Luận án Nghiên cứu tăng cường khả năng chống chịu các điều kiện bất lợi của môi trường trên đối tượng cây Xoan ta (Melia azedarach L.) bằng công nghệ gen thực vật

1) Tiếp tục phân tích, đánh giá khả năng chống chịu các điều kiện lạnh, nhiệt độ cao của các dòng Xoan ta chuyển gen P5CSm, TP-codA ở điều kiện phòng thí nghiệm. Đánh giá khả năng chịu mặn, khô hạn của các dòng Xoan ta chuyển gen trên điều kiện đồng ruộng. 2) Ứng dụng quy trình chuyển gen vào Xoan ta thông qua Agrobacterium tumefaciens xây dựng đƣợc để chuyển các gen mục tiêu có giá trị vào cây Xoan ta tạo giống mới.

pdf157 trang | Chia sẻ: toanphat99 | Lượt xem: 3820 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu tăng cường khả năng chống chịu các điều kiện bất lợi của môi trường trên đối tượng cây Xoan ta (Melia azedarach L.) bằng công nghệ gen thực vật, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
hơn so với dòng cây đối chứng không chuyển gen sau khi xử lý bởi hạn nhân tạo. 4) Thiết kế đƣợc hai cấu trúc vector chuyển gen mang gen codA dƣới sự điều khiển của promoter 35S (pBI121::TP-codA và pBI121::codA), và chuyển thành công gen TP-codA/codA vào cây thuốc lá thông qua Agrobacterium tumefaciens. Các dòng thuốc lá chuyển gen có sự sinh tổng hợp và tích lũy glycine betaine cao trong lá (1,10 - 6,49 mM/g lá tƣơi) nên tăng cƣờng đƣợc khả năng chịu mặn so với dòng thuốc lá không chuyển gen. Các dòng thuốc lá chuyển cấu trúc gen TP-codA chịu mặn tốt hơn so với các dòng thuốc lá chuyển gen codA. 5) Tạo đƣợc 68 dòng Xoan ta chuyển cấu trúc gen TP-codA. Đánh giá các dòng Xoan ta chuyển gen ở điều kiện hạn và mặn nhân tạo thu đƣợc 5 dòng (TX4, TX12, TX27, TX28 và TX54) chịu hạn và mặn tốt hơn so với dòng cây đối chứng không chuyển gen. Hàm lƣợng glycine betaine tích lũy trong lá của các dòng Xoan ta chuyển gen cao hơn nhiều so với dòng đối chứng không chuyển gen ở điều kiện xử lý bởi hạn và mặn nhân tạo. 136 2. ĐỀ NGHỊ 1) Tiếp tục phân tích, đánh giá khả năng chống chịu các điều kiện lạnh, nhiệt độ cao của các dòng Xoan ta chuyển gen P5CSm, TP-codA ở điều kiện phòng thí nghiệm. Đánh giá khả năng chịu mặn, khô hạn của các dòng Xoan ta chuyển gen trên điều kiện đồng ruộng. 2) Ứng dụng quy trình chuyển gen vào Xoan ta thông qua Agrobacterium tumefaciens xây dựng đƣợc để chuyển các gen mục tiêu có giá trị vào cây Xoan ta tạo giống mới. 3) Sử dụng cấu trúc vector chuyển gen mang gen TP-codA để chuyển vào một số loài cây trồng nông lâm nghiệp khác để sớm tạo ra những giống cây trồng có khả năng chống chịu với điều kiện môi trƣờng bất lợi. 137 NHỮNG CÔNG TRÌNH CÔNG BỐ LIÊN QUAN ĐẾN LUẬN ÁN 1. Bùi Văn Thắng, Phạm Thị Hằng, Đỗ Xuân Đồng, Lê Văn Sơn, Chu Hoàng Hà (2012) Nghiên cứu hoạt động của promoter rd29A cảm ứng hạn ở cây xoan ta (Melia azedarach L.) chuyển gen. Tạp chí KH &CN, VAST 3: 504-510. 2. Bùi Văn Thắng, Đỗ Xuân Đồng, Lê Văn Sơn, Chu Hoàng Hà (2013) Quy trình chuyển gen vào cây xoan ta (Melia azedarach L.) bằng Agrobacterium đạt hiệu suất cao. Tạp chí Sinh học 35(2): 227 - 233. 3. Bùi Văn Thắng, Lê Văn Sơn, Chu Hoàng Hà (2013) Nghiên cứu tạo cây Xoan ta (Melia azedarach L.) chuyển gen P5CSm tăng cƣờng khă năng chống chịu khô hạn. Tạp chí Nông nghiệp & PTNT 1: 203-208. 4. Bùi Văn Thắng, Lê Văn Sơn, Chu Hoàng Hà (2013) Chuyển gen codA mã hóa choline oxidase vào cây Xoan ta (Melia azedarach L.) tăng cƣờng khă năng chịu hạn. Tạp chí Khoa học & Công nghệ Lâm nghiệp 2: 3-10. 5. Bùi Văn Thắng, Lê Văn Sơn, Chu Hoàng Hà (2013) Nghiên cứu tạo cây thuốc lá (Nicotiana tabacum L.) chuyển gen codA mã hóa choline oxidase tăng cƣờng khả năng chịu mặn. Báo cáo khoa học, Hội nghị Khoa học CNSH toàn quốc: 1059- 1063. 6. Đỗ Xuân Đồng, Bùi Văn Thắng, Hồ Văn Giảng, Lê Văn Sơn, Chu Hoàng Hà (2011) Nghiên cứu chuyển gen mã hóa gibberellins 20 –oxidase vào cây Xoan ta (Melia azedarach L.) bằng Agrobacterium tumefaciens. Tạp chí CNSH 9(2): 217- 222. 7. Hồ Văn Giảng, Hà Văn Huân, Vũ Kim Dung, Chu Hoàng Hà, Bùi Văn Thắng (2011). Tạo giống Xoan ta (Melia azedarach L.) sinh trƣởng nhanh bằng kỹ thuật chuyển gen. Tạp chí Nông nghiệp & PTNT: 11-14. 8. Hồ Văn Giảng, Vũ Kim Dung, Hà Văn Huân, Bùi Văn Thắng (2011) Tái sinh cây Xoan ta (Melia azedarach L.) thông qua phôi soma từ rễ cây mầm phục vụ tạo giống cây trồng biến đổi gen. Tạp chí Nông nghiệp & PTNT 2: 206 - 210. 138 SUMMARY 1. Thesis title: “Study on improvement of abiotic stress tolerance in Xoan tree (Melia azedarach L.) by using genetic engineering” 2. Objectives: 2.1. General objectives: Genetic transformation methods were used in order to improve the environmental stress tolerance in Melia azedarach L. Outcomes of this thesis provide scientific evidences for the feasibility of applying modern plant biotechnology to develop novel tree cultivars with improved abiotic stress tolerance. 2.2. Detailed objectives: (1) Establishing and optimizing reliable and reproducible transgenic approaches into Melia azedarach tree; (2) Evaluating efficiency of a dehydration-responsive promoter, rd29A, in transgenic Melia azedarach lines; (3) Evaluating the tolerance to drought stress in transgenic Melia azedarach lines overexpressing a feedback-removed version of P5CS gene; (4) Evaluating the tolerance to drought and salinity stresses in transgenic Melia azedarach and tobacco lines overexpressing codA gene. 3. Contents: (1) Establishing and optimizing reliable and reproducible transgenic approaches into Melia azedarach tree mediated by Agrobacterium tumefacines; (2) Production of transgenic Melia azedarach lines carrying gus-intron gene driven by promoter rd29A (rd29A::gus) into Melia azedarach tree and evaluating the expression level of GUS in transgenic Melia azedarach lines; 139 (3) Transformation of construct carrying P5CSm gene driven by promoter rd29A (rd29A:: P5CSm) into Melia azedarach tree and evaluating the tolerance to drought stress in transgenic Xoan lines based on standard physiological, biochemical aspects; (4) Production of transgenic tobacco and Melia azedarach lines carrying constructs TP-codA and codA driven by promoter 35S, respectively, and evaluating the tolerance to drought and salinity stresses in these transgenic lines based on standard physiological, biochemical aspects. 4. Contributions The thesis is the first evidence in establishing a reliable and reproducible method for genetic transformation mediated by Agrobacterium tumefaciens in Melia azedarach tree. Application of this method, the work successfully produced for the first time transgenic Melia azedarach lines overexpressing P5CSm and codA, respectively, and further proved the potential of tolerance to drought and salinity in vitro of these transgenic lines. In this thesis, a version of bacterial codA gene which the code was optimized for expression in eukaryote cells was overexpressed in tobacco and Melia azedarach tree and especially, analysis of transgenic lines revealed significantly higher accumulation of glycine betaine than that published previously. This thesis provide scientific evidences for the feasibility of applying modern plant biotechnology to develop novel Melia azedarach tree, in particular, and tree cultivars, in general, with improved abiotic stress tolerance. 5. Results: (1) Methods for transformation into Melia azedarach tree mediated by Agrobacterium tumefaciens were successfully established and the transformation efficiency reached to 13,77 – 18,15% in different biological experiments. The methods were proved to be reproducible and reliable for further application in order to genetically modify Melia azedarach tree. 140 (2) Transgenic Melia azedarach lines overexpressing GUS driven by promoter rd29A were successfully produced. Analyses of transgenic Melia azedarach lines confirmed the specific induction of promoter rd29A under drought conditions. (3) 72 transgenic Melia azedarach lines overexpressing a mutated version of P5CS gene (loss of feedback inhibition) driven by promoter rd29A were produced. Analyses of transgenic lines exhibited that two lines PX24 and PX30 showed significantly high tolerance to drought. Proline content accumulated in transgenic lines significantly higher than that observed in control lines under drought conditions. (4) Two transgenic vectors pBI121 carrying codA gene driven by promoter 35S (pBI121::TP-codA và pBI121::codA) were successfully constructed. These vectors were transformed into Agrobacterium tumefaciens strain LAB4404 for further plant transformation. Transgenic tobacco lines overexpressing TP-codA and codA encoding choline oxidase – a key enzyme in glycine betaine biosynthesis, respectively, were successfully produced. Analyses of transgenic tobacco lines observed a tight correlation of the high accumulation (1.10 – 6.49 mM/g fresh leaves) of glycine betaine and the tolerance to salinity. Moreover, it was seen that lines overexpressing TP-codA showed higher tolerance to stress than that of lines overexpressing only codA. (5) 68 transgenic Melia azedarach lines overexpressing TP-codA gene were produced by using transformation approach set up in this thesis. Evaluation the tolerance to stress of these transgenic lines resulted in 5 promising lines regarding the tolerance to drought and salinity including TX4, TX12, TX27, TX28 và TX54. The glycine betaine content in transgenic lines significantly higher than that observed in control lines. Therefore, these lines exhibited higher tolerance to stress conditions. 141 TÀI LIỆU THAM KHẢO 1. Abdullah F, Hareri F, Naaesan M, Ammar MA, ZuherKanbar O (2011) Effect of drought on different physiological characters and yield component in different varieties of syrian durum wheat. J Agr Sci 3(3): 127 -133: 2. Abrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003) Light- dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51: 363-372. 3. Ahlandsberg S, Sathish P, Sun C, and Jansson C (1999) Green fluorescent protein as a reporter system in the transformation of barley cultivars. Physiol Plant 107: 194–200. 4. Ahmad R, Kim MD, Back KH, Kim HS, Lee HS, Kwon SY, Murata N, Chung WI, Kwak SS (2008) Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Rep 27: 687-698. 5. Ahmad Z, Zaidi N, Shah FH (1990) Micropropagation of Melia azedarach from mature tissue. Pak J Bot 22: 172-178. 6. Albinsky D, Masson JE, Bogucki A, Afsar K, Vass I, Nagy F, Paszkowski J (1999) Plant responses to genotoxic stress are linked to an ABA/salinity signalling pathway. Plant J 17: 73-82. 7. Alia, Hayashi H, Chen THH, Murata N (1998a) Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ 21: 232–239. 8. Alia, Hayashi H, Sakamoto A, Murata N (1998b) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J 16: 155–161. 9. Alia, Kondo Y, Sakamoto A, Nonaka H, Hayashi H, Pardha Saradhi P, Chen THH, Murata N (1999) Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol Biol 40: 279-288. 10. Alia, Mohanty P (1997) Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. J Photochem Photobiol 38: 253-257. 11. Allakhverdiev SI, Los DA, Mohanty P, Nishiyama Y, Murata N (2007) Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim Biophys Acta 1767: 1363–1371. 12. Amudha J and Balasubramani G (2011) Recent molecular advances to combat abiotic stress tolerance in crop plants. Biotechnol Mol Biol Rev 6(2): 31-58. 142 13. Anderson LB, Hertzel AV, and Das A (1996) Agrobacterium tumefaciens VirB7 and VirB9 form a disulfide-linked protein complex. Proceedings of the National Academy of Sciences USA 93: 8889-8894. 14. Anoop N, Gupta AK (2003) Transgenic indica rice cv IR-50 over-expressing Vigna aconitifoliadelta (1)-pyrroline-5-carboxy-late synthetase cDNA shows tolerance to high salt. J Plant Biochem Biotechnol 12: 109–116. 15. Armengaud P, Thiery L, Buhot N, Grenier-De March G, Savouré A (2004) Transcriptional regulation of proline biosynthesis in Medicago truncatulareveals developmental and environmental specific features. Physiol Plant 120: 442–450. 16. Ashraf M, Foolad MR (2009) Roles of glycine betaine and proline in improving plants abiotic stress resistance. Environmental and Experimental Botany 59: 206 – 216. 17. Assmann S, Shimazaki K (1999) The multisensory guard-cell: stomatal responses to blue-light and abscisic acid. Plant Physiol 119: 809 - 815. 18. Ayliffe MA, Roberts JK, Mitchell HJ, Zhang R, Lawrence1 GJ, Ellis JG, Pryor TJ (2002) A plant gene up-regulated at rust infection sites. Plant Physiol 129: 169–180. 19. Bates L, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant and Soil 39: 205-207 20. Battraw MJ, Hall TC. 1990. Histochemical analysis of CaMV 35S promoter 3- glucuronidase gene expression in transgenic rice plants. Plant Molecular Biology 15: 527-538. 21. Behelgardy MF, Motamed N, Jazii FR (2012) Expression of the P5CS gene in Transgenic Versus Nontransgenic Olive (Oleaeu ropaea) under Salinity Stress. World Applied Sciences Journal 18 (4): 580-583. 22. Belkheiri O and Mulas M (2013) Effect of water stress on growth, water use efficiency and gas exchange as related to osmotic adjustment of two halophytes Atriplex spp. Functional Plant Biology 40(5): 466-474. 23. Berry JA, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31: 491-543. 24. Binns AN, Beaupre CE, and Dale M (1995) Inhibition of virB mediated transfer of diverse substrate from Agrobacterium tumefaciens by the IncQ plasmid RSF-1010, Journal of Bacteriology 177: 4890. 25. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7: 1099–1111. 143 26. Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123: 1279–1291. 27. Bradford MM (1976) A dye binding assay for protein. Anal Biochem 72: 248- 254. 28. Bravo Angel AM, Hohn B, Tinland B (1998) The omega sequence of virD2 is important but not essential for efficient transfer of the T-DNA by Agrobacterium tumefaciens. Molecular Plant Microbe Interactions 11: 57-63. 29. Briew LO. and Henrry RJ. 2000. Transgenic Cereal. American Association of Cereal Chemist St. Paul, Minnesota, USA, 649-656. 30. Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, Mary- land: 1158-1201. 31. Bùi Chí Bửu, Nguyễn Thị Lang (2003). Cơ sở di truyền của tính chống chịu đối với thiệt hại do môi trƣờng của cây lúa. NXB Nông Nghiệp TP.HCM 32. Bui Van Thang, Do Xuan Dong, Ho Van Giang, Ha Van Huan, Vu Kim Dung, Chu Hoang Ha, Le Tran Binh (2007a). An efficient protocol for Agrobacterium - mediated genetic transformation of Melia azedarach L. Abstracts. From Biosciene to Biotechnology and Bioindustry. Bio-Ha Noi. 71. 33. Bùi Văn Thắng, Hà Văn Huân, Nguyễn Văn Việt, Hồ Văn Giảng (2007b) Nghiên cứu hệ thống tái sinh cây Xoan ta (Melia azedarach L.) phục vụ cho chuyển gen. Hội nghị Khoa học toàn quốc về Nghiên cứu cơ bản trong khoa học sự sống. Nxb. KH&KT: 815-819. 34. Bukhov NG, Wiese C, Neimanis S, Heber U (1999) Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth Res 59: 81–93. 35. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103: 551– 560. 36. Chen C, Dickman MB (2005) Proline suppresses apoptosis in the fungal pathogen Colletotrichumtrifolii. Proc Natl Acad Sci USA 102: 3459–3464. 37. Chen THH, Murata N (2002) Enhancement of tolerance to abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5: 250–257. 38. Chen WP, Li PH, Chen THH (2000) Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L. Plant Cell Environ 23: 609–618. 144 39. Choi H, Hong JH, Ha J, Kang JY, Kim SY (2000) ABFs, a family of ABA- responsive elements binding factors. Journal of Biological Chemistry 275: 1723–1730. 40. Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus a paradigm for a new family of multifunction transporters in Eubacteria. Journal of Bacterriologie 179: 3085-3094. 41. Cutler AJ, Squires TM, Loewen MK, Balsevich JJ (1997) Induction of (+)- abscisic acid 8 ’ -hydroxylase by (+)-abscisic acid in cultured maize cells. Journal of Experimental Botany 48: 1787-1795. 42. Dang T and Christie PJ (1997) The virB4 ATPase of Agrobacterium tumefaciens is a cytoplasmic membrane protein exposed at the periplasmic surface. Journal of Bacteriology 179: 453-462. 43. De Block M, Verduyn C, De Brouwer D, Cornelissen M (2005) Poly(ADPribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant J 41: 95–106. 44. De Ronde JA, Laurie RN, Caetano T, Greyling MM, Kerepesi I (2004) Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant. Euphytica 138: 123-132. 45. DeBlock M, De Brower D, and Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol. 91: 694–701. 46. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4: 215-223. 47. Đỗ Xuân Đồng, Bùi Văn Thắng, Hồ Văn Giảng, Lê Văn Sơn, Chu Hoàng Hà (2011) Nghiên cứu chuyển gen mã hóa gibberellin 20-oxidase vào cây Xoan ta (Melia azedarach L.) bằng Agrobacterium tumefaciens. Tạp chí Công nghệ sinh học 9 (2): 217-222. 48. Đỗ Xuân Đồng, Bùi Văn Thắng, Hồ Văn Giảng, Nông Văn Hải, Chu Hoàng Hà (2008) Nghiên cứu hệ thống tái sinh cây Xoan ta (Melia azedarach L.) thông qua phôi soma từ thân mầm phục vụ chuyển gen. Tạp chí Công nghệ sinh học 2: 227-232. 49. Doty SL, and Heath JD (1996) Mutation analysis of the imput domain of the virA protein of Agrobacterium tummefaciens, Journal of Bacteriology 9: 178. 50. Dubey RS (2005) Photosynthesis in plants under stressful conditions. In: Pessarakli, M. (Ed.), Handbook of Photosynthesis. CRC Press, Boca Raton, Florida: 717–737. 145 51. Durrenberger F, Crameri A, Hohn B, and Nicola KZ (1998) Covalently bound virD2 protein of Agrobecterium tumefaciens protects the T-DNA from exonucleolytic degradation. PNAS of USA 86: 9154-9158. 52. Fabro G, Kovács I, Pavet V, Szabados L, Alvarez ME (2004). Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol Plant Microbe Interact 17: 343– 350. 53. FAO, 2004. Priliminary review of biotechnology in forestry including genetic modification. 54. Fernandez D, Spudich GM, Zhou XR, Berger BR, Christie PJ (1996) Agrobacterium tumefaciens virB7 lipoproetin is required for stabilization of virB proteins during assembly of the T-complex transport apparatus. Journal of Bacteriology 178: 3168-3176. 55. Fior S, Vianelli A, and Gerola PD (2009) A novel method for fluorometric continuous measurement of β-glucuronidase (GUS) activity using 4-methyl- umbelliferyl-β-d-glucuronide (MUG) as substrate. Plant Sci. 176: 130-135. 56. Fischer HM (2006) Agrobacterium. Molecular Microbiology: 1-57. 57. Fraley RT, Rogers SG, Horsch RB (1983) Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80: 4803–4807. 58. Gao M, Sakamoto A, Miura K, Murata N, Sugiura A, Tao R (2000) Transformation of Japanese persimmon (Diospyros kaki Thunb.) with a bacterial gene for choline oxidase. Mol Breed 6: 501–510. 59. Glenn E, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18: 227–255. 60. Gorham J (1995) Betaines in higher plants-biosynthesis and role in stress metabolism. In: Wallsgrove RM (ed) Amino Acids and Their Derivatives in Higher Plants. Cambridge University Press, Cambridge: 171–203. 61. Grieve CM, and Grattan SR (1983) Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant Soil 70: 303-307. 62. Gulzar SS, Shabir HW, Wasim H, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12(1): 30–43. 63. Gustavo A, Cabrera J (1998a) The Agrobacterim tumefaciens gene transfer to plant cell. Molecular Microbiology 26: 1-14. 64. Gustavo A, Cabrera J (1998b). The Agrobacterim tumefaciens: a natural tool for plant transformation. Plant Cell Rep. 26: 1-11. 65. Haldimann P, Feller U (2004) Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the 146 activation state of ribulose-1, 5-bisphosphate carboxylase/oxygenase. Plant Cell Environ 27: 1169–1183. 66. Haldimann P, Feller U (2005) Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves. Plant Cell Environ 28: 302–317. 67. Hall AE (2001) Crop responses to environment. CRC Press, LLC, Boca Raton, Florida. 68. Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126: 1266–1274. 69. Han KH, Hwang CH (2003) Salt tolerance enhanced by transformation of a P5CS gene in carrot. J Plant Biotechnol 5: 149–153. 70. Hare P, Cress W (1997) Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regul 21: 79–102. 71. Harrison L, Michaelsen J, Funk C, Husak G (2011) Effects of temperature changes on maize production in Mozambique. Clim Res 46: 211–222. 72. Hasegava PM, and Bressan RA, 2000. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology 51: 463-99. 73. Haudecoeur E, Planamente S, Cirou A, Tannières M, Shelp BJ, Moréra S, Faure D (2009) Proline antagonizes GABA-induced quenching of quorum- sensing in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 106: 14587– 14592. 74. Havaux M (1996) Short-term responses of photosystem I to heat stress. Photosynth Res 47: 85–97. 75. Hayashi F, Ichino T, Osanai M, Wada K (2000) Oscillation and regulation of proline content by P5CS and ProDH gene expressions in the light/dark cycles in Arabidopsis thaliana L. Plant Cell Physiol 41: 1096–1101. 76. Hayashi H, Alia, Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12: 133–142. 77. Hayashi H, Alia, Sakamoto A, Nonaka H, Chen THH, Murata N (1998) Enhanced germination under high salt conditions of seeds of transgenic Arabidopsis with a bacterial gene (codA) for choline oxidase. J Plant Res 111: 357– 362. 147 78. Hetherington AM, Gray JE, Leckie CP, McAinsh MR, Ng C, Pical C, Priestly AJ, Saxe!n I, Webb AAR (1998) The control of specificity in guard cell signal transduction. Philosophical Transactions of the Royal Society. London 353: 1489-1494. 79. Hiei Y, Ohta S, Komari T, and Kumashiro T (1994) Efficient transformation of rice (Oriza sativa) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal 6: 271-282. 80. Hille J, Wullems G, Schilperoort RA (1983) Non-oncogenic T-Region mutants of Agrobacterium tumefaciens do transfer T-DNA into plant cells. Plant Molecular Biology 2: 155-163. 81. Hồ Văn Giảng, Hà Văn Huân, Vũ Kim Dung, Chu Hoàng Hà, Bùi Văn Thắng (2011). Tạo giống Xoan ta (Melia azedarach L.) sinh trƣởng nhanh bằng kỹ thuật chuyển gen. Tạp chí Nông nghiệp và PTNT: 11-14. 82. Holmström KO, Somersalo S, Mandal A, Palva ET, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51: 177–185. 83. Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122: 1129–1136. 84. Howarth CJ (2005) Genetic improvements of tolerance to high temperature. in: abiotic stress plant resistance through breeding and molecular approaches, Ashraf, M. and P.J.C. Harris (Eds.). Howarth Press Inc., New York. 85. Hu CA, Delaunew AJ, Verma DPS (1992) A bifunctional enzyme (∆1 pyrroline -5 -carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89: 9354 – 9358. 86. Hua X, van de Cotte B, Van Montagu M, Verbruggen N (1999) A 69 bp fragment in the pyrroline-5-carboxylate reductase promoter of Arabidopsis thaliana activates minimal CaMV 35S promoter in a tissue-specific manner. FEBS Lett 458: 193–196. 87. Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122: 747–756. 88. Huang RC, Tadera K, Yagi F, Minami Y, Okamura H, Iwagawa T, Nakatani M (1996) Limonoids from Melia azedarach. Phytochemistry 43: 581-583. 89. Hur J, Jung KH, Lee CL, An G (2004). Stress inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci 167: 417-426. 148 90. Ikuta S, Mamura S, Misaki H, Horiuti Y (1977) Purification and characterization of choline oxidase from Arthrobacter globiformis. J Biochem 82: 1741–1749. 91. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47: 377- 403. 92. Iqbal N, Ashraf MY, Ashraf M (2005) Influence of water stress and exogenous glycinebetaine on sunflower achene weight and oil percentage. Int J Environ Sci Tech 2: 155–160. 93. Itokawa H, Qiao Z, Hirobe C, Takeya K (1995) Cytotoxic limonoids and tetranortriterpenoids from Melia azedarach. Chemical and Pharmaceutical Bulletin 43: 1171-1175. 94. Jefferson RA (1987) “Assaying chimeric genes in plants: The GUS gene fusion system”. Plant Mol Biol Rep 5: 387–405. 95. Jones AL, Lai EM, Shirasu K, and Kado CI (1996) Vir B2 is a processed pilin- like protein encoded by the Agobacterium tumefaciens Ti-plasmid. Journal of Bacteriology 178: 5706-57112. 96. Jouyban Z (2012) The Effects of Salt stress on plant growth. Tech J Engin & App Sci 2(1): 7-10. 97. Kavi Kishor PB, Hong Z, Miao G, Hu CAA, Verma DPS (1995) Over expression of Δ 1-pyrroline-5-carboxylate synthetase increases proline overproduction and confers osmtolerance in transgenic plants. Plant Physiol 108: 1387–1394. 98. Khan MS, Yu X, Kikuchi A, Asahina M, Watanabe KN (2009) Genetic engineering of glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. Plant Biotechnology 26: 125–134. 99. Kipkorir EL, Xiang Y, Akira K, Takayoshi S, Makiko M, Kazuo NW (2010) Mycorrhizal colonization of transgenic Eucalyptus camaldulensis carrying the mangrin gene for salt tolerance. Plant Biotechnology 27: 339–344. 100. Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12: 1067–1078. 101. Krishnan N, Dickman MB, Becker DF (2008) Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radical Biol Med 44: 671–681. 102. Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance. Plant Physiol 136: 2843–2854. 103. Lê Mộng Chân, Lê Thị Huyên (2000) Thực Vật rừng, NXB. Nông nghiệp. 149 104. Lê Trần Bình, Hồ Hữu Nhị, Lê Thị Muội (1997), Công nghệ sinh học thực vật trong cải tiến giống cây trồng. NXB Nông nghiệp. 105. Lê Trần Bình, Lê Thị Muội (1999), Phân lập gen và chọn dòng chống chịu ngoại cảnh bất lợi ở cây lúa. NXB Đại học quốc gia, Hà Nội. 106. Lê Trần Bình. 2008. Phát triển cây trồng chuyển gen ở Việt Nam. NXB KHTN & CN. 107. Lehman CW, Trautman JK, and Carroll D (1994) Illegitimate recombination in Xenopus: characterization of end-joined junctions. Nucleic Acid Research 22: 434-442. 108. Leisinger T (1987) Proline biosynthesis. In Escberichia coli and Salmonella typhimurium : Cellular and Molecular Biology 1: 345-357. 109. Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology 49: 199-222. 110. Lichtenthaler HK and Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11: 591 - 592. 111. Lilius G, Holmberg N, Bülow L (1996) Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnology 14: 177–180. 112. Linhui Y, Xi C, Zhen W, Shimei W, Yuping W, Qisheng Z, Shigui L, Chengbin X (2012) Arabidopsis enhanced drought tolerance1 /HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol 162(3): 1378–1391. 113. Lv S, Young A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20: 233–248. 114. Ma XL, Wang YJ, Xie SI, Wang C, Wang W (2007) Glycinebetaine application ameliorates negative effects of drought stress in tobacco. Russ J Plant Physiol 54: 472–479. 115. Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA (2002) Does proline accumulation play an active role in stress-induced growth reduction? Plant J 31: 699–712. 116. Mattioli R, Falasca G, Sabatini S, Altamura MM, Costantino P, Trovato M (2009) The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development. Physiol Plant 137: 72–85. 117. Matysik J, Alia, Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82: 525–532. 150 118. McCue KF, Hanson AD (1990) Drought and salt tolerance: towards understanding and application. Trends Biotechnol 8: 358–362. 119. McKersie BD, Leshem YY (1994) Chilling stress. In: McKersie BD, Leshem YY (eds) Stress and Stress Coping in Cultivated Plants. Kluwer Academic Publishers, Dordrecht-Boston-London: 79–103. 120. Mehta SK, Gaur JP (1999) Heavy-metal–induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol 143: 253–259. 121. Mie Kasuga, Setsuko Miura, Kazuo Shinozaki, Kazuko Yamaguchi- Shinozaki1 (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought and low temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45 (3):346-350. 122. Mishra S, Dubey RS (2006) Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: role of proline as enzyme protectant. J Plant Physiol 163: 927–936. 123. Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi AK (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet 106: 51–57. 124. Molinari HBC, Marur CJ, Filho JCB, Kobayashi AK, Pileggi M, Júnior RPL, Pereira LFP, Vieira LGE (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb.x Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167: 1375–1381. 125. Murakeözy EP, Nagy Z, Duhazé C, Bouchereau A, Tuba Z (2003) Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J Plant Physiol 160: 395–401. 126. Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J: 185–193. 127. Ngo Van Thanh, Jiang Xiangning, Ha Van Huan, Nguyen Thi Hau, Ho Van Giang (2010) Vetor construction and transformation of 4Cl1 gene into Chinaberrytree (Melia azedarach L.). Journal of Science 26: 205-210. 128. Nguyễn Thị Thuý Hƣờng, Chu Hoàng Mậu, Lê Văn Sơn, Nguyễn Hữu Cƣờng, Chu Hoàng Hà (2010). Tạo cây thuốc lá chuyển gen P5CS đột biến loại bỏ hiệu ứng phản hồi ngƣợc, làm tăng hàm lƣợng protein và khả năng chống chịu khô hạn. Tạp chí công nghệ sinh học 8 (3A): 539-544. 151 129. Nirsatmanto A, Gyokusen K (2007) Genetic transformation of Melia azedarach L., using Agrobacterim mediated transformation. Journal of Forestry Research 4: 1-8. 130. Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20: 5587–5594. 131. Nuccio ML, Russell BL, Nolte KD, Rathinasabapathi B, Gage DA, Hanson AD (1998) The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J 16: 487–496. 132. Nyyssölä A, Kerovuo J, Kaukinen P, von Weymarn N, Reinikainen T (2000) Extreme halophiles synthesize betaine from glycine by methylation. J Biol Chem 275: 22196–22201. 133. Ow DW, Wood KV, DeLuca M, De Wet JR, Helinski DR, and Howell SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234: 856–859. 134. Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving Photosystem II complex. Photosynth Res 44: 243–252. 135. Park EJ, Jeknic Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen THH (2004) Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J 40: 474–487. 136. Park EJ, Jeknic ´ Z, Pino MT, Murata N, Chen THH (2007a) Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell Environ 30: 994–1005. 137. Park EJ, Jeknic´ Z, Chen THH, Murata N (2007b) The codA transgene for glycinebetaine synthesis increases the size of flowers and fruits in tomato. Plant Biotechnol J 5: 422–430. 138. Porcel R, Azco´n R, Ruiz-Lozano JM (2005) Evaluation of the role of genes encoding for dehydrin proteins (LEA D-11) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Journal of Experimental Botany 56: 1933–1942. 139. Prasad KVSK, Sharmila P, Kumar PA, Pardha Saradhi P (2000a) Transformation of Brassica juncea (L.) Czern with a bacterial codA gene enhances its tolerance to salt stress. Mol Breed 6: 489–499. 140. Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6: 65–74. 152 141. Qin X, Zeevaart JAD (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water stressed bean. Proceedings of the National Academy of Sciences, USA 96: 15354-15361. 142. Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004a) Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci 166: 141–149. 143. Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004b) Engineering of enhanced glycinebetaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2: 477–486. 144. Quyết định số 16/2005/QĐ-BNN, về việc ban hành “Danh mục các loài cây chủ yếu cho trồn rừng sản xuất theo 9 vùng sinh thái lâm nghiệp”. 145. Rathinasbapathi B, Burnet M, Russell BL, Gage DA, Liao PC, Nye GJ, Scott P, Golbeck JH, Hanson AD (1997) Choline monooxygenase, an unusual ironsulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: Prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci USA 94: 3454–3458. 146. Rathinasbapathi B, Fouad WM, Sigua CA (2001) b-Alanine betaine synthesis in the Plumbaginaceae. Purification and characterization of a trifunctional, S- adenosyl-L-methionine-dependent N-methyltransferase from Limonium latifoliumleaves. Plant Physiol 126: 1241–1249. 147. Rivera AL, Gómez-Lim M, Fernández F, Loske AM (2012) Physical methods for genetic plant transformation. Physics of Life Reviews 9: 308–345. 148. Rock CD, Quatrano RS (1995) The role of hormones during seed development. In: Davies PJ, ed.Plant hormones: physiology, biochemistry, and molecular biology. Dordrecht, The Nether-lands: Kluwer: 671-697. 149. Roosens NH, Bitar FA, Loenders K, Angenon G, Jacobs M (2002) Overexpression of ornthine-δ-aminotransferase in-creases proline biosynthesis and confers osmotolerance in trans-genic plants. Mol Breed 9: 73–80. 150. Sakamoto A, Alia, Murata N (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Bio l38: 1011–1019. 151. Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51: 81–88. 152. Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25: 163– 171. 153 153. Sakamoto A, Valverde R, Alia, Chen THH, Murata N (2000) Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. Plant J 22: 449 – 453. 154. Salvucci ME, Crafts-Brandner SJ (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiol 134: 1460–1470. 155. Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS, Joly RJ, Rhodes D (1995) Salt tolerance of glycinebetaine deficient and containing maize lines. Plant Physiol 107: 631–638. 156. Saradhi PP, Alia, Arora S, Prasad KV (1995) Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun 209: 1–5. 157. Satoh R, Nakashima K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2002) ACTCAT, a novel cis-acting element for proline and hypoosmolarity responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiol 130: 709–719. 158. Sávio PR, Aline ML, Cláudia RBS (2012) Recent molecular advances on downstream plant responses to abiotic stress. Int J Mol Sci 13(7): 8628–8647. 159. Savouré A, Jaoua S, Hua XJ, Ardiles W, Van Montagu M, Verbruggen N (1995) Isolation, characterization, and chromosomal location of a gene encoding the delta 1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Lett 372: 13–19. 160. Sawahel W (2003) Improved performance of transgenic glycienebetaine accumulating rice plants under drought stress. Biologia Plantarum 47: 39–44. 161. Sawahel WA, Hassan AH (2002) Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol Lett 24: 721– 725. 162. Schoffl F, Prandl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki, K., Yamaguchi-Shinozaki, K. (Eds.), Molecular responses to cold, drought, heat and salt stress in higher plants. R. G. Landes Co.,Austin, Texas: 81–98. 163. Sharma P, Dubey RS (2005) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol 162: 854– 864. 164. Sharry S, Cabrera Ponce JL, Estrelia LH, Rangel Cano RM, Lede S, Abedini W (2006b) An alternative pathway for plant in vitro regeneration of Chinaberry tree (Meia azedarach L). derived from the induction of somatic embryogenesis. Electronic Journal of Biotechnology 9: 188-194. 154 165. Sharry S, Teixeira da Silva J (2006a) Effective organogenesis, somatic embryogenesis and salt tolerance induction in vitro in the persian Lilac tree (Melia azedarach L.). Floriculture, Ornamental and Plant Biotechnology 2: 318-324. 166. Shinozaki K, Yamaguchi-Shinozak K (2007) Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58: 221–227. 167. Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water stress response. Plant Physiology 115: 327-334. 168. Shirasawa K, Takabe T, Takabe T, Kishitani S (2006) Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Ann Bot 98: 565– 571. 169. Shirasu K, Nicola KZ, Hohn B, and Kado CI (1994) An inner-membrane- associated virulence protein essential for T-DNA transfer from Agrobacterium tumefaciens to plants exhibits ATPase activity and similarities to conjuration transfer genes. Molecular Microbiology 11: 581-588. 170. Simões-Araújo JL, Rumjanek NG, Margis-Pinheiro M (2003) Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Braz J Plant Physiol 15: 33-41. 171. Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14: 2837–2847. 172. Solomon A, Beer S, Waisel Y, Jones GP, Paleg LG (1994) Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes. Physiologia Plantarum 90: 198-204. 173. Stephens KM, Roush C, and Nester EW (1995) Agrobacterium tumefaciens virB11 protein requires a consensus nucleotide-binding site for function in virulence. Journal of Bacteriology 1: 27-36. 174. Su J, Hirji R, Zhang L, He C, Selvaraj G, Wu R (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress protectant glycine betaine. J Exp Bot 57: 1129–1135. 175. Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166: 941–948. 176. Szabados L, Savoure ´A (2009) Proline: a multifunctional amino acid. Trends in Plant Science 15: 89 – 97. 155 177. Székely G, Abrahám E, Cséplo A, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53: 11–28. 178. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135: 1697–1709. 179. Takabe T, Hayashi Y, Tanaka A, Takabe T, Kishitani S (1998) Evaluation of glycinebetaine accumulation for stress tolerance in transgenic rice plants. In: Proceedings of International Workshop on Breeding and Biotechnology for Environmental Stress in Rice. Hokkaido Agricultural Experiment Station, Sapporo: 63–68. 180. Thakur R, Rao P, Bapat V (1998) In vitro plant regeneration in Melia azedarach L. Plant Cell Reports 18: 127-131. 181. Thiery L, Leprince AS, Lefebvre D, Ghars MA, Debarbieux E, Savouré A (2004) Phospholipase D is a negative regulator of proline biosynthesis in Arabidopsis thaliana. J Biol Chem 279: 14812–14818. 182. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50: 571–599. 183. Tinland B, Schoumacher F, Gloeckler V, Bravo AM, Angel M, and Hohn B (1995) The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome. EMBO Journal 14: 3585- 3595. 184. Trần Thị Phƣơng Liên (2010) Protein và tính chống chịu ở thực vật. NXB Khoa học tự nhiên và công nghệ Hà Nội. 185. Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress tolerance and development. Rend Lincei-Sci Fis 19: 325–346. 186. Ueno O (1998) Induction of Kranz anatomy and C-like biochemical characteristics in a submerged amphibious plant by abscisic acid. Plant Cell 10: 571-583. 187. Vila S, Gonzalez A, Rey H, Mroginki L (2003) Somatic embryogenesis and plant regeneration from immature zygotic embryos of Melia azedarach (Meliaceae). In vitro Cell Dev Biol Plant 39: 283-287. 188. Vila S, Gonzalez A, Rey H, Mroginski L (2005) Plant regeneration, origin, and development of shoot buds from root segment of Melia azedarach L. (Meliaceae) seedlings. In vitro Cell Dev Biol Plant 41: 746-751. 189. Waditee R, Bhuiyan MN, Rai V, Aoki K, Tanaka Y, Hibino T (2005) Genes for direct methylation of glycine provide high levels of glycinebetaine and 156 abiotic stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci USA 102: 1318–1323. 190. Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: An overview. Environmental and Experimental Botany 61: 199–223. 191. Waldron, C., Murphy, E.B., Roberts, J.L., Gustafson, G.D., Armour, S.L., and Malcolm, S.K. (1985) Resistance to hygromycin B. Plant Mol Biol 5:103–108. 192. Wang F, Zeng B, Sun Z, Zhu C (2009) Relationship between proline and Hg21-induced oxidative stress in a tolerant rice mutant. Arch Environ Contam Toxicol 56: 723–731. 193. Ward JM, Hirschi KD, Sze H (2003) Plants pass the salt. Trends Plant Sci 8: 200–201. 194. Wu LQ, Fan ZM, Guo L, Li YQ, Zhang WJ, Qu LJ, Chen ZL (2003) Over expression of an Arabidopsis delta-OAT gene enhances salt and drought tolerance in transgenic rice. Chin Sci Bull 48: 2594–2600. 195. Wyn Jones RG (1984) Phytochemical aspects of osmotic adaptation. Recent Adv Phytochem 18: 55–78. 196. Xue X, Liu A, Hua X (2009) Proline accumulation and transcriptional regulation of proline biosynthesis and degradation in Brassica napus. BMB Rep 42: 28–34. 197. Yang WJ, Rich PJ, Axtell JD, Wood KV, Bonham CC, Ejeta G, Mickelbart MV, Rhodes D (2003) Genotypic variation for glycine betaine in sorghum. Crop Sci 43: 162-169. 198. Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138: 2299–2309. 199. Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Bio l66: 73–86. 200. Yang X, Wen X, Gong H (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225: 719–733. 201. Yu CW, Guan ZQ, Hong YL, Ying JW, Chao W, Gui FL, Chuan PY (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37:1119– 1124. 202. Yu X, Kikuchi A, Matsunaga E, Morishita Y, Nanto K, et al. (2009) Establishment of the evaluation system of salt tolerance on transgenic woody plants in the special netted-house. Plant Biotechnol 26: 135–141. 157 203. Zeevaart JAD (1999) Abscisic acid metabolismand its regulation. In: Hooykaas PJJ, Hall MA, Libbenga KR, eds.Biochemistry and molecular biology of plant hormones. Amsterdam, The Netherlands: Elsevier Science. 189-207. 204. Zhang CS, Lu Q, Verma DP (1995) Removal of feedback inhibition of delta 1- pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalysing the first two steps of proline biosynthesis in plants. J Biol Chem 270: 20491–20496. 205. Zhou S, Chen X, Zhang X, Li Y (2008) Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na + /H + antiporter gene SeNHX1. Biotechnol Lett 30: 369–376. 206. Zhou XR, and Christie PJ (1997) Suppression of mutant phenotypes of the Agrobacterium tumefaciens VcirB11 ATPase by overproduction of VirB proteins. Journal of Bacteriology 179: 5835-5842. 207. Zhu B, Su J, Chang M, Verma DPS, Fan YL, Wu R (1998) Overexpression of a Δ 1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in trans-genic rice. Plant Sci 139: 41–48. 208. Zidenga T (2005) Improving stress tolerance through energy homeostasis in plants. Department of Plant Cellular and Molecular Biology, Ohio State University. 209. Zupan JR, Citovski V, and Zambryski PC (1996) Agrobacterium virE2 protein mediates nuclear uptake of single stranded DNA in plant cells. PNAS of USA 93: 2392. 210. Dibax R, Deschamps C, Bespalhok filho JC, Vieira IGE, Molinari HBC, De campos MKF, Quoirin M (2010) Organogenesis and Agrobacterium tumefaciens-mediated transformation of Eucalyptus saligna with P5CS gene. Biologia Pantarum 54(1): 6-12, 2010.

Các file đính kèm theo tài liệu này:

  • pdfluan_an_5_8_2013_in_nop_new_7596.pdf
Luận văn liên quan