1) Tiếp tục phân tích, đánh giá khả năng chống chịu các điều kiện lạnh, nhiệt độ cao
của các dòng Xoan ta chuyển gen P5CSm, TP-codA ở điều kiện phòng thí nghiệm.
Đánh giá khả năng chịu mặn, khô hạn của các dòng Xoan ta chuyển gen trên điều
kiện đồng ruộng.
2) Ứng dụng quy trình chuyển gen vào Xoan ta thông qua Agrobacterium
tumefaciens xây dựng đƣợc để chuyển các gen mục tiêu có giá trị vào cây Xoan ta
tạo giống mới.
157 trang |
Chia sẻ: toanphat99 | Lượt xem: 3791 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu tăng cường khả năng chống chịu các điều kiện bất lợi của môi trường trên đối tượng cây Xoan ta (Melia azedarach L.) bằng công nghệ gen thực vật, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
hơn so
với dòng cây đối chứng không chuyển gen sau khi xử lý bởi hạn nhân tạo.
4) Thiết kế đƣợc hai cấu trúc vector chuyển gen mang gen codA dƣới sự điều khiển
của promoter 35S (pBI121::TP-codA và pBI121::codA), và chuyển thành công gen
TP-codA/codA vào cây thuốc lá thông qua Agrobacterium tumefaciens. Các dòng
thuốc lá chuyển gen có sự sinh tổng hợp và tích lũy glycine betaine cao trong lá
(1,10 - 6,49 mM/g lá tƣơi) nên tăng cƣờng đƣợc khả năng chịu mặn so với dòng
thuốc lá không chuyển gen. Các dòng thuốc lá chuyển cấu trúc gen TP-codA chịu
mặn tốt hơn so với các dòng thuốc lá chuyển gen codA.
5) Tạo đƣợc 68 dòng Xoan ta chuyển cấu trúc gen TP-codA. Đánh giá các dòng
Xoan ta chuyển gen ở điều kiện hạn và mặn nhân tạo thu đƣợc 5 dòng (TX4, TX12,
TX27, TX28 và TX54) chịu hạn và mặn tốt hơn so với dòng cây đối chứng không
chuyển gen. Hàm lƣợng glycine betaine tích lũy trong lá của các dòng Xoan ta
chuyển gen cao hơn nhiều so với dòng đối chứng không chuyển gen ở điều kiện xử
lý bởi hạn và mặn nhân tạo.
136
2. ĐỀ NGHỊ
1) Tiếp tục phân tích, đánh giá khả năng chống chịu các điều kiện lạnh, nhiệt độ cao
của các dòng Xoan ta chuyển gen P5CSm, TP-codA ở điều kiện phòng thí nghiệm.
Đánh giá khả năng chịu mặn, khô hạn của các dòng Xoan ta chuyển gen trên điều
kiện đồng ruộng.
2) Ứng dụng quy trình chuyển gen vào Xoan ta thông qua Agrobacterium
tumefaciens xây dựng đƣợc để chuyển các gen mục tiêu có giá trị vào cây Xoan ta
tạo giống mới.
3) Sử dụng cấu trúc vector chuyển gen mang gen TP-codA để chuyển vào một số
loài cây trồng nông lâm nghiệp khác để sớm tạo ra những giống cây trồng có khả
năng chống chịu với điều kiện môi trƣờng bất lợi.
137
NHỮNG CÔNG TRÌNH CÔNG BỐ LIÊN QUAN ĐẾN LUẬN ÁN
1. Bùi Văn Thắng, Phạm Thị Hằng, Đỗ Xuân Đồng, Lê Văn Sơn, Chu Hoàng Hà
(2012) Nghiên cứu hoạt động của promoter rd29A cảm ứng hạn ở cây xoan ta
(Melia azedarach L.) chuyển gen. Tạp chí KH &CN, VAST 3: 504-510.
2. Bùi Văn Thắng, Đỗ Xuân Đồng, Lê Văn Sơn, Chu Hoàng Hà (2013) Quy trình
chuyển gen vào cây xoan ta (Melia azedarach L.) bằng Agrobacterium đạt hiệu suất
cao. Tạp chí Sinh học 35(2): 227 - 233.
3. Bùi Văn Thắng, Lê Văn Sơn, Chu Hoàng Hà (2013) Nghiên cứu tạo cây Xoan ta
(Melia azedarach L.) chuyển gen P5CSm tăng cƣờng khă năng chống chịu khô hạn.
Tạp chí Nông nghiệp & PTNT 1: 203-208.
4. Bùi Văn Thắng, Lê Văn Sơn, Chu Hoàng Hà (2013) Chuyển gen codA mã hóa
choline oxidase vào cây Xoan ta (Melia azedarach L.) tăng cƣờng khă năng chịu
hạn. Tạp chí Khoa học & Công nghệ Lâm nghiệp 2: 3-10.
5. Bùi Văn Thắng, Lê Văn Sơn, Chu Hoàng Hà (2013) Nghiên cứu tạo cây thuốc lá
(Nicotiana tabacum L.) chuyển gen codA mã hóa choline oxidase tăng cƣờng khả
năng chịu mặn. Báo cáo khoa học, Hội nghị Khoa học CNSH toàn quốc: 1059-
1063.
6. Đỗ Xuân Đồng, Bùi Văn Thắng, Hồ Văn Giảng, Lê Văn Sơn, Chu Hoàng Hà
(2011) Nghiên cứu chuyển gen mã hóa gibberellins 20 –oxidase vào cây Xoan ta
(Melia azedarach L.) bằng Agrobacterium tumefaciens. Tạp chí CNSH 9(2): 217-
222.
7. Hồ Văn Giảng, Hà Văn Huân, Vũ Kim Dung, Chu Hoàng Hà, Bùi Văn Thắng
(2011). Tạo giống Xoan ta (Melia azedarach L.) sinh trƣởng nhanh bằng kỹ thuật
chuyển gen. Tạp chí Nông nghiệp & PTNT: 11-14.
8. Hồ Văn Giảng, Vũ Kim Dung, Hà Văn Huân, Bùi Văn Thắng (2011) Tái sinh
cây Xoan ta (Melia azedarach L.) thông qua phôi soma từ rễ cây mầm phục vụ tạo
giống cây trồng biến đổi gen. Tạp chí Nông nghiệp & PTNT 2: 206 - 210.
138
SUMMARY
1. Thesis title:
“Study on improvement of abiotic stress tolerance in Xoan tree (Melia azedarach
L.) by using genetic engineering”
2. Objectives:
2.1. General objectives:
Genetic transformation methods were used in order to improve the environmental
stress tolerance in Melia azedarach L. Outcomes of this thesis provide scientific
evidences for the feasibility of applying modern plant biotechnology to develop
novel tree cultivars with improved abiotic stress tolerance.
2.2. Detailed objectives:
(1) Establishing and optimizing reliable and reproducible transgenic approaches
into Melia azedarach tree;
(2) Evaluating efficiency of a dehydration-responsive promoter, rd29A, in
transgenic Melia azedarach lines;
(3) Evaluating the tolerance to drought stress in transgenic Melia azedarach lines
overexpressing a feedback-removed version of P5CS gene;
(4) Evaluating the tolerance to drought and salinity stresses in transgenic Melia
azedarach and tobacco lines overexpressing codA gene.
3. Contents:
(1) Establishing and optimizing reliable and reproducible transgenic approaches into
Melia azedarach tree mediated by Agrobacterium tumefacines;
(2) Production of transgenic Melia azedarach lines carrying gus-intron gene driven
by promoter rd29A (rd29A::gus) into Melia azedarach tree and evaluating the
expression level of GUS in transgenic Melia azedarach lines;
139
(3) Transformation of construct carrying P5CSm gene driven by promoter rd29A
(rd29A:: P5CSm) into Melia azedarach tree and evaluating the tolerance to drought
stress in transgenic Xoan lines based on standard physiological, biochemical aspects;
(4) Production of transgenic tobacco and Melia azedarach lines carrying constructs
TP-codA and codA driven by promoter 35S, respectively, and evaluating the
tolerance to drought and salinity stresses in these transgenic lines based on standard
physiological, biochemical aspects.
4. Contributions
The thesis is the first evidence in establishing a reliable and reproducible method for
genetic transformation mediated by Agrobacterium tumefaciens in Melia azedarach
tree. Application of this method, the work successfully produced for the first time
transgenic Melia azedarach lines overexpressing P5CSm and codA, respectively,
and further proved the potential of tolerance to drought and salinity in vitro of these
transgenic lines. In this thesis, a version of bacterial codA gene which the code was
optimized for expression in eukaryote cells was overexpressed in tobacco and Melia
azedarach tree and especially, analysis of transgenic lines revealed significantly
higher accumulation of glycine betaine than that published previously. This thesis
provide scientific evidences for the feasibility of applying modern plant
biotechnology to develop novel Melia azedarach tree, in particular, and tree
cultivars, in general, with improved abiotic stress tolerance.
5. Results:
(1) Methods for transformation into Melia azedarach tree mediated by
Agrobacterium tumefaciens were successfully established and the transformation
efficiency reached to 13,77 – 18,15% in different biological experiments. The
methods were proved to be reproducible and reliable for further application in order
to genetically modify Melia azedarach tree.
140
(2) Transgenic Melia azedarach lines overexpressing GUS driven by promoter
rd29A were successfully produced. Analyses of transgenic Melia azedarach lines
confirmed the specific induction of promoter rd29A under drought conditions.
(3) 72 transgenic Melia azedarach lines overexpressing a mutated version of P5CS
gene (loss of feedback inhibition) driven by promoter rd29A were produced.
Analyses of transgenic lines exhibited that two lines PX24 and PX30 showed
significantly high tolerance to drought. Proline content accumulated in transgenic
lines significantly higher than that observed in control lines under drought
conditions.
(4) Two transgenic vectors pBI121 carrying codA gene driven by promoter 35S
(pBI121::TP-codA và pBI121::codA) were successfully constructed. These vectors
were transformed into Agrobacterium tumefaciens strain LAB4404 for further plant
transformation. Transgenic tobacco lines overexpressing TP-codA and codA
encoding choline oxidase – a key enzyme in glycine betaine biosynthesis,
respectively, were successfully produced. Analyses of transgenic tobacco lines
observed a tight correlation of the high accumulation (1.10 – 6.49 mM/g fresh
leaves) of glycine betaine and the tolerance to salinity. Moreover, it was seen that
lines overexpressing TP-codA showed higher tolerance to stress than that of lines
overexpressing only codA.
(5) 68 transgenic Melia azedarach lines overexpressing TP-codA gene were
produced by using transformation approach set up in this thesis. Evaluation the
tolerance to stress of these transgenic lines resulted in 5 promising lines regarding
the tolerance to drought and salinity including TX4, TX12, TX27, TX28 và TX54.
The glycine betaine content in transgenic lines significantly higher than that
observed in control lines. Therefore, these lines exhibited higher tolerance to stress
conditions.
141
TÀI LIỆU THAM KHẢO
1. Abdullah F, Hareri F, Naaesan M, Ammar MA, ZuherKanbar O (2011) Effect
of drought on different physiological characters and yield component in
different varieties of syrian durum wheat. J Agr Sci 3(3): 127 -133:
2. Abrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003) Light-
dependent induction of proline biosynthesis by abscisic acid and salt stress is
inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51: 363-372.
3. Ahlandsberg S, Sathish P, Sun C, and Jansson C (1999) Green fluorescent
protein as a reporter system in the transformation of barley cultivars. Physiol
Plant 107: 194–200.
4. Ahmad R, Kim MD, Back KH, Kim HS, Lee HS, Kwon SY, Murata N, Chung
WI, Kwak SS (2008) Stress-induced expression of choline oxidase in potato
plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought
stresses. Plant Cell Rep 27: 687-698.
5. Ahmad Z, Zaidi N, Shah FH (1990) Micropropagation of Melia azedarach
from mature tissue. Pak J Bot 22: 172-178.
6. Albinsky D, Masson JE, Bogucki A, Afsar K, Vass I, Nagy F, Paszkowski J
(1999) Plant responses to genotoxic stress are linked to an ABA/salinity
signalling pathway. Plant J 17: 73-82.
7. Alia, Hayashi H, Chen THH, Murata N (1998a) Transformation with a gene
for choline oxidase enhances the cold tolerance of Arabidopsis during
germination and early growth. Plant Cell Environ 21: 232–239.
8. Alia, Hayashi H, Sakamoto A, Murata N (1998b) Enhancement of the
tolerance of Arabidopsis to high temperatures by genetic engineering of the
synthesis of glycinebetaine. Plant J 16: 155–161.
9. Alia, Kondo Y, Sakamoto A, Nonaka H, Hayashi H, Pardha Saradhi P, Chen
THH, Murata N (1999) Enhanced tolerance to light stress of transgenic
Arabidopsis plants that express the codA gene for a bacterial choline oxidase.
Plant Mol Biol 40: 279-288.
10. Alia, Mohanty P (1997) Involvement of proline in protecting thylakoid
membranes against free radical-induced photodamage. J Photochem Photobiol
38: 253-257.
11. Allakhverdiev SI, Los DA, Mohanty P, Nishiyama Y, Murata N (2007)
Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the
repair of photosystem II during photoinhibition. Biochim Biophys Acta 1767:
1363–1371.
12. Amudha J and Balasubramani G (2011) Recent molecular advances to combat
abiotic stress tolerance in crop plants. Biotechnol Mol Biol Rev 6(2): 31-58.
142
13. Anderson LB, Hertzel AV, and Das A (1996) Agrobacterium tumefaciens
VirB7 and VirB9 form a disulfide-linked protein complex. Proceedings of the
National Academy of Sciences USA 93: 8889-8894.
14. Anoop N, Gupta AK (2003) Transgenic indica rice cv IR-50 over-expressing
Vigna aconitifoliadelta (1)-pyrroline-5-carboxy-late synthetase cDNA shows
tolerance to high salt. J Plant Biochem Biotechnol 12: 109–116.
15. Armengaud P, Thiery L, Buhot N, Grenier-De March G, Savouré A (2004)
Transcriptional regulation of proline biosynthesis in Medicago
truncatulareveals developmental and environmental specific features. Physiol
Plant 120: 442–450.
16. Ashraf M, Foolad MR (2009) Roles of glycine betaine and proline in
improving plants abiotic stress resistance. Environmental and Experimental
Botany 59: 206 – 216.
17. Assmann S, Shimazaki K (1999) The multisensory guard-cell: stomatal
responses to blue-light and abscisic acid. Plant Physiol 119: 809 - 815.
18. Ayliffe MA, Roberts JK, Mitchell HJ, Zhang R, Lawrence1 GJ, Ellis JG,
Pryor TJ (2002) A plant gene up-regulated at rust infection sites. Plant Physiol
129: 169–180.
19. Bates L, Waldren RP, Teare ID (1973) Rapid determination of free proline for
water stress studies. Plant and Soil 39: 205-207
20. Battraw MJ, Hall TC. 1990. Histochemical analysis of CaMV 35S promoter 3-
glucuronidase gene expression in transgenic rice plants. Plant Molecular
Biology 15: 527-538.
21. Behelgardy MF, Motamed N, Jazii FR (2012) Expression of the P5CS gene in
Transgenic Versus Nontransgenic Olive (Oleaeu ropaea) under Salinity
Stress. World Applied Sciences Journal 18 (4): 580-583.
22. Belkheiri O and Mulas M (2013) Effect of water stress on growth, water use
efficiency and gas exchange as related to osmotic adjustment of two
halophytes Atriplex spp. Functional Plant Biology 40(5): 466-474.
23. Berry JA, Björkman O (1980) Photosynthetic response and adaptation to
temperature in higher plants. Annu Rev Plant Physiol 31: 491-543.
24. Binns AN, Beaupre CE, and Dale M (1995) Inhibition of virB mediated
transfer of diverse substrate from Agrobacterium tumefaciens by the IncQ
plasmid RSF-1010, Journal of Bacteriology 177: 4890.
25. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental
stresses. Plant Cell 7: 1099–1111.
143
26. Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs
derived from a pair of natural cis-antisense transcripts regulate salt tolerance
in Arabidopsis. Cell 123: 1279–1291.
27. Bradford MM (1976) A dye binding assay for protein. Anal Biochem 72: 248-
254.
28. Bravo Angel AM, Hohn B, Tinland B (1998) The omega sequence of virD2 is
important but not essential for efficient transfer of the T-DNA by
Agrobacterium tumefaciens. Molecular Plant Microbe Interactions 11: 57-63.
29. Briew LO. and Henrry RJ. 2000. Transgenic Cereal. American Association of
Cereal Chemist St. Paul, Minnesota, USA, 649-656.
30. Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and Molecular
Biology of Plants. American Society of Plant Physiologists, Rockville, Mary-
land: 1158-1201.
31. Bùi Chí Bửu, Nguyễn Thị Lang (2003). Cơ sở di truyền của tính chống chịu
đối với thiệt hại do môi trƣờng của cây lúa. NXB Nông Nghiệp TP.HCM
32. Bui Van Thang, Do Xuan Dong, Ho Van Giang, Ha Van Huan, Vu Kim Dung,
Chu Hoang Ha, Le Tran Binh (2007a). An efficient protocol for
Agrobacterium - mediated genetic transformation of Melia azedarach L.
Abstracts. From Biosciene to Biotechnology and Bioindustry. Bio-Ha Noi. 71.
33. Bùi Văn Thắng, Hà Văn Huân, Nguyễn Văn Việt, Hồ Văn Giảng (2007b)
Nghiên cứu hệ thống tái sinh cây Xoan ta (Melia azedarach L.) phục vụ cho
chuyển gen. Hội nghị Khoa học toàn quốc về Nghiên cứu cơ bản trong khoa
học sự sống. Nxb. KH&KT: 815-819.
34. Bukhov NG, Wiese C, Neimanis S, Heber U (1999) Heat sensitivity of
chloroplasts and leaves: leakage of protons from thylakoids and reversible
activation of cyclic electron transport. Photosynth Res 59: 81–93.
35. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and
salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103: 551–
560.
36. Chen C, Dickman MB (2005) Proline suppresses apoptosis in the fungal
pathogen Colletotrichumtrifolii. Proc Natl Acad Sci USA 102: 3459–3464.
37. Chen THH, Murata N (2002) Enhancement of tolerance to abiotic stress by
metabolic engineering of betaines and other compatible solutes. Curr Opin
Plant Biol 5: 250–257.
38. Chen WP, Li PH, Chen THH (2000) Glycinebetaine increases chilling
tolerance and reduces chilling-induced lipid peroxidation in Zea mays L. Plant
Cell Environ 23: 609–618.
144
39. Choi H, Hong JH, Ha J, Kang JY, Kim SY (2000) ABFs, a family of ABA-
responsive elements binding factors. Journal of Biological Chemistry 275:
1723–1730.
40. Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus
a paradigm for a new family of multifunction transporters in Eubacteria.
Journal of Bacterriologie 179: 3085-3094.
41. Cutler AJ, Squires TM, Loewen MK, Balsevich JJ (1997) Induction of (+)-
abscisic acid 8
’
-hydroxylase by (+)-abscisic acid in cultured maize cells.
Journal of Experimental Botany 48: 1787-1795.
42. Dang T and Christie PJ (1997) The virB4 ATPase of Agrobacterium
tumefaciens is a cytoplasmic membrane protein exposed at the periplasmic
surface. Journal of Bacteriology 179: 453-462.
43. De Block M, Verduyn C, De Brouwer D, Cornelissen M (2005)
Poly(ADPribose) polymerase in plants affects energy homeostasis, cell death
and stress tolerance. Plant J 41: 95–106.
44. De Ronde JA, Laurie RN, Caetano T, Greyling MM, Kerepesi I (2004)
Comparative study between transgenic and non-transgenic soybean lines
proved transgenic lines to be more drought tolerant. Euphytica 138: 123-132.
45. DeBlock M, De Brower D, and Tenning P (1989) Transformation of Brassica
napus and Brassica oleracea using Agrobacterium tumefaciens and the
expression of the bar and neo genes in the transgenic plants. Plant Physiol. 91:
694–701.
46. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in
plants. Plant J 4: 215-223.
47. Đỗ Xuân Đồng, Bùi Văn Thắng, Hồ Văn Giảng, Lê Văn Sơn, Chu Hoàng Hà
(2011) Nghiên cứu chuyển gen mã hóa gibberellin 20-oxidase vào cây Xoan ta
(Melia azedarach L.) bằng Agrobacterium tumefaciens. Tạp chí Công nghệ
sinh học 9 (2): 217-222.
48. Đỗ Xuân Đồng, Bùi Văn Thắng, Hồ Văn Giảng, Nông Văn Hải, Chu Hoàng
Hà (2008) Nghiên cứu hệ thống tái sinh cây Xoan ta (Melia azedarach L.)
thông qua phôi soma từ thân mầm phục vụ chuyển gen. Tạp chí Công nghệ
sinh học 2: 227-232.
49. Doty SL, and Heath JD (1996) Mutation analysis of the imput domain of the
virA protein of Agrobacterium tummefaciens, Journal of Bacteriology 9: 178.
50. Dubey RS (2005) Photosynthesis in plants under stressful conditions. In:
Pessarakli, M. (Ed.), Handbook of Photosynthesis. CRC Press, Boca Raton,
Florida: 717–737.
145
51. Durrenberger F, Crameri A, Hohn B, and Nicola KZ (1998) Covalently bound
virD2 protein of Agrobecterium tumefaciens protects the T-DNA from
exonucleolytic degradation. PNAS of USA 86: 9154-9158.
52. Fabro G, Kovács I, Pavet V, Szabados L, Alvarez ME (2004). Proline
accumulation and AtP5CS2 gene activation are induced by plant-pathogen
incompatible interactions in Arabidopsis. Mol Plant Microbe Interact 17: 343–
350.
53. FAO, 2004. Priliminary review of biotechnology in forestry including genetic
modification.
54. Fernandez D, Spudich GM, Zhou XR, Berger BR, Christie PJ (1996)
Agrobacterium tumefaciens virB7 lipoproetin is required for stabilization of
virB proteins during assembly of the T-complex transport apparatus. Journal
of Bacteriology 178: 3168-3176.
55. Fior S, Vianelli A, and Gerola PD (2009) A novel method for fluorometric
continuous measurement of β-glucuronidase (GUS) activity using 4-methyl-
umbelliferyl-β-d-glucuronide (MUG) as substrate. Plant Sci. 176: 130-135.
56. Fischer HM (2006) Agrobacterium. Molecular Microbiology: 1-57.
57. Fraley RT, Rogers SG, Horsch RB (1983) Expression of bacterial genes in
plant cells. Proc. Natl. Acad. Sci. USA 80: 4803–4807.
58. Gao M, Sakamoto A, Miura K, Murata N, Sugiura A, Tao R (2000)
Transformation of Japanese persimmon (Diospyros kaki Thunb.) with a
bacterial gene for choline oxidase. Mol Breed 6: 501–510.
59. Glenn E, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of
halophytes. Crit Rev Plant Sci 18: 227–255.
60. Gorham J (1995) Betaines in higher plants-biosynthesis and role in stress
metabolism. In: Wallsgrove RM (ed) Amino Acids and Their Derivatives in
Higher Plants. Cambridge University Press, Cambridge: 171–203.
61. Grieve CM, and Grattan SR (1983) Rapid assay for the determination of water
soluble quaternary ammonium compounds. Plant Soil 70: 303-307.
62. Gulzar SS, Shabir HW, Wasim H, Singh NB (2011) Engineering cold stress
tolerance in crop plants. Curr Genomics 12(1): 30–43.
63. Gustavo A, Cabrera J (1998a) The Agrobacterim tumefaciens gene transfer to
plant cell. Molecular Microbiology 26: 1-14.
64. Gustavo A, Cabrera J (1998b). The Agrobacterim tumefaciens: a natural tool
for plant transformation. Plant Cell Rep. 26: 1-11.
65. Haldimann P, Feller U (2004) Inhibition of photosynthesis by high
temperature in oak (Quercus pubescens L.) leaves grown under natural
conditions closely correlates with a reversible heat-dependent reduction of the
146
activation state of ribulose-1, 5-bisphosphate carboxylase/oxygenase. Plant
Cell Environ 27: 1169–1183.
66. Haldimann P, Feller U (2005) Growth at moderately elevated temperature
alters the physiological response of the photosynthetic apparatus to heat stress
in pea (Pisum sativum L.) leaves. Plant Cell Environ 28: 302–317.
67. Hall AE (2001) Crop responses to environment. CRC Press, LLC, Boca
Raton, Florida.
68. Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl.
Complex I is protected by anti-oxidants and small heat shock proteins,
whereas complex II is protected by proline and betaine. Plant Physiol 126:
1266–1274.
69. Han KH, Hwang CH (2003) Salt tolerance enhanced by transformation of a
P5CS gene in carrot. J Plant Biotechnol 5: 149–153.
70. Hare P, Cress W (1997) Metabolic implications of stress induced proline
accumulation in plants. Plant Growth Regul 21: 79–102.
71. Harrison L, Michaelsen J, Funk C, Husak G (2011) Effects of temperature
changes on maize production in Mozambique. Clim Res 46: 211–222.
72. Hasegava PM, and Bressan RA, 2000. Plant cellular and molecular responses
to high salinity. Annual Review of Plant Physiology and Plant Molecular
Biology 51: 463-99.
73. Haudecoeur E, Planamente S, Cirou A, Tannières M, Shelp BJ, Moréra S,
Faure D (2009) Proline antagonizes GABA-induced quenching of quorum-
sensing in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 106: 14587–
14592.
74. Havaux M (1996) Short-term responses of photosystem I to heat stress.
Photosynth Res 47: 85–97.
75. Hayashi F, Ichino T, Osanai M, Wada K (2000) Oscillation and regulation of
proline content by P5CS and ProDH gene expressions in the light/dark cycles
in Arabidopsis thaliana L. Plant Cell Physiol 41: 1096–1101.
76. Hayashi H, Alia, Mustardy L, Deshnium P, Ida M, Murata N (1997)
Transformation of Arabidopsis thaliana with the codA gene for choline
oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and
cold stress. Plant J 12: 133–142.
77. Hayashi H, Alia, Sakamoto A, Nonaka H, Chen THH, Murata N (1998)
Enhanced germination under high salt conditions of seeds of transgenic
Arabidopsis with a bacterial gene (codA) for choline oxidase. J Plant Res 111:
357– 362.
147
78. Hetherington AM, Gray JE, Leckie CP, McAinsh MR, Ng C, Pical C, Priestly
AJ, Saxe!n I, Webb AAR (1998) The control of specificity in guard cell signal
transduction. Philosophical Transactions of the Royal Society. London 353:
1489-1494.
79. Hiei Y, Ohta S, Komari T, and Kumashiro T (1994) Efficient transformation
of rice (Oriza sativa) mediated by Agrobacterium and sequence analysis of the
boundaries of the T-DNA. The Plant Journal 6: 271-282.
80. Hille J, Wullems G, Schilperoort RA (1983) Non-oncogenic T-Region
mutants of Agrobacterium tumefaciens do transfer T-DNA into plant cells.
Plant Molecular Biology 2: 155-163.
81. Hồ Văn Giảng, Hà Văn Huân, Vũ Kim Dung, Chu Hoàng Hà, Bùi Văn Thắng
(2011). Tạo giống Xoan ta (Melia azedarach L.) sinh trƣởng nhanh bằng kỹ
thuật chuyển gen. Tạp chí Nông nghiệp và PTNT: 11-14.
82. Holmström KO, Somersalo S, Mandal A, Palva ET, Welin B (2000) Improved
tolerance to salinity and low temperature in transgenic tobacco producing
glycine betaine. J Exp Bot 51: 177–185.
83. Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback
inhibition of pyrroline-5-carboxylate synthetase results in increased proline
accumulation and protection of plants from osmotic stress. Plant Physiol 122:
1129–1136.
84. Howarth CJ (2005) Genetic improvements of tolerance to high temperature.
in: abiotic stress plant resistance through breeding and molecular approaches,
Ashraf, M. and P.J.C. Harris (Eds.). Howarth Press Inc., New York.
85. Hu CA, Delaunew AJ, Verma DPS (1992) A bifunctional enzyme (∆1
pyrroline -5 -carboxylate synthetase) catalyzes the first two steps in proline
biosynthesis in plants. Proc Natl Acad Sci USA 89: 9354 – 9358.
86. Hua X, van de Cotte B, Van Montagu M, Verbruggen N (1999) A 69 bp
fragment in the pyrroline-5-carboxylate reductase promoter of Arabidopsis
thaliana activates minimal CaMV 35S promoter in a tissue-specific manner.
FEBS Lett 458: 193–196.
87. Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA,
Selvaraj G (2000) Genetic engineering of glycinebetaine production toward
enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:
747–756.
88. Huang RC, Tadera K, Yagi F, Minami Y, Okamura H, Iwagawa T, Nakatani
M (1996) Limonoids from Melia azedarach. Phytochemistry 43: 581-583.
89. Hur J, Jung KH, Lee CL, An G (2004). Stress inducible OsP5CS2 gene is
essential for salt and cold tolerance in rice. Plant Sci 167: 417-426.
148
90. Ikuta S, Mamura S, Misaki H, Horiuti Y (1977) Purification and
characterization of choline oxidase from Arthrobacter globiformis. J Biochem
82: 1741–1749.
91. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in
plants. Annual Review of Plant Physiology and Plant Molecular Biology 47:
377- 403.
92. Iqbal N, Ashraf MY, Ashraf M (2005) Influence of water stress and
exogenous glycinebetaine on sunflower achene weight and oil percentage. Int
J Environ Sci Tech 2: 155–160.
93. Itokawa H, Qiao Z, Hirobe C, Takeya K (1995) Cytotoxic limonoids and
tetranortriterpenoids from Melia azedarach. Chemical and Pharmaceutical
Bulletin 43: 1171-1175.
94. Jefferson RA (1987) “Assaying chimeric genes in plants: The GUS gene
fusion system”. Plant Mol Biol Rep 5: 387–405.
95. Jones AL, Lai EM, Shirasu K, and Kado CI (1996) Vir B2 is a processed pilin-
like protein encoded by the Agobacterium tumefaciens Ti-plasmid. Journal of
Bacteriology 178: 5706-57112.
96. Jouyban Z (2012) The Effects of Salt stress on plant growth. Tech J Engin &
App Sci 2(1): 7-10.
97. Kavi Kishor PB, Hong Z, Miao G, Hu CAA, Verma DPS (1995) Over
expression of Δ 1-pyrroline-5-carboxylate synthetase increases proline
overproduction and confers osmtolerance in transgenic plants. Plant Physiol
108: 1387–1394.
98. Khan MS, Yu X, Kikuchi A, Asahina M, Watanabe KN (2009) Genetic
engineering of glycine betaine biosynthesis to enhance abiotic stress tolerance
in plants. Plant Biotechnology 26: 125–134.
99. Kipkorir EL, Xiang Y, Akira K, Takayoshi S, Makiko M, Kazuo NW (2010)
Mycorrhizal colonization of transgenic Eucalyptus camaldulensis carrying the
mangrin gene for salt tolerance. Plant Biotechnology 27: 339–344.
100. Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis
thaliana responding to drought and salinity. Plant J 12: 1067–1078.
101. Krishnan N, Dickman MB, Becker DF (2008) Proline modulates the
intracellular redox environment and protects mammalian cells against
oxidative stress. Free Radical Biol Med 44: 671–681.
102. Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde
dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced
salt tolerance. Plant Physiol 136: 2843–2854.
103. Lê Mộng Chân, Lê Thị Huyên (2000) Thực Vật rừng, NXB. Nông nghiệp.
149
104. Lê Trần Bình, Hồ Hữu Nhị, Lê Thị Muội (1997), Công nghệ sinh học thực vật
trong cải tiến giống cây trồng. NXB Nông nghiệp.
105. Lê Trần Bình, Lê Thị Muội (1999), Phân lập gen và chọn dòng chống chịu
ngoại cảnh bất lợi ở cây lúa. NXB Đại học quốc gia, Hà Nội.
106. Lê Trần Bình. 2008. Phát triển cây trồng chuyển gen ở Việt Nam. NXB KHTN
& CN.
107. Lehman CW, Trautman JK, and Carroll D (1994) Illegitimate recombination
in Xenopus: characterization of end-joined junctions. Nucleic Acid Research
22: 434-442.
108. Leisinger T (1987) Proline biosynthesis. In Escberichia coli and
Salmonella typhimurium : Cellular and Molecular Biology 1: 345-357.
109. Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annual Review
of Plant Physiology and Plant Molecular Biology 49: 199-222.
110. Lichtenthaler HK and Wellburn AR (1983) Determinations of total
carotenoids and chlorophylls a and b of leaf extracts in different solvents.
Biochemical Society Transactions 11: 591 - 592.
111. Lilius G, Holmberg N, Bülow L (1996) Enhanced NaCl stress tolerance in
transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnology
14: 177–180.
112. Linhui Y, Xi C, Zhen W, Shimei W, Yuping W, Qisheng Z, Shigui
L, Chengbin X (2012) Arabidopsis enhanced drought tolerance1
/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic
rice without yield penalty. Plant Physiol 162(3): 1378–1391.
113. Lv S, Young A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine
synthesis improves drought tolerance in cotton. Mol Breed 20: 233–248.
114. Ma XL, Wang YJ, Xie SI, Wang C, Wang W (2007) Glycinebetaine
application ameliorates negative effects of drought stress in tobacco. Russ J
Plant Physiol 54: 472–479.
115. Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, Narasimhan
ML, Hasegawa PM, Joly RJ, Bressan RA (2002) Does proline accumulation
play an active role in stress-induced growth reduction? Plant J 31: 699–712.
116. Mattioli R, Falasca G, Sabatini S, Altamura MM, Costantino P, Trovato M
(2009) The proline biosynthetic genes P5CS1 and P5CS2 play overlapping
roles in Arabidopsis flower transition but not in embryo development. Physiol
Plant 137: 72–85.
117. Matysik J, Alia, Bhalu B, Mohanty P (2002) Molecular mechanisms of
quenching of reactive oxygen species by proline under stress in plants. Curr
Sci 82: 525–532.
150
118. McCue KF, Hanson AD (1990) Drought and salt tolerance: towards
understanding and application. Trends Biotechnol 8: 358–362.
119. McKersie BD, Leshem YY (1994) Chilling stress. In: McKersie BD, Leshem
YY (eds) Stress and Stress Coping in Cultivated Plants. Kluwer Academic
Publishers, Dordrecht-Boston-London: 79–103.
120. Mehta SK, Gaur JP (1999) Heavy-metal–induced proline accumulation and its
role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol 143:
253–259.
121. Mie Kasuga, Setsuko Miura, Kazuo Shinozaki, Kazuko Yamaguchi-
Shinozaki1 (2004) A combination of the Arabidopsis DREB1A gene and
stress-inducible rd29A promoter improved drought and low temperature stress
tolerance in tobacco by gene transfer. Plant Cell Physiol 45 (3):346-350.
122. Mishra S, Dubey RS (2006) Inhibition of ribonuclease and protease activities
in arsenic exposed rice seedlings: role of proline as enzyme protectant. J Plant
Physiol 163: 927–936.
123. Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi
AK (2002) Transgenics of an elite indica rice variety Pusa Basmati 1
harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet
106: 51–57.
124. Molinari HBC, Marur CJ, Filho JCB, Kobayashi AK, Pileggi M, Júnior RPL,
Pereira LFP, Vieira LGE (2004) Osmotic adjustment in transgenic citrus
rootstock Carrizo citrange (Citrus sinensis Osb.x Poncirus trifoliata L. Raf.)
overproducing proline. Plant Sci 167: 1375–1381.
125. Murakeözy EP, Nagy Z, Duhazé C, Bouchereau A, Tuba Z (2003) Seasonal
changes in the levels of compatible osmolytes in three halophytic species of
inland saline vegetation in Hungary. J Plant Physiol 160: 395–401.
126. Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakubari
Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Biological functions of
proline in morphogenesis and osmotolerance revealed in antisense transgenic
Arabidopsis thaliana. Plant J: 185–193.
127. Ngo Van Thanh, Jiang Xiangning, Ha Van Huan, Nguyen Thi Hau, Ho Van
Giang (2010) Vetor construction and transformation of 4Cl1 gene into
Chinaberrytree (Melia azedarach L.). Journal of Science 26: 205-210.
128. Nguyễn Thị Thuý Hƣờng, Chu Hoàng Mậu, Lê Văn Sơn, Nguyễn Hữu Cƣờng,
Chu Hoàng Hà (2010). Tạo cây thuốc lá chuyển gen P5CS đột biến loại bỏ
hiệu ứng phản hồi ngƣợc, làm tăng hàm lƣợng protein và khả năng chống chịu
khô hạn. Tạp chí công nghệ sinh học 8 (3A): 539-544.
151
129. Nirsatmanto A, Gyokusen K (2007) Genetic transformation of Melia
azedarach L., using Agrobacterim mediated transformation. Journal of
Forestry Research 4: 1-8.
130. Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N
(2001) Oxidative stress inhibits the repair of photodamage to the
photosynthetic machinery. EMBO J 20: 5587–5594.
131. Nuccio ML, Russell BL, Nolte KD, Rathinasabapathi B, Gage DA, Hanson
AD (1998) The endogenous choline supply limits glycine betaine synthesis in
transgenic tobacco expressing choline monooxygenase. Plant J 16: 487–496.
132. Nyyssölä A, Kerovuo J, Kaukinen P, von Weymarn N, Reinikainen T (2000)
Extreme halophiles synthesize betaine from glycine by methylation. J Biol
Chem 275: 22196–22201.
133. Ow DW, Wood KV, DeLuca M, De Wet JR, Helinski DR, and Howell SH
(1986) Transient and stable expression of the firefly luciferase gene in plant
cells and transgenic plants. Science 234: 856–859.
134. Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of
glycine betaine on the structure and function of the oxygen-evolving
Photosystem II complex. Photosynth Res 44: 243–252.
135. Park EJ, Jeknic Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen
THH (2004) Genetic engineering of glycinebetaine synthesis in tomato
protects seeds, plants, and flowers from chilling damage. Plant J 40: 474–487.
136. Park EJ, Jeknic ´ Z, Pino MT, Murata N, Chen THH (2007a) Glycinebetaine
accumulation is more effective in chloroplasts than in the cytosol for
protecting transgenic tomato plants against abiotic stress. Plant Cell Environ
30: 994–1005.
137. Park EJ, Jeknic´ Z, Chen THH, Murata N (2007b) The codA transgene for
glycinebetaine synthesis increases the size of flowers and fruits in tomato.
Plant Biotechnol J 5: 422–430.
138. Porcel R, Azco´n R, Ruiz-Lozano JM (2005) Evaluation of the role of genes
encoding for dehydrin proteins (LEA D-11) during drought stress in
arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Journal of
Experimental Botany 56: 1933–1942.
139. Prasad KVSK, Sharmila P, Kumar PA, Pardha Saradhi P (2000a)
Transformation of Brassica juncea (L.) Czern with a bacterial codA gene
enhances its tolerance to salt stress. Mol Breed 6: 489–499.
140. Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for
chilling-induced oxidative stress in maize seedlings and a regulatory role for
hydrogen peroxide. Plant Cell 6: 65–74.
152
141. Qin X, Zeevaart JAD (1999) The 9-cis-epoxycarotenoid cleavage reaction is
the key regulatory step of abscisic acid biosynthesis in water stressed bean.
Proceedings of the National Academy of Sciences, USA 96: 15354-15361.
142. Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004a) Improved chilling
tolerance by transformation with betA gene for the enhancement of
glycinebetaine synthesis in maize. Plant Sci 166: 141–149.
143. Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004b) Engineering of
enhanced glycinebetaine synthesis improves drought tolerance in maize. Plant
Biotechnol J 2: 477–486.
144. Quyết định số 16/2005/QĐ-BNN, về việc ban hành “Danh mục các loài cây
chủ yếu cho trồn rừng sản xuất theo 9 vùng sinh thái lâm nghiệp”.
145. Rathinasbapathi B, Burnet M, Russell BL, Gage DA, Liao PC, Nye GJ, Scott
P, Golbeck JH, Hanson AD (1997) Choline monooxygenase, an unusual
ironsulfur enzyme catalyzing the first step of glycine betaine synthesis in
plants: Prosthetic group characterization and cDNA cloning. Proc Natl Acad
Sci USA 94: 3454–3458.
146. Rathinasbapathi B, Fouad WM, Sigua CA (2001) b-Alanine betaine synthesis
in the Plumbaginaceae. Purification and characterization of a trifunctional, S-
adenosyl-L-methionine-dependent N-methyltransferase from Limonium
latifoliumleaves. Plant Physiol 126: 1241–1249.
147. Rivera AL, Gómez-Lim M, Fernández F, Loske AM (2012) Physical methods
for genetic plant transformation. Physics of Life Reviews 9: 308–345.
148. Rock CD, Quatrano RS (1995) The role of hormones during seed
development. In: Davies PJ, ed.Plant hormones: physiology, biochemistry, and
molecular biology. Dordrecht, The Nether-lands: Kluwer: 671-697.
149. Roosens NH, Bitar FA, Loenders K, Angenon G, Jacobs M (2002)
Overexpression of ornthine-δ-aminotransferase in-creases proline biosynthesis
and confers osmotolerance in trans-genic plants. Mol Breed 9: 73–80.
150. Sakamoto A, Alia, Murata N (1998) Metabolic engineering of rice leading to
biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Bio
l38: 1011–1019.
151. Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine
synthesis in plants: current status and implications for enhancement of stress
tolerance. J Exp Bot 51: 81–88.
152. Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of
plants from stress: clues from transgenic plants. Plant Cell Environ 25: 163–
171.
153
153. Sakamoto A, Valverde R, Alia, Chen THH, Murata N (2000) Transformation
of Arabidopsis with the codA gene for choline oxidase enhances freezing
tolerance of plants. Plant J 22: 449 – 453.
154. Salvucci ME, Crafts-Brandner SJ (2004) Relationship between the heat
tolerance of photosynthesis and the thermal stability of rubisco activase in
plants from contrasting thermal environments. Plant Physiol 134: 1460–1470.
155. Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS, Joly RJ,
Rhodes D (1995) Salt tolerance of glycinebetaine deficient and containing
maize lines. Plant Physiol 107: 631–638.
156. Saradhi PP, Alia, Arora S, Prasad KV (1995) Proline accumulates in plants
exposed to UV radiation and protects them against UV induced peroxidation.
Biochem Biophys Res Commun 209: 1–5.
157. Satoh R, Nakashima K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2002)
ACTCAT, a novel cis-acting element for proline and hypoosmolarity
responsive expression of the ProDH gene encoding proline dehydrogenase in
Arabidopsis. Plant Physiol 130: 709–719.
158. Sávio PR, Aline ML, Cláudia RBS (2012) Recent molecular advances on
downstream plant responses to abiotic stress. Int J Mol Sci 13(7): 8628–8647.
159. Savouré A, Jaoua S, Hua XJ, Ardiles W, Van Montagu M, Verbruggen N
(1995) Isolation, characterization, and chromosomal location of a gene
encoding the delta 1-pyrroline-5-carboxylate synthetase in Arabidopsis
thaliana. FEBS Lett 372: 13–19.
160. Sawahel W (2003) Improved performance of transgenic glycienebetaine
accumulating rice plants under drought stress. Biologia Plantarum 47: 39–44.
161. Sawahel WA, Hassan AH (2002) Generation of transgenic wheat plants
producing high levels of the osmoprotectant proline. Biotechnol Lett 24: 721–
725.
162. Schoffl F, Prandl R, Reindl A (1999) Molecular responses to heat stress. In:
Shinozaki, K., Yamaguchi-Shinozaki, K. (Eds.), Molecular responses to cold,
drought, heat and salt stress in higher plants. R. G. Landes Co.,Austin, Texas:
81–98.
163. Sharma P, Dubey RS (2005) Modulation of nitrate reductase activity in rice
seedlings under aluminium toxicity and water stress: role of osmolytes as
enzyme protectant. J Plant Physiol 162: 854– 864.
164. Sharry S, Cabrera Ponce JL, Estrelia LH, Rangel Cano RM, Lede S, Abedini
W (2006b) An alternative pathway for plant in vitro regeneration of
Chinaberry tree (Meia azedarach L). derived from the induction of somatic
embryogenesis. Electronic Journal of Biotechnology 9: 188-194.
154
165. Sharry S, Teixeira da Silva J (2006a) Effective organogenesis, somatic
embryogenesis and salt tolerance induction in vitro in the persian Lilac tree
(Melia azedarach L.). Floriculture, Ornamental and Plant Biotechnology 2:
318-324.
166. Shinozaki K, Yamaguchi-Shinozak K (2007) Gene networks involved in
drought stress response and tolerance. Journal of Experimental Botany 58:
221–227.
167. Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal
transduction in water stress response. Plant Physiology 115: 327-334.
168. Shirasawa K, Takabe T, Takabe T, Kishitani S (2006) Accumulation of
glycinebetaine in rice plants that overexpress choline monooxygenase from
spinach and evaluation of their tolerance to abiotic stress. Ann Bot 98: 565–
571.
169. Shirasu K, Nicola KZ, Hohn B, and Kado CI (1994) An inner-membrane-
associated virulence protein essential for T-DNA transfer from Agrobacterium
tumefaciens to plants exhibits ATPase activity and similarities to conjuration
transfer genes. Molecular Microbiology 11: 581-588.
170. Simões-Araújo JL, Rumjanek NG, Margis-Pinheiro M (2003) Small heat
shock proteins genes are differentially expressed in distinct varieties of
common bean. Braz J Plant Physiol 15: 33-41.
171. Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular
mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic
microalgae. Plant Cell 14: 2837–2847.
172. Solomon A, Beer S, Waisel Y, Jones GP, Paleg LG (1994) Effects of NaCl on
the carboxylating activity of Rubisco from Tamarix jordanis in the presence
and absence of proline-related compatible solutes. Physiologia Plantarum 90:
198-204.
173. Stephens KM, Roush C, and Nester EW (1995) Agrobacterium tumefaciens
virB11 protein requires a consensus nucleotide-binding site for function in
virulence. Journal of Bacteriology 1: 27-36.
174. Su J, Hirji R, Zhang L, He C, Selvaraj G, Wu R (2006) Evaluation of the
stress-inducible production of choline oxidase in transgenic rice as a strategy
for producing the stress protectant glycine betaine. J Exp Bot 57: 1129–1135.
175. Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice
confers faster growth under stress conditions than that with constitutive
synthesis. Plant Sci 166: 941–948.
176. Szabados L, Savoure ´A (2009) Proline: a multifunctional amino acid. Trends
in Plant Science 15: 89 – 97.
155
177. Székely G, Abrahám E, Cséplo A, Rigó G, Zsigmond L, Csiszár J, Ayaydin
F, Strizhov N, Jásik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated
P5CS genes of Arabidopsis play distinct roles in stress regulation and
developmental control of proline biosynthesis. Plant J 53: 11–28.
178. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka
Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt
tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress
using Arabidopsis microarray. Plant Physiol 135: 1697–1709.
179. Takabe T, Hayashi Y, Tanaka A, Takabe T, Kishitani S (1998) Evaluation of
glycinebetaine accumulation for stress tolerance in transgenic rice plants. In:
Proceedings of International Workshop on Breeding and Biotechnology for
Environmental Stress in Rice. Hokkaido Agricultural Experiment Station,
Sapporo: 63–68.
180. Thakur R, Rao P, Bapat V (1998) In vitro plant regeneration in Melia
azedarach L. Plant Cell Reports 18: 127-131.
181. Thiery L, Leprince AS, Lefebvre D, Ghars MA, Debarbieux E, Savouré A
(2004) Phospholipase D is a negative regulator of proline biosynthesis in
Arabidopsis thaliana. J Biol Chem 279: 14812–14818.
182. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and
regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50: 571–599.
183. Tinland B, Schoumacher F, Gloeckler V, Bravo AM, Angel M, and Hohn B
(1995) The Agrobacterium tumefaciens virulence D2 protein is responsible for
precise integration of T-DNA into the plant genome. EMBO Journal 14: 3585-
3595.
184. Trần Thị Phƣơng Liên (2010) Protein và tính chống chịu ở thực vật. NXB
Khoa học tự nhiên và công nghệ Hà Nội.
185. Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant
stress tolerance and development. Rend Lincei-Sci Fis 19: 325–346.
186. Ueno O (1998) Induction of Kranz anatomy and C-like biochemical
characteristics in a submerged amphibious plant by abscisic acid. Plant Cell
10: 571-583.
187. Vila S, Gonzalez A, Rey H, Mroginki L (2003) Somatic embryogenesis and
plant regeneration from immature zygotic embryos of Melia azedarach
(Meliaceae). In vitro Cell Dev Biol Plant 39: 283-287.
188. Vila S, Gonzalez A, Rey H, Mroginski L (2005) Plant regeneration, origin,
and development of shoot buds from root segment of Melia azedarach L.
(Meliaceae) seedlings. In vitro Cell Dev Biol Plant 41: 746-751.
189. Waditee R, Bhuiyan MN, Rai V, Aoki K, Tanaka Y, Hibino T (2005) Genes
for direct methylation of glycine provide high levels of glycinebetaine and
156
abiotic stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci
USA 102: 1318–1323.
190. Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: An
overview. Environmental and Experimental Botany 61: 199–223.
191. Waldron, C., Murphy, E.B., Roberts, J.L., Gustafson, G.D., Armour, S.L., and
Malcolm, S.K. (1985) Resistance to hygromycin B. Plant Mol Biol 5:103–108.
192. Wang F, Zeng B, Sun Z, Zhu C (2009) Relationship between proline and
Hg21-induced oxidative stress in a tolerant rice mutant. Arch Environ Contam
Toxicol 56: 723–731.
193. Ward JM, Hirschi KD, Sze H (2003) Plants pass the salt. Trends Plant Sci 8:
200–201.
194. Wu LQ, Fan ZM, Guo L, Li YQ, Zhang WJ, Qu LJ, Chen ZL (2003) Over
expression of an Arabidopsis delta-OAT gene enhances salt and drought
tolerance in transgenic rice. Chin Sci Bull 48: 2594–2600.
195. Wyn Jones RG (1984) Phytochemical aspects of osmotic adaptation. Recent
Adv Phytochem 18: 55–78.
196. Xue X, Liu A, Hua X (2009) Proline accumulation and transcriptional
regulation of proline biosynthesis and degradation in Brassica napus. BMB
Rep 42: 28–34.
197. Yang WJ, Rich PJ, Axtell JD, Wood KV, Bonham CC, Ejeta G, Mickelbart
MV, Rhodes D (2003) Genotypic variation for glycine betaine in sorghum.
Crop Sci 43: 162-169.
198. Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of
glycinebetaine enhances photosynthesis against high temperature stress in
transgenic tobacco plants. Plant Physiol 138: 2299–2309.
199. Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the
biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis
to salt stress in transgenic tobacco plants. Plant Mol Bio l66: 73–86.
200. Yang X, Wen X, Gong H (2007) Genetic engineering of the biosynthesis of
glycinebetaine enhances thermotolerance of photosystem II in tobacco plants.
Planta 225: 719–733.
201. Yu CW, Guan ZQ, Hong YL, Ying JW, Chao W, Gui FL, Chuan PY (2010)
Enhanced salt tolerance of transgenic poplar plants expressing a manganese
superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37:1119–
1124.
202. Yu X, Kikuchi A, Matsunaga E, Morishita Y, Nanto K, et al. (2009)
Establishment of the evaluation system of salt tolerance on transgenic woody
plants in the special netted-house. Plant Biotechnol 26: 135–141.
157
203. Zeevaart JAD (1999) Abscisic acid metabolismand its regulation. In:
Hooykaas PJJ, Hall MA, Libbenga KR, eds.Biochemistry and molecular
biology of plant hormones. Amsterdam, The Netherlands: Elsevier Science.
189-207.
204. Zhang CS, Lu Q, Verma DP (1995) Removal of feedback inhibition of delta 1-
pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalysing the first
two steps of proline biosynthesis in plants. J Biol Chem 270: 20491–20496.
205. Zhou S, Chen X, Zhang X, Li Y (2008) Improved salt tolerance in tobacco
plants by co-transformation of a betaine synthesis gene BADH and a vacuolar
Na
+
/H
+
antiporter gene SeNHX1. Biotechnol Lett 30: 369–376.
206. Zhou XR, and Christie PJ (1997) Suppression of mutant phenotypes of the
Agrobacterium tumefaciens VcirB11 ATPase by overproduction of VirB
proteins. Journal of Bacteriology 179: 5835-5842.
207. Zhu B, Su J, Chang M, Verma DPS, Fan YL, Wu R (1998) Overexpression of
a Δ 1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to
water-and salt-stress in trans-genic rice. Plant Sci 139: 41–48.
208. Zidenga T (2005) Improving stress tolerance through energy homeostasis in
plants. Department of Plant Cellular and Molecular Biology, Ohio State
University.
209. Zupan JR, Citovski V, and Zambryski PC (1996) Agrobacterium virE2 protein
mediates nuclear uptake of single stranded DNA in plant cells. PNAS of USA
93: 2392.
210. Dibax R, Deschamps C, Bespalhok filho JC, Vieira IGE, Molinari HBC, De
campos MKF, Quoirin M (2010) Organogenesis and Agrobacterium
tumefaciens-mediated transformation of Eucalyptus saligna with P5CS gene.
Biologia Pantarum 54(1): 6-12, 2010.
Các file đính kèm theo tài liệu này:
- luan_an_5_8_2013_in_nop_new_7596.pdf