Từ những kết quả đã nghiên cứu ở trên có thể thấy luận án đã đạt được
một số kết quả như sau:
1. Đã khảo sát sự hình thành và các yếu tố ảnh hưởng đến plasma điện
hóa trên các điện cực đồng, sắt, volfram như: điện áp, khoảng cách giữa điện
cực anot với catot, độ dẫn điện, pH, nhiệt độ môi trường, bản chất và kích
thước điện cực. Từ đó có thể điều khiển sự xuất hiện plasma điện hóa.
2. Quá trình tạo plasma điện hóa là môi trường ion hóa đều làm biến đổi
đặc tính của dung dịch như độ dẫn điện, pH, nhưng đặc biệt là tạo ra các tác
nhân oxi hóa mạnh như H2O2 và và gốc tự do OH• . Các giá trị nồng độ H2O2
và gốc tự do OH• với các điện cực đồng, sắt, volfram đều tăng theo thời gian
phản ứng khi có plasma điện hóa. Nồng độ H2O2 và gốc OH• tạo thành có thể
xác định được đối với điện cực sắt tương ứng là: 0,043 mg/L và 3,7×10-4M.
Sự tạo thành các hạt nano Fe0 từ quá trình hòa tan anot điện hóa có thể kết hợp
với H2O2 theo phản ứng Fenton xúc tác cho quá trình tạo gốc OH• với khả
năng oxi hóa cao hơn. Hàm lượng OH• tăng khi dung dịch phản ứng được thổi
khí bổ sung.
3. Sự phân hủy các chất ô nhiễm môi trường nước 2,4-D, 2,4,5-T bằng kỹ
thuật phản ứng điện hóa cao áp có quá trình tạo plasma điện hóa đạt hiệu suất
xử lý tăng cao có liên quan trực tiếp đến các tác nhân oxi hóa, trong đó vai trò
quyết định là gốc tự do OH• . Với điều kiện tạo plasma trên điện cực sắt tại
điện áp 5 kV, khoảng cách điện cực 300 mm, nhiệt độ môi trường 30oC, pH=6,
độ dẫn điện 38 µS/cm, lưu lượng thổi không khí 500 mL/phút, hiệu suất xử lý
2,4-D đạt đến 99,98 %, 2,4,5-T đạt 99,83% sau thời gian 120 phút. Tỉ lệ
khoáng hóa 2,4-D đạt 65,6 % và 60,8 % đối với 2,4,5-T.
186 trang |
Chia sẻ: huydang97 | Lượt xem: 411 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu kỹ thuật điện hoá cao áp tạo plasma điện cực ứng dụng để phân huỷ axít 2,4-Dichlorophenoxyacetic và axít 2,4,5-Trichlorophenoxyacetic trong môi trường nước, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
phenol
solutions, Vacuum 83, pp. 234-237.
119
[37]. Dors.M., Metel.E., Mizeraczyk.J. (2007), Phenol degradation in
water by pulsed streamer corona discharge and fenton reaction, International
Journal of Plasma Environmental Science & Technology, 1, pp. 76-81.
[38]. ELTayeb.A., ELShazly.A.H., Elkady.M.F., Abdel-Rahman.A.
(2016), Simulation and experimental study for degradation of organic dyes
using dual pin-to-plate corona discharge plasma reactors for industrial
wastewater treatment, Wiley Online Library, doi:10.1002/ctpp.201500080.
[39]. Environmental Health Criteria 29 (1984), 2,4-Dichlorophenoxy -
acetic acid (2,4-D), World Health Organization, ISBN 92 4 154089 3.
[40]. Fauchais.P., Rakowitz.J. (1979), Physics on plasma chemistry,
Journal of Physical Workshop, pp. 289-312.
[41]. Fontmorin.J.M., Fourcade.F., Geneste.F., Floner.D., Huguet.S.,
Amrane.A. (2013), Combined process for 2,4-Dichlorophenoxyacetic acid
treatment-Coupling of an electrochemical system with a biological treatment,
Biochemical Engineering Journal, 70, pp.17-22.
[42]. Giammaria.G., Rooij.G.V., Lefferts. L. (2019), Plasma catalysis:
distinguishing between thermal and chemical effects, Catalysts 2019, 9,185,
doi: 10.3390/catal9020185.
[43]. Gomeza.E., Rania.D.A., Cheesemanb.C.R., Deeganc.D., Wisec.M.,
Boccaccinia.A.R. (2009), Thermal plasma technology for the treatment of
wastes: A critical review, Journal of Hazardous Materials,161, pp. 614-626.
[44]. Grabowski.L.R., Veldhuizen.E.M.V, Pemen.A.J.M., Rutgers.W.R.
(2006), Corona above water reactor for systematic study of aqueous phenol
degradation, Plasma Chemistry and Plasma Processing, 26, pp. 3-17.
[45].Grinevich.V.I., Lyubimov.V.A., Gushchin.A.A. (2017), Destruction
of oil hydrocarbons in water solutions with oxygen dielectric barrier discharge
of atmospheric pressure, Izv. Vyssh. Uchebn. Zaved. Tekhnol, 60, pp. 20-27.
120
[46]. Grymonpre.D.R., Finney.W.C., Clark.R.J., Locke.B.R. (2004),
Hybrid gas-liquid electrical discharge reactors for organic compound
degradation, Ind. Eng. Chem. Res, 43, pp. 1975-1989.
[47]. Gupta.S.B. (2007), Investigation of a physical disinfection process
based on pulsed underwater corona discharges, Dessertation, Institute of
microwave technology and high performance pulses, German.
[48]. Hao.X., Zhou.M., Xin.Q., Lei.L. (2007), Pulsed discharge plasma
induced Fenton-like reactions for the enhancement of the degradation of 4-
chlorophenol in water, Chemosphere, 66, pp. 2185-2192.
[49]. Hoeben.W.F.L.M., Veldhuizen.E.M.V., Rutgers.W.R., Cramers.
C.A.M.G., Kroesen.G.M.W. (2000), The degradation of aqueous phenol
solutions by pulsed positive corona discharges, Plasma Sources Sci. Technol.
9, pp. 361-369.
[50]. Huang.C.C., Lo. S.L., Lien.H.L. (2012), Zero-valent copper
nanoparticles for effective dechlorination of dichloromethane using sodium
borohydride as a reductant, Chemical Engineering Journal, 203, pp. 95-100.
[[[ơ[51]. Jiang.B., Zheng.J., Qiu.S., Wu.M., Zhang.Q., Yan.Z., Xue.Q.
(2014), Review on electrical discharge plasma technology for wastewater
remediation, Chemical Engineering Journal, 236, pp. 348-368.
[52]. Jiang.B., Zheng.J., Liu.Q., Wu.M. (2012), Degradation of azo dye
using non-thermal plasma advanced oxidation process in a circulatory airtight
reactor system, Chemical Engineering Journal, 204-206, pp. 32-39.
[53]. Joshi.A.A., Locke.B.R., Arce.P., Finney.W.C. (1995), Formation of
hydroxyl radicals, hydrogen peroxyde and aqueous electrons by pulsed
streamer corona discharge in aqueous solution, Journal of Hazardous
Materials, 41, pp. 3-30.
[54]. Jong.K.I., Huyn.S.S., Kyung.D.Z. (2011), Perchlorate removal in
121
Fe0/H2O systems: Impact of oxygen availability and UV radiation, Journal of
Hazardous Materials, 192, pp. 457-464.
[55]. Kanazawa.S., Furuki.T., Nakaji.T., Akamine.S., Ichiki.R. (2012),
Measurement of OH radicals in aqueous solution produced by atmosphric-
pressure LF plasma jet, International Journal of Plasma Environmental
Science &Technology, 6, pp. 166-171.
[56]. Kishor Kumar.K., Couedel.L., Arnas.C. (2013), Growth of tungsten
nanoparticles in direct-current argon glow discharges, Physics of Plasma 20,
043707,
[57]. Kirkpatrick.M.J., Locke.B.R. (2006), Effects of platinum electrode
on hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase
pulsed corona electrical discharge, Ind. Eng. Chem. Res, 45, pp. 2138-2142.
[58]. Kogelschatz.U. (2002), Dielectric-barrier discharges: their history,
discharge physics, and industrial applications, Plasma Chemistry and Plasma
Processing, 23, pp. 1- 46.
[59]. Kornev.I., Osokin.G., Galanov.A., Yavorovskiy.N., Preis. S. (2013),
Formation of nitrite-and nitrate-ions in aqueous solutions treated with pulsed
electric discharges, Science & Engineering, 35, pp. 22-30.
[60]. Kuo.C.H., Huang.C.H. (1995), Aqueous phase ozonation of
chlorophenols, Journal of Zahardous Materials, 41, pp. 31-45.
[61]. Li.H.O.L., Kang.J., Urashima.K., Saito.N. (2013), Comparison
between the mechanism of liquid plasma discharge process in water and
organic solution, Journal of Institute Electrostat Janpan, 37, pp. 22-27.
[62]. Locke.B.R., Sato.M., Sunka.P., Hoffmann.M.R., Chang.J.S. (2006),
Electrohydraulic discharge and nonthermal plasma for Water Treatment, Ind.
Eng. Chem. Res, 45, pp. 882-905.
[63]. Locke.B.R., Thagard.S.M. (2012), Analysis and review of chemical
122
reactions and transport processes in pulsed electrical discharge plasma formed
directly in liquid water, Plasma Chem Plasma Process, 32, pp. 875-917.
[64]. Lu.H., Wang.J.K., Stoller.M., Wang.T., Bao.Y, Hao.H (2016), An
Overview of nanomaterials for water and waterwaster treatment, Advances in
Materials Science and Engineering,
[65]. Lukes.P. (2001), Water treatmen by pulsed streamer corona
discharge, Ph.D.Thesis, Institute of plasma physics academy of sciences of
the Czech Republic.
[66]. Lukes.P., Clupek.M., Babicky.V., Sisrova.I., Janda.V. (2011), The
catalytic role of tungsten electrode material in the plasmachemical activity of
a pulsed corona discharge in water, Plasma Sources Science and Technol, 20,
pp. 1-11.
[67]. Lukes.P., Locke.B.R., Brisset.J.L. (2012),Aqueous-phase chemistry
of electrical discharge plasma in water and in gas-liquid environments, Wiley-
VCH Verlag GmbH & Co. KgaA, pp. 243-308.
[68]. Lu.Q., Yu.J., Gao.J. (2006), Degradation of 2,4-dichlorophenol by
using glow discharge electrolysis, Journal of Hazardous Materials B136, pp.
526-531.
[69]. Mededovic.S. (2007), Chemical processes in aqueous phase pulsed
electrical discharges: Fundamental mechanisms and applications to organic
compound degradation, Ph.D.Thesis, Florida State University.
[70]. Miyamoto.K (1997), Fundamentals of plasma physics and
controlled fusion, Iwanami Book Service Center, ISBN:4-900491-11.
[71]. Mok.Y.S., Jo.J.O., Whitehead.J.C. (2007), Degradation of an azo
dye Orange II using a gas phase dielectric barrier discharge reactor
submerged in water, Chemical Engineering Journal, 142, pp. 56-64.
[72]. Montgomery.M.L., Norris.L.A. (1970), A Preliminary Evaluation
123
of the Hazards of 2,4,5-T in the Forest Environment, U.S.Department of
Agriculture.
[73]. Mouele.E.S.M. (2014), Water treatment using electrohydraulic
discharge system, Ph.D.Thesis, University of the Western Cape, South Africa.
[74]. Nehra.V., Kumar.A., Dwivedi.H.K. (2014), Atmospheric non-
thermal plasma sources, International Journal of Engineering, 2, pp. 53-68.
[75]. Neta.P. (1972), Reaction of hydrogen atom in aqueous solution,
Chemical reviews, 72, pp. 533-543.
[76]. Nijdam.S., Veldhuizen.E.V., Bruggeman.P., Ebert.U. (2012), An
introduction to nonequilibrium plasmas at atmospheric pressure, Wiley-VCH
Verlag GmbH & Co. KgaA, pp. 1- 44.
[77]. Nishioka.H., Saito.H., Watanabe.T. (2009), Decomposition mecha-
nism of organic compounds by DC water plasmas at atmospheric pressure,
Thin Solid Films, 518, pp. 924-928.
[78]. Pascal.S., Moussa.D., Hnatiuc.E., Brisset.J.L. (2010), Plasma
chemical degradation of phosphorous-containing warfare agents simulants,
Journal of Hazardous Materials, 175, pp. 1037-1041.
[79]. Pasinszki.T., Krebsz.M. (2020), Synthesis and Application of Zero
Valent Iron Nanoparticles in Water Treatment , Environmental Remediation,
Catalysis, and Their Biological Effects, Nanomaterials, 10, 917,
doi:10.3390/nano10050917.
[80]. Peralta.E., Roa.G., Servin.J.H., Romero.R., Balderas.P. (2014),
Hydroxyl Radicals quantification by UV spectrophotometry, Electrochimica
Acta,
[81]. Peyton.G.R., Glaze.W.H. (1988), Destruction of pollutants in water
with ozone in combination with ultraviolet radiation. 3. Photolysis of aqueous
ozone, Environ. Sci. Technol, 22, pp.761-767.
124
[82]. Pinart.J., Smirdec.M., Pinart.M.E., Aaron.J.J., Benmansour.Z.,
Goldman.M., Goldman.A. (1996), Quantitative study of the formation of
inoganic chemical spicies following corona discharge - production of HNO2
and HNO3 in acomposition-controlled, humid atmosphere, Atmospheric
Environment, 30, pp. 129-132.
[83]. Porter.D., Poplin.M.D., Holzer.F., Finney.W.C., Locke.B.R. (2009),
Formation of hydrogen peroxyde, hydrogen, and oxygen in gliding arc
electrical discharge reactors with water spray, Transactions on industry
applications, 45, pp. 623-629.
[84]. Reddy.P.M.K., Subrahmanyam.C. (2012), Green approach for
wastewater treatment degradation and mineralization of aqueous organic
pollutants by discharge plasma, Ind. Eng. Chem. Res, 51, pp. 11097-11103.
[85]. Reddy.P.M.K., Raju.B.R., Karuppiah.J., Reddy.E.L., Subrahmany-
am.C. (2013), Degradation and mineralization of methylene blue by dielectric
barrier discharge non-thermal plasma reactor, Chemical Engineering Journal,
217, pp. 41-47.
[86]. Richmonds.C., Sankaran.R.M. (2008), Plasma liquid electro-
chemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma
reduction of aqueous cations, Applied Physics letters, 93, pp. 1-3.
[87]. Rosocha.L.A., Kim.Y., Anderson.G.K., Abbate.S. (2007), Com-
bustion enhancement using silent electrical discharges, International Journal
of Plasma Environmental Science & Technology, 1, pp. 8-13.
[88]. Ruma., Hosano.H., Sakugawa.T., Akiyama.H. (2018), The role of
pulse voltage amplitude on chemical processes induced by streamer discharge
at water surface, Catalysts 8, 213, doi:10.3390/Catal8050213.
[89]. Sahni.M, Locke.B.R. (2006), Quantification of reductive species
produced by high voltage electrical discharges in water, Plasma Process.
125
Polym, 3, pp. 342-354.
[90]. Sahni.M., Locke.B.R. (2006), Quantification of hydroxyl radicals
produced in aqueous phase pulsed electrical discharge reactors, Ind. Eng.
Chem. Res, 45, pp. 5819-5825.
[91]. Sahni.M., Locke.B.R. (2006), Degradation of chemical warfare
agent simulants using gas-liquid pulsed streamer discharges, Journal of
Hazardous Materials B137, pp. 1025-1034.
[92]. Saito.G., Hosokai.S., Tsubota.M., Akiyama.T. (2011), Synthesis of
copper/copper oxide nanoparticles by solution plasma, Journal of applied
physics 110,023302,
[93]. Sano.N., Kawashima.T., Fujimoto.T., Kanki.T. (2002), Decompo-
sition of organic compounds in water by direct contact of gas corona
discharge: Influence of discharge conditions, Ind.Eng.Chem.Res, 41, pp.
5906-5911.
[94]. Sano.N., Yamamoto.D., Kanki.T. (2003), Decomposition of phenol
in water by a cylindrical wetted-wall reactor using direct contact of gas
corona discharge, Ind. Eng. Chem. Res, 42, pp. 5423-5428.
[95]. Sayed.M. (2015), Efficient removal of phenol from aqueous
solution by the pulsed high-voltage discharge process in the presence of H2O2,
Chemistry International 1(2), pp. 81-86.
[96]. Sengupta.S.K., Smgh.O.P. (1994), Contact glow discharge
electrolysis: a study of its chemical yields in aqueous inert-type electrolytes,
Journal of Electroanalytlcal Chemistry, 369, pp. 113-120.
[97]. Sengupta.S.K., Singh.R., Srivastava.A.K. (1998), A study on the
origin of nonfaradaic behavior of anodic contact glow discharge electrolysis,
Journal of Electrochem Society, 145, pp. 2209-2213.
[98]. Sugiarto.A.T., Ohshima.T., Sato.M. (2002), Advanced oxidation
126
processes using pulsed streamer corona discharge in water, Thin Solid Films,
407, pp. 174-178.
[99]. Sun.B, Sato.M, Clements.J.S. (1997), Optical study of active
species produced by a pulsed streamer corona discharge in water, Journal of
Electrostatics, 39, pp. 189-202.
[100]. Sunka., Babicky.V., Clupek.M., Fuciman.M., Lukes.P., Simek.M.,
Benes.J., Lockey.B., Majcherovaz.Z. (2004), Potential applications of pulse
electrical discharges in water, Acta physica slovaca, 54, pp. 135-145.
[101]. Sunka.P., Babicky.V., Clupek.M., Lukes.P., Simek.M., Schmidt.J.,
Cernak.M. (1999), Generation of chemically active species by electrical
discharges in water, Plasma Sources Sci. Technol, 8, pp. 258-265.
[102]. Shin.W.T., Yiacoumi.S. (2000), A pulseless corona-discharge
process for the oxidation of organic compounds in water, Ind. Eng. Chem. Res,
39, pp. 4408-4414.
[103]. Stara.Z., Krcma.F., Nejezchleb.M., Skalny.J.D. (2009), Organic
dye decomposition by DC diaphragm discharge in water: effect of solution
properties on dye removal, Desalination 239, pp. 283-294.
[104]. Stara.Z., Krcma.F. (2004), The study of H2O2 generation by DC
diaphragm discharge in liquids, Czechoslovak Journal of Physics, 54, pp.
1050-1055.
[105]. Tang.W.Z., Huang.C.P. (1996), Effect of chlorine content of
chlorinated phenols on their oxidation kinetics by Fenton’s reagent,
Chemosphere, 33, pp. 1621-1635.
[106]. Tanino.T., Shibuki.K., Kubota.K., Kannari.N., Matsui.M.,
Ohshima.T. (2020), Removal of volatile organic compounds in distillation
steam by DBD decomposition treatment for water recycling in fermentation
industry, International Journal of Plasma Environmental Science &
127
Technology,14, e02003.
[107]. Tarifa.A.M., Arrojo.S., Louisnard.O., Garcia.J.G., Tudela. I.
(2010),Correlation between hydroxyl radical production and theoretical
pressure distribution in a sonochemical reactor, Physics Procedia, 3, pp. 971-
979.
[108]. Tichonovas.M., Krugly.E., Racys.V., Hippler.R., Kauneliene.V.,
Stasiulaitiene.I., Martuzevicius.D. (2013), Degradation of various textile dyes
as wastewater pollutants under dielectric barrier discharge plasma treatment,
Chemical Engineering Journal, 229, pp. 9-19.
[109]. Tomizawa.S., Tezuka.M. (2007), Kinetics and mechanism of the
organic degradation in aqueous solution irradiated with gaseous plasma,
Plasma Chem Plasma Process , 27, pp. 486-495.
[110]. U.S.Congress. (1991), Office of Technology Assessment OTA-
BP-O-93, Dioxin-Treatment-Technologies, Washington DC, U.S.Government
printing Office.
[111]. Vandenbroucke.A.M., Morent.R., Geyter.N.D., Leys.C. (2011),
Non-thermal plasmas for non-catalytic and catalytic VOC abatement, Journal
of Hazardous Materials, 195, pp. 30-54.
[112]. Venger.R., Tmenova.T., Valensi.F., Veklich.A., Cressault.Y.,
Boretskij.V. (2017), Detailed investigation of the electric discharge plasma
between copper electrodes immersed into water, MDPI, Atoms, 5,40,
doi:10.3390/atoms5040040.
[113]. Vijgen.J. (2003), Review of emerging, innovative technologies for
the destruction and decontamination of POPs and the identification of
promising technologies for use in developing countries, The Scientific and
Technical Advisory Panel of the GEF, United Nations Environment
Programme.
128
[114]. Wang.H., Li.J., Quan.X., Wu.Y., Li.G., Wang.F. (2007),
Formation of hydrogen peroxide and degradation of phenol in synergistic
system of pulsed corona discharge combined with TiO2 photocatalysis,
Journal of Hazardous Materials, 141, pp. 336-343.
[115]. Wang.H., Li.J., Quan.X., Wu.Y. (2008), Enhanced generation of
oxidative species and phenol degradation in a discharge plasma system
coupled with TiO2 photocatalysis, Applied Catalysis B: Environmental, 83, pp.
72-77.
[116]. Wang. L (2009), 4-Chlorophenol Degradation and Hydrogen
Peroxyde Formation Induced by DC Diaphragm Glow Discharge in an
Aqueous Solution, Plasma Chem Plasma Process, 29, pp. 241-250.
[117]. Wang.T.C., Lua.N., An.J.T., Zhao.Y., Li.J., Wua.Y. (2012),
Multi-tube parallel surface discharge plasma reactor for wastewater treatment,
Separation and Purification Technology, 100, pp. 9-14.
[118]. Wang.X., Zhou.M., Jin.X. (2012), Application of glow discharge
plasma for wastewater treatment, Electrochimica Acta, 83, pp. 501- 512.
[119]. Willberg.D.M., Lang.P.S., Hochemer.R.H., Kratel.A., Hoffmann.
M.R. (1996), Degradation of 4-chlorophenol, 3,4-dichloroaniline, and 2,4,6-
Trinitrotoluene in an electrohydraulic discharge reactor, Environmetal Science
&Technology, 30, pp. 2526-2534.
[120]. Wolf.M., Yankelevich.Y., Wald.S., Grabowski.L.R. (2006), High-
power pulsed corona for treatment of pollutants in heterogeneous media,
Transactions on plasma science, 34, pp. 1731-1743.
[121]. Xaplanteris.C.L.(2018), Mechanical and chemical results in
plasma surface contact. A Study of Sheath parameters, Physics & Astronomy
International Journal , 2(1), pp. 25-32.an
[122]. Xia.Q., Jiang.Z., Wang.J., Yao.Z. (2017), A facile preparation of
129
hierarchical dendritic zero valent iron for Fenton-like degradation of phenol,
Catalysis Communications, 100, pp.57-61.
[123]. Yan.J. H., Du.Ch.M., Li.X.D., Cheron.B.G., Ni.M.J., Cen.K.F. (2006),
Degradation of phenol in aqueous solutions by gas-liquid gliding arc
discharges, Plasma Chemistry and Plasma Processing, 26, pp. 31-41.
[124]. Yang.Y. (2011), Plasma discharge in water and its application
for industrial cooling water treatment, Ph.D Thesis, Drexel University,
Pennsylvania, United States.
[125]. Yuan.M.H., Narengerile., Watanabe.T., Chang.C.Y. (2010), DC
water plasma at atmospheric pressure for the treatment of aqueous phenol,
Environmental Science &Technology, 44, pp. 4710-4715.
[126]. Zhang.R., Zhang.C., Cheng.X.X., Wang.L., Wu.Y., Guan.Z.
(2007), Kinetics of decolorization of azo dye by bipolar pulsed barrier
discharge in a three-phase discharge plasma reactor, Journal of Hazardous
Materials,142, pp.105-110.
[127]. Zhang.Y., Zhou.M., Lei.L. (2007), Degradation of 4-chlorophenol
in different gas-liquid electrical discharge reactors, Chemical Engineering
Journal, 132, pp. 325-333.
[128]. Zhang.Y., Zhou.M., Hao.X., Lei.L. (2007), Degradation
mechanisms of 4-chlorophenol in a novel gas-liquid hybrid discharge reactor
by pulsed high voltage system with oxygen or nitrogen bubbling, Chemospher,
67, pp. 702-711.
P-1
PHỤ LỤC
P-2
PHỤ LỤC 1. PHỔ ĐƯỜNG CHUẨN 2,4-D, 2,4,5-T VÀ PHỔ XỬ LÝ
2,4-D, 2,4,5-T PHỤ THUỘC VÀO THỜI GIAN
=====================================================================
Calibration Table
=====================================================================
2,4 Dichlorophenoxyaxetic Axit
Calib. Data Modified : 3/10/2020 1:47:07 PM
Calculate : External Standard
Based on : Peak Area
Rel. Reference Window : 25.000 %
Abs. Reference Window : 0.000 min
Rel. Non-ref. Window : 30.000 %
Abs. Non-ref. Window : 0.000 min
Uncalibrated Peaks : compound name not specified
Partial Calibration : Yes, identified peaks are recalibrated
Correct All Ret. Times: No, only for identified peaks
Curve Type : Linear
Origin : Included
Weight : Equal
Recalibration Settings:
Average Response : Average all calibrations
Average Retention Time: Floating Average New 75%
Calibration Report Options :
Printout of recalibrations within a sequence:
Calibration Report before Recalibration
Normal Report after Recalibration
If the sequence is done with bracketing:
Results of first cycle (ending previous bracket)
Signal 1: DAD1 D, Sig=285,16 Ref=360,100
RetTime Lvl Amount Area Amt/Area Ref Grp Name
[min] Sig [ppm]
-------|--|--|----------|----------|----------|---|--|---------------
4.052 1 6 3.00000 138.58000 2.16481e-2 2,4 - Diclorophenoxyaxetic Axit
5 6.00000 350.99000 1.70945e-2
4 12.00000 675.43000 1.77665e-2
3 24.00000 1405.83777 1.70717e-2
2 48.00000 2780.50000 1.72631e-2
1 96.00000 5600.50000 1.71413e-2
1 Warnings or Errors :
Warning : Cal. table open and changed while report was generated.
Method E:\DATA\METHODS\24-D.M
Instrument 1 3/10/2020 1:47:38 PM Do Binh Minh Page 1 of 1
=====================================================================
Calibration Curves
=====================================================================
Amount[ppm]
0 50 100
Area
0
1000
2000
3000
4000
5000
65
4
3
2
1
2,4 - Diclorophenoxyaxetic Axit at exp. RT: 4.052
DAD1 D, Sig=285,16 Ref=360,100
Correlation: 0.99997
17.23498Residual Std. Dev.:
Formula: y = mx + b
58.44881m:
b: -13.56952
x: Amount[ppm]
y: Area
=====================================================================
P-3
=====================================================================
Calibration Table
=====================================================================
2,4,5-T Trichlorophenoxyaxetic Axit
Calib. Data Modified : 3/16/2020 1:48:16 PM
Calculate : External Standard
Based on : Peak Area
Rel. Reference Window : 25.000 %
Abs. Reference Window : 0.000 min
Rel. Non-ref. Window : 30.000 %
Abs. Non-ref. Window : 0.000 min
Uncalibrated Peaks : compound name not specified
Partial Calibration : Yes, identified peaks are recalibrated
Correct All Ret. Times: No, only for identified peaks
Curve Type : Linear
Origin : Included
Weight : Equal
Recalibration Settings:
Average Response : Average all calibrations
Average Retention Time: Floating Average New 75%
Calibration Report Options :
Printout of recalibrations within a sequence:
Calibration Report before Recalibration
Normal Report after Recalibration
If the sequence is done with bracketing:
Results of first cycle (ending previous bracket)
Signal 1: DAD1 D, Sig=285,16 Ref=360,100
RetTime Lvl Amount Area Amt/Area Ref Grp Name
[min] Sig [ppm]
-------|--|--|----------|----------|----------|---|--|---------------
3.552 1 6 3.50000 138.58000 2.52562e-2 2,4,5 - T
5 7.00000 350.99000 1.99436e-2
4 14.00000 675.43000 2.07275e-2
3 28.00000 1405.83777 1.99169e-2
2 56.00000 2780.50000 2.01403e-2
1 112.00000 5600.50000 1.99982e-2
1 Warnings or Errors :
Warning : Cal. table open and changed while report was generated.
Method E:\DATA\METHODS\245-T.M
Instrument 1 3/16/2020 1:48:34 PM Do Binh Minh Page 1 of 1
=====================================================================
Calibration Curves
=====================================================================
Amount[ppm]
0 50 100
Area
0
1000
2000
3000
4000
5000
65
4
3
2
1
2,4,5 - T at exp. RT: 3.552
DAD1 D, Sig=285,16 Ref=360,100
Correlation: 0.99997
17.23498Residual Std. Dev.:
Formula: y = mx + b
50.09898m:
-13.56952b:
x: Amount[ppm]
y: Area
=====================================================================
P-4
Mau 24D- Mau M36
=====================================================================
Injection Date : 3/13/2020 10:05:45 PM
Sample Name : 2,4-D Location : Vial 1
Acq. Operator : Do Binh Minh
Acq. Method : E:\DATA\METHODS\24-D.M
Last changed : 3/6/2020 5:01:40 PM by Do Binh Minh
Analysis Method : E:\DATA\METHODS\24-D.M
Last changed : 3/16/2020 9:11:40 AM by Do Binh Minh
(modified after loading)
Diclorophenoxyaxetic axit
min0 1 2 3 4 5 6 7
mAU
-10
0
10
20
30
40
DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20031304.D)
3
.7
31
-
2
,4
-
D
ic
lo
ro
ph
en
ox
ya
xe
tic
A
xi
t
=====================================================================
External Standard Report
=====================================================================
Sorted By : Signal
Calib. Data Modified : 3/6/2020 9:51:17 AM
Multiplier : 1.0000
Dilution : 1.0000
Sample Amount : 5.00000 [ppm] (not used in calc.)
Signal 1: DAD1 D, Sig=285,16 Ref=360,100
Uncalibrated Peaks : compound name not specified
RetTime Type Area Amt/Area Amount Grp Name
[min] [mAU*s] [ppm]
-------|------|----------|----------|----------|--|------------------
3.731 BB 9.95024 4.04412e-1 4.00399 2,4 - Diclorophenoxyaxetic Axit
Totals : 4.00399
Results obtained with enhanced integrator!
=====================================================================
*** End of Report ***
Data File E:\DATA\CONGCH\20031304.D Sample Name: 2,4-D
Instrument 1 3/16/2020 9:15:47 AM Do Binh Minh Page 1 of 1
P-5
Mau 2,4-D- Mau M37
=====================================================================
Injection Date : 3/13/2020 1:15:09 PM
Sample Name : 2,4-D Location : Vial 1
Acq. Operator : Do Binh Minh
Acq. Method : E:\DATA\METHODS\24-D.M
Last changed : 3/6/2020 5:01:40 PM by Do Binh Minh
Analysis Method : E:\DATA\METHODS\24-D.M
Last changed : 3/16/2020 9:11:40 AM by Do Binh Minh
(modified after loading)
Diclorophenoxyaxetic axit
min0 2 4 6 8
mAU
-10
0
10
20
30
40
DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20051201.D)
A
rea
: 2
1.9
92
4
3
.6
50
-
2
,4
-
D
ic
lo
ro
ph
en
ox
ya
xe
tic
A
xi
t
=====================================================================
External Standard Report
=====================================================================
Sorted By : Signal
Calib. Data Modified : 3/6/2020 9:51:17 AM
Multiplier : 1.0000
Dilution : 1.0000
Sample Amount : 5.00000 [ppm] (not used in calc.)
Signal 1: DAD1 D, Sig=285,16 Ref=360,100
Uncalibrated Peaks : compound name not specified
RetTime Type Area Amt/Area Amount Grp Name
[min] [mAU*s] [ppm]
-------|------|----------|----------|----------|--|------------------
3.650 MM 21.99238 2.76654e-1 6.07428 2,4 - Diclorophenoxyaxetic Axit
Totals : 6.07428
Results obtained with enhanced integrator!
=====================================================================
*** End of Report ***
Data File E:\DATA\CONGCH\20051201.D Sample Name: 2,4-D
Instrument 1 3/16/2020 9:15:31 AM Do Binh Minh Page 1 of 1
P-6
Mau 2,4-D- Mau M38
=====================================================================
Injection Date : 3/13/2020 1:32:57 PM
Sample Name : 2,4-D Location : Vial 1
Acq. Operator : Do Binh Minh
Acq. Method : E:\DATA\METHODS\24-D.M
Last changed : 3/6/2020 5:01:40 PM by Do Binh Minh
Analysis Method : E:\DATA\METHODS\24-D.M
Last changed : 3/16/2020 9:11:40 AM by Do Binh Minh
(modified after loading)
Diclorophenoxyaxetic axit
min0 2 4 6 8
mAU
-10
0
10
20
30
40
DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20051203.D)
3
.5
03
-
2
,4
-
D
ic
lo
ro
ph
en
ox
ya
xe
tic
A
xi
t
=====================================================================
External Standard Report
=====================================================================
Sorted By : Signal
Calib. Data Modified : 3/6/2020 9:51:17 AM
Multiplier : 1.0000
Dilution : 1.0000
Sample Amount : 5.00000 [ppm] (not used in calc.)
Signal 1: DAD1 D, Sig=285,16 Ref=360,100
Uncalibrated Peaks : compound name not specified
RetTime Type Area Amt/Area Amount Grp Name
[min] [mAU*s] [ppm]
-------|------|----------|----------|----------|--|------------------
3.503 BB 43.02536 2.25049e-1 9.82816 2,4 - Diclorophenoxyaxetic Axit
6.377 BP 16.36196 0.00000 0.00000 ?
7.837 BPA 4.76510 0.00000 0.00000 ?
Totals : 9.82816
Results obtained with enhanced integrator!
=====================================================================
*** End of Report ***
Data File E:\DATA\CONGCH\20051203.D Sample Name: 2,4-D
Instrument 1 3/16/2020 9:14:10 AM Do Binh Minh Page 1 of 1
P-7
Mau 24D- Mau M39
=====================================================================
Injection Date : 3/13/2020 1:45:49 PM
Sample Name : 2,4-D Location : Vial 1
Acq. Operator : Do Binh Minh
Acq. Method : E:\DATA\METHODS\24-D.M
Last changed : 3/6/2020 5:01:40 PM by Do Binh Minh
Analysis Method : E:\DATA\METHODS\24-D.M
Last changed : 3/16/2020 9:11:40 AM by Do Binh Minh
(modified after loading)
Diclorophenoxyaxetic axit
min0 1 2 3 4 5 6 7
mAU
-10
0
10
20
30
40
DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20031302.D)
3
.6
58
-
2
,4
-
D
ic
lo
ro
ph
en
ox
ya
xe
tic
A
xi
t
=====================================================================
External Standard Report
=====================================================================
Sorted By : Signal
Calib. Data Modified : 3/6/2020 9:51:17 AM
Multiplier : 1.0000
Dilution : 1.0000
Sample Amount : 5.00000 [ppm] (not used in calc.)
Signal 1: DAD1 D, Sig=285,16 Ref=360,100
Uncalibrated Peaks : compound name not specified
RetTime Type Area Amt/Area Amount Grp Name
[min] [mAU*s] [ppm]
-------|------|----------|----------|----------|--|------------------
3.658 BB 77.75360 2.00948e-1 15.56446 2,4 - Diclorophenoxyaxetic Axit
Totals : 15.56446
Results obtained with enhanced integrator!
=====================================================================
*** End of Report ***
Data File E:\DATA\CONGCH\20031302.D Sample Name: 2,4-D
Instrument 1 3/16/2020 9:12:52 AM Do Binh Minh Page 1 of 1
P-8
Mau 24D- Mau M40
=====================================================================
Injection Date : 3/13/2020 2:11:09 PM
Sample Name : 2,4-D Location : Vial 1
Acq. Operator : Do Binh Minh
Acq. Method : E:\DATA\METHODS\24-D.M
Last changed : 3/6/2020 5:01:40 PM by Do Binh Minh
Analysis Method : E:\DATA\METHODS\24-D.M
Last changed : 3/16/2020 9:11:40 AM by Do Binh Minh
(modified after loading)
Diclorophenoxyaxetic axit
min0 1 2 3 4 5 6 7
mAU
-10
0
10
20
30
40
DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20031301.D)
3
.4
96
-
2
,4
-
D
ic
lo
ro
ph
en
ox
ya
xe
tic
A
xi
t
=====================================================================
External Standard Report
=====================================================================
Sorted By : Signal
Calib. Data Modified : 3/6/2020 9:51:17 AM
Multiplier : 1.0000
Dilution : 1.0000
Sample Amount : 5.00000 [ppm] (not used in calc.)
Signal 1: DAD1 D, Sig=285,16 Ref=360,100
Uncalibrated Peaks : compound name not specified
RetTime Type Area Amt/Area Amount Grp Name
[min] [mAU*s] [ppm]
-------|------|----------|----------|----------|--|------------------
3.496 BB 157.04565 1.85873e-1 29.89053 2,4 - Diclorophenoxyaxetic Axit
Totals : 29.89053
Results obtained with enhanced integrator!
=====================================================================
*** End of Report ***
Data File E:\DATA\CONGCH\20031301.D Sample Name: 2,4-D
Instrument 1 3/16/2020 9:11:47 AM Do Binh Minh Page 1 of 1
P-9
Mau 245T- Mau M41
=====================================================================
Injection Date : 3/20/2020 8:37:39 AM
Sample Name : 2,4,5-T Location : Vial 1
Acq. Operator : Do Binh Minh
Acq. Method : E:\DATA\METHODS\245-T.M
Last changed : 3/6/2020 9:49:47 AM by Do Binh Minh
Analysis Method : E:\DATA\METHODS\245-T.M
Last changed : 3/20/2020 10:04:38 AM by Do Binh Minh
(modified after loading)
Diclorophenoxyaxetic axit
min0 1 2 3 4 5 6 7
mAU
-10
0
10
20
30
40
DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20031903.D)
3
.6
86
-
2
,4
,5
-
T
4
.1
07
=====================================================================
External Standard Report
=====================================================================
Sorted By : Signal
Calib. Data Modified : 3/20/2020 10:04:26 AM
Multiplier : 1.0000
Dilution : 1.0000
Sample Amount : 5.00000 [ppm] (not used in calc.)
Signal 1: DAD1 D, Sig=285,16 Ref=360,100
Uncalibrated Peaks : compound name not specified
RetTime Type Area Amt/Area Amount Grp Name
[min] [mAU*s] [ppm]
-------|------|----------|----------|----------|--|------------------
3.686 BB 35.81149 2.61428e-1 8.71353 2,4,5 - T
4.107 BP 4.90728 0.00000 0.00000 ?
Totals : 8.71353
Results obtained with enhanced integrator!
=====================================================================
*** End of Report ***
Data File E:\DATA\CONGCH\20031903.D Sample Name: 2,4,5-T
Instrument 1 3/20/2020 10:03:20 AM Do Binh Minh Page 1 of 1
P-10
Mau 245T- Mau M42
=====================================================================
Injection Date : 3/20/2020 9:00:39 AM
Sample Name : 2,4,5-T Location : Vial 1
Acq. Operator : Do Binh Minh
Acq. Method : E:\DATA\METHODS\245-T.M
Last changed : 3/6/2020 9:49:47 AM by Do Binh Minh
Analysis Method : E:\DATA\METHODS\245-T.M
Last changed : 3/20/2020 10:04:38 AM by Do Binh Minh
(modified after loading)
Diclorophenoxyaxetic axit
min0 1 2 3 4 5 6 7
mAU
-10
0
10
20
30
40
DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20031903.D)
3
.6
86
-
2
,4
,5
-
T
4
.1
07
=====================================================================
External Standard Report
=====================================================================
Sorted By : Signal
Calib. Data Modified : 3/20/2020 10:04:26 AM
Multiplier : 1.0000
Dilution : 1.0000
Sample Amount : 5.00000 [ppm] (not used in calc.)
Signal 1: DAD1 D, Sig=285,16 Ref=360,100
Uncalibrated Peaks : compound name not specified
RetTime Type Area Amt/Area Amount Grp Name
[min] [mAU*s] [ppm]
-------|------|----------|----------|----------|--|------------------
3.686 BB 43.81149 2.61428e-1 11.53530 2,4,5 - T
4.107 BP 4.90728 0.00000 0.00000 ?
Totals : 11.53530
Results obtained with enhanced integrator!
=====================================================================
*** End of Report ***
Data File E:\DATA\CONGCH\20031903.D Sample Name: 2,4,5-T
Instrument 1 3/20/2020 10:06:34 AM Do Binh Minh Page 1 of 1
P-11
Mau 245T- Mau M43
=====================================================================
Injection Date : 3/20/2020 9:17:50 AM
Sample Name : 2,4,5-T Location : Vial 1
Acq. Operator : Do Binh Minh
Acq. Method : E:\DATA\METHODS\245-T.M
Last changed : 3/6/2020 9:49:47 AM by Do Binh Minh
Analysis Method : E:\DATA\METHODS\245-T.M
Last changed : 3/20/2020 10:04:38 AM by Do Binh Minh
(modified after loading)
Diclorophenoxyaxetic axit
min0 1 2 3 4 5 6 7
mAU
-10
0
10
20
30
40
DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20031902.D)
3
.6
80
-
2
,4
,5
-
T
4
.0
67
=====================================================================
External Standard Report
=====================================================================
Sorted By : Signal
Calib. Data Modified : 3/20/2020 10:04:26 AM
Multiplier : 1.0000
Dilution : 1.0000
Sample Amount : 5.00000 [ppm] (not used in calc.)
Signal 1: DAD1 D, Sig=285,16 Ref=360,100
Uncalibrated Peaks : compound name not specified
RetTime Type Area Amt/Area Amount Grp Name
[min] [mAU*s] [ppm]
-------|------|----------|----------|----------|--|------------------
3.680 BB 60.37703 2.44465e-1 14.86009 2,4,5 - T
4.067 BP 4.86567 0.00000 0.00000 ?
Totals : 14.86009
Results obtained with enhanced integrator!
=====================================================================
*** End of Report ***
Data File E:\DATA\CONGCH\20031902.D Sample Name: 2,4,5-T
Instrument 1 3/20/2020 10:07:05 AM Do Binh Minh Page 1 of 1
P-12
Mau 245T- Mau M44
=====================================================================
Injection Date : 3/20/2020 9:40:03 AM
Sample Name : 2,4,5-T Location : Vial 1
Acq. Operator : Do Binh Minh
Acq. Method : E:\DATA\METHODS\245-T.M
Last changed : 3/6/2020 9:49:47 AM by Do Binh Minh
Analysis Method : E:\DATA\METHODS\245-T.M
Last changed : 3/20/2020 10:04:38 AM by Do Binh Minh
(modified after loading)
Diclorophenoxyaxetic axit
min0 1 2 3 4 5 6 7
mAU
-10
0
10
20
30
40
DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20031901.D)
3
.6
82
-
2
,4
,5
-
T
=====================================================================
External Standard Report
=====================================================================
Sorted By : Signal
Calib. Data Modified : 3/20/2020 10:04:26 AM
Multiplier : 1.0000
Dilution : 1.0000
Sample Amount : 5.00000 [ppm] (not used in calc.)
Signal 1: DAD1 D, Sig=285,16 Ref=360,100
Uncalibrated Peaks : compound name not specified
RetTime Type Area Amt/Area Amount Grp Name
[min] [mAU*s] [ppm]
-------|------|----------|----------|----------|--|------------------
3.682 BB 82.16466 2.35167e-1 19.05138 2,4,5 - T
Totals : 19.05138
Results obtained with enhanced integrator!
=====================================================================
*** End of Report ***
Data File E:\DATA\CONGCH\20031901.D Sample Name: 2,4,5-T
Instrument 1 3/20/2020 10:08:20 AM Do Binh Minh Page 1 of 1
P-13
Mau 245T- Mau M45
=====================================================================
Injection Date : 3/20/2020 9:55:01 AM
Sample Name : 2,4,5-T Location : Vial 1
Acq. Operator : Do Binh Minh
Acq. Method : E:\DATA\METHODS\245-T.M
Last changed : 3/6/2020 9:49:47 AM by Do Binh Minh
Analysis Method : E:\DATA\METHODS\245-T.M
Last changed : 3/20/2020 10:04:38 AM by Do Binh Minh
(modified after loading)
Diclorophenoxyaxetic axit
min0 1 2 3 4 5 6 7
mAU
-10
0
10
20
30
40
DAD1 D, Sig=285,16 Ref=360,100 (CONGCH\20031904.D)
3
.5
03
-
2
,4
,5
-
T
=====================================================================
External Standard Report
=====================================================================
Sorted By : Signal
Calib. Data Modified : 3/20/2020 10:04:26 AM
Multiplier : 1.0000
Dilution : 1.0000
Sample Amount : 5.00000 [ppm] (not used in calc.)
Signal 1: DAD1 D, Sig=285,16 Ref=360,100
Uncalibrated Peaks : compound name not specified
RetTime Type Area Amt/Area Amount Grp Name
[min] [mAU*s] [ppm]
-------|------|----------|----------|----------|--|------------------
3.503 BB 139.36365 2.19040e-1 30.22621 2,4,5 - T
Totals : 30.22621
Results obtained with enhanced integrator!
=====================================================================
*** End of Report ***
Data File E:\DATA\CONGCH\20031904.D Sample Name: 2,4,5-T
Instrument 1 3/20/2020 10:04:53 AM Do Binh Minh Page 1 of 1
P-14
P-15
PHỤ LUC 2. PHỔ ĐƯỜNG CHUẨN ĐỊNH LƯỢNG H2O2 VÀ PHỔ
XÁC ĐỊNH GỐC TỰ DO OH•
P-20
PHỤ LỤC 3. PHỔ KHỐI LƯỢNG GC-MS CÁC HƠP CHẤT
TRUNG GIAN CỦA QUÁ TRÌNH XỬ LÝ 2,4-D, 2,4,5-T
BẰNG PLASMA ĐIỆN HÓA
(Text File) Average of 6.083 to 6.099 min.: M571.D\DATA.MS
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45
61
75
88
99
115 125
143
162 175 207 244
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
41
45
45
59
61
69
75
75
85
88
99
99
113
115 125
125
143
143
162
169
175
185
207 244
(mainlib) 2-Butenoic acid, tert-butyldimethylsilyl ester
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
41
45 57
69
75
85
99
113 125
143
169 185
O
O
Si
P-21
(Text File) Average of 2.894 to 2.932 min.: M571.D\DATA.MS
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45
61
75
87 101
117
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
45
45
61
61
75
75
87 101
117
117
(mainlib) Acetic acid, (trimethylsilyl)-
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45 61
75
117
Si
O
O
P-22
(Text File) Average of 12.128 to 12.144 min.: M5.D\DATA.MS
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
40 55
60
69
73
82
97
117 132
147
157 168
187
196
217
232
261
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
40
45
55
55
59
61
69
69
73
73
82
83
89
97
99
117
117 129
132
147
147
157
158
168
186
187
196
203
217
217
232
232
261
261
(mainlib) Butanedioic acid, methyl-, bis(trimethylsilyl) ester
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45 55 69
73
83
89 99 117 129
147
158 186 203 217 232
261
O
O
O
O
Si
Si
P-23
(Text File) Average of 2.193 to 2.206 min.: M571D\DATA.MS
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45
59
75
86
103
120
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
45
45
53
59
59
75
75
86
103
103
120
(mainlib) Silanol, trimethyl-, formate
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45
5359
75
103
OSi
O
P-24
(Text File) Average of 8.344 to 8.366 min.: M571.D\DATA.MS
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45
5561
75
84 91 101
117
131
149
159
173
184
207 267
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
45
45
55
55
61
61
75
75
81
84
87
91
93
101
101
117
117
131
131
145
149
159
159
173
173
184
188
207 267
(replib) Hexanoic acid, trimethylsilyl ester
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45 5561
75
818793 101
117
131 145 159
173
188
O
Si
O
P-25
(Text File) Average of 9.328 to 9.344 min.: M571.D\DATA.MS
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
43
57
61
75
83
99
112
125
131
145
155
173
191 208
267 281
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
43
43
56
57
61
75
75
81
83
91
99
99 111
112
125
131
145
145
155
155
173
173
188
189 208 267 281
(mainlib) Pentanoic acid, 4-oxo-, trimethylsilyl ester
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
43
56
75
81 91 99 111 131
145
155
173
188
O
Si
O
O
P-26
(Text File) Average of 6.842 to 6.858 min.: M571.D\DATA.MS
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
43 57
73
85
89 96
101
117
132
145
159
189
204
267 281
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
43
45
55
57
61
73
75
85
85
89
101
101
117
117
132
132
145
145
159
159
189
204
267 281
(mainlib) Pentanoic acid, trimethylsilyl ester
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45
5561
75
85 101
117 132 145
159
O
Si
O
P-27
(Text File) Average of 4.045 to 4.058 min.: M571.D\DATA.MS
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45
61
75
87 102 117
131
146 191
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
45
45
61
61
75
75
83
87 102 117
117
131
131
146
146
191
(replib) Silanol, trimethyl-, propanoate
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45
61
75
85 117
131
146
O
Si
O
P-28
(Text File) Average of 5.320 to 5.340 min.: M571.D\DATA.MS
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45
60
70
73
83 103
117
129
145
163
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
45
45
60
61
73
73
83 103
117
117
129
129
145
145
160
163
(mainlib) Propanoic acid, 2-methyl-, trimethylsilyl ester
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45
61
73
117 129
145
160
O
O
Si
P-29
(Text File) Average of 4.701 to 4.710 min.: M5.D\DATA.MS
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
51
5662
74
77
86 97
112
133 165 207
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
51
51
56
62
62
74
74
77
77
85
86 97
97
112
112
133 165 207
(replib) Benzene, chloro-
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
51
63 74
77
84 97
112
Cl
P-30
(Text File) Average of 12.026 to 12.038 min.: M571.D\data.ms
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45 59
65
73
87 97 117 133
147
155 179 191 207 223 237 251 268
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
45
45
52
59
59
65
66
73
73
87 97
102
117
117
133
133
147
147
155
175
179
190
191 207
219
223 237 251 268
(mainlib) Ethanedioic acid, bis(trimethylsilyl) ester
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45
52 59 66
73
102 117 133
147
175 190 219
O
Si
O
O
O
Si
P-31
(Text File) Average of 8.222 to 8.251 min.: M571.D\DATA.MS
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45
56
66
73
85
88
100
117
133
147
164 174
190
207 219
267 281
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
45
45
56
59
66
66
73
73
85
88
88
100
101
117
117
133
133
147
147
164 174
190
191
207 219
219
267 281
(mainlib) Propanoic acid, 2-[(trimethylsilyl)oxy]-, trimethylsilyl ester
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45
59 66
73
88 101
117
133
147
191 219
O
Si O
O
Si
P-32
(Text File) Average of 11.955 to 11.967 min.: M571.D\data.ms
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45 55
61
73
86 101 116
129
147
157
172
191 203 218
247
262 281
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
45
45
55
55
61
61
73
73
86 101 116
116
129
129
147
147
157 172
172
191 203 218
218
247
247
262 281
(mainlib) Butanedioic acid, bis(trimethylsilyl) ester
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45 5561
73
116 129
147
172 218
247
OSi
O
O Si
O
P-33
(Text File) Average of 10.373 to 10.402 min.: M57.D\DATA.MS
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
45 56 63
73
78
93
100
116 128
149
155 165
185
192
223 237 251 267 281
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
45
45
51
56 63
63
73
73
78
79
93
93
100
107
116
125
128
135
149
149
155
165
169
185
185
200
200
223 237 251 267 281
(mainlib) Silane, (2-chlorophenoxy)trimethyl-
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
4551
63 7379
93
107 125 135
149
155 169
185
200
Cl
Si
O
P-34
(Text File) Average of 12.421 to 12.443 min.: M58.D\data.ms
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
43
63
71
97
126
133
162
196
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
43
48 62
63
71
73 80 87
97
97
107
126
132
133
160
162
196
196
(mainlib) Phenol, 2,3,5-trichloro-
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
48 62 73 80 87
97
107
132
143
160
196
Cl
Cl OH
Cl
P-35
(Text File) Average of 9.913 to 9.948 min.: M57.D\data.ms
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
63
71 82
98
107
126
162
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
49
50
63
63
71
73
81
82
98
98
107
107
126
126
133
162
162
(replib) Phenol, 2,3-dichloro-
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
49
63
73
81
98
107
126
133
162
Cl
Cl
OH
P-36
(Text File) Average of 12.488 to 12.508 min.: M58.D\data.ms
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
43
48 62 7783
97
105
118
132
147
160
196
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
43
48
48
62
62
73
77
83
97
97
105
107
118
125
132
132
147
149
160
160
196
196
(mainlib) Phenol, 2,4,5-trichloro-
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
48 62 73 83
97
107
132
149 160
196
Cl
OH
Cl
Cl
P-37
(Text File) Average of 12.559 to 12.630 min.: M58.D\data.ms
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
48
62
73
83
97
107
132
147
160
196
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
48
48
62
62
73
73
83
83
97
97
107
107
125
132
132
147 160
160
167
196
196
(replib) Phenol, 2,4,6-trichloro-
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
48
62
73
83
97
107
132
160
167
196
Cl
OH
Cl
Cl
P-38
(Text File) Average of 9.823 to 9.865 min.: M57.D\data.ms
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
49
63
73
81
98
109
126
133
162
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
49
53
63
63
73
73
81
81
98
98
107
109
126
126
162
162
(replib) Phenol, 2,4-dichloro-
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
53
63
73 81
98
107
126
162
Cl
Cl
OH
P-39
(Text File) Average of 13.253 to 13.263 min.: M57.D\data.ms
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
40
62
73
81
91
99
133
162
200
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
40
49
62
63
73
73
81
81 89
91
99
99
107 126
133
162
162
200
(replib) Phenol, 3,4-dichloro-
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
49
63
73
81 89
99
107 126
162
Cl
Cl
OH
P-40
(Text File) Average of 10.212 to 10.234 min.: M57.D\data.ms
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
43 56
65
73
81
100
128
143
163
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
43
50
56
65
65
73
73
81
100
100
110
128
128
143
163
(mainlib) Parachlorophenol
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
65
73 100
110
128
ClHO
P-41
(Text File) Average of 6.820 to 6.858 min.: M57.D\data.ms
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
40 55
66
73 85
94
101 129
Head to Tail
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
50
100
40
40
55
55
66
66
73
74
85
94
94
101 129
(replib) Phenol
40 60 80 100 120 140 160 180 200 220 240 260 280
0
50
100
40 55
66
74
94
OH
P-42