Luận án Nghiên cứu và chế tạo cảm biến sinh học điện hóa độ nhạy cao sử dụng điện cực in các bon ứng dụng trong chẩn đoán bệnh sớm

Trong nghiên cứu này chúng tôi tiến hành tổng hợp polyme theo tỷ lệ mol hợp phần của Pa với Py bao gồm (0 mM:160 mM); (40 mM:120 mM); (80 mM:80 mM); (120 mM:40 mM); (160 mM:0 mM). Hình 5.6 trình bày đáp ứng dòng-thế của điện cực SPCE được tổng hợp màng polyme với tỷ lệ mol hợp phần Pa/Py khác nhau. Thông qua giá trị cường độ đỉnh ôxy hóa hoặc đỉnh khử ta có thể đánh độ dẫn của màng polyme PPy-Ppa hình thành trên điện cực làm việc. Kết quả cho thấy các màng PPy-PPa đều cho đáp ứng điện hóa tốt trong dung dịch đo. Tuy nhiên, cường độ dòng đỉnh ôxy hóa và khử của chúng rất khác nhau và phụ thuộc vào tỷ lệ hợp phần của Pa so với Py. Màng PPa thuần (số mol Py là 0) cho đáp ứng điện hóa thấp nhất, không có sự xuất hiện đỉnh đỉnh ôxy hóa-khử. Khi tỷ lệ mol Pa so với Py tăng lên thì cường độ dòng đỉnh ôxy hóa và khử đều giảm và vị trí đỉnh đỉnh có xu hướng dịch về phía điện áp cao. Điều này có thể được giải thích là do sự có mặt của Pa đã làm tăng tính thấm ướt bề mặt, giảm tính kỵ nước của Py và do độ dẫn của Pa thấp hơn so với Py. Tại tỷ lệ hợp phần của Pa với Py là 1:3 (40 mM:120 mM) cho màng có độ dẫn cao nhất và đáp ứng điện hóa tốt nhất với hai đỉnh ôxy hóa và khử rất rõ ràng tại điện áp lần lượt là +0,26 V và -0,06 V vs. Ag/AgCl. Như vậy, tỷ lệ hợp phần này được lựa chọn để tổng hợp màng polyme ứng dụng chế tạo cảm biến.

pdf188 trang | Chia sẻ: tueminh09 | Ngày: 22/01/2022 | Lượt xem: 540 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu và chế tạo cảm biến sinh học điện hóa độ nhạy cao sử dụng điện cực in các bon ứng dụng trong chẩn đoán bệnh sớm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
i N, Chikae M, Yuhi T, Takamura Y, Tamiya E (2006) Label-free electrochemical immunoassay for the detection of human chorionic gonadotropin hormone. Analytical Chemistry, 78, pp.5612–5616 [102] Kien PH, Tram DT, Lien TT (2011) Immunosensor Based on Quartz Crystal Microbalance Device for Escherichia Coli O157H7 Bacterium Detection. 7th Solid state Phys. Mater. Sci. Conf. [103] Kim YJ, Jones JE, Li H, Yampara-Iquise H, Zheng G, Carson CA, Cooperstock M, Sherman M, Yu Q (2013) Three-dimensional (3-D) microfluidic-channel-based DNA biosensor for ultra-sensitive electrochemical detection. Journal of Electroanalytical Chemistry, 702, pp.72–78 [104] Kimmel DW, Leblanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical sensors and biosensors. Analytical Chemistry, 84, pp.685–707 [105] Kokkinos C, Economou A, Prodromidis MI (2016) Electrochemical immunosensors: Critical survey of different architectures and transduction strategies. Trends in Analytical Chemistry, 79, pp.88–105 [106] Komsiyska L, Staikov G (2008) Electrocrystallization of Au nanoparticles on glassy carbon from HClO4 solution containing [AuCl4]-. Electrochimica Acta, 54, pp.168– 172 [107] Kong F-Y, Xu B-Y, Du Y, Xu J-J, Chen H-Y (2013) A branched electrode based electrochemical platform: towards new label-free and reagentless simultaneous detection of two biomarkers. Chem Commun, 49, pp.1052–1054 [108] Kristensen LS, Hansen LL (2009) PCR-based methods for detecting single-locus DNA methylation biomarkers in cancer diagnostics, prognostics, and response to treatment. Clinical Chemistry, 55, pp.1471–1483 148 [109] Kumar S, Mohan A, Guleria R (2006) Biomarkers in cancer screening, research and detection: Present and future: A review. Biomarkers, 11, pp.385–405 [110] De la Escosura-Muñiz A, Maltez-da Costa M, Sánchez-Espinel C, Díaz-Freitas B, Fernández-Suarez J, González-Fernández Á, Merkoçi A (2010) Gold nanoparticle- based electrochemical magnetoimmunosensor for rapid detection of anti-hepatitis B virus antibodies in human serum. Biosensors and Bioelectronics, 26, pp.1710–1714 [111] Le TH, Trinh NT, Nguyen LH, Nguyen HB, Nguyen VA, Tran DL, Nguyen TD (2013) Electrosynthesis of polyaniline-mutilwalled carbon nanotube nanocomposite films in the presence of sodium dodecyl sulfate for glucose biosensing. Adv Nat Sci Nanosci Nanotechnol. doi: 10.1088/2043-6262/4/2/025014 [112] Lee CS, Kyu Kim S, Kim M (2009) Ion-sensitive field-effect transistor for biological sensing. Sensors, 9, pp.7111–7131 [113] Lee JW, Sim SJ, Cho SM, Lee J (2005) Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody. Biosensors and Bioelectronics, 20, pp.1422–1427 [114] Lerner MB, D’Souza J, Pazina T, Dailey J, Goldsmith BR, Robinson MK, Johnson ATC (2012) Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers. ACS Nano, 6, pp.5143–5149 [115] Liang J, Guan M, Huang G, Qiu H, Chen Z, Li G, Huang Y (2016) Highly sensitive covalently functionalized light-addressable potentiometric sensor for determination of biomarker. Materials Science and Engineering C, 63, pp.185–191 [116] Lilja H, Ulmert D, Vickers AJ (2008) Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nature reviews Cancer, 8, pp.268–278 [117] Lim SA, Yoshikawa H, Tamiya E, Yasin HM, Ahmed MU (2014) A highly sensitive gold nanoparticle bioprobe based electrochemical immunosensor using screen printed graphene biochip. RSC Advances, 4, pp.58460–58466 [118] Lin J, He C, Zhang L, Zhang S (2009) Sensitive amperometric immunosensor for α- fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan film. Analytical Biochemistry, 384, pp.130–135 [119] Lin J, Wei Z, Mao C (2011) A label-free immunosensor based on modified mesoporous silica for simultaneous determination of tumor markers. Biosensors and Bioelectronics, 29, pp.40–45 [120] Lin J, Wei Z, Zhang H, Shao M (2013) Sensitive immunosensor for the label-free determination of tumor marker based on carbon nanotubes/mesoporous silica and graphene modified electrode. Biosensors and Bioelectronics, 41, pp.342–347 [121] Liu A, Wang K, Weng S, Lei Y, Lin L, Chen W, Lin X, Chen Y (2012) Development of electrochemical DNA biosensors. TrAC - Trends in Analytical Chemistry, 37, pp.101–111 [122] Liu B, Lu L, Hua E, Jiang S, Xie G (2012) Detection of the human prostate-specific antigen using an aptasensor with gold nanoparticles encapsulated by graphitized mesoporous carbon. Microchimica Acta, 178, pp.163–170 [123] Liu G, Liu J, Davis TP, Gooding JJ (2011) Electrochemical impedance immunosensor based on gold nanoparticles and aryl diazonium salt functionalized gold electrodes 149 for the detection of antibody. Biosensors and Bioelectronics, 26, pp.3660–3665 [124] Liu S, Lin Q, Zhang X, He X, Xing X, Lian W, Huang J (2011) Electrochemical immunosensor for salbutamol detection based on CS-Fe3O4-PAMAM-GNPs nanocomposites and HRP-MWCNTs-Ab bioconjugates for signal amplification. Sensors and Actuators, B: Chemical, 156, pp.71–78 [125] Liu S, Zhang X, Wu Y, Tu Y, He L (2008) Prostate specific antigen detection by using a reusable amperometric immunosensor based on reversible binding and leasing of HRP-anti-PSA from phenylboronic acid modified electrode. Clinica Chimica Acta, 395, pp.51–56 [126] Liu Y, Guo CX, Hu W, Lu Z, Li CM (2011) Sensitive protein microarray synergistically amplified by polymer brush-enhanced immobilizations of both probe and reporter. Journal of Colloid and Interface Science, 360, pp.593–599 [127] Lojou É, Bianco P (2006) Application of the electrochemical concepts and techniques to amperometric biosensor devices. Journal of Electroceramics, 16, pp.79–91 [128] Lu J, Liu S, Ge S, Yan M, Yu J, Hu X (2012) Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotube-graphene composite and functionalized mesoporous materials. Biosensors and Bioelectronics, 33, pp.29–35 [129] Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nature Reviews Cancer, 5, pp.845–856 [130] Lvovich VF (2012) Impedance spectroscopy - Applications to Electrochemical and Dielectric Phenomena. A John Wiley & Son [131] Ma L, Tang BC, Yang WJ, Liu Y, Zhao YL, Li M (2015) Integration of a bio-chip technique with technetium-99m labeling provides zeptomolar sensitivity in liver cancer biomarker detection. Analytical Methods, 7, pp.1622–1626 [132] Maduraiveeran G, Jin W (2017) Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends in Environmental Analytical Chemistry, 13, pp.10–23 [133] Malhotra R, Patel V, Vaqué JP, Gutkind JS, Rusling JF (2010) Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Analytical Chemistry, 82, pp.3118–3123 [134] Malhotra S, Verma A, Tyagi N, Kumar V (2017) Biosensors : Principle , Types and Applications. Ijariie-Issn(O), 3, pp.3639–3644 [135] Mark D, Haeberle S, Roth G, Von Stetten F, Zengerle R (2010) Microfluidic lab-on- a-chip platforms: Requirements, characteristics and applications. Chemistry Society Reviewa, 39, pp.1153–1182 [136] Mascini M (2009) Aptamer in Bioanalysis. John Wiley Sons. doi: 10.1073/pnas.0703993104 [137] Matsumoto A, Miyahara Y (2013) Current and emerging challenges of field effect transistor based bio-sensing. Nanoscale, 5, pp.10702–10718 [138] Matte HSSR, Subrahmanyam KS, Rao CNR (2011) Synthetic Aspects and Selected Properties of Graphene. Nanomaterials and Nanotechnology, 1, p.5 150 [139] Monošík R, Streďanský M, Šturdík E (2012) Biosensors - classification, characterization and new trends. Acta Chimica Slovaca, 5, pp.109–120 [140] Mossanha R, Ramos MK, Santos CS, Pessoa CA (2015) Mixed Self-Assembled Monolayers of Mercaptoundecanoic Acid and Thiolactic Acid for the Construction of an Enzymatic Biosensor for Hydroquinone Determination. Journal of the Electrochemical Society, 162, pp.B145–B151 [141] Nanda SS, Papaefthymiou GC, Yi DK (2015) Functionalization of Graphene Oxide and its Biomedical Applications. Critical Reviews in Solid State and Materials Sciences, 40, pp.291–315 [142] Nawaz MAH, Rauf S, Catanante G, Nawaz MH, Nunes G, Marty JL, Hayat A (2016) One step assembly of thin films of carbon nanotubes on screen printed interface for electrochemical aptasensing of breast cancer biomarker. Sensors, 16, p.1651 [143] Nguyen BH, Nguyen BT, Van Vu H, Van Nguyen C, Nguyen DT, Nguyen LT, Vu TT, Tran LD (2016) Development of label-free electrochemical lactose biosensor based on graphene/poly(1,5-diaminonaphthalene) film. Current Applied Physics, 16, pp.135–140 [144] Nguyen DQ, Duong PT, Nguyen HM, Nam NH, Luong NH, Pham Y (2016) New biological treatment targeting Mycobacterium tuberculosis in contaminated wastewater using lysing enzymes coupled to magnetic nanoparticles. Green Processing and Synthesis, 5, pp.473–478 [145] Nguyen HB, Nguyen VC, Nguyen VT, Le HD, Nguyen VQ, Ngo TTT, Do QP, Nguyen XN, Phan NM, Tran DL (2013) Development of the layer-by-layer biosensor using graphene films: Application for cholesterol determination. Adv Nat Sci Nanosci Nanotechnol. doi: 10.1088/2043-6262/4/1/015013 [146] Nguyen LH, Nguyen TD, Tran VH, Dang TTH, Tran DL (2014) Functionalization of reduced graphene oxide by electroactive polymer for biosensing applications. Adv Nat Sci Nanosci Nanotechnol. doi: 10.1088/2043-6262/5/3/035005 [147] Opazo F, Levy M, Byrom M, Schäfer C, Geisler C, Groemer TW, Ellington AD, Rizzoli SO (2012) Aptamers as potential tools for super-resolution microscopy. Nature Methods, 9, pp.938–939 [148] Orazem ME, Tribollet B (2008) Electrochemical Impedance Spetroscopy. John Wiley & Sons [149] Park CS, Lee C, Kwon OS (2016) Conducting polymer based nanobiosensors. Polymers, 8, pp.1–18 [150] Park J-Y, Park S-M (2009) DNA Hybridization Sensors Based on Electrochemical Impedance Spectroscopy as a Detection Tool. Sensors, 9, pp.9513–9532 [151] Park J, Kim M (2015) Strategies in Protein Immobilization on a Gold Surface. Applied Science and Convergence Technology, 24, pp.1–8 [152] Park S (2003) With impedance data, a complete description of an electrochemical system is possible. Analytical Chemistry, pp.455–461 [153] Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon, 50, pp.3210–3228 [154] Peng HP, Hu Y, Liu AL, Chen W, Lin XH, Yu X Bin (2014) Lable-free electrochemical immunosensor based on multi-functional gold nanoparticles- polydopamine-thionine-graphene oxide nanocomposites film for determination of 151 alpha-fetoprotein. Journal of Electroanalytical Chemistry, 712, pp.89–95 [155] Pereira da Silva Neves MM, González-García MB, Hernández-Santos D, Fanjul- Bolado P (2018) Future trends in the market for electrochemical biosensing. Current Opinion in Electrochemistry, 10, pp.107–111 [156] Perfézou M, Turner A, Merkoçi A (2012) Cancer detection using nanoparticle-based sensors. Chemical Society Reviews, 41, pp.2606–2622 [157] Perumal V, Hashim U (2014) Advances in biosensors: Principle, architecture and applications. Journal of Applied Biomedicine, 12, pp.1–15 [158] Pham Y, Nguyen A, Phan T (2015) Specificity and processing rate enhancement of Mycobacterium tuberculosis diagnostic procedure using antibody –coupled magnetic nanoparticles. Int J Nanotechnol. doi: 10.1504/IJNT.2015.067892 [159] Phan T, Phi T Van, Tram DTN, Eersels K, Wagner P, Lien TTN (2017) Sensors and Actuators B : Chemical Development of an impedimetric sensor for the label-free detection of the amino acid sarcosine with molecularly imprinted polymer receptors. Sensors & Actuators: B Chemical, 246, pp.461–470 [160] Piliarik M, Vaisocherová H, Homola J (2005) A new surface plasmon resonance sensor for high-throughput screening applications. Biosensors and Bioelectronics, 20, pp.2104–2110 [161] Pividori MI, Lermo A, Bonanni A, Alegret S, del Valle M (2009) Electrochemical immunosensor for the diagnosis of celiac disease. Analytical Biochemistry, 388, pp.229–234 [162] Prodromidis MI (2010) Impedimetric immunosensors-A review. Electrochimica Acta, 55, pp.4227–4233 [163] Pumera M (2011) Graphene in biosensing. Materials Today, 14, pp.308–315 [164] Putzbach W, Ronkainen NJ (2013) Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review. Sensors, 13, pp.4811– 4840 [165] Qiu W, Gao F, Chen J, Xie L, Wang Q (2016) Application of 2-(4-Formylphenyl) [60]Fulleropyrrolidine as an electrode matrix for cross linker-free immobilization of HCG-antibody and the sensing analysis. Sensors and Actuators, B: Chemical, 231, pp.376–383 [166] Qu Z, Xu H, Xu P, Chen K, Mu R, Fu J, Gu H (2014) Ultrasensitive ELISA using enzyme-loaded nanospherical brushes as labels. Analytical Chemistry, 86, pp.9367– 9371 [167] Quy D Van, Hieu NM, Tra PT, Nam NH, Hai NH, Thai Son N, Nghia PT, Anh NT Van, Hong TT, Luong NH (2013) Synthesis of silica-coated magnetic nanoparticles and application in the detection of pathogenic viruses. J Nanomater. doi: 10.1155/2013/603940 [168] Quynh LM, Nam NH, Kong K, Nhung NT, Notingher I, Henini M, Luong NH (2016) Surface-Enhanced Raman Spectroscopy Study of 4-ATP on Gold Nanoparticles for Basal Cell Carcinoma Fingerprint Detection. Journal of Electronic Materials, 45, pp.2563–2568 [169] Raj CR, Kitamura F, Ohsaka T (2001) Electrochemical and in situ FTIR spectroscopic investigation on the electrochemical transformation of 4- 152 aminothiophenol on a gold electrode in neutral solution. Langmuir, 17, pp.7378– 7386 [170] Raut N, O’Connor G, Pasini P, Daunert S (2012) Engineered cells as biosensing systems in biomedical analysis. Analytical and Bioanalytical Chemistry, 402, pp.3147–3159 [171] Reverté L, Prieto-Simón B, Campàs M (2016) New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review. Analytica Chimica Acta, 908, pp.8–21 [172] Ricci F, Adornetto G, Palleschi G (2012) A review of experimental aspects of electrochemical immunosensors. Electrochimica Acta, 84, pp.74–83 [173] Rivas L, Mayorga-Martinez CC, Quesada-González D, Zamora-Gálvez A, De La Escosura-Muñiz A, Merkoçi A (2015) Label-free impedimetric aptasensor for ochratoxin-A detection using iridium oxide nanoparticles. Analytical Chemistry, 87, pp.5167–5172 [174] Rivet C, Lee H, Hirsch A, Hamilton S, Lu H (2011) Microfluidics for medical diagnostics and biosensors. Chemical Engineering Science, 66, pp.1490–1507 [175] Rohrbach F, Karadeniz H, Erdem A, Famulok M, Mayer G (2012) Label-free impedimetric aptasensor for lysozyme detection based on carbon nanotube-modified screen-printed electrodes. Analytical Biochemistry, 421, pp.454–459 [176] Rohrbach F, Karadeniz H, Erdem A, Famulok M, Mayer G (2012) Label-free impedimetric aptasensor for lysozyme detection based on carbon nanotube-modified screen-printed electrodes. Analytical Biochemistry, 421, pp.454–459 [177] Rusling JF, Kumar C V., Gutkind JS, Patel V (2010) Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst, 135, pp.2496–2511 [178] Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules, 8, pp.1775–1789 [179] Salah Abdullah H (2012) Electrochemical polymerization and Raman study of polypyrrole and polyaniline thin films. International Journal of Physical Sciences, 7, pp.5468–5476 [180] Santos A (2014) Fundamentals and Applications of Impedimetric and Redox Capacitive Biosensors. J Anal Bioanal Tech. doi: 10.4172/2155-9872.S7-016 [181] Santos A, Davis JJ, Bueno PR (2014) Fundamentals and Applications of Impedimetric and Redox Capacitive Biosensors. Journal of Analytical & Bioanalytical Techniques, S7, pp.1–15 [182] Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnology Advances, 30, pp.489–511 [183] Savory N, Abe K, Sode K, Ikebukuro K (2010) Selection of DNA aptamer against prostate specific antigen using a genetic algorithm and application to sensing. Biosensors and Bioelectronics, 26, pp.1386–1391 [184] Schweiss R, Pleul D, Simon F, Janke A, Welzel PB, Voit B, Knoll W, Werner C (2004) Electrokinetic Potentials of Binary Self-Assembled Monolayers on Gold: Acid−Base Reactions and Double Layer Structure. The Journal of Physical Chemistry B, 108, pp.2910–2917 153 [185] Seymour E, Daaboul GG, Zhang X, Steven M, Ünlü NL, Connor JH, Ünlu MS (2015) DNA-Directed Antibody Immobilization for Enhanced Detection of Single Viral Pathogens. Analytical Chemistry, 87, pp.10505–10512 [186] Shao Y, Wang J, Wu H, Liu J, Aksay I a., Lin Y (2010) Graphene based electrochemical sensors and biosensors: A review. Electroanalysis, 22, pp.1027–1036 [187] Sharma H, Mutharasan R (2013) Half antibody fragments improve biosensor sensitivity without loss of selectivity. Analytical Chemistry, 85, pp.2472–2477 [188] Shen G, Cai C, Yang J (2011) Electrochimica Acta Fabrication of an electrochemical immunosensor based on a gold – hydroxyapatite nanocomposite – chitosan film. Electrochimica Acta, 56, pp.8272–8277 [189] Shen G, Hu X, Zhang S (2014) A signal-enhanced electrochemical immunosensor based on dendrimer functionalized-graphene as a label for the detection of α-1- fetoprotein. Journal of Electroanalytical Chemistry, 717–718, pp.172–176 [190] Sheng Q, Luo K, Li L, Zheng J (2009) Bioelectrochemistry Direct electrochemistry of glucose oxidase immobilized on NdPO4 nanoparticles / chitosan composite film on glassy carbon electrodes and its biosensing application. Bioelectrochemistry, 74, pp.246–253 [191] Shrivastava A, Gupta V (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2, p.21 [192] Shrivastava S, Jadon N, Jain R (2016) Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: A review. TrAC - Trends in Analytical Chemistry, 82, pp.55–67 [193] Shul AA, Soldatkin AP, El A V (1994) Thin-film conductometric biosensors for glucose and urea determination. Biosensors & Bioelectronics, 9, pp.217–223 [194] Siangproh W, Dungchai W, Rattanarat P, Chailapakul O (2011) Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications: A review. Analytica Chimica Acta, 690, pp.10–25 [195] De Silva KKH, Huang HH, Joshi RK, Yoshimura M (2017) Chemical reduction of graphene oxide using green reductants. Carbon, 119, pp.190–199 [196] Skottrup PD, Nicolaisen M, Justesen AF (2008) Towards on-site pathogen detection using antibody-based sensors. Biosensors and Bioelectronics, 24, pp.339–348 [197] Song KM, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors, 12, pp.612–631 [198] Song Y, Luo Y, Zhu C, Li H, Du D, Lin Y (2016) Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosensors and Bioelectronics, 76, pp.195–212 [199] Soto AMG, Jaffari SA, Bone S (2001) Characterisation and optimisation of AC conductimetric biosensors. Biosensors & Bioelectronics, 16, pp.23–29 [200] Souada M, Piro B, Reisberg S, Anquetin G, Noël V, Pham MC (2015) Biosensors and Bioelectronics Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer. Biosensors and Bioelectronics, 68, pp.49–54 [201] Stenman UH, Alfthan H, Hotakainen K (2004) Human chorionic gonadotropin in 154 cancer. Clinical Biochemistry, 37, pp.549–561 [202] Stenman UH, Tiitinen A, Alfthan H, Valmu L (2006) The classification, functions and clinical use of different isoforms of HCG. Human Reproduction Update, 12, pp.769–784 [203] Stephan C, Ralla B, Jung K (2014) Prostate-specific antigen and other serum and urine markers in prostate cancer. Biochimica et Biophysica Acta - Reviews on Cancer, 1846, pp.99–112 [204] Stewart BW, Kleihues P (2003) World cancer report. World Heal Organ. doi: 10.1017/S0020860400079146 [205] Su J, Zhou Z, Li H, Liu S (2014) Quantitative detection of human chorionic gonadotropin antigen via immunogold chromatographic test strips. Anal Methods, 6, pp.450–455 [206] Su XL, Li Y (2004) A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7. Biosensors and Bioelectronics, 19, pp.563–574 [207] Subramanian A, Irudayaraj J, Ryan T (2006) A mixed self-assembled monolayer- based surface plasmon immunosensor for detection of E. coli O157:H7. Biosensors and Bioelectronics, 21, pp.998–1006 [208] Sun G, Liu H, Zhang Y, Yu J, Yan M, Song X, He W, 5 (2015) Gold nanorods-paper electrode based enzyme-free electrochemical immunoassay of prostate specific antigen using porous zinc oxide spheres-silver nanoparticles nanocomposites as labels. New Journal of Chemistry, 39, pp.6062–6067 [209] Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y (2014) Oligonucleotide aptamers: New tools for targeted cancer therapy. Mol Ther - Nucleic Acids. doi: 10.1038/mtna.2014.32 [210] Tahmasebi F, Noorbakhsh A (2016) Sensitive Electrochemical Prostate Specific Antigen Aptasensor: Effect of Carboxylic Acid Functionalized Carbon Nanotube and Glutaraldehyde Linker. Electroanalysis, 28, pp.1134–1145 [211] Takahashi S, Abiko N, Anzai JI (2013) Redox response of reduced graphene oxide- modified glassy carbon electrodes to hydrogen peroxide and hydrazine. Materials, 6, pp.1840–1850 [212] Tam PD, Van Hieu N, Chien ND, Le AT, Anh Tuan M (2009) DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection. Journal of Immunological Methods, 350, pp.118–124 [213] Tam PD, Tuan MA, Van Hieu N, Chien ND (2009) Impact parameters on hybridization process in detecting influenza virus (type A) using conductimetric- based DNA sensor. Physica E: Low-Dimensional Systems and Nanostructures, 41, pp.1567–1571 [214] Tam PD, Tuan MA, Huy TQ, Le AT, Hieu N Van (2010) Facile preparation of a DNA sensor for rapid herpes virus detection. Materials Science and Engineering C, 30, pp.1145–1150 [215] Tan F, Yan F, Ju H (2007) Sensitive reagentless electrochemical immunosensor based on an ormosil sol-gel membrane for human chorionic gonadotrophin. Biosensors and Bioelectronics, 22, pp.2945–2951 155 [216] Tanaka G, Funabashi H, Mie M, Kobatake E (2006) Fabrication of an antibody microwell array with self-adhering antibody binding protein. Analytical Biochemistry, 350, pp.298–303 [217] Tang A na, Duan L, Liu M, Dong X (2016) An epitope imprinted polymer with affinity for kininogen fragments prepared by metal coordination interaction for cancer biomarker analysis. Journal of Materials Chemistry B, 4, pp.7464–7471 [218] Teixeira S, Ferreira NS, Conlan RS, Guy OJ, Sales MGF (2014) Chitosan/AuNPs Modified Graphene Electrochemical Sensor for Label-Free Human Chorionic Gonadotropin Detection. Electroanalysis, 26, pp.2591–2598 [219] Thermo Scientific (2009) Crosslinking technical handbook. [220] Thevenot D, Toth K, Durst R, Wilson G, Thevenot D, Toth K, Durst R, Wilson G (2001) Electrochemical biosensors : recommended definitions and classification To cite this version : Technical report Electrochemical biosensors : recommended definitions and. Biosensors & Bioelectronics, 16, pp.121–131 [221] Thuy NT, Tam PD, Tuan MA, Chien ND, Thu V Van (2013) Impact parameters investigation of DNA immobilisation process on DNA sensor response. International Journal of Nanotechnology, 10, pp.146–153 [222] Thuy NT, Tam PD, Tuan MA, Le AT, Tam LT, Van Thu V, Van Hieu N, Chien ND (2012) Detection of pathogenic microorganisms using biosensor based on multi- walled carbon nanotubes dispersed in DNA solution. Current Applied Physics, 12, pp.1553–1560 [223] TN Lien T, Xuan Viet, N, Chikae M (2011) Development of Label-Free Impedimetric hCG-Immunosensor Using Screen-Printed Electrode. J Biosens Bioelectron. doi: 10.4172/2155-6210.1000107 [224] Tokarskyy O, Marshall DL (2008) Immunosensors for rapid detection of Escherichia coli O157:H7- Perspectives for use in the meat processing industry. Food Microbiology, 25, pp.1–12 [225] Topçu Sulak M, Gökdoǧan Ö, Gülce A, Gülce H (2006) Amperometric glucose biosensor based on gold-deposited polyvinylferrocene film on Pt electrode. Biosensors and Bioelectronics, 21, pp.1719–1726 [226] Torimoto T, Sakata T, Mori H, Yoneyama H (1994) Effect of Surface Charge of 4- Aminothiophenol-Modified PbS Microcrystal Photocatalysts on Photoinduced Charge Transfer Effect of Surface Charge of 4-Aminothiophenol-Modified PbS Microcrystal Photocatalysts on Photoinduced Charge Transfer. The Journal of Physical Chemistry, 98, pp.3036–3043 [227] Tran LD, Nguyen DT, Nguyen BH, Do QP, Le Nguyen H (2011) Development of interdigitated arrays coated with functional polyaniline/MWCNT for electrochemical biodetection: Application for human papilloma virus. Talanta, 85, pp.1560–1565 [228] Tran TL, Chu TX, Do PQ, Pham DT, Trieu VVQ, Huynh DC, Mai AT (2015) In- Channel-Grown Polypyrrole Nanowire for the Detection of DNA Hybridization in an Electrochemical Microfluidic Biosensor. J Nanomater. doi: 10.1155/2015/458629 [229] Tran TL, Chu TX, Huynh DC, Pham DT, Luu THT, Mai AT (2014) Effective immobilization of DNA for development of polypyrrole nanowires based biosensor. Applied Surface Science, 314, pp.260–265 156 [230] Tremiliosi-Filho G, Dall’Antonia LH, Jerkiewicz G (2005) Growth of surface oxides on gold electrodes under well-defined potential, time and temperature conditions. Journal of Electroanalytical Chemistry, 578, pp.1–8 [231] Trilling AK, Beekwilder J, Zuilhof H (2013) Antibody orientation on biosensor surfaces: a minireview. The Analyst, 138, pp.1619–1627 [232] Truong L, Nguyen T, Luu A, Ukita Y, Takamura Y (2012) Sensitive Labelles Impedance Immunosensor Using Gold Nanoparticles-Modified of Screen-Printed Carbon Ink Electrode for. RscOrg, pp.1912–1914 [233] Tuan TQ, Son N Van, Dung HTK, Luong NH, Thuy BT, Anh NT Van, Hoa ND, Hai NH (2011) Preparation and properties of silver nanoparticles loaded in activated carbon for biological and environmental applications. Journal of Hazardous Materials, 192, pp.1321–1329 [234] Tudorache M, Bala C (2007) Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Analytical and Bioanalytical Chemistry, 388, pp.565–578 [235] Tung NT, Tue PT, Thi Ngoc Lien T, Ohno Y, Maehashi K, Matsumoto K, Nishigaki K, Biyani M, Takamura Y (2017) Peptide aptamer-modified single-walled carbon nanotube-based transistors for high-performance biosensors. Scientific Reports, 7, pp.1–9 [236] Ulman A (1996) Formation and Structure of Self-Assembled Monolayers. Chemical Reviews, 96, pp.1533–1554 [237] Uygun ZO, Şahin Ç, Yılmaz M, Akçay Y, Akdemir A, Sağın F (2018) Fullerene- PAMAM(G5) composite modified impedimetric biosensor to detect Fetuin-A in real blood samples. Analytical Biochemistry, 542, pp.11–15 [238] Valente KP, Khetani S, Kolahchi AR, Nezhad A, Suleman A, Akbari M (2017) Microfluidic technologies for anticancer drug studies. Drug Discovery Today, 22, pp.1654–1670 [239] Vashist SK (2012) Comparison of 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide Based Strategies to Crosslink Antibodies on Amine-Functionalized Platforms for Immunodiagnostic Applications. Diagnostics, 2, pp.23–33 [240] Vashist SK, Luong JHT (2018) Antibody Immobilization and Surface Functionalization Chemistries for Immunodiagnostics. In: Handb. Immunoass. Technol. Elsevier Inc., pp 19–46 [241] Verma M, Srivastava S (2003) New cancer biomarkers deriving from NCI early detection research. Recent results in cancer research, 163, pp.72–84 [242] Vezenov D V., Zhuk A V., Whitesides GM, Lieber CM (2002) Chemical force spectroscopy in heterogeneous systems: Intermolecular interactions involving epoxy polymer, mixed monolayers, and polar solvents. Journal of the American Chemical Society, 124, pp.10578–10588 [243] Vigmond SJ, Ghaemmaghami V, Thompson M (1995) Raman and resonance-Raman spectra of polypyrrole with application to sensor – gas probe interactions. Canadian Journal of Chemistry, 73, pp.1711–1718 [244] Viswambari Devi R, Doble M, Verma RS (2015) Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in 157 immunoassays/sensors. Biosensors and Bioelectronics, 68, pp.688–698 [245] Volpe G, Draisci R, Palleschi G, Compagnone D (1998) 3,3′,5,5′- Tetramethylbenzidine as electrochemical substrate for horseradish peroxidase based enzyme immunoassays. A comparative study. The Analyst, 123, pp.1303–1307 [246] Wadu Mesthrige K, Amro NA, Liu G-Y (2000) Immobilization of Proteins on Self- Assembled Monolayers. Scanning, 22, pp.380–388 [247] Wang B, Akiba U, Anzai JI (2017) Recent progress in nanomaterial-based electrochemical biosensors for cancer biomarkers: A review. Molecules, 22, p.1048 [248] Wang G, He X, Chen L, Zhu Y, Zhang X (2014) Ultrasensitive IL-6 electrochemical immunosensor based on Au nanoparticles-graphene-silica biointerface. Colloids and Surfaces B: Biointerfaces, 116, pp.714–719 [249] Wang H, Wang J, Timchalk C, Lin Y (2008) Magnetic electrochemical immunoassays with quantum dot labels for detection of phosphorylated acetylcholinesterase in plasma. Analytical Chemistry, 80, pp.8477–8484 [250] Wang J (2008) Electrochemical Glucose Biosensors Electrochemical Glucose Biosensors. Chem Soc Rev, 108, pp.814–825 [251] Wang L, Wu C, Hu Z, Zhang Y, Li R, Wang P (2008) Sensing Escherichia coli O157:H7 via frequency shift through a self-assembled monolayer based QCM immunosensor. Journal of Zhejiang University SCIENCE B, 9, pp.121–131 [252] Wang Y, Xu H, Zhang J, Li G (2008) Electrochemical sensors for clinic analysis. Sensors, 8, pp.2043–2081 [253] Wang Y, Ye Z, Ying Y (2012) New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors, 12, pp.3449–3471 [254] Welch NG, Scoble JA, Muir BW, Pigram PJ (2017) Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases. doi: 10.1116/1.4978435 [255] Whitcombe MJ, Kirsch N, Nicholls IA (2014) Molecular imprinting science and technology: A survey of the literature for the years 2004-2011. Journal of Molecular Recognition, 27, pp.297–401 [256] Willey JM, Sherwood LM, Woolverton CJ (2008) Microbiology. Colin Wheatley/Janice Roerig-Blong [257] Wink T, Zuilen SJ van, Bult A, Bennekom WP Van (1997) Tutorial Review Self- assembled Monolayers for Biosensors. Analyst, 122, p.43R–50R [258] Wooten M, Karra S, Zhang M, Gorski W (2014) On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system. Analytical Chemistry, 86, pp.752–757 [259] World Cancer Research Fund (2014) Diet , nutrition , physical activity and prostate cancer. [260] Wu J, Fu Z, Yan F, Ju H (2007) Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. TrAC - Trends in Analytical Chemistry, 26, pp.679–688 [261] Xia SJ, Birss VI (2001) A multi-technique study of compact and hydrous Au oxide growth in 0.1 M sulfuric acid solutions. Journal of Electroanalytical Chemistry, 500, 158 pp.562–573 [262] Xie B, Ramanathan K, Danielsson B (1999) Principles of Enzyme Thermistor Systems : Applications to Biomedical and Other Measurements. Adv. Biochem. Eng. / Biotechnol. 64: [263] Xiong P, Gan N, Cao Y, Hu F, Li T, Zheng L (2012) An Ultrasensitive Electrochemical Immunosensor for Alpha-Fetoprotein Using an Envision Complex- Antibody Copolymer as a Sensitive Label. Materials, 5, pp.2757–2772 [264] Xu C, Sun J, Gao L (2011) Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance. Journal of Materials Chemistry, 21, pp.11253–11258 [265] Xuan Viet N, Chikae M, Ukita Y, Maehashi K, Matsumoto K, Tamiya E, Hung Viet P, Takamura Y (2013) Gold-linked electrochemical immunoassay on single-walled carbon nanotube for highly sensitive detection of human chorionic gonadotropin hormone. Biosensors and Bioelectronics, 42, pp.592–597 [266] Yan X, Huang Z, He M, Liao X, Zhang C, Yin G, Gu J (2012) Detection of HCG- antigen based on enhanced photoluminescence of hierarchical ZnO arrays. Colloids and Surfaces B: Biointerfaces, 89, pp.86–92 [267] Yang H (2012) Enzyme-based ultrasensitive electrochemical biosensors. Current Opinion in Chemical Biology, 16, pp.422–428 [268] Yang H, Zhou H, Hao H, Gong Q, Nie K (2016) Detection of Escherichia coli with a label-free impedimetric biosensor based on lectin functionalized mixed self- assembled monolayer. Sensors and Actuators, B: Chemical, 229, pp.297–304 [269] Yang K, Qi L, Gao Z, Zu X, Chen M (2014) A Novel Electrochemical Immunosensor for Prostate-Specific Antigen Based on Noncovalent Nanocomposite of Ferrocene Monocarboxylic Acid with Graphene Oxide. Analytical Letters, 47, pp.2266–2280 [270] Yang W, Ratinac KR, Ringer SR, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: Should you use nanotubes or graphene. Angewandte Chemie - International Edition, 49, pp.2114–2138 [271] Yang Z, Kasprzyk-Hordern B, Goggins S, Frost CG, Estrela P (2015) A novel immobilization strategy for electrochemical detection of cancer biomarkers: DNA- directed immobilization of aptamer sensors for sensitive detection of prostate specific antigens. The Analyst, 140, pp.2628–33 [272] Yoo E-H, Lee S-Y (2010) Glucose Biosensors: An Overview of Use in Clinical Practice. Sensors, 10, pp.4558–4576 [273] Yoon YJ, Li KHH, Low YZ, Yoon J, Ng SH (2014) Microfluidics biosensor chip with integrated screen-printed electrodes for amperometric detection of nerve agent. Sensors and Actuators, B: Chemical, 198, pp.233–238 [274] Yu H, Yan F, Dai Z, Ju H (2004) A disposable amperometric immunosensor for α-1- fetoprotein based on enzyme-labeled antibody/chitosan-membrane-modified screen- printed carbon electrode. Analytical Biochemistry, 331, pp.98–105 [275] Yuan Y, Yin M, Qian J, Liu C (2011) Site-directed immobilization of antibodies onto blood contacting grafts for enhanced endothelial cell adhesion and proliferation. Soft Matter, 7, pp.7207–7216 [276] Zeng Y, Zhu Z, Du D, Lin Y (2016) Nanomaterial-based electrochemical biosensors 159 for food safety. Journal of Electroanalytical Chemistry, 781, pp.147–154 [277] Zhan S, Wu Y, Wang L, Zhan X, Zhou P (2016) A mini-review on functional nucleic acids-based heavy metal ion detection. Biosensors and Bioelectronics, 86, pp.353– 368 [278] Zhang W, Bas AD, Ghali E, Choi Y (2015) Passive behavior of gold in sulfuric acid medium. Transactions of Nonferrous Metals Society of China, 25, pp.2037–2046 [279] Zhang X, Ju H, Wang J (2008) Electrochemical Sensors, Biosensors and Their Biomedical Applications. Academic Press [280] Zhang X, Lu W, Shen J, Jiang Y, Han E, Dong X, Huang J (2015) Carbohydrate derivative-functionalized biosensing toward highly sensitive electrochemical detection of cell surface glycan expression as cancer biomarker. Biosensors and Bioelectronics, 74, pp.291–298 [281] Zhang X, Zhang D, Chen Y, Sun X, Ma Y (2012) Electrochemical reduction of graphene oxide films: Preparation, characterization and their electrochemical properties. Chinese Science Bulletin, 57, pp.3045–3050 [282] Zhang Y, Wen G, Zhou Y, Shuang S, Dong C, Choi MMF (2007) Development and analytical application of an uric acid biosensor using an uricase-immobilized eggshell membrane. Biosensors and Bioelectronics, 22, pp.1791–1797 [283] Zhang Y, Zhang M, Wei Q, Gao Y, Guo L, Al-Ghanim KA, Mahboob S, Zhang X (2016) An easily fabricated electrochemical sensor based on a graphene-modified glassy carbon electrode for determination of octopamine and tyramine. Sensors, 16, p.535 [284] Zhao L-B, Zhang M, Ren B, Tian Z-Q, Wu D-Y (2014) Theoretical Study on Thermodynamic and Spectroscopic Properties of Electro-Oxidation of p - Aminothiophenol on Gold Electrode Surfaces. The Journal of Physical Chemistry C, 118, pp.27113–27122 [285] Zhong L, Cheng F, Lu X, Duan Y, Wang X (2016) Untargeted saliva metabonomics study of breast cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Talanta, 158, pp.351–360 [286] Zhu C, Du D, Lin Y (2017) Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosensors and Bioelectronics, 89, pp.43–55 [287] https://www.micropia.nl/en/discover/microbiology/rna/ (accessed 01/08/2018). [288] https://www.idtdna.com/pages/education/decoded/article/planning-to-work-with- aptamers (accessed 01/08/2018). [289] https://www.sciencedirect.com/search/advanced (accessed 01/08/2018). [290] https://wikispaces.psu.edu (accessed 01/08/2018). 160 DANH MỤC CÁC CÔNG TRÌNH CÔNG BỐ CỦA LUẬN ÁN 1. Đỗ Thị Ngọc Trâm, Đặng Thái Đương, Trương Thị Ngọc Liên (2014), Cảm biến sinh học sử dụng phương pháp không đánh dấu phổ tổng trở và nhạy khối lượng phát hiện hCG. Tạp chí Khoa học và Công nghệ 52 (3C), tr.572-578. 2. Tram T. N. Do, Toan Van Phi, Tin Phan Nguy, Patrick Wagner, Kasper Eersels, Mun’delanji C. Vestergaard, and Lien T. N. Truong (2016), Anisotropic In Situ- Coated AuNPs on Screen-Printed Carbon Surface for Enhanced Prostate-Specific Antigen Impedimetric Aptasensor. Journal of Electronic Materials, Volume 46, Issue 6, pp 3542–3552. doi:10.1007/s11664-016-5187-9. 3. Đỗ Thị Ngọc Trâm, Trương Thị Ngọc Liên (2018), Cảm biến điện hóa glucose sử dụng cấu trúc đa lớp giữa polyme oxy hóa - khử Osmium và enzyme glucose oxidase. Những tiến bộ trong Vật lý Kỹ thuật và Ứng dụng - CAEP V, ISBN 978-604-913- 232-2, tr.212-218. 4. Đỗ Thị Ngọc Trâm, Yoshiakia Ukita, Trương Thị Ngọc Liên (2018), Nghiên cứu thiết kế chíp vi lưu li tâm tích hợp với điện cực mực in ứng dụng trong cảm biến sinh học điện hóa. Tạp chí Khoa học & công nghệ các trường Đại học kỹ thuật (chấp nhận đăng 17/04/2018). 5. Trương Thị Ngọc Liên, Đỗ Thị Ngọc Trâm. Đăng kí sáng chế: “Quy trình tổng hợp vật liệu lai cấu trúc nano hai chiều giữa polyme đồng trùng hợp polypyrrole-polypyrrole carboxyl (PPy-PPa) và oxit graphene dạng khử điện hóa (erGO) ứng dụng chế tạo cảm biến trong chẩn đoán bệnh sớm” (chấp nhận đơn hợp lệ ngày 26/06/2018). - 1 - PHỤ LỤC Phụ lục 1. Giá trị thành phần mạch tương đương Randles của cảm biến mAb hCG/SAM(MHDA)/SPAuE Nồng độ kháng nguyên α-hCG (ng/mL) Thành phần trong mạch Randles Rs (k) Rct (k) Cdl (F) 0 1,60 ± 0,09 9,35 ± 1,8 3,04 ± 0,01 0,1 1,65 ± 0,10 9,41 ± 1,9 2,79 ± 0,02 4 1,66 ± 0,10 16,5 ± 2,9 2,46 ± 0,02 10 1,49 ± 0,09 19,8 ± 4,7 2,38 ± 0,01 20 1,69 ± 0,09 21,3 ± 2,4 2,05 ± 0,02 30 1,59 ± 0,10 24,7 ± 4,3 1,96 ± 0,02 70 1,55 ± 0,09 32,4 ± 2,5 1,90 ± 0,02 100 1,60 ± 0,09 38,1 ± 5,4 1,75 ± 0,02 Phụ lục 2. Giá trị thành phần mạch tương đương Randles cảm biến PSA- aptamer/SAM(MHDA)/SPAuE với nồng độ aptamer (5 µg/mL, 50 µg/mL) Nồng độ kháng nguyên PSA (ng/mL) Giá trị thành phần của mạch tương đương Randles 5 µg/mL aptamer /MHDA/ SPAuE 50 µg/mL aptamer /MHDA/ SPAuE Rs (kΩ) Rct (kΩ) Cdl (µF) Rs (kΩ) Rct (kΩ) Cdl (µF) 0 8,65 9,29 2,44 8,93 20,70 6,46 2 8,83 8,23 1,85 9,97 19,45 7,35 4 9,41 6,13 1,13 9,93 18,76 7,03 6 8,89 7,02 1,23 9,57 18,51 6,91 8 8,88 7,39 1,30 9,57 18,62 6,95 10 8,67 7,54 1,20 9,17 18,40 6,94 12 8,72 7,67 1,14 9,17 18,23 6,87 14 8,71 7,72 1,15 8,93 20,70 6,46 - 2 - Phụ lục 3. Giá trị các thành phần mạch tương đương Randles của các cảm biến PSA- aptamer/SAM(MHDA)/AuNPs-SPCE với 5 vòng quét tạo hạt nano vàng và các nồng độ aptamer khác nhau (5 µg/mL, 10 µg/mL, 25 µg/mL, 50 µg/mL, 100 µg/mL). PSA/aptamer/MHDA/5 CVs AuNPs-SPCE Nồng độ PSA ng/mL Giá trị các thành phần mạch tương đương Randles Aptamer 5 µg/mL Aptamer 10 µg/mL Aptamer 25 µg/mL Aptamer 50 µg/mL Aptamer 100 µg/mL Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) 0 1,496 3,944 2,691 2,558 1,539 4,173 1,422 4,906 1,650 3,551 2 1,501 3,806 2,911 2,544 1,743 3,940 1,553 4,683 1,662 3,327 4 1,623 3,773 2,914 2,501 1,893 3,856 1,613 4,533 1,832 3,042 6 1,673 3,663 2,958 2,354 1,890 3,776 1,704 4,371 1,837 3,029 8 1,766 3,577 3,012 2,330 1,921 3,632 1,746 4,107 1,852 3,033 10 1,827 3,580 3,025 2,296 1,946 3,585 1,762 4,114 1,908 3,028 12 1,847 3,493 3,11 2,282 1,966 3,548 1,765 4,095 1,940 2,902 14 1,850 3,495 3,10 2,284 1,967 3,547 1,766 4,097 1,942 2,905 Phụ lục 4. Giá trị các thành phần mạch tương đương Randles của các cảm biến PSA- aptamer/SAM(MHDA)/AuNPs-SPCE với 10 vòng quét tạo hạt nano vàng và các nồng độ aptamer khác nhau (5 µg/mL, 10 µg/mL, 25 µg/mL, 50 µg/mL, 100 µg/mL). PSA/aptamer/MHDA/10 CVs AuNPs-SPCE Nồng độ PSA ng/mL Giá trị các thành phần mạch tương đương Randles Aptamer 5 µg/mL Aptamer 10 µg/mL Aptamer 25 µg/mL Aptamer 50 µg/mL Aptamer 100 µg/mL Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) 0 1,095 4,172 1,411 3,976 1,488 3,930 1,359 3,878 1,738 3,734 2 1,358 3,615 1,580 3,992 1,489 3,847 1,472 3,564 1,864 3,555 4 1,487 3,361 1,582 3,758 1,614 3,666 1,592 3,488 1,934 3,211 6 1,544 3,329 1,837 3,294 1,655 3,823 1,638 3,432 1,953 3,394 8 1,584 3,373 1,849 3,284 1,782 3,530 1,638 3,432 1,959 3,260 10 1,720 3,224 1,929 3,301 1,827 3,580 1,670 3,295 2,014 3,246 12 1,759 3,160 1,957 3,203 1,852 3,492 1,716 3,350 2,035 3,095 14 1,760 3,164 1,959 3,200 1,853 3,490 1,718 3,348 2,038 3,093 - 3 - Phụ lục 5. Giá trị các thành phần mạch tương đương Randles của các cảm biến PSA- aptamer/SAM(MHDA)/AuNPs-SPCE với 15 vòng quét tạo hạt nano vàng và các nồng độ aptamer khác nhau (5 µg/mL, 10 µg/mL, 25 µg/mL, 50 µg/mL, 100 µg/mL). Phụ lục 6. Giá trị các thành phần mạch tương đương Randles của các cảm biến MHDA/AuNPs- modified SPCE với 20 vòng quét tạo hạt nano vàng và các nồng độ aptamer khác nhau (5 µg/mL, 10 µg/mL, 25 µg/mL, 50 µg/mL, 100 µg/mL). PSA/aptamer/MHDA/20 CVs AuNPs-SPCE Nồng độ PSA ng/mL Giá trị các thành phần mạch tương đương Randles Aptamer 5 µg/mL Aptamer 10 µg/mL Aptamer 25 µg/mL Aptamer 50 µg/mL Aptamer 100 µg/mL Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) 0 1,628 3,932 1,992 3,313 1,918 3,139 1,124 3,415 1,398 2,527 2 1,680 3,995 2,139 3,261 1,981 3,168 1,168 4,128 1,421 2,377 4 1,689 4,290 2,137 3,100 2,040 3,024 1,214 4,542 1,429 2,408 6 1,806 3,731 2,182 2,979 2,094 2,877 1,217 3,663 1,511 2,453 8 1,861 3,774 2,241 3,134 2,106 2,890 1,221 3,448 1,521 2,334 10 1,876 3,569 2,241 3,134 2,161 2,848 1,243 3,601 1,544 2,394 12 2,091 3,376 2,322 3,076 2,149 2,883 1,336 3,459 1,566 2,439 14 2,093 3,374 2,325 3,073 2,150 2,880 1,339 3,456 1,569 2,433 PSA/aptamer/MHDA/15Cvs AuNPs-SPCE Nồng độ PSA ng/mL Giá trị các thành phần mạch tương đương Randles Aptamer 5 µg/mL Aptamer 10 µg/mL Aptamer 25 µg/mL Aptamer 50 µg/mL Aptamer 100 µg/mL Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) 0 1,561 3,745 1,480 4,173 1,697 3,974 1,379 2,564 1,613 4,533 2 1,699 3,521 1,598 4,076 1,880 3,849 1,433 2,496 1,684 4,465 4 1,845 3,422 1,720 3,888 1,890 3,764 1,447 2,439 1,722 4,216 6 1,901 3,243 1,779 3,737 1,909 3,601 1,506 2,437 1,729 4,153 8 1,912 3,147 1,840 3,630 1,915 3,471 1,525 2,353 1,744 4,082 10 1,952 3,104 1,852 3,610 1,953 3,465 1,544 2,350 1,747 4,011 12 1,988 3,068 1,888 3,599 1,956 3,390 1,566 2,394 1,758 3,785 14 1,989 3,066 1,890 3,595 1,957 3,387 1,568 2,390 1,759 3,783 - 4 - Phụ lục 7. Giá trị các thành phần mạch tương đương Randles của cảm biến được chế tạo với điều kiện tối ưu: hạt nano vàng tổng hợp trên SPCE 10 CVs và nồng độ aptamer là 5 µg/mL Nồng độ PSA (ng/mL) Giá trị các thành phần mạch tương đương Randles PSA/aptamer/MHDA/AuNPs-SPCE Rs (kΩ) Rct (kΩ) Cdl (µF) 0 2,66 1,34 4,58 2 2,67 1,48 4,17 4 2,66 1,60 4,08 6 2,67 1,72 3,90 8 2,66 1,78 3,74 10 2,66 1,87 3,60 12 2,66 1,88 3,54 14 2,66 1,89 3,61 Phụ lục 8. Giá trị các thành phần mạch tương đương Randles được cho bởi khảo sát độ đặc hiệu PSA-Aptamer/SAM(MHDA)/AuNPs-SPCE Nồng độ kháng nguyên (ng/mL) Giá trị các thành phần mạch tương đương Randles hCG Amylin Protein TAU Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) Rct (kΩ) Cdl (µF) 0 1,090 3,65 1,121 3,71 1,230 2,57 2 1,097 3,77 1,144 3,68 1,249 2,49 4 1,149 3,83 1,181 3,50 1,260 2,41 6 1,179 3,69 1,141 3,42 1,361 2,45 8 1,178 3,68 1,125 3,45 1,373 2,40 10 1,180 3,73 1,135 3,46 1,370 2,42 12 1,168 3,66 1,125 3,45 1,361 2,42 14 1,170 3,64 1,130 3,46 1,359 2,43 - 5 - Phụ lục 9. Giá trị Rct của 03 cảm biến mAb AFP/PPy-PPa/SPCE độc lập chế tạo cùng quy trình công nghệ sử dụng xây dựng đường đặc trưng chuẩn. Nồng độ kháng nguyên AFP (ng/mL) Rct () Rct () Giá trị trung bình Rct M1 M2 M3 M1 M2 M3 0 891,2 945,9 866,2 0,0 0,0 0,0 0,0 5 1368,0 1308,0 1573,0 476,8 362,1 706,8 484,8 ± 111,0 10 1895,0 1430,0 1880,0 1003,8 484,1 1013,8 859,3 ± 187,6 20 2174,0 1811,0 2032,0 1282,8 865,1 1165,8 1149,1 ± 142,0 30 2443,0 2527,0 2540,0 1551,8 1581,1 1673,8 1679,8 ± 116,4 40 3145,0 3092,0 2800,0 2253,8 2146,1 1933,8 2095,3 ± 104,6 50 3358,0 3377,0 3094,0 2466,8 2431,1 2227,8 2414,6 ± 93,4 60 3820,0 3755,0 3293,0 2928,8 2809,1 2426,8 2831,1 ± 213,1 70 4050,0 3989,0 4024,0 3158,8 3043,1 3157,8 3187,8 ± 101,9 80 4166,0 4270,0 4538,0 3274,8 3324,1 3671,8 3447,1 ± 147,6 90 4072,0 4302,0 4340,0 3180,8 3356,1 3473,8 3465,6 ± 197,1 100 4071,0 4103,0 4242,0 3179,8 3157,1 3375,8 3315,3 ± 146,9 - 6 - Phụ lục 10. Giá trị Rct của 03 cảm biến mAb AFP/PPy-PPa/erGO-SPCE độc lập chế tạo cùng quy trình công nghệ sử dụng xây dựng đường đặc trưng chuẩn. Nồng độ kháng nguyên AFP (ng/mL) Rct () Rct () Giá trị trung bình Rct M1 M2 M3 M1 M2 M3 0 286,7 276,4 290,7 0,0 0,0 0,0 0,0 0,1 426,6 465,3 458,4 139,9 188,9 167,7 171,0 ± 17,2 1 709,9 661,1 751,9 423,2 384,7 461,2 396,5 ± 45,7 5 1104,0 901,9 1160,0 817,3 625,5 869,3 725,5 ± 117,8 10 1307,0 1491,0 1354,0 1020,3 1214,6 1063,3 1006,4 ± 139,5 20 2088,0 1647,0 1829,0 1801,3 1370,6 1538,3 1630,9 ± 176,4 30 2527,0 2469,0 2408,0 2240,3 2192,6 2117,3 2262,6 ± 118,8 40 2984,0 2649,0 2436,0 2697,3 2372,6 2145,3 2469,4 ± 210,4 50 3633,0 3411,0 3127,0 3346,3 3134,6 2836,3 3199,4 ± 213,9 60 4241,0 4014,0 3894,0 3954,3 3737,6 3603,3 3723,1 ± 122,8 70 4593,0 4525,0 5076,0 4306,3 4248,6 4785,3 4425,6 ± 179,8 80 5173,0 4842,0 5403,0 4886,3 4565,6 5112,3 4780,9 ± 218,4 90 5657,0 6024,0 6089,0 5370,3 5747,6 5798,3 5576,1 ± 196,8 100 6207,0 5591,0 6494,0 5920,3 5314,6 6203,3 5804,6 ± 257,2 500 6384,0 6039,0 6839,0 6097,3 5762,6 6548,3 6213,1 ± 283,2 1000 6513,0 5597,0 6053,0 6226,3 5320,6 5756,3 5849,6 ± 311,2 Phụ lục 11. Giá trị Rct của các cảm biến mAb AFP/SAM(p-ATP)/AuNPs-SPCE xây dựng đường chuẩn Nồng độ kháng nguyên AFP (ng/mL) Rct () Rct () Giá trị trung bình Rct M1 M2 M3 M1 M2 M3 0 601,5 627,4 596,8 0,0 0,0 0,0 0,0 1 819,4 891,2 854,0 217,9 263,8 257,2 246,3 ± 18,9 10 1199,0 1186,0 1344,0 597,5 558,6 747,2 634,4 ± 75,2 20 1553,0 1453,0 1555,0 951,5 825,6 958,2 911,8 ± 57,4 30 2141,0 1853,0 1755,0 1539,5 1225,6 1158,2 1307,8 ± 154,5 40 2460,0 2267,0 2178,0 1858,5 1639,6 1581,2 1693,1 ± 110,3 50 2593,0 2694,0 2442,0 1991,5 2066,6 1845,2 1967,8 ± 81,7 60 2843,0 3094,0 2814,0 2241,5 2466,6 2217,2 2308,4 ± 105,4 70 2983,0 3328,0 3171,0 2381,5 2700,6 2574,2 2552,1 ± 113,7 80 3291,0 3678,0 3661,0 2689,5 3050,6 3064,2 2934,8 ± 163,5 90 3223,0 3273,0 3464,0 2621,5 2645,6 2867,2 2711,4 ± 103,8 100 3151,0 3181,0 3264,0 2549,5 2553,6 2667,2 2590,1 ± 51,4 - 7 - Phụ lục 12. Giá trị Rct của các cảm biến mAb AFP/poly(p-ATP)/AuNPs-SPCE xây dựng đường chuẩn Nồng độ kháng nguyên AFP (ng/mL) Rct (k) Rct (k) Giá trị trung bình Rct M1 M2 M3 M1 M2 M3 0 5,65 5,59 5,62 0,00 0,00 0,00 0,0 1 7,81 9,11 9,89 2,16 3,52 4,26 3,31 ± 0,77 10 12,29 13,01 18,43 6,64 7,42 12,81 8,96 ± 2,57 20 24,57 21,98 30,70 18,92 16,39 25,08 20,13 ± 3,29 30 37,27 30,09 34,09 31,62 24,50 28,47 28,19 ± 2,46 40 43,12 37,39 48,49 37,47 31,80 42,87 37,38 ± 3,72 50 50,61 44,31 51,04 44,96 38,72 45,42 43,03 ± 2,873 60 55,04 46,90 55,99 49,39 41,31 50,37 47,02 ± 3,81 70 61,78 54,04 58,99 56,13 48,45 53,37 52,65 ± 2,79 80 65,04 61,78 75,58 59,39 56,19 69,96 61,85 ± 5,41 90 70,76 73,40 81,53 65,11 67,81 75,91 69,61 ± 4,19 100 74,73 75,58 82,51 69,08 69,99 76,89 71,98 ± 3,27

Các file đính kèm theo tài liệu này:

  • pdfluan_an_nghien_cuu_va_che_tao_cam_bien_sinh_hoc_dien_hoa_do.pdf
  • pdfInformation on new conclusions of Doctoral thesis_Do Thi Ngoc Tram.pdf
  • pdfNhung ket luan moi cua luan an TS_Do Thi Ngoc Tram.pdf
  • pdfTom tat luan an TS_Do Thi Ngoc Tram.pdf
Luận văn liên quan