Trong nghiên cứu này chúng tôi tiến hành tổng hợp polyme theo tỷ lệ mol hợp phần của
Pa với Py bao gồm (0 mM:160 mM); (40 mM:120 mM); (80 mM:80 mM); (120 mM:40
mM); (160 mM:0 mM). Hình 5.6 trình bày đáp ứng dòng-thế của điện cực SPCE được tổng
hợp màng polyme với tỷ lệ mol hợp phần Pa/Py khác nhau. Thông qua giá trị cường độ đỉnh
ôxy hóa hoặc đỉnh khử ta có thể đánh độ dẫn của màng polyme PPy-Ppa hình thành trên điện
cực làm việc. Kết quả cho thấy các màng PPy-PPa đều cho đáp ứng điện hóa tốt trong dung
dịch đo. Tuy nhiên, cường độ dòng đỉnh ôxy hóa và khử của chúng rất khác nhau và phụ
thuộc vào tỷ lệ hợp phần của Pa so với Py. Màng PPa thuần (số mol Py là 0) cho đáp ứng
điện hóa thấp nhất, không có sự xuất hiện đỉnh đỉnh ôxy hóa-khử. Khi tỷ lệ mol Pa so với
Py tăng lên thì cường độ dòng đỉnh ôxy hóa và khử đều giảm và vị trí đỉnh đỉnh có xu hướng
dịch về phía điện áp cao. Điều này có thể được giải thích là do sự có mặt của Pa đã làm tăng
tính thấm ướt bề mặt, giảm tính kỵ nước của Py và do độ dẫn của Pa thấp hơn so với Py. Tại
tỷ lệ hợp phần của Pa với Py là 1:3 (40 mM:120 mM) cho màng có độ dẫn cao nhất và đáp
ứng điện hóa tốt nhất với hai đỉnh ôxy hóa và khử rất rõ ràng tại điện áp lần lượt là +0,26 V
và -0,06 V vs. Ag/AgCl. Như vậy, tỷ lệ hợp phần này được lựa chọn để tổng hợp màng
polyme ứng dụng chế tạo cảm biến.
                
              
                                            
                                
            
 
            
                 188 trang
188 trang | 
Chia sẻ: tueminh09 | Lượt xem: 1061 | Lượt tải: 0 
              
            Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu và chế tạo cảm biến sinh học điện hóa độ nhạy cao sử dụng điện cực in các bon ứng dụng trong chẩn đoán bệnh sớm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
i N, Chikae M, Yuhi T, Takamura Y, Tamiya E (2006) Label-free 
electrochemical immunoassay for the detection of human chorionic gonadotropin 
hormone. Analytical Chemistry, 78, pp.5612–5616 
[102] Kien PH, Tram DT, Lien TT (2011) Immunosensor Based on Quartz Crystal 
Microbalance Device for Escherichia Coli O157H7 Bacterium Detection. 7th Solid 
state Phys. Mater. Sci. Conf. 
[103] Kim YJ, Jones JE, Li H, Yampara-Iquise H, Zheng G, Carson CA, Cooperstock M, 
Sherman M, Yu Q (2013) Three-dimensional (3-D) microfluidic-channel-based DNA 
biosensor for ultra-sensitive electrochemical detection. Journal of Electroanalytical 
Chemistry, 702, pp.72–78 
[104] Kimmel DW, Leblanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical 
sensors and biosensors. Analytical Chemistry, 84, pp.685–707 
[105] Kokkinos C, Economou A, Prodromidis MI (2016) Electrochemical immunosensors: 
Critical survey of different architectures and transduction strategies. Trends in 
Analytical Chemistry, 79, pp.88–105 
[106] Komsiyska L, Staikov G (2008) Electrocrystallization of Au nanoparticles on glassy 
carbon from HClO4 solution containing [AuCl4]-. Electrochimica Acta, 54, pp.168–
172 
[107] Kong F-Y, Xu B-Y, Du Y, Xu J-J, Chen H-Y (2013) A branched electrode based 
electrochemical platform: towards new label-free and reagentless simultaneous 
detection of two biomarkers. Chem Commun, 49, pp.1052–1054 
[108] Kristensen LS, Hansen LL (2009) PCR-based methods for detecting single-locus 
DNA methylation biomarkers in cancer diagnostics, prognostics, and response to 
treatment. Clinical Chemistry, 55, pp.1471–1483 
 148 
[109] Kumar S, Mohan A, Guleria R (2006) Biomarkers in cancer screening, research and 
detection: Present and future: A review. Biomarkers, 11, pp.385–405 
[110] De la Escosura-Muñiz A, Maltez-da Costa M, Sánchez-Espinel C, Díaz-Freitas B, 
Fernández-Suarez J, González-Fernández Á, Merkoçi A (2010) Gold nanoparticle-
based electrochemical magnetoimmunosensor for rapid detection of anti-hepatitis B 
virus antibodies in human serum. Biosensors and Bioelectronics, 26, pp.1710–1714 
[111] Le TH, Trinh NT, Nguyen LH, Nguyen HB, Nguyen VA, Tran DL, Nguyen TD 
(2013) Electrosynthesis of polyaniline-mutilwalled carbon nanotube nanocomposite 
films in the presence of sodium dodecyl sulfate for glucose biosensing. Adv Nat Sci 
Nanosci Nanotechnol. doi: 10.1088/2043-6262/4/2/025014 
[112] Lee CS, Kyu Kim S, Kim M (2009) Ion-sensitive field-effect transistor for biological 
sensing. Sensors, 9, pp.7111–7131 
[113] Lee JW, Sim SJ, Cho SM, Lee J (2005) Characterization of a self-assembled 
monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on 
surface plasmon resonance for detecting anti-GAD antibody. Biosensors and 
Bioelectronics, 20, pp.1422–1427 
[114] Lerner MB, D’Souza J, Pazina T, Dailey J, Goldsmith BR, Robinson MK, Johnson 
ATC (2012) Hybrids of a genetically engineered antibody and a carbon nanotube 
transistor for detection of prostate cancer biomarkers. ACS Nano, 6, pp.5143–5149 
[115] Liang J, Guan M, Huang G, Qiu H, Chen Z, Li G, Huang Y (2016) Highly sensitive 
covalently functionalized light-addressable potentiometric sensor for determination 
of biomarker. Materials Science and Engineering C, 63, pp.185–191 
[116] Lilja H, Ulmert D, Vickers AJ (2008) Prostate-specific antigen and prostate cancer: 
prediction, detection and monitoring. Nature reviews Cancer, 8, pp.268–278 
[117] Lim SA, Yoshikawa H, Tamiya E, Yasin HM, Ahmed MU (2014) A highly sensitive 
gold nanoparticle bioprobe based electrochemical immunosensor using screen 
printed graphene biochip. RSC Advances, 4, pp.58460–58466 
[118] Lin J, He C, Zhang L, Zhang S (2009) Sensitive amperometric immunosensor for α-
fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan film. 
Analytical Biochemistry, 384, pp.130–135 
[119] Lin J, Wei Z, Mao C (2011) A label-free immunosensor based on modified 
mesoporous silica for simultaneous determination of tumor markers. Biosensors and 
Bioelectronics, 29, pp.40–45 
[120] Lin J, Wei Z, Zhang H, Shao M (2013) Sensitive immunosensor for the label-free 
determination of tumor marker based on carbon nanotubes/mesoporous silica and 
graphene modified electrode. Biosensors and Bioelectronics, 41, pp.342–347 
[121] Liu A, Wang K, Weng S, Lei Y, Lin L, Chen W, Lin X, Chen Y (2012) Development 
of electrochemical DNA biosensors. TrAC - Trends in Analytical Chemistry, 37, 
pp.101–111 
[122] Liu B, Lu L, Hua E, Jiang S, Xie G (2012) Detection of the human prostate-specific 
antigen using an aptasensor with gold nanoparticles encapsulated by graphitized 
mesoporous carbon. Microchimica Acta, 178, pp.163–170 
[123] Liu G, Liu J, Davis TP, Gooding JJ (2011) Electrochemical impedance immunosensor 
based on gold nanoparticles and aryl diazonium salt functionalized gold electrodes 
 149 
for the detection of antibody. Biosensors and Bioelectronics, 26, pp.3660–3665 
[124] Liu S, Lin Q, Zhang X, He X, Xing X, Lian W, Huang J (2011) Electrochemical 
immunosensor for salbutamol detection based on CS-Fe3O4-PAMAM-GNPs 
nanocomposites and HRP-MWCNTs-Ab bioconjugates for signal amplification. 
Sensors and Actuators, B: Chemical, 156, pp.71–78 
[125] Liu S, Zhang X, Wu Y, Tu Y, He L (2008) Prostate specific antigen detection by 
using a reusable amperometric immunosensor based on reversible binding and 
leasing of HRP-anti-PSA from phenylboronic acid modified electrode. Clinica 
Chimica Acta, 395, pp.51–56 
[126] Liu Y, Guo CX, Hu W, Lu Z, Li CM (2011) Sensitive protein microarray 
synergistically amplified by polymer brush-enhanced immobilizations of both probe 
and reporter. Journal of Colloid and Interface Science, 360, pp.593–599 
[127] Lojou É, Bianco P (2006) Application of the electrochemical concepts and techniques 
to amperometric biosensor devices. Journal of Electroceramics, 16, pp.79–91 
[128] Lu J, Liu S, Ge S, Yan M, Yu J, Hu X (2012) Ultrasensitive electrochemical 
immunosensor based on Au nanoparticles dotted carbon nanotube-graphene 
composite and functionalized mesoporous materials. Biosensors and Bioelectronics, 
33, pp.29–35 
[129] Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and 
treatment selection. Nature Reviews Cancer, 5, pp.845–856 
[130] Lvovich VF (2012) Impedance spectroscopy - Applications to Electrochemical and 
Dielectric Phenomena. A John Wiley & Son 
[131] Ma L, Tang BC, Yang WJ, Liu Y, Zhao YL, Li M (2015) Integration of a bio-chip 
technique with technetium-99m labeling provides zeptomolar sensitivity in liver 
cancer biomarker detection. Analytical Methods, 7, pp.1622–1626 
[132] Maduraiveeran G, Jin W (2017) Nanomaterials based electrochemical sensor and 
biosensor platforms for environmental applications. Trends in Environmental 
Analytical Chemistry, 13, pp.10–23 
[133] Malhotra R, Patel V, Vaqué JP, Gutkind JS, Rusling JF (2010) Ultrasensitive 
electrochemical immunosensor for oral cancer biomarker IL-6 using carbon 
nanotube forest electrodes and multilabel amplification. Analytical Chemistry, 82, 
pp.3118–3123 
[134] Malhotra S, Verma A, Tyagi N, Kumar V (2017) Biosensors : Principle , Types and 
Applications. Ijariie-Issn(O), 3, pp.3639–3644 
[135] Mark D, Haeberle S, Roth G, Von Stetten F, Zengerle R (2010) Microfluidic lab-on-
a-chip platforms: Requirements, characteristics and applications. Chemistry Society 
Reviewa, 39, pp.1153–1182 
[136] Mascini M (2009) Aptamer in Bioanalysis. John Wiley Sons. doi: 
10.1073/pnas.0703993104 
[137] Matsumoto A, Miyahara Y (2013) Current and emerging challenges of field effect 
transistor based bio-sensing. Nanoscale, 5, pp.10702–10718 
[138] Matte HSSR, Subrahmanyam KS, Rao CNR (2011) Synthetic Aspects and Selected 
Properties of Graphene. Nanomaterials and Nanotechnology, 1, p.5 
 150 
[139] Monošík R, Streďanský M, Šturdík E (2012) Biosensors - classification, 
characterization and new trends. Acta Chimica Slovaca, 5, pp.109–120 
[140] Mossanha R, Ramos MK, Santos CS, Pessoa CA (2015) Mixed Self-Assembled 
Monolayers of Mercaptoundecanoic Acid and Thiolactic Acid for the Construction of 
an Enzymatic Biosensor for Hydroquinone Determination. Journal of the 
Electrochemical Society, 162, pp.B145–B151 
[141] Nanda SS, Papaefthymiou GC, Yi DK (2015) Functionalization of Graphene Oxide 
and its Biomedical Applications. Critical Reviews in Solid State and Materials 
Sciences, 40, pp.291–315 
[142] Nawaz MAH, Rauf S, Catanante G, Nawaz MH, Nunes G, Marty JL, Hayat A (2016) 
One step assembly of thin films of carbon nanotubes on screen printed interface for 
electrochemical aptasensing of breast cancer biomarker. Sensors, 16, p.1651 
[143] Nguyen BH, Nguyen BT, Van Vu H, Van Nguyen C, Nguyen DT, Nguyen LT, Vu 
TT, Tran LD (2016) Development of label-free electrochemical lactose biosensor 
based on graphene/poly(1,5-diaminonaphthalene) film. Current Applied Physics, 16, 
pp.135–140 
[144] Nguyen DQ, Duong PT, Nguyen HM, Nam NH, Luong NH, Pham Y (2016) New 
biological treatment targeting Mycobacterium tuberculosis in contaminated 
wastewater using lysing enzymes coupled to magnetic nanoparticles. Green 
Processing and Synthesis, 5, pp.473–478 
[145] Nguyen HB, Nguyen VC, Nguyen VT, Le HD, Nguyen VQ, Ngo TTT, Do QP, 
Nguyen XN, Phan NM, Tran DL (2013) Development of the layer-by-layer biosensor 
using graphene films: Application for cholesterol determination. Adv Nat Sci Nanosci 
Nanotechnol. doi: 10.1088/2043-6262/4/1/015013 
[146] Nguyen LH, Nguyen TD, Tran VH, Dang TTH, Tran DL (2014) Functionalization of 
reduced graphene oxide by electroactive polymer for biosensing applications. Adv 
Nat Sci Nanosci Nanotechnol. doi: 10.1088/2043-6262/5/3/035005 
[147] Opazo F, Levy M, Byrom M, Schäfer C, Geisler C, Groemer TW, Ellington AD, 
Rizzoli SO (2012) Aptamers as potential tools for super-resolution microscopy. 
Nature Methods, 9, pp.938–939 
[148] Orazem ME, Tribollet B (2008) Electrochemical Impedance Spetroscopy. John Wiley 
& Sons 
[149] Park CS, Lee C, Kwon OS (2016) Conducting polymer based nanobiosensors. 
Polymers, 8, pp.1–18 
[150] Park J-Y, Park S-M (2009) DNA Hybridization Sensors Based on Electrochemical 
Impedance Spectroscopy as a Detection Tool. Sensors, 9, pp.9513–9532 
[151] Park J, Kim M (2015) Strategies in Protein Immobilization on a Gold Surface. 
Applied Science and Convergence Technology, 24, pp.1–8 
[152] Park S (2003) With impedance data, a complete description of an electrochemical 
system is possible. Analytical Chemistry, pp.455–461 
[153] Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon, 50, pp.3210–3228 
[154] Peng HP, Hu Y, Liu AL, Chen W, Lin XH, Yu X Bin (2014) Lable-free 
electrochemical immunosensor based on multi-functional gold nanoparticles-
polydopamine-thionine-graphene oxide nanocomposites film for determination of 
 151 
alpha-fetoprotein. Journal of Electroanalytical Chemistry, 712, pp.89–95 
[155] Pereira da Silva Neves MM, González-García MB, Hernández-Santos D, Fanjul-
Bolado P (2018) Future trends in the market for electrochemical biosensing. Current 
Opinion in Electrochemistry, 10, pp.107–111 
[156] Perfézou M, Turner A, Merkoçi A (2012) Cancer detection using nanoparticle-based 
sensors. Chemical Society Reviews, 41, pp.2606–2622 
[157] Perumal V, Hashim U (2014) Advances in biosensors: Principle, architecture and 
applications. Journal of Applied Biomedicine, 12, pp.1–15 
[158] Pham Y, Nguyen A, Phan T (2015) Specificity and processing rate enhancement of 
Mycobacterium tuberculosis diagnostic procedure using antibody –coupled magnetic 
nanoparticles. Int J Nanotechnol. doi: 10.1504/IJNT.2015.067892 
[159] Phan T, Phi T Van, Tram DTN, Eersels K, Wagner P, Lien TTN (2017) Sensors and 
Actuators B : Chemical Development of an impedimetric sensor for the label-free 
detection of the amino acid sarcosine with molecularly imprinted polymer receptors. 
Sensors & Actuators: B Chemical, 246, pp.461–470 
[160] Piliarik M, Vaisocherová H, Homola J (2005) A new surface plasmon resonance 
sensor for high-throughput screening applications. Biosensors and Bioelectronics, 
20, pp.2104–2110 
[161] Pividori MI, Lermo A, Bonanni A, Alegret S, del Valle M (2009) Electrochemical 
immunosensor for the diagnosis of celiac disease. Analytical Biochemistry, 388, 
pp.229–234 
[162] Prodromidis MI (2010) Impedimetric immunosensors-A review. Electrochimica Acta, 
55, pp.4227–4233 
[163] Pumera M (2011) Graphene in biosensing. Materials Today, 14, pp.308–315 
[164] Putzbach W, Ronkainen NJ (2013) Immobilization techniques in the fabrication of 
nanomaterial-based electrochemical biosensors: A review. Sensors, 13, pp.4811–
4840 
[165] Qiu W, Gao F, Chen J, Xie L, Wang Q (2016) Application of 2-(4-Formylphenyl) 
[60]Fulleropyrrolidine as an electrode matrix for cross linker-free immobilization of 
HCG-antibody and the sensing analysis. Sensors and Actuators, B: Chemical, 231, 
pp.376–383 
[166] Qu Z, Xu H, Xu P, Chen K, Mu R, Fu J, Gu H (2014) Ultrasensitive ELISA using 
enzyme-loaded nanospherical brushes as labels. Analytical Chemistry, 86, pp.9367–
9371 
[167] Quy D Van, Hieu NM, Tra PT, Nam NH, Hai NH, Thai Son N, Nghia PT, Anh NT 
Van, Hong TT, Luong NH (2013) Synthesis of silica-coated magnetic nanoparticles 
and application in the detection of pathogenic viruses. J Nanomater. doi: 
10.1155/2013/603940 
[168] Quynh LM, Nam NH, Kong K, Nhung NT, Notingher I, Henini M, Luong NH (2016) 
Surface-Enhanced Raman Spectroscopy Study of 4-ATP on Gold Nanoparticles for 
Basal Cell Carcinoma Fingerprint Detection. Journal of Electronic Materials, 45, 
pp.2563–2568 
[169] Raj CR, Kitamura F, Ohsaka T (2001) Electrochemical and in situ FTIR 
spectroscopic investigation on the electrochemical transformation of 4-
 152 
aminothiophenol on a gold electrode in neutral solution. Langmuir, 17, pp.7378–
7386 
[170] Raut N, O’Connor G, Pasini P, Daunert S (2012) Engineered cells as biosensing 
systems in biomedical analysis. Analytical and Bioanalytical Chemistry, 402, 
pp.3147–3159 
[171] Reverté L, Prieto-Simón B, Campàs M (2016) New advances in electrochemical 
biosensors for the detection of toxins: Nanomaterials, magnetic beads and 
microfluidics systems. A review. Analytica Chimica Acta, 908, pp.8–21 
[172] Ricci F, Adornetto G, Palleschi G (2012) A review of experimental aspects of 
electrochemical immunosensors. Electrochimica Acta, 84, pp.74–83 
[173] Rivas L, Mayorga-Martinez CC, Quesada-González D, Zamora-Gálvez A, De La 
Escosura-Muñiz A, Merkoçi A (2015) Label-free impedimetric aptasensor for 
ochratoxin-A detection using iridium oxide nanoparticles. Analytical Chemistry, 87, 
pp.5167–5172 
[174] Rivet C, Lee H, Hirsch A, Hamilton S, Lu H (2011) Microfluidics for medical 
diagnostics and biosensors. Chemical Engineering Science, 66, pp.1490–1507 
[175] Rohrbach F, Karadeniz H, Erdem A, Famulok M, Mayer G (2012) Label-free 
impedimetric aptasensor for lysozyme detection based on carbon nanotube-modified 
screen-printed electrodes. Analytical Biochemistry, 421, pp.454–459 
[176] Rohrbach F, Karadeniz H, Erdem A, Famulok M, Mayer G (2012) Label-free 
impedimetric aptasensor for lysozyme detection based on carbon nanotube-modified 
screen-printed electrodes. Analytical Biochemistry, 421, pp.454–459 
[177] Rusling JF, Kumar C V., Gutkind JS, Patel V (2010) Measurement of biomarker 
proteins for point-of-care early detection and monitoring of cancer. Analyst, 135, 
pp.2496–2511 
[178] Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein 
biochips. Biomacromolecules, 8, pp.1775–1789 
[179] Salah Abdullah H (2012) Electrochemical polymerization and Raman study of 
polypyrrole and polyaniline thin films. International Journal of Physical Sciences, 7, 
pp.5468–5476 
[180] Santos A (2014) Fundamentals and Applications of Impedimetric and Redox 
Capacitive Biosensors. J Anal Bioanal Tech. doi: 10.4172/2155-9872.S7-016 
[181] Santos A, Davis JJ, Bueno PR (2014) Fundamentals and Applications of Impedimetric 
and Redox Capacitive Biosensors. Journal of Analytical & Bioanalytical Techniques, 
S7, pp.1–15 
[182] Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop 
enzymatic biosensors. Biotechnology Advances, 30, pp.489–511 
[183] Savory N, Abe K, Sode K, Ikebukuro K (2010) Selection of DNA aptamer against 
prostate specific antigen using a genetic algorithm and application to sensing. 
Biosensors and Bioelectronics, 26, pp.1386–1391 
[184] Schweiss R, Pleul D, Simon F, Janke A, Welzel PB, Voit B, Knoll W, Werner C 
(2004) Electrokinetic Potentials of Binary Self-Assembled Monolayers on Gold: 
Acid−Base Reactions and Double Layer Structure. The Journal of Physical Chemistry 
B, 108, pp.2910–2917 
 153 
[185] Seymour E, Daaboul GG, Zhang X, Steven M, Ünlü NL, Connor JH, Ünlu MS (2015) 
DNA-Directed Antibody Immobilization for Enhanced Detection of Single Viral 
Pathogens. Analytical Chemistry, 87, pp.10505–10512 
[186] Shao Y, Wang J, Wu H, Liu J, Aksay I a., Lin Y (2010) Graphene based 
electrochemical sensors and biosensors: A review. Electroanalysis, 22, pp.1027–1036 
[187] Sharma H, Mutharasan R (2013) Half antibody fragments improve biosensor 
sensitivity without loss of selectivity. Analytical Chemistry, 85, pp.2472–2477 
[188] Shen G, Cai C, Yang J (2011) Electrochimica Acta Fabrication of an electrochemical 
immunosensor based on a gold – hydroxyapatite nanocomposite – chitosan film. 
Electrochimica Acta, 56, pp.8272–8277 
[189] Shen G, Hu X, Zhang S (2014) A signal-enhanced electrochemical immunosensor 
based on dendrimer functionalized-graphene as a label for the detection of α-1-
fetoprotein. Journal of Electroanalytical Chemistry, 717–718, pp.172–176 
[190] Sheng Q, Luo K, Li L, Zheng J (2009) Bioelectrochemistry Direct electrochemistry 
of glucose oxidase immobilized on NdPO4 nanoparticles / chitosan composite film on 
glassy carbon electrodes and its biosensing application. Bioelectrochemistry, 74, 
pp.246–253 
[191] Shrivastava A, Gupta V (2011) Methods for the determination of limit of detection 
and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2, 
p.21 
[192] Shrivastava S, Jadon N, Jain R (2016) Next-generation polymer nanocomposite-based 
electrochemical sensors and biosensors: A review. TrAC - Trends in Analytical 
Chemistry, 82, pp.55–67 
[193] Shul AA, Soldatkin AP, El A V (1994) Thin-film conductometric biosensors for 
glucose and urea determination. Biosensors & Bioelectronics, 9, pp.217–223 
[194] Siangproh W, Dungchai W, Rattanarat P, Chailapakul O (2011) Nanoparticle-based 
electrochemical detection in conventional and miniaturized systems and their 
bioanalytical applications: A review. Analytica Chimica Acta, 690, pp.10–25 
[195] De Silva KKH, Huang HH, Joshi RK, Yoshimura M (2017) Chemical reduction of 
graphene oxide using green reductants. Carbon, 119, pp.190–199 
[196] Skottrup PD, Nicolaisen M, Justesen AF (2008) Towards on-site pathogen detection 
using antibody-based sensors. Biosensors and Bioelectronics, 24, pp.339–348 
[197] Song KM, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors, 
12, pp.612–631 
[198] Song Y, Luo Y, Zhu C, Li H, Du D, Lin Y (2016) Recent advances in electrochemical 
biosensors based on graphene two-dimensional nanomaterials. Biosensors and 
Bioelectronics, 76, pp.195–212 
[199] Soto AMG, Jaffari SA, Bone S (2001) Characterisation and optimisation of AC 
conductimetric biosensors. Biosensors & Bioelectronics, 16, pp.23–29 
[200] Souada M, Piro B, Reisberg S, Anquetin G, Noël V, Pham MC (2015) Biosensors and 
Bioelectronics Label-free electrochemical detection of prostate-specific antigen 
based on nucleic acid aptamer. Biosensors and Bioelectronics, 68, pp.49–54 
[201] Stenman UH, Alfthan H, Hotakainen K (2004) Human chorionic gonadotropin in 
 154 
cancer. Clinical Biochemistry, 37, pp.549–561 
[202] Stenman UH, Tiitinen A, Alfthan H, Valmu L (2006) The classification, functions 
and clinical use of different isoforms of HCG. Human Reproduction Update, 12, 
pp.769–784 
[203] Stephan C, Ralla B, Jung K (2014) Prostate-specific antigen and other serum and 
urine markers in prostate cancer. Biochimica et Biophysica Acta - Reviews on 
Cancer, 1846, pp.99–112 
[204] Stewart BW, Kleihues P (2003) World cancer report. World Heal Organ. doi: 
10.1017/S0020860400079146 
[205] Su J, Zhou Z, Li H, Liu S (2014) Quantitative detection of human chorionic 
gonadotropin antigen via immunogold chromatographic test strips. Anal Methods, 6, 
pp.450–455 
[206] Su XL, Li Y (2004) A self-assembled monolayer-based piezoelectric immunosensor 
for rapid detection of Escherichia coli O157:H7. Biosensors and Bioelectronics, 19, 
pp.563–574 
[207] Subramanian A, Irudayaraj J, Ryan T (2006) A mixed self-assembled monolayer-
based surface plasmon immunosensor for detection of E. coli O157:H7. Biosensors 
and Bioelectronics, 21, pp.998–1006 
[208] Sun G, Liu H, Zhang Y, Yu J, Yan M, Song X, He W, 5 (2015) Gold nanorods-paper 
electrode based enzyme-free electrochemical immunoassay of prostate specific 
antigen using porous zinc oxide spheres-silver nanoparticles nanocomposites as 
labels. New Journal of Chemistry, 39, pp.6062–6067 
[209] Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y (2014) Oligonucleotide aptamers: 
New tools for targeted cancer therapy. Mol Ther - Nucleic Acids. doi: 
10.1038/mtna.2014.32 
[210] Tahmasebi F, Noorbakhsh A (2016) Sensitive Electrochemical Prostate Specific 
Antigen Aptasensor: Effect of Carboxylic Acid Functionalized Carbon Nanotube and 
Glutaraldehyde Linker. Electroanalysis, 28, pp.1134–1145 
[211] Takahashi S, Abiko N, Anzai JI (2013) Redox response of reduced graphene oxide-
modified glassy carbon electrodes to hydrogen peroxide and hydrazine. Materials, 6, 
pp.1840–1850 
[212] Tam PD, Van Hieu N, Chien ND, Le AT, Anh Tuan M (2009) DNA sensor 
development based on multi-wall carbon nanotubes for label-free influenza virus 
(type A) detection. Journal of Immunological Methods, 350, pp.118–124 
[213] Tam PD, Tuan MA, Van Hieu N, Chien ND (2009) Impact parameters on 
hybridization process in detecting influenza virus (type A) using conductimetric-
based DNA sensor. Physica E: Low-Dimensional Systems and Nanostructures, 41, 
pp.1567–1571 
[214] Tam PD, Tuan MA, Huy TQ, Le AT, Hieu N Van (2010) Facile preparation of a 
DNA sensor for rapid herpes virus detection. Materials Science and Engineering C, 
30, pp.1145–1150 
[215] Tan F, Yan F, Ju H (2007) Sensitive reagentless electrochemical immunosensor based 
on an ormosil sol-gel membrane for human chorionic gonadotrophin. Biosensors and 
Bioelectronics, 22, pp.2945–2951 
 155 
[216] Tanaka G, Funabashi H, Mie M, Kobatake E (2006) Fabrication of an antibody 
microwell array with self-adhering antibody binding protein. Analytical 
Biochemistry, 350, pp.298–303 
[217] Tang A na, Duan L, Liu M, Dong X (2016) An epitope imprinted polymer with affinity 
for kininogen fragments prepared by metal coordination interaction for cancer 
biomarker analysis. Journal of Materials Chemistry B, 4, pp.7464–7471 
[218] Teixeira S, Ferreira NS, Conlan RS, Guy OJ, Sales MGF (2014) Chitosan/AuNPs 
Modified Graphene Electrochemical Sensor for Label-Free Human Chorionic 
Gonadotropin Detection. Electroanalysis, 26, pp.2591–2598 
[219] Thermo Scientific (2009) Crosslinking technical handbook. 
[220] Thevenot D, Toth K, Durst R, Wilson G, Thevenot D, Toth K, Durst R, Wilson G 
(2001) Electrochemical biosensors : recommended definitions and classification To 
cite this version : Technical report Electrochemical biosensors : recommended 
definitions and. Biosensors & Bioelectronics, 16, pp.121–131 
[221] Thuy NT, Tam PD, Tuan MA, Chien ND, Thu V Van (2013) Impact parameters 
investigation of DNA immobilisation process on DNA sensor response. International 
Journal of Nanotechnology, 10, pp.146–153 
[222] Thuy NT, Tam PD, Tuan MA, Le AT, Tam LT, Van Thu V, Van Hieu N, Chien ND 
(2012) Detection of pathogenic microorganisms using biosensor based on multi-
walled carbon nanotubes dispersed in DNA solution. Current Applied Physics, 12, 
pp.1553–1560 
[223] TN Lien T, Xuan Viet, N, Chikae M (2011) Development of Label-Free Impedimetric 
hCG-Immunosensor Using Screen-Printed Electrode. J Biosens Bioelectron. doi: 
10.4172/2155-6210.1000107 
[224] Tokarskyy O, Marshall DL (2008) Immunosensors for rapid detection of Escherichia 
coli O157:H7- Perspectives for use in the meat processing industry. Food 
Microbiology, 25, pp.1–12 
[225] Topçu Sulak M, Gökdoǧan Ö, Gülce A, Gülce H (2006) Amperometric glucose 
biosensor based on gold-deposited polyvinylferrocene film on Pt electrode. 
Biosensors and Bioelectronics, 21, pp.1719–1726 
[226] Torimoto T, Sakata T, Mori H, Yoneyama H (1994) Effect of Surface Charge of 4-
Aminothiophenol-Modified PbS Microcrystal Photocatalysts on Photoinduced 
Charge Transfer Effect of Surface Charge of 4-Aminothiophenol-Modified PbS 
Microcrystal Photocatalysts on Photoinduced Charge Transfer. The Journal of 
Physical Chemistry, 98, pp.3036–3043 
[227] Tran LD, Nguyen DT, Nguyen BH, Do QP, Le Nguyen H (2011) Development of 
interdigitated arrays coated with functional polyaniline/MWCNT for electrochemical 
biodetection: Application for human papilloma virus. Talanta, 85, pp.1560–1565 
[228] Tran TL, Chu TX, Do PQ, Pham DT, Trieu VVQ, Huynh DC, Mai AT (2015) In-
Channel-Grown Polypyrrole Nanowire for the Detection of DNA Hybridization in an 
Electrochemical Microfluidic Biosensor. J Nanomater. doi: 10.1155/2015/458629 
[229] Tran TL, Chu TX, Huynh DC, Pham DT, Luu THT, Mai AT (2014) Effective 
immobilization of DNA for development of polypyrrole nanowires based biosensor. 
Applied Surface Science, 314, pp.260–265 
 156 
[230] Tremiliosi-Filho G, Dall’Antonia LH, Jerkiewicz G (2005) Growth of surface oxides 
on gold electrodes under well-defined potential, time and temperature conditions. 
Journal of Electroanalytical Chemistry, 578, pp.1–8 
[231] Trilling AK, Beekwilder J, Zuilhof H (2013) Antibody orientation on biosensor 
surfaces: a minireview. The Analyst, 138, pp.1619–1627 
[232] Truong L, Nguyen T, Luu A, Ukita Y, Takamura Y (2012) Sensitive Labelles 
Impedance Immunosensor Using Gold Nanoparticles-Modified of Screen-Printed 
Carbon Ink Electrode for. RscOrg, pp.1912–1914 
[233] Tuan TQ, Son N Van, Dung HTK, Luong NH, Thuy BT, Anh NT Van, Hoa ND, Hai 
NH (2011) Preparation and properties of silver nanoparticles loaded in activated 
carbon for biological and environmental applications. Journal of Hazardous 
Materials, 192, pp.1321–1329 
[234] Tudorache M, Bala C (2007) Biosensors based on screen-printing technology, and 
their applications in environmental and food analysis. Analytical and Bioanalytical 
Chemistry, 388, pp.565–578 
[235] Tung NT, Tue PT, Thi Ngoc Lien T, Ohno Y, Maehashi K, Matsumoto K, Nishigaki 
K, Biyani M, Takamura Y (2017) Peptide aptamer-modified single-walled carbon 
nanotube-based transistors for high-performance biosensors. Scientific Reports, 7, 
pp.1–9 
[236] Ulman A (1996) Formation and Structure of Self-Assembled Monolayers. Chemical 
Reviews, 96, pp.1533–1554 
[237] Uygun ZO, Şahin Ç, Yılmaz M, Akçay Y, Akdemir A, Sağın F (2018) Fullerene-
PAMAM(G5) composite modified impedimetric biosensor to detect Fetuin-A in real 
blood samples. Analytical Biochemistry, 542, pp.11–15 
[238] Valente KP, Khetani S, Kolahchi AR, Nezhad A, Suleman A, Akbari M (2017) 
Microfluidic technologies for anticancer drug studies. Drug Discovery Today, 22, 
pp.1654–1670 
[239] Vashist SK (2012) Comparison of 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide 
Based Strategies to Crosslink Antibodies on Amine-Functionalized Platforms for 
Immunodiagnostic Applications. Diagnostics, 2, pp.23–33 
[240] Vashist SK, Luong JHT (2018) Antibody Immobilization and Surface 
Functionalization Chemistries for Immunodiagnostics. In: Handb. Immunoass. 
Technol. Elsevier Inc., pp 19–46 
[241] Verma M, Srivastava S (2003) New cancer biomarkers deriving from NCI early 
detection research. Recent results in cancer research, 163, pp.72–84 
[242] Vezenov D V., Zhuk A V., Whitesides GM, Lieber CM (2002) Chemical force 
spectroscopy in heterogeneous systems: Intermolecular interactions involving epoxy 
polymer, mixed monolayers, and polar solvents. Journal of the American Chemical 
Society, 124, pp.10578–10588 
[243] Vigmond SJ, Ghaemmaghami V, Thompson M (1995) Raman and resonance-Raman 
spectra of polypyrrole with application to sensor – gas probe interactions. Canadian 
Journal of Chemistry, 73, pp.1711–1718 
[244] Viswambari Devi R, Doble M, Verma RS (2015) Nanomaterials for early detection 
of cancer biomarker with special emphasis on gold nanoparticles in 
 157 
immunoassays/sensors. Biosensors and Bioelectronics, 68, pp.688–698 
[245] Volpe G, Draisci R, Palleschi G, Compagnone D (1998) 3,3′,5,5′-
Tetramethylbenzidine as electrochemical substrate for horseradish peroxidase based 
enzyme immunoassays. A comparative study. The Analyst, 123, pp.1303–1307 
[246] Wadu Mesthrige K, Amro NA, Liu G-Y (2000) Immobilization of Proteins on Self-
Assembled Monolayers. Scanning, 22, pp.380–388 
[247] Wang B, Akiba U, Anzai JI (2017) Recent progress in nanomaterial-based 
electrochemical biosensors for cancer biomarkers: A review. Molecules, 22, p.1048 
[248] Wang G, He X, Chen L, Zhu Y, Zhang X (2014) Ultrasensitive IL-6 electrochemical 
immunosensor based on Au nanoparticles-graphene-silica biointerface. Colloids and 
Surfaces B: Biointerfaces, 116, pp.714–719 
[249] Wang H, Wang J, Timchalk C, Lin Y (2008) Magnetic electrochemical 
immunoassays with quantum dot labels for detection of phosphorylated 
acetylcholinesterase in plasma. Analytical Chemistry, 80, pp.8477–8484 
[250] Wang J (2008) Electrochemical Glucose Biosensors Electrochemical Glucose 
Biosensors. Chem Soc Rev, 108, pp.814–825 
[251] Wang L, Wu C, Hu Z, Zhang Y, Li R, Wang P (2008) Sensing Escherichia coli 
O157:H7 via frequency shift through a self-assembled monolayer based QCM 
immunosensor. Journal of Zhejiang University SCIENCE B, 9, pp.121–131 
[252] Wang Y, Xu H, Zhang J, Li G (2008) Electrochemical sensors for clinic analysis. 
Sensors, 8, pp.2043–2081 
[253] Wang Y, Ye Z, Ying Y (2012) New trends in impedimetric biosensors for the 
detection of foodborne pathogenic bacteria. Sensors, 12, pp.3449–3471 
[254] Welch NG, Scoble JA, Muir BW, Pigram PJ (2017) Orientation and characterization 
of immobilized antibodies for improved immunoassays (Review). Biointerphases. doi: 
10.1116/1.4978435 
[255] Whitcombe MJ, Kirsch N, Nicholls IA (2014) Molecular imprinting science and 
technology: A survey of the literature for the years 2004-2011. Journal of Molecular 
Recognition, 27, pp.297–401 
[256] Willey JM, Sherwood LM, Woolverton CJ (2008) Microbiology. Colin 
Wheatley/Janice Roerig-Blong 
[257] Wink T, Zuilen SJ van, Bult A, Bennekom WP Van (1997) Tutorial Review Self-
assembled Monolayers for Biosensors. Analyst, 122, p.43R–50R 
[258] Wooten M, Karra S, Zhang M, Gorski W (2014) On the direct electron transfer, 
sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system. 
Analytical Chemistry, 86, pp.752–757 
[259] World Cancer Research Fund (2014) Diet , nutrition , physical activity and prostate 
cancer. 
[260] Wu J, Fu Z, Yan F, Ju H (2007) Biomedical and clinical applications of 
immunoassays and immunosensors for tumor markers. TrAC - Trends in Analytical 
Chemistry, 26, pp.679–688 
[261] Xia SJ, Birss VI (2001) A multi-technique study of compact and hydrous Au oxide 
growth in 0.1 M sulfuric acid solutions. Journal of Electroanalytical Chemistry, 500, 
 158 
pp.562–573 
[262] Xie B, Ramanathan K, Danielsson B (1999) Principles of Enzyme Thermistor 
Systems : Applications to Biomedical and Other Measurements. Adv. Biochem. Eng. 
/ Biotechnol. 64: 
[263] Xiong P, Gan N, Cao Y, Hu F, Li T, Zheng L (2012) An Ultrasensitive 
Electrochemical Immunosensor for Alpha-Fetoprotein Using an Envision Complex-
Antibody Copolymer as a Sensitive Label. Materials, 5, pp.2757–2772 
[264] Xu C, Sun J, Gao L (2011) Synthesis of novel hierarchical graphene/polypyrrole 
nanosheet composites and their superior electrochemical performance. Journal of 
Materials Chemistry, 21, pp.11253–11258 
[265] Xuan Viet N, Chikae M, Ukita Y, Maehashi K, Matsumoto K, Tamiya E, Hung Viet 
P, Takamura Y (2013) Gold-linked electrochemical immunoassay on single-walled 
carbon nanotube for highly sensitive detection of human chorionic gonadotropin 
hormone. Biosensors and Bioelectronics, 42, pp.592–597 
[266] Yan X, Huang Z, He M, Liao X, Zhang C, Yin G, Gu J (2012) Detection of HCG-
antigen based on enhanced photoluminescence of hierarchical ZnO arrays. Colloids 
and Surfaces B: Biointerfaces, 89, pp.86–92 
[267] Yang H (2012) Enzyme-based ultrasensitive electrochemical biosensors. Current 
Opinion in Chemical Biology, 16, pp.422–428 
[268] Yang H, Zhou H, Hao H, Gong Q, Nie K (2016) Detection of Escherichia coli with a 
label-free impedimetric biosensor based on lectin functionalized mixed self-
assembled monolayer. Sensors and Actuators, B: Chemical, 229, pp.297–304 
[269] Yang K, Qi L, Gao Z, Zu X, Chen M (2014) A Novel Electrochemical Immunosensor 
for Prostate-Specific Antigen Based on Noncovalent Nanocomposite of Ferrocene 
Monocarboxylic Acid with Graphene Oxide. Analytical Letters, 47, pp.2266–2280 
[270] Yang W, Ratinac KR, Ringer SR, Thordarson P, Gooding JJ, Braet F (2010) Carbon 
nanomaterials in biosensors: Should you use nanotubes or graphene. Angewandte 
Chemie - International Edition, 49, pp.2114–2138 
[271] Yang Z, Kasprzyk-Hordern B, Goggins S, Frost CG, Estrela P (2015) A novel 
immobilization strategy for electrochemical detection of cancer biomarkers: DNA-
directed immobilization of aptamer sensors for sensitive detection of prostate specific 
antigens. The Analyst, 140, pp.2628–33 
[272] Yoo E-H, Lee S-Y (2010) Glucose Biosensors: An Overview of Use in Clinical 
Practice. Sensors, 10, pp.4558–4576 
[273] Yoon YJ, Li KHH, Low YZ, Yoon J, Ng SH (2014) Microfluidics biosensor chip with 
integrated screen-printed electrodes for amperometric detection of nerve agent. 
Sensors and Actuators, B: Chemical, 198, pp.233–238 
[274] Yu H, Yan F, Dai Z, Ju H (2004) A disposable amperometric immunosensor for α-1-
fetoprotein based on enzyme-labeled antibody/chitosan-membrane-modified screen-
printed carbon electrode. Analytical Biochemistry, 331, pp.98–105 
[275] Yuan Y, Yin M, Qian J, Liu C (2011) Site-directed immobilization of antibodies onto 
blood contacting grafts for enhanced endothelial cell adhesion and proliferation. Soft 
Matter, 7, pp.7207–7216 
[276] Zeng Y, Zhu Z, Du D, Lin Y (2016) Nanomaterial-based electrochemical biosensors 
 159 
for food safety. Journal of Electroanalytical Chemistry, 781, pp.147–154 
[277] Zhan S, Wu Y, Wang L, Zhan X, Zhou P (2016) A mini-review on functional nucleic 
acids-based heavy metal ion detection. Biosensors and Bioelectronics, 86, pp.353–
368 
[278] Zhang W, Bas AD, Ghali E, Choi Y (2015) Passive behavior of gold in sulfuric acid 
medium. Transactions of Nonferrous Metals Society of China, 25, pp.2037–2046 
[279] Zhang X, Ju H, Wang J (2008) Electrochemical Sensors, Biosensors and Their 
Biomedical Applications. Academic Press 
[280] Zhang X, Lu W, Shen J, Jiang Y, Han E, Dong X, Huang J (2015) Carbohydrate 
derivative-functionalized biosensing toward highly sensitive electrochemical 
detection of cell surface glycan expression as cancer biomarker. Biosensors and 
Bioelectronics, 74, pp.291–298 
[281] Zhang X, Zhang D, Chen Y, Sun X, Ma Y (2012) Electrochemical reduction of 
graphene oxide films: Preparation, characterization and their electrochemical 
properties. Chinese Science Bulletin, 57, pp.3045–3050 
[282] Zhang Y, Wen G, Zhou Y, Shuang S, Dong C, Choi MMF (2007) Development and 
analytical application of an uric acid biosensor using an uricase-immobilized 
eggshell membrane. Biosensors and Bioelectronics, 22, pp.1791–1797 
[283] Zhang Y, Zhang M, Wei Q, Gao Y, Guo L, Al-Ghanim KA, Mahboob S, Zhang X 
(2016) An easily fabricated electrochemical sensor based on a graphene-modified 
glassy carbon electrode for determination of octopamine and tyramine. Sensors, 16, 
p.535 
[284] Zhao L-B, Zhang M, Ren B, Tian Z-Q, Wu D-Y (2014) Theoretical Study on 
Thermodynamic and Spectroscopic Properties of Electro-Oxidation of p -
Aminothiophenol on Gold Electrode Surfaces. The Journal of Physical Chemistry C, 
118, pp.27113–27122 
[285] Zhong L, Cheng F, Lu X, Duan Y, Wang X (2016) Untargeted saliva metabonomics 
study of breast cancer based on ultra performance liquid chromatography coupled to 
mass spectrometry with HILIC and RPLC separations. Talanta, 158, pp.351–360 
[286] Zhu C, Du D, Lin Y (2017) Graphene-like 2D nanomaterial-based biointerfaces for 
biosensing applications. Biosensors and Bioelectronics, 89, pp.43–55 
[287] https://www.micropia.nl/en/discover/microbiology/rna/ (accessed 01/08/2018). 
[288] https://www.idtdna.com/pages/education/decoded/article/planning-to-work-with-
aptamers (accessed 01/08/2018). 
[289] https://www.sciencedirect.com/search/advanced (accessed 01/08/2018). 
[290] https://wikispaces.psu.edu (accessed 01/08/2018). 
 160 
DANH MỤC CÁC CÔNG TRÌNH CÔNG BỐ CỦA LUẬN ÁN 
1. Đỗ Thị Ngọc Trâm, Đặng Thái Đương, Trương Thị Ngọc Liên (2014), Cảm biến 
sinh học sử dụng phương pháp không đánh dấu phổ tổng trở và nhạy khối lượng phát 
hiện hCG. Tạp chí Khoa học và Công nghệ 52 (3C), tr.572-578. 
2. Tram T. N. Do, Toan Van Phi, Tin Phan Nguy, Patrick Wagner, Kasper Eersels, 
Mun’delanji C. Vestergaard, and Lien T. N. Truong (2016), Anisotropic In Situ-
Coated AuNPs on Screen-Printed Carbon Surface for Enhanced Prostate-Specific 
Antigen Impedimetric Aptasensor. Journal of Electronic Materials, Volume 46, 
Issue 6, pp 3542–3552. doi:10.1007/s11664-016-5187-9. 
3. Đỗ Thị Ngọc Trâm, Trương Thị Ngọc Liên (2018), Cảm biến điện hóa glucose sử 
dụng cấu trúc đa lớp giữa polyme oxy hóa - khử Osmium và enzyme glucose oxidase. 
Những tiến bộ trong Vật lý Kỹ thuật và Ứng dụng - CAEP V, ISBN 978-604-913-
232-2, tr.212-218. 
4. Đỗ Thị Ngọc Trâm, Yoshiakia Ukita, Trương Thị Ngọc Liên (2018), Nghiên cứu 
thiết kế chíp vi lưu li tâm tích hợp với điện cực mực in ứng dụng trong cảm biến sinh 
học điện hóa. Tạp chí Khoa học & công nghệ các trường Đại học kỹ thuật (chấp nhận 
đăng 17/04/2018). 
5. Trương Thị Ngọc Liên, Đỗ Thị Ngọc Trâm. Đăng kí sáng chế: “Quy trình tổng 
hợp vật liệu lai cấu trúc nano hai chiều giữa polyme đồng trùng hợp 
polypyrrole-polypyrrole carboxyl (PPy-PPa) và oxit graphene dạng khử điện 
hóa (erGO) ứng dụng chế tạo cảm biến trong chẩn đoán bệnh sớm” (chấp 
nhận đơn hợp lệ ngày 26/06/2018).
- 1 - 
PHỤ LỤC 
Phụ lục 1. Giá trị thành phần mạch tương đương Randles của cảm biến mAb 
hCG/SAM(MHDA)/SPAuE 
Nồng độ kháng nguyên 
α-hCG (ng/mL) 
Thành phần trong mạch Randles 
Rs (k) Rct (k) Cdl (F) 
0 1,60 ± 0,09 9,35 ± 1,8 3,04 ± 0,01 
0,1 1,65 ± 0,10 9,41 ± 1,9 2,79 ± 0,02 
4 1,66 ± 0,10 16,5 ± 2,9 2,46 ± 0,02 
10 1,49 ± 0,09 19,8 ± 4,7 2,38 ± 0,01 
20 1,69 ± 0,09 21,3 ± 2,4 2,05 ± 0,02 
30 1,59 ± 0,10 24,7 ± 4,3 1,96 ± 0,02 
70 1,55 ± 0,09 32,4 ± 2,5 1,90 ± 0,02 
100 1,60 ± 0,09 38,1 ± 5,4 1,75 ± 0,02 
Phụ lục 2. Giá trị thành phần mạch tương đương Randles cảm biến PSA-
aptamer/SAM(MHDA)/SPAuE với nồng độ aptamer (5 µg/mL, 50 µg/mL) 
Nồng độ 
kháng 
nguyên 
PSA 
(ng/mL) 
Giá trị thành phần của mạch tương đương Randles 
5 µg/mL aptamer /MHDA/ SPAuE 50 µg/mL aptamer /MHDA/ SPAuE 
Rs (kΩ) Rct (kΩ) Cdl (µF) Rs (kΩ) Rct (kΩ) Cdl (µF) 
0 8,65 9,29 2,44 8,93 20,70 6,46 
2 8,83 8,23 1,85 9,97 19,45 7,35 
4 9,41 6,13 1,13 9,93 18,76 7,03 
6 8,89 7,02 1,23 9,57 18,51 6,91 
8 8,88 7,39 1,30 9,57 18,62 6,95 
10 8,67 7,54 1,20 9,17 18,40 6,94 
12 8,72 7,67 1,14 9,17 18,23 6,87 
14 8,71 7,72 1,15 8,93 20,70 6,46 
 - 2 - 
Phụ lục 3. Giá trị các thành phần mạch tương đương Randles của các cảm biến PSA-
aptamer/SAM(MHDA)/AuNPs-SPCE với 5 vòng quét tạo hạt nano vàng và các nồng độ aptamer 
khác nhau (5 µg/mL, 10 µg/mL, 25 µg/mL, 50 µg/mL, 100 µg/mL). 
PSA/aptamer/MHDA/5 CVs AuNPs-SPCE 
Nồng 
độ 
PSA 
ng/mL 
Giá trị các thành phần mạch tương đương Randles 
Aptamer 
5 µg/mL 
Aptamer 
10 µg/mL 
Aptamer 
25 µg/mL 
Aptamer 
50 µg/mL 
Aptamer 
100 µg/mL 
Rct 
(kΩ) 
Cdl 
(µF) 
Rct 
(kΩ) 
Cdl 
(µF) 
Rct 
(kΩ) 
Cdl 
(µF) 
Rct 
(kΩ) 
Cdl 
(µF) 
Rct 
(kΩ) 
Cdl 
(µF) 
0 1,496 3,944 2,691 2,558 1,539 4,173 1,422 4,906 1,650 3,551 
2 1,501 3,806 2,911 2,544 1,743 3,940 1,553 4,683 1,662 3,327 
4 1,623 3,773 2,914 2,501 1,893 3,856 1,613 4,533 1,832 3,042 
6 1,673 3,663 2,958 2,354 1,890 3,776 1,704 4,371 1,837 3,029 
8 1,766 3,577 3,012 2,330 1,921 3,632 1,746 4,107 1,852 3,033 
10 1,827 3,580 3,025 2,296 1,946 3,585 1,762 4,114 1,908 3,028 
12 1,847 3,493 3,11 2,282 1,966 3,548 1,765 4,095 1,940 2,902 
14 1,850 3,495 3,10 2,284 1,967 3,547 1,766 4,097 1,942 2,905 
Phụ lục 4. Giá trị các thành phần mạch tương đương Randles của các cảm biến PSA-
aptamer/SAM(MHDA)/AuNPs-SPCE với 10 vòng quét tạo hạt nano vàng và các nồng độ aptamer 
khác nhau (5 µg/mL, 10 µg/mL, 25 µg/mL, 50 µg/mL, 100 µg/mL). 
PSA/aptamer/MHDA/10 CVs AuNPs-SPCE 
Nồng 
độ 
PSA 
ng/mL 
Giá trị các thành phần mạch tương đương Randles 
Aptamer 
5 µg/mL 
Aptamer 
10 µg/mL 
Aptamer 
25 µg/mL 
Aptamer 
50 µg/mL 
Aptamer 
100 µg/mL 
Rct 
(kΩ) 
Cdl 
(µF) 
Rct 
(kΩ) 
Cdl 
(µF) 
Rct 
(kΩ) 
Cdl 
(µF) 
Rct 
(kΩ) 
Cdl 
(µF) 
Rct 
(kΩ) 
Cdl 
(µF) 
0 1,095 4,172 1,411 3,976 1,488 3,930 1,359 3,878 1,738 3,734 
2 1,358 3,615 1,580 3,992 1,489 3,847 1,472 3,564 1,864 3,555 
4 1,487 3,361 1,582 3,758 1,614 3,666 1,592 3,488 1,934 3,211 
6 1,544 3,329 1,837 3,294 1,655 3,823 1,638 3,432 1,953 3,394 
8 1,584 3,373 1,849 3,284 1,782 3,530 1,638 3,432 1,959 3,260 
10 1,720 3,224 1,929 3,301 1,827 3,580 1,670 3,295 2,014 3,246 
12 1,759 3,160 1,957 3,203 1,852 3,492 1,716 3,350 2,035 3,095 
14 1,760 3,164 1,959 3,200 1,853 3,490 1,718 3,348 2,038 3,093 
 - 3 - 
Phụ lục 5. Giá trị các thành phần mạch tương đương Randles của các cảm biến PSA-
aptamer/SAM(MHDA)/AuNPs-SPCE với 15 vòng quét tạo hạt nano vàng và các nồng độ aptamer 
khác nhau (5 µg/mL, 10 µg/mL, 25 µg/mL, 50 µg/mL, 100 µg/mL). 
Phụ lục 6. Giá trị các thành phần mạch tương đương Randles của các cảm biến MHDA/AuNPs-
modified SPCE với 20 vòng quét tạo hạt nano vàng và các nồng độ aptamer khác nhau (5 µg/mL, 10 
µg/mL, 25 µg/mL, 50 µg/mL, 100 µg/mL). 
PSA/aptamer/MHDA/20 CVs AuNPs-SPCE 
Nồng 
độ 
PSA 
ng/mL 
Giá trị các thành phần mạch tương đương Randles 
Aptamer 
5 µg/mL 
Aptamer 
10 µg/mL 
Aptamer 
25 µg/mL 
Aptamer 
50 µg/mL 
Aptamer 
100 µg/mL 
Rct 
(kΩ) 
Cdl 
(µF) 
Rct 
(kΩ) 
Cdl 
(µF) 
Rct 
(kΩ) 
Cdl 
(µF) 
Rct 
(kΩ) 
Cdl 
(µF) 
Rct 
(kΩ) 
Cdl 
(µF) 
0 1,628 3,932 1,992 3,313 1,918 3,139 1,124 3,415 1,398 2,527 
2 1,680 3,995 2,139 3,261 1,981 3,168 1,168 4,128 1,421 2,377 
4 1,689 4,290 2,137 3,100 2,040 3,024 1,214 4,542 1,429 2,408 
6 1,806 3,731 2,182 2,979 2,094 2,877 1,217 3,663 1,511 2,453 
8 1,861 3,774 2,241 3,134 2,106 2,890 1,221 3,448 1,521 2,334 
10 1,876 3,569 2,241 3,134 2,161 2,848 1,243 3,601 1,544 2,394 
12 2,091 3,376 2,322 3,076 2,149 2,883 1,336 3,459 1,566 2,439 
14 2,093 3,374 2,325 3,073 2,150 2,880 1,339 3,456 1,569 2,433 
PSA/aptamer/MHDA/15Cvs AuNPs-SPCE 
Nồng 
độ 
PSA 
ng/mL 
Giá trị các thành phần mạch tương đương Randles 
Aptamer 
5 µg/mL 
Aptamer 
10 µg/mL 
Aptamer 
25 µg/mL 
Aptamer 
50 µg/mL 
Aptamer 
100 µg/mL 
Rct 
(kΩ) 
Cdl 
(µF) 
Rct 
(kΩ) 
Cdl 
(µF) 
Rct 
(kΩ) 
Cdl 
(µF) 
Rct 
(kΩ) 
Cdl 
(µF) 
Rct 
(kΩ) 
Cdl 
(µF) 
0 1,561 3,745 1,480 4,173 1,697 3,974 1,379 2,564 1,613 4,533 
2 1,699 3,521 1,598 4,076 1,880 3,849 1,433 2,496 1,684 4,465 
4 1,845 3,422 1,720 3,888 1,890 3,764 1,447 2,439 1,722 4,216 
6 1,901 3,243 1,779 3,737 1,909 3,601 1,506 2,437 1,729 4,153 
8 1,912 3,147 1,840 3,630 1,915 3,471 1,525 2,353 1,744 4,082 
10 1,952 3,104 1,852 3,610 1,953 3,465 1,544 2,350 1,747 4,011 
12 1,988 3,068 1,888 3,599 1,956 3,390 1,566 2,394 1,758 3,785 
14 1,989 3,066 1,890 3,595 1,957 3,387 1,568 2,390 1,759 3,783 
 - 4 - 
Phụ lục 7. Giá trị các thành phần mạch tương đương Randles của cảm biến được chế tạo với điều 
kiện tối ưu: hạt nano vàng tổng hợp trên SPCE 10 CVs và nồng độ aptamer là 5 µg/mL 
Nồng độ PSA 
(ng/mL) 
Giá trị các thành phần mạch tương đương Randles 
PSA/aptamer/MHDA/AuNPs-SPCE 
Rs (kΩ) Rct (kΩ) Cdl (µF) 
0 2,66 1,34 4,58 
2 2,67 1,48 4,17 
4 2,66 1,60 4,08 
6 2,67 1,72 3,90 
8 2,66 1,78 3,74 
10 2,66 1,87 3,60 
12 2,66 1,88 3,54 
14 2,66 1,89 3,61 
Phụ lục 8. Giá trị các thành phần mạch tương đương Randles được cho bởi khảo sát độ đặc hiệu 
PSA-Aptamer/SAM(MHDA)/AuNPs-SPCE 
Nồng độ 
kháng nguyên 
(ng/mL) 
Giá trị các thành phần mạch tương đương Randles 
hCG Amylin Protein TAU 
Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) 
0 1,090 3,65 1,121 3,71 1,230 2,57 
2 1,097 3,77 1,144 3,68 1,249 2,49 
4 1,149 3,83 1,181 3,50 1,260 2,41 
6 1,179 3,69 1,141 3,42 1,361 2,45 
8 1,178 3,68 1,125 3,45 1,373 2,40 
10 1,180 3,73 1,135 3,46 1,370 2,42 
12 1,168 3,66 1,125 3,45 1,361 2,42 
14 1,170 3,64 1,130 3,46 1,359 2,43 
 - 5 - 
Phụ lục 9. Giá trị Rct của 03 cảm biến mAb AFP/PPy-PPa/SPCE độc lập chế tạo cùng quy trình 
công nghệ sử dụng xây dựng đường đặc trưng chuẩn. 
Nồng độ 
kháng 
nguyên 
AFP 
(ng/mL) 
Rct () Rct () 
Giá trị trung 
bình Rct M1 M2 M3 M1 M2 M3 
0 891,2 945,9 866,2 0,0 0,0 0,0 0,0 
5 1368,0 1308,0 1573,0 476,8 362,1 706,8 484,8 ± 111,0 
10 1895,0 1430,0 1880,0 1003,8 484,1 1013,8 859,3 ± 187,6 
20 2174,0 1811,0 2032,0 1282,8 865,1 1165,8 1149,1 ± 142,0 
30 2443,0 2527,0 2540,0 1551,8 1581,1 1673,8 1679,8 ± 116,4 
40 3145,0 3092,0 2800,0 2253,8 2146,1 1933,8 2095,3 ± 104,6 
50 3358,0 3377,0 3094,0 2466,8 2431,1 2227,8 2414,6 ± 93,4 
60 3820,0 3755,0 3293,0 2928,8 2809,1 2426,8 2831,1 ± 213,1 
70 4050,0 3989,0 4024,0 3158,8 3043,1 3157,8 3187,8 ± 101,9 
80 4166,0 4270,0 4538,0 3274,8 3324,1 3671,8 3447,1 ± 147,6 
90 4072,0 4302,0 4340,0 3180,8 3356,1 3473,8 3465,6 ± 197,1 
100 4071,0 4103,0 4242,0 3179,8 3157,1 3375,8 3315,3 ± 146,9 
 - 6 - 
Phụ lục 10. Giá trị Rct của 03 cảm biến mAb AFP/PPy-PPa/erGO-SPCE độc lập chế tạo cùng quy 
trình công nghệ sử dụng xây dựng đường đặc trưng chuẩn. 
Nồng độ 
kháng 
nguyên 
AFP 
(ng/mL) 
Rct () Rct () 
Giá trị trung 
bình Rct M1 M2 M3 M1 M2 M3 
0 286,7 276,4 290,7 0,0 0,0 0,0 0,0 
0,1 426,6 465,3 458,4 139,9 188,9 167,7 171,0 ± 17,2 
1 709,9 661,1 751,9 423,2 384,7 461,2 396,5 ± 45,7 
5 1104,0 901,9 1160,0 817,3 625,5 869,3 725,5 ± 117,8 
10 1307,0 1491,0 1354,0 1020,3 1214,6 1063,3 1006,4 ± 139,5 
20 2088,0 1647,0 1829,0 1801,3 1370,6 1538,3 1630,9 ± 176,4 
30 2527,0 2469,0 2408,0 2240,3 2192,6 2117,3 2262,6 ± 118,8 
40 2984,0 2649,0 2436,0 2697,3 2372,6 2145,3 2469,4 ± 210,4 
50 3633,0 3411,0 3127,0 3346,3 3134,6 2836,3 3199,4 ± 213,9 
60 4241,0 4014,0 3894,0 3954,3 3737,6 3603,3 3723,1 ± 122,8 
70 4593,0 4525,0 5076,0 4306,3 4248,6 4785,3 4425,6 ± 179,8 
80 5173,0 4842,0 5403,0 4886,3 4565,6 5112,3 4780,9 ± 218,4 
90 5657,0 6024,0 6089,0 5370,3 5747,6 5798,3 5576,1 ± 196,8 
100 6207,0 5591,0 6494,0 5920,3 5314,6 6203,3 5804,6 ± 257,2 
500 6384,0 6039,0 6839,0 6097,3 5762,6 6548,3 6213,1 ± 283,2 
1000 6513,0 5597,0 6053,0 6226,3 5320,6 5756,3 5849,6 ± 311,2 
Phụ lục 11. Giá trị Rct của các cảm biến mAb AFP/SAM(p-ATP)/AuNPs-SPCE xây dựng đường 
chuẩn 
Nồng độ kháng nguyên 
AFP (ng/mL) 
Rct () Rct () Giá trị trung bình 
Rct M1 M2 M3 M1 M2 M3 
0 601,5 627,4 596,8 0,0 0,0 0,0 0,0 
1 819,4 891,2 854,0 217,9 263,8 257,2 246,3 ± 18,9 
10 1199,0 1186,0 1344,0 597,5 558,6 747,2 634,4 ± 75,2 
20 1553,0 1453,0 1555,0 951,5 825,6 958,2 911,8 ± 57,4 
30 2141,0 1853,0 1755,0 1539,5 1225,6 1158,2 1307,8 ± 154,5 
40 2460,0 2267,0 2178,0 1858,5 1639,6 1581,2 1693,1 ± 110,3 
50 2593,0 2694,0 2442,0 1991,5 2066,6 1845,2 1967,8 ± 81,7 
60 2843,0 3094,0 2814,0 2241,5 2466,6 2217,2 2308,4 ± 105,4 
70 2983,0 3328,0 3171,0 2381,5 2700,6 2574,2 2552,1 ± 113,7 
80 3291,0 3678,0 3661,0 2689,5 3050,6 3064,2 2934,8 ± 163,5 
90 3223,0 3273,0 3464,0 2621,5 2645,6 2867,2 2711,4 ± 103,8 
100 3151,0 3181,0 3264,0 2549,5 2553,6 2667,2 2590,1 ± 51,4 
 - 7 - 
Phụ lục 12. Giá trị Rct của các cảm biến mAb AFP/poly(p-ATP)/AuNPs-SPCE xây dựng đường 
chuẩn 
Nồng độ kháng nguyên 
AFP (ng/mL) 
Rct (k) Rct (k) 
Giá trị trung bình Rct 
M1 M2 M3 M1 M2 M3 
0 5,65 5,59 5,62 0,00 0,00 0,00 0,0 
1 7,81 9,11 9,89 2,16 3,52 4,26 3,31 ± 0,77 
10 12,29 13,01 18,43 6,64 7,42 12,81 8,96 ± 2,57 
20 24,57 21,98 30,70 18,92 16,39 25,08 20,13 ± 3,29 
30 37,27 30,09 34,09 31,62 24,50 28,47 28,19 ± 2,46 
40 43,12 37,39 48,49 37,47 31,80 42,87 37,38 ± 3,72 
50 50,61 44,31 51,04 44,96 38,72 45,42 43,03 ± 2,873 
60 55,04 46,90 55,99 49,39 41,31 50,37 47,02 ± 3,81 
70 61,78 54,04 58,99 56,13 48,45 53,37 52,65 ± 2,79 
80 65,04 61,78 75,58 59,39 56,19 69,96 61,85 ± 5,41 
90 70,76 73,40 81,53 65,11 67,81 75,91 69,61 ± 4,19 
100 74,73 75,58 82,51 69,08 69,99 76,89 71,98 ± 3,27