Luận án Nghiên cứu kỹ thuật điện hoá cao áp tạo plasma điện cực ứng dụng để phân huỷ axít 2,4-Dichlorophenoxyacetic và axít 2,4,5-Trichlorophenoxyacetic trong môi trường nước

Từ những kết quả đã nghiên cứu ở trên có thể thấy luận án đã đạt được một số kết quả như sau: 1. Đã khảo sát sự hình thành và các yếu tố ảnh hưởng đến plasma điện hóa trên các điện cực đồng, sắt, volfram như: điện áp, khoảng cách giữa điện cực anot với catot, độ dẫn điện, pH, nhiệt độ môi trường, bản chất và kích thước điện cực. Từ đó có thể điều khiển sự xuất hiện plasma điện hóa. 2. Quá trình tạo plasma điện hóa là môi trường ion hóa đều làm biến đổi đặc tính của dung dịch như độ dẫn điện, pH, nhưng đặc biệt là tạo ra các tác nhân oxi hóa mạnh như H2O2 và và gốc tự do OH• . Các giá trị nồng độ H2O2 và gốc tự do OH• với các điện cực đồng, sắt, volfram đều tăng theo thời gian phản ứng khi có plasma điện hóa. Nồng độ H2O2 và gốc OH• tạo thành có thể xác định được đối với điện cực sắt tương ứng là: 0,043 mg/L và 3,7×10-4M. Sự tạo thành các hạt nano Fe0 từ quá trình hòa tan anot điện hóa có thể kết hợp với H2O2 theo phản ứng Fenton xúc tác cho quá trình tạo gốc OH• với khả năng oxi hóa cao hơn. Hàm lượng OH• tăng khi dung dịch phản ứng được thổi khí bổ sung. 3. Sự phân hủy các chất ô nhiễm môi trường nước 2,4-D, 2,4,5-T bằng kỹ thuật phản ứng điện hóa cao áp có quá trình tạo plasma điện hóa đạt hiệu suất xử lý tăng cao có liên quan trực tiếp đến các tác nhân oxi hóa, trong đó vai trò quyết định là gốc tự do OH• . Với điều kiện tạo plasma trên điện cực sắt tại điện áp 5 kV, khoảng cách điện cực 300 mm, nhiệt độ môi trường 30oC, pH=6, độ dẫn điện 38 µS/cm, lưu lượng thổi không khí 500 mL/phút, hiệu suất xử lý 2,4-D đạt đến 99,98 %, 2,4,5-T đạt 99,83% sau thời gian 120 phút. Tỉ lệ khoáng hóa 2,4-D đạt 65,6 % và 60,8 % đối với 2,4,5-T.

pdf186 trang | Chia sẻ: huydang97 | Ngày: 27/12/2022 | Lượt xem: 397 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu kỹ thuật điện hoá cao áp tạo plasma điện cực ứng dụng để phân huỷ axít 2,4-Dichlorophenoxyacetic và axít 2,4,5-Trichlorophenoxyacetic trong môi trường nước, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
phenol solutions, Vacuum 83, pp. 234-237. 119 [37]. Dors.M., Metel.E., Mizeraczyk.J. (2007), Phenol degradation in water by pulsed streamer corona discharge and fenton reaction, International Journal of Plasma Environmental Science & Technology, 1, pp. 76-81. [38]. ELTayeb.A., ELShazly.A.H., Elkady.M.F., Abdel-Rahman.A. (2016), Simulation and experimental study for degradation of organic dyes using dual pin-to-plate corona discharge plasma reactors for industrial wastewater treatment, Wiley Online Library, doi:10.1002/ctpp.201500080. [39]. Environmental Health Criteria 29 (1984), 2,4-Dichlorophenoxy - acetic acid (2,4-D), World Health Organization, ISBN 92 4 154089 3. [40]. Fauchais.P., Rakowitz.J. (1979), Physics on plasma chemistry, Journal of Physical Workshop, pp. 289-312. [41]. Fontmorin.J.M., Fourcade.F., Geneste.F., Floner.D., Huguet.S., Amrane.A. (2013), Combined process for 2,4-Dichlorophenoxyacetic acid treatment-Coupling of an electrochemical system with a biological treatment, Biochemical Engineering Journal, 70, pp.17-22. [42]. Giammaria.G., Rooij.G.V., Lefferts. L. (2019), Plasma catalysis: distinguishing between thermal and chemical effects, Catalysts 2019, 9,185, doi: 10.3390/catal9020185. [43]. Gomeza.E., Rania.D.A., Cheesemanb.C.R., Deeganc.D., Wisec.M., Boccaccinia.A.R. (2009), Thermal plasma technology for the treatment of wastes: A critical review, Journal of Hazardous Materials,161, pp. 614-626. [44]. Grabowski.L.R., Veldhuizen.E.M.V, Pemen.A.J.M., Rutgers.W.R. (2006), Corona above water reactor for systematic study of aqueous phenol degradation, Plasma Chemistry and Plasma Processing, 26, pp. 3-17. [45].Grinevich.V.I., Lyubimov.V.A., Gushchin.A.A. (2017), Destruction of oil hydrocarbons in water solutions with oxygen dielectric barrier discharge of atmospheric pressure, Izv. Vyssh. Uchebn. Zaved. Tekhnol, 60, pp. 20-27. 120 [46]. Grymonpre.D.R., Finney.W.C., Clark.R.J., Locke.B.R. (2004), Hybrid gas-liquid electrical discharge reactors for organic compound degradation, Ind. Eng. Chem. Res, 43, pp. 1975-1989. [47]. Gupta.S.B. (2007), Investigation of a physical disinfection process based on pulsed underwater corona discharges, Dessertation, Institute of microwave technology and high performance pulses, German. [48]. Hao.X., Zhou.M., Xin.Q., Lei.L. (2007), Pulsed discharge plasma induced Fenton-like reactions for the enhancement of the degradation of 4- chlorophenol in water, Chemosphere, 66, pp. 2185-2192. [49]. Hoeben.W.F.L.M., Veldhuizen.E.M.V., Rutgers.W.R., Cramers. C.A.M.G., Kroesen.G.M.W. (2000), The degradation of aqueous phenol solutions by pulsed positive corona discharges, Plasma Sources Sci. Technol. 9, pp. 361-369. [50]. Huang.C.C., Lo. S.L., Lien.H.L. (2012), Zero-valent copper nanoparticles for effective dechlorination of dichloromethane using sodium borohydride as a reductant, Chemical Engineering Journal, 203, pp. 95-100. [[[ơ[51]. Jiang.B., Zheng.J., Qiu.S., Wu.M., Zhang.Q., Yan.Z., Xue.Q. (2014), Review on electrical discharge plasma technology for wastewater remediation, Chemical Engineering Journal, 236, pp. 348-368. [52]. Jiang.B., Zheng.J., Liu.Q., Wu.M. (2012), Degradation of azo dye using non-thermal plasma advanced oxidation process in a circulatory airtight reactor system, Chemical Engineering Journal, 204-206, pp. 32-39. [53]. Joshi.A.A., Locke.B.R., Arce.P., Finney.W.C. (1995), Formation of hydroxyl radicals, hydrogen peroxyde and aqueous electrons by pulsed streamer corona discharge in aqueous solution, Journal of Hazardous Materials, 41, pp. 3-30. [54]. Jong.K.I., Huyn.S.S., Kyung.D.Z. (2011), Perchlorate removal in 121 Fe0/H2O systems: Impact of oxygen availability and UV radiation, Journal of Hazardous Materials, 192, pp. 457-464. [55]. Kanazawa.S., Furuki.T., Nakaji.T., Akamine.S., Ichiki.R. (2012), Measurement of OH radicals in aqueous solution produced by atmosphric- pressure LF plasma jet, International Journal of Plasma Environmental Science &Technology, 6, pp. 166-171. [56]. Kishor Kumar.K., Couedel.L., Arnas.C. (2013), Growth of tungsten nanoparticles in direct-current argon glow discharges, Physics of Plasma 20, 043707, [57]. Kirkpatrick.M.J., Locke.B.R. (2006), Effects of platinum electrode on hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge, Ind. Eng. Chem. Res, 45, pp. 2138-2142. [58]. Kogelschatz.U. (2002), Dielectric-barrier discharges: their history, discharge physics, and industrial applications, Plasma Chemistry and Plasma Processing, 23, pp. 1- 46. [59]. Kornev.I., Osokin.G., Galanov.A., Yavorovskiy.N., Preis. S. (2013), Formation of nitrite-and nitrate-ions in aqueous solutions treated with pulsed electric discharges, Science & Engineering, 35, pp. 22-30. [60]. Kuo.C.H., Huang.C.H. (1995), Aqueous phase ozonation of chlorophenols, Journal of Zahardous Materials, 41, pp. 31-45. [61]. Li.H.O.L., Kang.J., Urashima.K., Saito.N. (2013), Comparison between the mechanism of liquid plasma discharge process in water and organic solution, Journal of Institute Electrostat Janpan, 37, pp. 22-27. [62]. Locke.B.R., Sato.M., Sunka.P., Hoffmann.M.R., Chang.J.S. (2006), Electrohydraulic discharge and nonthermal plasma for Water Treatment, Ind. Eng. Chem. Res, 45, pp. 882-905. [63]. Locke.B.R., Thagard.S.M. (2012), Analysis and review of chemical 122 reactions and transport processes in pulsed electrical discharge plasma formed directly in liquid water, Plasma Chem Plasma Process, 32, pp. 875-917. [64]. Lu.H., Wang.J.K., Stoller.M., Wang.T., Bao.Y, Hao.H (2016), An Overview of nanomaterials for water and waterwaster treatment, Advances in Materials Science and Engineering, [65]. Lukes.P. (2001), Water treatmen by pulsed streamer corona discharge, Ph.D.Thesis, Institute of plasma physics academy of sciences of the Czech Republic. [66]. Lukes.P., Clupek.M., Babicky.V., Sisrova.I., Janda.V. (2011), The catalytic role of tungsten electrode material in the plasmachemical activity of a pulsed corona discharge in water, Plasma Sources Science and Technol, 20, pp. 1-11. [67]. Lukes.P., Locke.B.R., Brisset.J.L. (2012),Aqueous-phase chemistry of electrical discharge plasma in water and in gas-liquid environments, Wiley- VCH Verlag GmbH & Co. KgaA, pp. 243-308. [68]. Lu.Q., Yu.J., Gao.J. (2006), Degradation of 2,4-dichlorophenol by using glow discharge electrolysis, Journal of Hazardous Materials B136, pp. 526-531. [69]. Mededovic.S. (2007), Chemical processes in aqueous phase pulsed electrical discharges: Fundamental mechanisms and applications to organic compound degradation, Ph.D.Thesis, Florida State University. [70]. Miyamoto.K (1997), Fundamentals of plasma physics and controlled fusion, Iwanami Book Service Center, ISBN:4-900491-11. [71]. Mok.Y.S., Jo.J.O., Whitehead.J.C. (2007), Degradation of an azo dye Orange II using a gas phase dielectric barrier discharge reactor submerged in water, Chemical Engineering Journal, 142, pp. 56-64. [72]. Montgomery.M.L., Norris.L.A. (1970), A Preliminary Evaluation 123 of the Hazards of 2,4,5-T in the Forest Environment, U.S.Department of Agriculture. [73]. Mouele.E.S.M. (2014), Water treatment using electrohydraulic discharge system, Ph.D.Thesis, University of the Western Cape, South Africa. [74]. Nehra.V., Kumar.A., Dwivedi.H.K. (2014), Atmospheric non- thermal plasma sources, International Journal of Engineering, 2, pp. 53-68. [75]. Neta.P. (1972), Reaction of hydrogen atom in aqueous solution, Chemical reviews, 72, pp. 533-543. [76]. Nijdam.S., Veldhuizen.E.V., Bruggeman.P., Ebert.U. (2012), An introduction to nonequilibrium plasmas at atmospheric pressure, Wiley-VCH Verlag GmbH & Co. KgaA, pp. 1- 44. [77]. Nishioka.H., Saito.H., Watanabe.T. (2009), Decomposition mecha- nism of organic compounds by DC water plasmas at atmospheric pressure, Thin Solid Films, 518, pp. 924-928. [78]. Pascal.S., Moussa.D., Hnatiuc.E., Brisset.J.L. (2010), Plasma chemical degradation of phosphorous-containing warfare agents simulants, Journal of Hazardous Materials, 175, pp. 1037-1041. [79]. Pasinszki.T., Krebsz.M. (2020), Synthesis and Application of Zero Valent Iron Nanoparticles in Water Treatment , Environmental Remediation, Catalysis, and Their Biological Effects, Nanomaterials, 10, 917, doi:10.3390/nano10050917. [80]. Peralta.E., Roa.G., Servin.J.H., Romero.R., Balderas.P. (2014), Hydroxyl Radicals quantification by UV spectrophotometry, Electrochimica Acta, [81]. Peyton.G.R., Glaze.W.H. (1988), Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 3. Photolysis of aqueous ozone, Environ. Sci. Technol, 22, pp.761-767. 124 [82]. Pinart.J., Smirdec.M., Pinart.M.E., Aaron.J.J., Benmansour.Z., Goldman.M., Goldman.A. (1996), Quantitative study of the formation of inoganic chemical spicies following corona discharge - production of HNO2 and HNO3 in acomposition-controlled, humid atmosphere, Atmospheric Environment, 30, pp. 129-132. [83]. Porter.D., Poplin.M.D., Holzer.F., Finney.W.C., Locke.B.R. (2009), Formation of hydrogen peroxyde, hydrogen, and oxygen in gliding arc electrical discharge reactors with water spray, Transactions on industry applications, 45, pp. 623-629. [84]. Reddy.P.M.K., Subrahmanyam.C. (2012), Green approach for wastewater treatment degradation and mineralization of aqueous organic pollutants by discharge plasma, Ind. Eng. Chem. Res, 51, pp. 11097-11103. [85]. Reddy.P.M.K., Raju.B.R., Karuppiah.J., Reddy.E.L., Subrahmany- am.C. (2013), Degradation and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor, Chemical Engineering Journal, 217, pp. 41-47. [86]. Richmonds.C., Sankaran.R.M. (2008), Plasma liquid electro- chemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations, Applied Physics letters, 93, pp. 1-3. [87]. Rosocha.L.A., Kim.Y., Anderson.G.K., Abbate.S. (2007), Com- bustion enhancement using silent electrical discharges, International Journal of Plasma Environmental Science & Technology, 1, pp. 8-13. [88]. Ruma., Hosano.H., Sakugawa.T., Akiyama.H. (2018), The role of pulse voltage amplitude on chemical processes induced by streamer discharge at water surface, Catalysts 8, 213, doi:10.3390/Catal8050213. [89]. Sahni.M, Locke.B.R. (2006), Quantification of reductive species produced by high voltage electrical discharges in water, Plasma Process. 125 Polym, 3, pp. 342-354. [90]. Sahni.M., Locke.B.R. (2006), Quantification of hydroxyl radicals produced in aqueous phase pulsed electrical discharge reactors, Ind. Eng. Chem. Res, 45, pp. 5819-5825. [91]. Sahni.M., Locke.B.R. (2006), Degradation of chemical warfare agent simulants using gas-liquid pulsed streamer discharges, Journal of Hazardous Materials B137, pp. 1025-1034. [92]. Saito.G., Hosokai.S., Tsubota.M., Akiyama.T. (2011), Synthesis of copper/copper oxide nanoparticles by solution plasma, Journal of applied physics 110,023302, [93]. Sano.N., Kawashima.T., Fujimoto.T., Kanki.T. (2002), Decompo- sition of organic compounds in water by direct contact of gas corona discharge: Influence of discharge conditions, Ind.Eng.Chem.Res, 41, pp. 5906-5911. [94]. Sano.N., Yamamoto.D., Kanki.T. (2003), Decomposition of phenol in water by a cylindrical wetted-wall reactor using direct contact of gas corona discharge, Ind. Eng. Chem. Res, 42, pp. 5423-5428. [95]. Sayed.M. (2015), Efficient removal of phenol from aqueous solution by the pulsed high-voltage discharge process in the presence of H2O2, Chemistry International 1(2), pp. 81-86. [96]. Sengupta.S.K., Smgh.O.P. (1994), Contact glow discharge electrolysis: a study of its chemical yields in aqueous inert-type electrolytes, Journal of Electroanalytlcal Chemistry, 369, pp. 113-120. [97]. Sengupta.S.K., Singh.R., Srivastava.A.K. (1998), A study on the origin of nonfaradaic behavior of anodic contact glow discharge electrolysis, Journal of Electrochem Society, 145, pp. 2209-2213. [98]. Sugiarto.A.T., Ohshima.T., Sato.M. (2002), Advanced oxidation 126 processes using pulsed streamer corona discharge in water, Thin Solid Films, 407, pp. 174-178. [99]. Sun.B, Sato.M, Clements.J.S. (1997), Optical study of active species produced by a pulsed streamer corona discharge in water, Journal of Electrostatics, 39, pp. 189-202. [100]. Sunka., Babicky.V., Clupek.M., Fuciman.M., Lukes.P., Simek.M., Benes.J., Lockey.B., Majcherovaz.Z. (2004), Potential applications of pulse electrical discharges in water, Acta physica slovaca, 54, pp. 135-145. [101]. Sunka.P., Babicky.V., Clupek.M., Lukes.P., Simek.M., Schmidt.J., Cernak.M. (1999), Generation of chemically active species by electrical discharges in water, Plasma Sources Sci. Technol, 8, pp. 258-265. [102]. Shin.W.T., Yiacoumi.S. (2000), A pulseless corona-discharge process for the oxidation of organic compounds in water, Ind. Eng. Chem. Res, 39, pp. 4408-4414. [103]. Stara.Z., Krcma.F., Nejezchleb.M., Skalny.J.D. (2009), Organic dye decomposition by DC diaphragm discharge in water: effect of solution properties on dye removal, Desalination 239, pp. 283-294. [104]. Stara.Z., Krcma.F. (2004), The study of H2O2 generation by DC diaphragm discharge in liquids, Czechoslovak Journal of Physics, 54, pp. 1050-1055. [105]. Tang.W.Z., Huang.C.P. (1996), Effect of chlorine content of chlorinated phenols on their oxidation kinetics by Fenton’s reagent, Chemosphere, 33, pp. 1621-1635. [106]. Tanino.T., Shibuki.K., Kubota.K., Kannari.N., Matsui.M., Ohshima.T. (2020), Removal of volatile organic compounds in distillation steam by DBD decomposition treatment for water recycling in fermentation industry, International Journal of Plasma Environmental Science & 127 Technology,14, e02003. [107]. Tarifa.A.M., Arrojo.S., Louisnard.O., Garcia.J.G., Tudela. I. (2010),Correlation between hydroxyl radical production and theoretical pressure distribution in a sonochemical reactor, Physics Procedia, 3, pp. 971- 979. [108]. Tichonovas.M., Krugly.E., Racys.V., Hippler.R., Kauneliene.V., Stasiulaitiene.I., Martuzevicius.D. (2013), Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment, Chemical Engineering Journal, 229, pp. 9-19. [109]. Tomizawa.S., Tezuka.M. (2007), Kinetics and mechanism of the organic degradation in aqueous solution irradiated with gaseous plasma, Plasma Chem Plasma Process , 27, pp. 486-495. [110]. U.S.Congress. (1991), Office of Technology Assessment OTA- BP-O-93, Dioxin-Treatment-Technologies, Washington DC, U.S.Government printing Office. [111]. Vandenbroucke.A.M., Morent.R., Geyter.N.D., Leys.C. (2011), Non-thermal plasmas for non-catalytic and catalytic VOC abatement, Journal of Hazardous Materials, 195, pp. 30-54. [112]. Venger.R., Tmenova.T., Valensi.F., Veklich.A., Cressault.Y., Boretskij.V. (2017), Detailed investigation of the electric discharge plasma between copper electrodes immersed into water, MDPI, Atoms, 5,40, doi:10.3390/atoms5040040. [113]. Vijgen.J. (2003), Review of emerging, innovative technologies for the destruction and decontamination of POPs and the identification of promising technologies for use in developing countries, The Scientific and Technical Advisory Panel of the GEF, United Nations Environment Programme. 128 [114]. Wang.H., Li.J., Quan.X., Wu.Y., Li.G., Wang.F. (2007), Formation of hydrogen peroxide and degradation of phenol in synergistic system of pulsed corona discharge combined with TiO2 photocatalysis, Journal of Hazardous Materials, 141, pp. 336-343. [115]. Wang.H., Li.J., Quan.X., Wu.Y. (2008), Enhanced generation of oxidative species and phenol degradation in a discharge plasma system coupled with TiO2 photocatalysis, Applied Catalysis B: Environmental, 83, pp. 72-77. [116]. Wang. L (2009), 4-Chlorophenol Degradation and Hydrogen Peroxyde Formation Induced by DC Diaphragm Glow Discharge in an Aqueous Solution, Plasma Chem Plasma Process, 29, pp. 241-250. [117]. Wang.T.C., Lua.N., An.J.T., Zhao.Y., Li.J., Wua.Y. (2012), Multi-tube parallel surface discharge plasma reactor for wastewater treatment, Separation and Purification Technology, 100, pp. 9-14. [118]. Wang.X., Zhou.M., Jin.X. (2012), Application of glow discharge plasma for wastewater treatment, Electrochimica Acta, 83, pp. 501- 512. [119]. Willberg.D.M., Lang.P.S., Hochemer.R.H., Kratel.A., Hoffmann. M.R. (1996), Degradation of 4-chlorophenol, 3,4-dichloroaniline, and 2,4,6- Trinitrotoluene in an electrohydraulic discharge reactor, Environmetal Science &Technology, 30, pp. 2526-2534. [120]. Wolf.M., Yankelevich.Y., Wald.S., Grabowski.L.R. (2006), High- power pulsed corona for treatment of pollutants in heterogeneous media, Transactions on plasma science, 34, pp. 1731-1743. [121]. Xaplanteris.C.L.(2018), Mechanical and chemical results in plasma surface contact. A Study of Sheath parameters, Physics & Astronomy International Journal , 2(1), pp. 25-32.an [122]. Xia.Q., Jiang.Z., Wang.J., Yao.Z. (2017), A facile preparation of 129 hierarchical dendritic zero valent iron for Fenton-like degradation of phenol, Catalysis Communications, 100, pp.57-61. [123]. Yan.J. H., Du.Ch.M., Li.X.D., Cheron.B.G., Ni.M.J., Cen.K.F. (2006), Degradation of phenol in aqueous solutions by gas-liquid gliding arc discharges, Plasma Chemistry and Plasma Processing, 26, pp. 31-41. [124]. Yang.Y. (2011), Plasma discharge in water and its application for industrial cooling water treatment, Ph.D Thesis, Drexel University, Pennsylvania, United States. [125]. Yuan.M.H., Narengerile., Watanabe.T., Chang.C.Y. (2010), DC water plasma at atmospheric pressure for the treatment of aqueous phenol, Environmental Science &Technology, 44, pp. 4710-4715. [126]. Zhang.R., Zhang.C., Cheng.X.X., Wang.L., Wu.Y., Guan.Z. (2007), Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor, Journal of Hazardous Materials,142, pp.105-110. [127]. Zhang.Y., Zhou.M., Lei.L. (2007), Degradation of 4-chlorophenol in different gas-liquid electrical discharge reactors, Chemical Engineering Journal, 132, pp. 325-333. [128]. Zhang.Y., Zhou.M., Hao.X., Lei.L. (2007), Degradation mechanisms of 4-chlorophenol in a novel gas-liquid hybrid discharge reactor by pulsed high voltage system with oxygen or nitrogen bubbling, Chemospher, 67, pp. 702-711. P-1 PHỤ LỤC P-2 PHỤ LỤC 1. PHỔ ĐƯỜNG CHUẨN 2,4-D, 2,4,5-T VÀ PHỔ XỬ LÝ 2,4-D, 2,4,5-T PHỤ THUỘC VÀO THỜI GIAN ===================================================================== Calibration Table ===================================================================== 2,4 Dichlorophenoxyaxetic Axit Calib. Data Modified : 3/10/2020 1:47:07 PM Calculate : External Standard Based on : Peak Area Rel. Reference Window : 25.000 % Abs. Reference Window : 0.000 min Rel. Non-ref. Window : 30.000 % Abs. Non-ref. Window : 0.000 min Uncalibrated Peaks : compound name not specified Partial Calibration : Yes, identified peaks are recalibrated Correct All Ret. Times: No, only for identified peaks Curve Type : Linear Origin : Included Weight : Equal Recalibration Settings: Average Response : Average all calibrations Average Retention Time: Floating Average New 75% Calibration Report Options : Printout of recalibrations within a sequence: Calibration Report before Recalibration Normal Report after Recalibration If the sequence is done with bracketing: Results of first cycle (ending previous bracket) Signal 1: DAD1 D, Sig=285,16 Ref=360,100 RetTime Lvl Amount Area Amt/Area Ref Grp Name [min] Sig [ppm] -------|--|--|----------|----------|----------|---|--|--------------- 4.052 1 6 3.00000 138.58000 2.16481e-2 2,4 - Diclorophenoxyaxetic Axit 5 6.00000 350.99000 1.70945e-2 4 12.00000 675.43000 1.77665e-2 3 24.00000 1405.83777 1.70717e-2 2 48.00000 2780.50000 1.72631e-2 1 96.00000 5600.50000 1.71413e-2 1 Warnings or Errors : Warning : Cal. table open and changed while report was generated. Method E:\DATA\METHODS\24-D.M Instrument 1 3/10/2020 1:47:38 PM Do Binh Minh Page 1 of 1 ===================================================================== Calibration Curves ===================================================================== Amount[ppm] 0 50 100 Area 0 1000 2000 3000 4000 5000 65 4 3 2 1 2,4 - Diclorophenoxyaxetic Axit at exp. RT: 4.052 DAD1 D, Sig=285,16 Ref=360,100 Correlation: 0.99997 17.23498Residual Std. Dev.: Formula: y = mx + b 58.44881m: b: -13.56952 x: Amount[ppm] y: Area ===================================================================== P-3 ===================================================================== Calibration Table ===================================================================== 2,4,5-T Trichlorophenoxyaxetic Axit Calib. Data Modified : 3/16/2020 1:48:16 PM Calculate : External Standard Based on : Peak Area Rel. Reference Window : 25.000 % Abs. Reference Window : 0.000 min Rel. Non-ref. Window : 30.000 % Abs. Non-ref. Window : 0.000 min Uncalibrated Peaks : compound name not specified Partial Calibration : Yes, identified peaks are recalibrated Correct All Ret. Times: No, only for identified peaks Curve Type : Linear Origin : Included Weight : Equal Recalibration Settings: Average Response : Average all calibrations Average Retention Time: Floating Average New 75% Calibration Report Options : Printout of recalibrations within a sequence: Calibration Report before Recalibration Normal Report after Recalibration If the sequence is done with bracketing: Results of first cycle (ending previous bracket) Signal 1: DAD1 D, Sig=285,16 Ref=360,100 RetTime Lvl Amount Area Amt/Area Ref Grp Name [min] Sig [ppm] -------|--|--|----------|----------|----------|---|--|--------------- 3.552 1 6 3.50000 138.58000 2.52562e-2 2,4,5 - T 5 7.00000 350.99000 1.99436e-2 4 14.00000 675.43000 2.07275e-2 3 28.00000 1405.83777 1.99169e-2 2 56.00000 2780.50000 2.01403e-2 1 112.00000 5600.50000 1.99982e-2 1 Warnings or Errors : Warning : Cal. table open and changed while report was generated. Method E:\DATA\METHODS\245-T.M Instrument 1 3/16/2020 1:48:34 PM Do Binh Minh Page 1 of 1 ===================================================================== Calibration Curves ===================================================================== Amount[ppm] 0 50 100 Area 0 1000 2000 3000 4000 5000 65 4 3 2 1 2,4,5 - T at exp. RT: 3.552 DAD1 D, Sig=285,16 Ref=360,100 Correlation: 0.99997 17.23498Residual Std. Dev.: Formula: y = mx + b 50.09898m: -13.56952b: x: Amount[ppm] y: Area ===================================================================== P-4 Mau 24D- Mau M36 ===================================================================== Injection Date : 3/13/2020 10:05:45 PM Sample Name : 2,4-D Location : Vial 1 Acq. Operator : Do Binh Minh Acq. Method : E:\DATA\METHODS\24-D.M Last changed : 3/6/2020 5:01:40 PM by Do Binh Minh Analysis Method : E:\DATA\METHODS\24-D.M Last changed : 3/16/2020 9:11:40 AM by Do Binh Minh (modified after loading) Diclorophenoxyaxetic axit min0 1 2 3 4 5 6 7 mAU -10 0 10 20 30 40 DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20031304.D) 3 .7 31 - 2 ,4 - D ic lo ro ph en ox ya xe tic A xi t ===================================================================== External Standard Report ===================================================================== Sorted By : Signal Calib. Data Modified : 3/6/2020 9:51:17 AM Multiplier : 1.0000 Dilution : 1.0000 Sample Amount : 5.00000 [ppm] (not used in calc.) Signal 1: DAD1 D, Sig=285,16 Ref=360,100 Uncalibrated Peaks : compound name not specified RetTime Type Area Amt/Area Amount Grp Name [min] [mAU*s] [ppm] -------|------|----------|----------|----------|--|------------------ 3.731 BB 9.95024 4.04412e-1 4.00399 2,4 - Diclorophenoxyaxetic Axit Totals : 4.00399 Results obtained with enhanced integrator! ===================================================================== *** End of Report *** Data File E:\DATA\CONGCH\20031304.D Sample Name: 2,4-D Instrument 1 3/16/2020 9:15:47 AM Do Binh Minh Page 1 of 1 P-5 Mau 2,4-D- Mau M37 ===================================================================== Injection Date : 3/13/2020 1:15:09 PM Sample Name : 2,4-D Location : Vial 1 Acq. Operator : Do Binh Minh Acq. Method : E:\DATA\METHODS\24-D.M Last changed : 3/6/2020 5:01:40 PM by Do Binh Minh Analysis Method : E:\DATA\METHODS\24-D.M Last changed : 3/16/2020 9:11:40 AM by Do Binh Minh (modified after loading) Diclorophenoxyaxetic axit min0 2 4 6 8 mAU -10 0 10 20 30 40 DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20051201.D) A rea : 2 1.9 92 4 3 .6 50 - 2 ,4 - D ic lo ro ph en ox ya xe tic A xi t ===================================================================== External Standard Report ===================================================================== Sorted By : Signal Calib. Data Modified : 3/6/2020 9:51:17 AM Multiplier : 1.0000 Dilution : 1.0000 Sample Amount : 5.00000 [ppm] (not used in calc.) Signal 1: DAD1 D, Sig=285,16 Ref=360,100 Uncalibrated Peaks : compound name not specified RetTime Type Area Amt/Area Amount Grp Name [min] [mAU*s] [ppm] -------|------|----------|----------|----------|--|------------------ 3.650 MM 21.99238 2.76654e-1 6.07428 2,4 - Diclorophenoxyaxetic Axit Totals : 6.07428 Results obtained with enhanced integrator! ===================================================================== *** End of Report *** Data File E:\DATA\CONGCH\20051201.D Sample Name: 2,4-D Instrument 1 3/16/2020 9:15:31 AM Do Binh Minh Page 1 of 1 P-6 Mau 2,4-D- Mau M38 ===================================================================== Injection Date : 3/13/2020 1:32:57 PM Sample Name : 2,4-D Location : Vial 1 Acq. Operator : Do Binh Minh Acq. Method : E:\DATA\METHODS\24-D.M Last changed : 3/6/2020 5:01:40 PM by Do Binh Minh Analysis Method : E:\DATA\METHODS\24-D.M Last changed : 3/16/2020 9:11:40 AM by Do Binh Minh (modified after loading) Diclorophenoxyaxetic axit min0 2 4 6 8 mAU -10 0 10 20 30 40 DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20051203.D) 3 .5 03 - 2 ,4 - D ic lo ro ph en ox ya xe tic A xi t ===================================================================== External Standard Report ===================================================================== Sorted By : Signal Calib. Data Modified : 3/6/2020 9:51:17 AM Multiplier : 1.0000 Dilution : 1.0000 Sample Amount : 5.00000 [ppm] (not used in calc.) Signal 1: DAD1 D, Sig=285,16 Ref=360,100 Uncalibrated Peaks : compound name not specified RetTime Type Area Amt/Area Amount Grp Name [min] [mAU*s] [ppm] -------|------|----------|----------|----------|--|------------------ 3.503 BB 43.02536 2.25049e-1 9.82816 2,4 - Diclorophenoxyaxetic Axit 6.377 BP 16.36196 0.00000 0.00000 ? 7.837 BPA 4.76510 0.00000 0.00000 ? Totals : 9.82816 Results obtained with enhanced integrator! ===================================================================== *** End of Report *** Data File E:\DATA\CONGCH\20051203.D Sample Name: 2,4-D Instrument 1 3/16/2020 9:14:10 AM Do Binh Minh Page 1 of 1 P-7 Mau 24D- Mau M39 ===================================================================== Injection Date : 3/13/2020 1:45:49 PM Sample Name : 2,4-D Location : Vial 1 Acq. Operator : Do Binh Minh Acq. Method : E:\DATA\METHODS\24-D.M Last changed : 3/6/2020 5:01:40 PM by Do Binh Minh Analysis Method : E:\DATA\METHODS\24-D.M Last changed : 3/16/2020 9:11:40 AM by Do Binh Minh (modified after loading) Diclorophenoxyaxetic axit min0 1 2 3 4 5 6 7 mAU -10 0 10 20 30 40 DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20031302.D) 3 .6 58 - 2 ,4 - D ic lo ro ph en ox ya xe tic A xi t ===================================================================== External Standard Report ===================================================================== Sorted By : Signal Calib. Data Modified : 3/6/2020 9:51:17 AM Multiplier : 1.0000 Dilution : 1.0000 Sample Amount : 5.00000 [ppm] (not used in calc.) Signal 1: DAD1 D, Sig=285,16 Ref=360,100 Uncalibrated Peaks : compound name not specified RetTime Type Area Amt/Area Amount Grp Name [min] [mAU*s] [ppm] -------|------|----------|----------|----------|--|------------------ 3.658 BB 77.75360 2.00948e-1 15.56446 2,4 - Diclorophenoxyaxetic Axit Totals : 15.56446 Results obtained with enhanced integrator! ===================================================================== *** End of Report *** Data File E:\DATA\CONGCH\20031302.D Sample Name: 2,4-D Instrument 1 3/16/2020 9:12:52 AM Do Binh Minh Page 1 of 1 P-8 Mau 24D- Mau M40 ===================================================================== Injection Date : 3/13/2020 2:11:09 PM Sample Name : 2,4-D Location : Vial 1 Acq. Operator : Do Binh Minh Acq. Method : E:\DATA\METHODS\24-D.M Last changed : 3/6/2020 5:01:40 PM by Do Binh Minh Analysis Method : E:\DATA\METHODS\24-D.M Last changed : 3/16/2020 9:11:40 AM by Do Binh Minh (modified after loading) Diclorophenoxyaxetic axit min0 1 2 3 4 5 6 7 mAU -10 0 10 20 30 40 DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20031301.D) 3 .4 96 - 2 ,4 - D ic lo ro ph en ox ya xe tic A xi t ===================================================================== External Standard Report ===================================================================== Sorted By : Signal Calib. Data Modified : 3/6/2020 9:51:17 AM Multiplier : 1.0000 Dilution : 1.0000 Sample Amount : 5.00000 [ppm] (not used in calc.) Signal 1: DAD1 D, Sig=285,16 Ref=360,100 Uncalibrated Peaks : compound name not specified RetTime Type Area Amt/Area Amount Grp Name [min] [mAU*s] [ppm] -------|------|----------|----------|----------|--|------------------ 3.496 BB 157.04565 1.85873e-1 29.89053 2,4 - Diclorophenoxyaxetic Axit Totals : 29.89053 Results obtained with enhanced integrator! ===================================================================== *** End of Report *** Data File E:\DATA\CONGCH\20031301.D Sample Name: 2,4-D Instrument 1 3/16/2020 9:11:47 AM Do Binh Minh Page 1 of 1 P-9 Mau 245T- Mau M41 ===================================================================== Injection Date : 3/20/2020 8:37:39 AM Sample Name : 2,4,5-T Location : Vial 1 Acq. Operator : Do Binh Minh Acq. Method : E:\DATA\METHODS\245-T.M Last changed : 3/6/2020 9:49:47 AM by Do Binh Minh Analysis Method : E:\DATA\METHODS\245-T.M Last changed : 3/20/2020 10:04:38 AM by Do Binh Minh (modified after loading) Diclorophenoxyaxetic axit min0 1 2 3 4 5 6 7 mAU -10 0 10 20 30 40 DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20031903.D) 3 .6 86 - 2 ,4 ,5 - T 4 .1 07 ===================================================================== External Standard Report ===================================================================== Sorted By : Signal Calib. Data Modified : 3/20/2020 10:04:26 AM Multiplier : 1.0000 Dilution : 1.0000 Sample Amount : 5.00000 [ppm] (not used in calc.) Signal 1: DAD1 D, Sig=285,16 Ref=360,100 Uncalibrated Peaks : compound name not specified RetTime Type Area Amt/Area Amount Grp Name [min] [mAU*s] [ppm] -------|------|----------|----------|----------|--|------------------ 3.686 BB 35.81149 2.61428e-1 8.71353 2,4,5 - T 4.107 BP 4.90728 0.00000 0.00000 ? Totals : 8.71353 Results obtained with enhanced integrator! ===================================================================== *** End of Report *** Data File E:\DATA\CONGCH\20031903.D Sample Name: 2,4,5-T Instrument 1 3/20/2020 10:03:20 AM Do Binh Minh Page 1 of 1 P-10 Mau 245T- Mau M42 ===================================================================== Injection Date : 3/20/2020 9:00:39 AM Sample Name : 2,4,5-T Location : Vial 1 Acq. Operator : Do Binh Minh Acq. Method : E:\DATA\METHODS\245-T.M Last changed : 3/6/2020 9:49:47 AM by Do Binh Minh Analysis Method : E:\DATA\METHODS\245-T.M Last changed : 3/20/2020 10:04:38 AM by Do Binh Minh (modified after loading) Diclorophenoxyaxetic axit min0 1 2 3 4 5 6 7 mAU -10 0 10 20 30 40 DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20031903.D) 3 .6 86 - 2 ,4 ,5 - T 4 .1 07 ===================================================================== External Standard Report ===================================================================== Sorted By : Signal Calib. Data Modified : 3/20/2020 10:04:26 AM Multiplier : 1.0000 Dilution : 1.0000 Sample Amount : 5.00000 [ppm] (not used in calc.) Signal 1: DAD1 D, Sig=285,16 Ref=360,100 Uncalibrated Peaks : compound name not specified RetTime Type Area Amt/Area Amount Grp Name [min] [mAU*s] [ppm] -------|------|----------|----------|----------|--|------------------ 3.686 BB 43.81149 2.61428e-1 11.53530 2,4,5 - T 4.107 BP 4.90728 0.00000 0.00000 ? Totals : 11.53530 Results obtained with enhanced integrator! ===================================================================== *** End of Report *** Data File E:\DATA\CONGCH\20031903.D Sample Name: 2,4,5-T Instrument 1 3/20/2020 10:06:34 AM Do Binh Minh Page 1 of 1 P-11 Mau 245T- Mau M43 ===================================================================== Injection Date : 3/20/2020 9:17:50 AM Sample Name : 2,4,5-T Location : Vial 1 Acq. Operator : Do Binh Minh Acq. Method : E:\DATA\METHODS\245-T.M Last changed : 3/6/2020 9:49:47 AM by Do Binh Minh Analysis Method : E:\DATA\METHODS\245-T.M Last changed : 3/20/2020 10:04:38 AM by Do Binh Minh (modified after loading) Diclorophenoxyaxetic axit min0 1 2 3 4 5 6 7 mAU -10 0 10 20 30 40 DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20031902.D) 3 .6 80 - 2 ,4 ,5 - T 4 .0 67 ===================================================================== External Standard Report ===================================================================== Sorted By : Signal Calib. Data Modified : 3/20/2020 10:04:26 AM Multiplier : 1.0000 Dilution : 1.0000 Sample Amount : 5.00000 [ppm] (not used in calc.) Signal 1: DAD1 D, Sig=285,16 Ref=360,100 Uncalibrated Peaks : compound name not specified RetTime Type Area Amt/Area Amount Grp Name [min] [mAU*s] [ppm] -------|------|----------|----------|----------|--|------------------ 3.680 BB 60.37703 2.44465e-1 14.86009 2,4,5 - T 4.067 BP 4.86567 0.00000 0.00000 ? Totals : 14.86009 Results obtained with enhanced integrator! ===================================================================== *** End of Report *** Data File E:\DATA\CONGCH\20031902.D Sample Name: 2,4,5-T Instrument 1 3/20/2020 10:07:05 AM Do Binh Minh Page 1 of 1 P-12 Mau 245T- Mau M44 ===================================================================== Injection Date : 3/20/2020 9:40:03 AM Sample Name : 2,4,5-T Location : Vial 1 Acq. Operator : Do Binh Minh Acq. Method : E:\DATA\METHODS\245-T.M Last changed : 3/6/2020 9:49:47 AM by Do Binh Minh Analysis Method : E:\DATA\METHODS\245-T.M Last changed : 3/20/2020 10:04:38 AM by Do Binh Minh (modified after loading) Diclorophenoxyaxetic axit min0 1 2 3 4 5 6 7 mAU -10 0 10 20 30 40 DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20031901.D) 3 .6 82 - 2 ,4 ,5 - T ===================================================================== External Standard Report ===================================================================== Sorted By : Signal Calib. Data Modified : 3/20/2020 10:04:26 AM Multiplier : 1.0000 Dilution : 1.0000 Sample Amount : 5.00000 [ppm] (not used in calc.) Signal 1: DAD1 D, Sig=285,16 Ref=360,100 Uncalibrated Peaks : compound name not specified RetTime Type Area Amt/Area Amount Grp Name [min] [mAU*s] [ppm] -------|------|----------|----------|----------|--|------------------ 3.682 BB 82.16466 2.35167e-1 19.05138 2,4,5 - T Totals : 19.05138 Results obtained with enhanced integrator! ===================================================================== *** End of Report *** Data File E:\DATA\CONGCH\20031901.D Sample Name: 2,4,5-T Instrument 1 3/20/2020 10:08:20 AM Do Binh Minh Page 1 of 1 P-13 Mau 245T- Mau M45 ===================================================================== Injection Date : 3/20/2020 9:55:01 AM Sample Name : 2,4,5-T Location : Vial 1 Acq. Operator : Do Binh Minh Acq. Method : E:\DATA\METHODS\245-T.M Last changed : 3/6/2020 9:49:47 AM by Do Binh Minh Analysis Method : E:\DATA\METHODS\245-T.M Last changed : 3/20/2020 10:04:38 AM by Do Binh Minh (modified after loading) Diclorophenoxyaxetic axit min0 1 2 3 4 5 6 7 mAU -10 0 10 20 30 40 DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20031904.D) 3 .5 03 - 2 ,4 ,5 - T ===================================================================== External Standard Report ===================================================================== Sorted By : Signal Calib. Data Modified : 3/20/2020 10:04:26 AM Multiplier : 1.0000 Dilution : 1.0000 Sample Amount : 5.00000 [ppm] (not used in calc.) Signal 1: DAD1 D, Sig=285,16 Ref=360,100 Uncalibrated Peaks : compound name not specified RetTime Type Area Amt/Area Amount Grp Name [min] [mAU*s] [ppm] -------|------|----------|----------|----------|--|------------------ 3.503 BB 139.36365 2.19040e-1 30.22621 2,4,5 - T Totals : 30.22621 Results obtained with enhanced integrator! ===================================================================== *** End of Report *** Data File E:\DATA\CONGCH\20031904.D Sample Name: 2,4,5-T Instrument 1 3/20/2020 10:04:53 AM Do Binh Minh Page 1 of 1 P-14 P-15 PHỤ LUC 2. PHỔ ĐƯỜNG CHUẨN ĐỊNH LƯỢNG H2O2 VÀ PHỔ XÁC ĐỊNH GỐC TỰ DO OH• P-20 PHỤ LỤC 3. PHỔ KHỐI LƯỢNG GC-MS CÁC HƠP CHẤT TRUNG GIAN CỦA QUÁ TRÌNH XỬ LÝ 2,4-D, 2,4,5-T BẰNG PLASMA ĐIỆN HÓA (Text File) Average of 6.083 to 6.099 min.: M571.D\DATA.MS 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 61 75 88 99 115 125 143 162 175 207 244 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 41 45 45 59 61 69 75 75 85 88 99 99 113 115 125 125 143 143 162 169 175 185 207 244 (mainlib) 2-Butenoic acid, tert-butyldimethylsilyl ester 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 41 45 57 69 75 85 99 113 125 143 169 185 O O Si P-21 (Text File) Average of 2.894 to 2.932 min.: M571.D\DATA.MS 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 61 75 87 101 117 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 45 45 61 61 75 75 87 101 117 117 (mainlib) Acetic acid, (trimethylsilyl)- 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 61 75 117 Si O O P-22 (Text File) Average of 12.128 to 12.144 min.: M5.D\DATA.MS 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 40 55 60 69 73 82 97 117 132 147 157 168 187 196 217 232 261 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 40 45 55 55 59 61 69 69 73 73 82 83 89 97 99 117 117 129 132 147 147 157 158 168 186 187 196 203 217 217 232 232 261 261 (mainlib) Butanedioic acid, methyl-, bis(trimethylsilyl) ester 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 55 69 73 83 89 99 117 129 147 158 186 203 217 232 261 O O O O Si Si P-23 (Text File) Average of 2.193 to 2.206 min.: M571D\DATA.MS 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 59 75 86 103 120 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 45 45 53 59 59 75 75 86 103 103 120 (mainlib) Silanol, trimethyl-, formate 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 5359 75 103 OSi O P-24 (Text File) Average of 8.344 to 8.366 min.: M571.D\DATA.MS 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 5561 75 84 91 101 117 131 149 159 173 184 207 267 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 45 45 55 55 61 61 75 75 81 84 87 91 93 101 101 117 117 131 131 145 149 159 159 173 173 184 188 207 267 (replib) Hexanoic acid, trimethylsilyl ester 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 5561 75 818793 101 117 131 145 159 173 188 O Si O P-25 (Text File) Average of 9.328 to 9.344 min.: M571.D\DATA.MS 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 43 57 61 75 83 99 112 125 131 145 155 173 191 208 267 281 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 43 43 56 57 61 75 75 81 83 91 99 99 111 112 125 131 145 145 155 155 173 173 188 189 208 267 281 (mainlib) Pentanoic acid, 4-oxo-, trimethylsilyl ester 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 43 56 75 81 91 99 111 131 145 155 173 188 O Si O O P-26 (Text File) Average of 6.842 to 6.858 min.: M571.D\DATA.MS 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 43 57 73 85 89 96 101 117 132 145 159 189 204 267 281 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 43 45 55 57 61 73 75 85 85 89 101 101 117 117 132 132 145 145 159 159 189 204 267 281 (mainlib) Pentanoic acid, trimethylsilyl ester 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 5561 75 85 101 117 132 145 159 O Si O P-27 (Text File) Average of 4.045 to 4.058 min.: M571.D\DATA.MS 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 61 75 87 102 117 131 146 191 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 45 45 61 61 75 75 83 87 102 117 117 131 131 146 146 191 (replib) Silanol, trimethyl-, propanoate 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 61 75 85 117 131 146 O Si O P-28 (Text File) Average of 5.320 to 5.340 min.: M571.D\DATA.MS 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 60 70 73 83 103 117 129 145 163 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 45 45 60 61 73 73 83 103 117 117 129 129 145 145 160 163 (mainlib) Propanoic acid, 2-methyl-, trimethylsilyl ester 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 61 73 117 129 145 160 O O Si P-29 (Text File) Average of 4.701 to 4.710 min.: M5.D\DATA.MS 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 51 5662 74 77 86 97 112 133 165 207 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 51 51 56 62 62 74 74 77 77 85 86 97 97 112 112 133 165 207 (replib) Benzene, chloro- 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 51 63 74 77 84 97 112 Cl P-30 (Text File) Average of 12.026 to 12.038 min.: M571.D\data.ms 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 59 65 73 87 97 117 133 147 155 179 191 207 223 237 251 268 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 45 45 52 59 59 65 66 73 73 87 97 102 117 117 133 133 147 147 155 175 179 190 191 207 219 223 237 251 268 (mainlib) Ethanedioic acid, bis(trimethylsilyl) ester 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 52 59 66 73 102 117 133 147 175 190 219 O Si O O O Si P-31 (Text File) Average of 8.222 to 8.251 min.: M571.D\DATA.MS 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 56 66 73 85 88 100 117 133 147 164 174 190 207 219 267 281 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 45 45 56 59 66 66 73 73 85 88 88 100 101 117 117 133 133 147 147 164 174 190 191 207 219 219 267 281 (mainlib) Propanoic acid, 2-[(trimethylsilyl)oxy]-, trimethylsilyl ester 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 59 66 73 88 101 117 133 147 191 219 O Si O O Si P-32 (Text File) Average of 11.955 to 11.967 min.: M571.D\data.ms 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 55 61 73 86 101 116 129 147 157 172 191 203 218 247 262 281 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 45 45 55 55 61 61 73 73 86 101 116 116 129 129 147 147 157 172 172 191 203 218 218 247 247 262 281 (mainlib) Butanedioic acid, bis(trimethylsilyl) ester 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 5561 73 116 129 147 172 218 247 OSi O O Si O P-33 (Text File) Average of 10.373 to 10.402 min.: M57.D\DATA.MS 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 45 56 63 73 78 93 100 116 128 149 155 165 185 192 223 237 251 267 281 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 45 45 51 56 63 63 73 73 78 79 93 93 100 107 116 125 128 135 149 149 155 165 169 185 185 200 200 223 237 251 267 281 (mainlib) Silane, (2-chlorophenoxy)trimethyl- 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 4551 63 7379 93 107 125 135 149 155 169 185 200 Cl Si O P-34 (Text File) Average of 12.421 to 12.443 min.: M58.D\data.ms 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 43 63 71 97 126 133 162 196 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 43 48 62 63 71 73 80 87 97 97 107 126 132 133 160 162 196 196 (mainlib) Phenol, 2,3,5-trichloro- 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 48 62 73 80 87 97 107 132 143 160 196 Cl Cl OH Cl P-35 (Text File) Average of 9.913 to 9.948 min.: M57.D\data.ms 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 63 71 82 98 107 126 162 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 49 50 63 63 71 73 81 82 98 98 107 107 126 126 133 162 162 (replib) Phenol, 2,3-dichloro- 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 49 63 73 81 98 107 126 133 162 Cl Cl OH P-36 (Text File) Average of 12.488 to 12.508 min.: M58.D\data.ms 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 43 48 62 7783 97 105 118 132 147 160 196 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 43 48 48 62 62 73 77 83 97 97 105 107 118 125 132 132 147 149 160 160 196 196 (mainlib) Phenol, 2,4,5-trichloro- 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 48 62 73 83 97 107 132 149 160 196 Cl OH Cl Cl P-37 (Text File) Average of 12.559 to 12.630 min.: M58.D\data.ms 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 48 62 73 83 97 107 132 147 160 196 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 48 48 62 62 73 73 83 83 97 97 107 107 125 132 132 147 160 160 167 196 196 (replib) Phenol, 2,4,6-trichloro- 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 48 62 73 83 97 107 132 160 167 196 Cl OH Cl Cl P-38 (Text File) Average of 9.823 to 9.865 min.: M57.D\data.ms 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 49 63 73 81 98 109 126 133 162 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 49 53 63 63 73 73 81 81 98 98 107 109 126 126 162 162 (replib) Phenol, 2,4-dichloro- 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 53 63 73 81 98 107 126 162 Cl Cl OH P-39 (Text File) Average of 13.253 to 13.263 min.: M57.D\data.ms 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 40 62 73 81 91 99 133 162 200 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 40 49 62 63 73 73 81 81 89 91 99 99 107 126 133 162 162 200 (replib) Phenol, 3,4-dichloro- 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 49 63 73 81 89 99 107 126 162 Cl Cl OH P-40 (Text File) Average of 10.212 to 10.234 min.: M57.D\data.ms 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 43 56 65 73 81 100 128 143 163 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 43 50 56 65 65 73 73 81 100 100 110 128 128 143 163 (mainlib) Parachlorophenol 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 65 73 100 110 128 ClHO P-41 (Text File) Average of 6.820 to 6.858 min.: M57.D\data.ms 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 40 55 66 73 85 94 101 129 Head to Tail 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 50 100 40 40 55 55 66 66 73 74 85 94 94 101 129 (replib) Phenol 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 40 55 66 74 94 OH P-42

Các file đính kèm theo tài liệu này:

  • pdfluan_an_nghien_cuu_ky_thuat_dien_hoa_cao_ap_tao_plasma_dien.pdf
  • docThongTin KetLuanMoi LuanAn NCS TranVanCong.doc
  • pdfTomTat LuanAn NCS TranVanCong_English.pdf
  • pdfTomTat LuanAn NCS TranVanCong_TiengViet.pdf
  • docTrichYeu LuanAn NCS TranVanCong.doc
Luận văn liên quan