direct bandgap", Solid State Communications. 293, pp. 23-27.
145. Wang, Xin, et al. (2016), "Efficiently dense hierarchical graphene based
aerogel electrode for supercapacitors", Journal of Power Sources. 324, pp.
188-198.
146. Wang, Yitong and Wang, Yuhua (2023), "Recent progress in MXene layers
materials for supercapacitors: High-performance electrodes", SmartMat.
4(1), pp. 1-35.
147. Wang, Yonggang, Song, Yanfang, and Xia, Yongyao (2016),
"Electrochemical capacitors: Mechanism, materials, systems,
characterization and applications", Chemical Society reviews. 45.
148. Wang, Zifeng, et al. (2020), "Polymers for supercapacitors: Boosting the
development of the flexible and wearable energy storage", Materials Science
and Engineering: R: Reports. 139, p. 100520.
149. Wayu, Mulugeta (2021), "Manganese Oxide Carbon-Based Nanocomposite
in Energy Storage Applications", Solids. 2(2), pp. 232-248.
150. Wei, Guidan, et al. (2016), "Dielectric relaxation and hopping conduction in
reduced graphite oxide", Journal of Applied Physics. 119, p. 224102.
151. Winter, Martin and Brodd, Ralph J. (2004), "What Are Batteries, Fuel Cells,
and Supercapacitors?", Chemical Reviews. 104(10), pp. 4245-4270.
116
152. Wu, Chien-Wei, et al. (2020), "Excellent oxidation resistive MXene aqueous
ink for micro-supercapacitor application", Energy Storage Materials. 25, pp.
563-571.
153. Wu, Qianghong, et al. (2021), "Cyclic Stability of Supercapacitors: Materials,
Energy Storage Mechanism, Test Methods, and Device", Journal of
Materials Chemistry A. 9.
154. Wu, Xiaozhong, et al. (2012), "High-rate capacitive performance of
graphene aerogel with a superhigh C/O molar ratio", Journal of Materials
Chemistry. 22(43), pp. 23186-23193.
155. Xia, Kaisheng, et al. (2008), "Hierarchical porous carbons with controlled
micropores and mesopores for supercapacitor electrode materials", Carbon.
46(13), pp. 1718-1726.
156. Xiao-ning, - TANG, et al. (2021), "- Charge storage mechanisms of
manganese dioxide-based supercapacitors: A review", - NEW CARBON
MATERIALS. - 36(- 4), pp. - 702.
157. Xie, Jiale, et al. (2018), "Puzzles and confusions in supercapacitor and
battery: Theory and solutions", Journal of Power Sources. 401, pp. 213-223.
158. Xie, Kaijun, et al. (2022), "Facile preparation of 3D porous agar-based
heteroatom-doped carbon aerogels for high-energy density supercapacitors",
RSC Advances. 12(32), pp. 20975-20982.
159. Xie, Lijing, et al. (2015), "Self-Assembled 3D Graphene-Based Aerogel with
Co3O4 Nanoparticles as High-Performance Asymmetric Supercapacitor
Electrode", ChemSusChem. 8(17), pp. 2917-2926.
160. Xu, Jingsheng, et al. (2022), "MXenes serving aqueous supercapacitors:
Preparation, energy storage mechanism and electrochemical performance
enhancement", Sustainable Materials and Technologies. 33, p. e00490.
161. Xu, Juan, et al. (2018), "Preparing hierarchical porous carbon aerogels based
on enzymatic hydrolysis lignin through ambient drying for supercapacitor
electrodes", Microporous and Mesoporous Materials. 265, pp. 258-265.
162. Xu, Xueqin, et al. (2022), "MXenes with applications in supercapacitors and
secondary batteries: A comprehensive review", Materials Reports: Energy.
2(1), p. 100080.
163. Yan, Bing, et al. (2023), "Nitrogen-doped carbon layer on cellulose derived
free-standing carbon paper for high-rate supercapacitors", Applied Surface
Science. 608, p. 155144.
164. Yang, Chao, et al. (2019), "Phase-field model of graphene aerogel formation
by ice template method", Applied Physics Letters. 115(11).
165. Yang, L., et al. (2019), "Freestanding nitrogen-doped d-Ti3C2/reduced
graphene oxide hybrid films for high performance supercapacitors",
Electrochimica Acta. 300, pp. 349-356.
117
166. Yang, Xi, et al. (2018), "Porous nanoplatelets wrapped carbon aerogels by
pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor
electrodes", Carbohydrate Polymers. 180, pp. 385-392.
167. Yildirim Kalyon, Hilal, et al. (2022), "Novel composite materials consisting
of polypyrrole and metal organic frameworks for supercapacitor
applications", Journal of Energy Storage. 48, p. 103699.
168. Yin, Jian, et al. (2020), "Synthesis Strategies of Porous Carbon for
Supercapacitor Applications", Small Methods. 4(3), p. 1900853.
169. Yu, Dingshan, et al. (2014), "Scalable synthesis of hierarchically structured
carbon nanotube–graphene fibres for capacitive energy storage", Nature
Nanotechnology. 9(7), pp. 555-562.
170. Yu, Guihua, et al. (2011), "Enhancing the Supercapacitor Performance of
Graphene/MnO2 Nanostructured Electrodes by Conductive Wrapping",
Nano Letters. 11(10), pp. 4438-4442.
171. Yu, Lanyong, et al. (2018), "MXene-Bonded Activated Carbon as a Flexible
Electrode for High-Performance Supercapacitors", ACS Energy Letters. 3(7),
pp. 1597-1603.
172. Yue, Yang, et al. (2018), "Highly Self-Healable 3D Microsupercapacitor
with MXene–Graphene Composite Aerogel", ACS Nano. 12(5), pp. 4224-
4232.
173. Zeng, Yinxiang, et al. (2016), "Iron-Based Supercapacitor Electrodes:
Advances and Challenges", Advanced Energy Materials. 6(24), p. 1601053.
174. Zhang, Chonghao, et al. (2022), "Cellulose-derived carbon aerogels: A novel
porous platform for supercapacitor electrodes", Materials & Design. 219, p.
110778.
175. Zhang, Qi, et al. (2019), "Nanocellulose-Enabled, All-Nanofiber, High-
Performance Supercapacitor", ACS Applied Materials & Interfaces. 11(6),
pp. 5919-5927.
176. Zhang, Qun-Zheng, et al. (2018), "Research Progress in MnO2–Carbon
Based Supercapacitor Electrode Materials", Small. 14(24), p. 1702883.
177. Zhang, Sanliang and Pan, Ning (2015), "Supercapacitors Performance
Evaluation", Advanced Energy Materials. 5(6), p. 1401401.
178. Zhang, Yong, et al. (2015), "Synthesis and electrochemical performance of
MnO2/BC composite as active materials for supercapacitors", Journal of
Analytical and Applied Pyrolysis. 111, pp. 233-237.
179. Zhao, Gongyuan, et al. (2018), "One-step production of O-N-S co-doped
three-dimensional hierarchical porous carbons for high-performance
supercapacitors", Nano Energy. 47, pp. 547-555.
180. Zhao, Jie, et al. (2022), "Ultra-Fine Ruthenium Oxide Quantum
Dots/Reduced Graphene Oxide Composite as Electrodes for High-
Performance Supercapacitors", Nanomaterials. 12(7), pp. 1207-1210.
118
181. Zhao, Meng-Qiang, et al. (2015), "Flexible MXene/Carbon Nanotube
Composite Paper with High Volumetric Capacitance", Advanced Materials.
27(2), pp. 339-345.
182. Zheng, Lingxia, et al. (2018), "One-pot synthesis of CoFe2O4/rGO hybrid
hydrogels with 3D networks for high capacity electrochemical energy
storage devices", RSC Advances. 8, pp. 8607-8614.
183. Zheng, Ting, et al. (2020), "Polyaniline-decorated hyaluronic acid-carbon
nanotube hybrid microfiber as a flexible supercapacitor electrode material",
Carbon. 159, pp. 65-73.
184. Zheng, Xin, et al. (2016), "Temperature-dependent electrochemical
capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor
electrodes", Journal of Colloid and Interface Science. 466, pp. 291-296.
185. Zhou, Botong, et al. (2019), "Synthesis of Ultrathin MnO2
Nanosheets/Bagasse Derived Porous Carbon Composite for Supercapacitor
with High Performance", Journal of Electronic Materials. 48.
186. Zhou, Yi, et al. (2010), "Polyaniline/multi-walled carbon nanotube
composites with core–shell structures as supercapacitor electrode materials",
Electrochimica Acta. 55(12), pp. 3904-3908.
187. Zu, Guoqing, et al. (2016), "Nanocellulose-derived highly porous carbon
aerogels for supercapacitors", Carbon. 99, pp. 203-211.
188. Wang, Y., et al. (2015), "Mesoporous Transition Metal Oxides for
Supercapacitors", Nanomaterials (Basel). 5(4), pp. 1667-1689.