Phát hiện của luận án là trong dài hạn, đầu tư tư nhân trong nước có tác
động tích cực đến tăng trưởng kinh tế. Điều này gợi lên cho các nhà làm chính
sách trong việc cơ cấu lại nguồn đầu tư cho nền kinh tế, khi mà trong thời
gian qua đầu tư trực tiếp nước ngoài luôn luôn rất được quan tâm thu hút, mặc
dù nghiên cứu cũng cho thấy có sự đóng góp rất tích cực vào tăng trưởng kinh
tế, nhưng hiệu quả và hậu quả trong tương lai của nó thì đang còn bàn cãi.
Luận án cũng xem xét về vấn đề hội tụ thu nhập bình quân đầu người
giữa các tỉnh ở Việt Nam. Kết quả cho thấy có hiện tượng hội tụ trong thu
nhập bình quân giữa các tỉnh của Việt Nam. Các nguồn đầu tư đều có tác
động tích cực đến tốc độ hội tụ, trong đó đầu tư trực tiếp nước ngoài có tác
động mạnh nhất, kế đến là đầu tư công và đầu tư tư nhân trong nước.
185 trang |
Chia sẻ: builinh123 | Lượt xem: 1284 | Lượt tải: 5
Bạn đang xem trước 20 trang tài liệu Luận án Tác động của đầu tư đến tăng trưởng kinh tế và hội tụ thu nhập tại Việt Nam, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ng kiềm chế lạm phát, ổn định kinh tế vĩ mô, bảo đảm an sinh xã hội.
[iv]
20. Nguyễn Đức Thành, 2013. Viễn cảnh kinh tế năm 2013 và hàm ý chính sách.
Chương 7 trong Báo cáo Thường niên Kinh tế Việt Nam 2013: Trên đường
gập ghềnh tới tương lai, Hà Nội: NXB Đại học Quốc gia, trang. 319-334.
21. Nguyễn Minh Tiến, 2014. Đầu tư trực tiếp nước ngoài và tăng trưởng kinh
tế vùng ở Việt Nam. Luận án Tiến Sĩ. Đại học Kinh tế thành phố Hồ Chí
Minh.
22. Nguyễn Quang Hiệp, 2013. Các nguồn tăng trưởng kinh tế của tỉnh Hưng
Yên. Tạp chí Phát triển Kinh tế, số 275, trang: 28-39
23. Nguyễn Thị Liên Hoa và Bùi Thị Bích Phương, 2014. Nghiên cứu các nhân
tố tác động đến đầu tư trực tiếp nước ngoài tại những quốc gia đang phát
triển. Tạp chí Nghiên cứu & Trao đổi, số 14 (24), trang 40-46.
24. Nguyễn Trọng Hoài, 2013. Giáo trình Kinh tế Phát triển. TP.HCM: Nhà
xuất Kinh tế TP.HCM.
25. Phạm Thế Anh, 2008a. Chi tiêu chính phủ và tăng trưởng kinh tế: Khảo sát
lý luận tổng quan. Nghiên cứu của CEPR số NC-02/ 2008.
26. Phạm Thế Anh, 2008b. Phân tích cơ cấu chi tiêu chính phủ và tăng trưởng
kinh tế ở Việt Nam. Nghiên cứu của CEPR số NC-03/ 2008.
27. Phạm Thế Anh, 2009. Tăng trưởng kinh tế và sự hội tụ thu nhập giữa các
vùng của Việt Nam. Tạp chí Nghiên Cứu Kinh tế, số 368, trang: 34-41
28. Phạm Ngọc Linh và Nguyễn Thị Kim Dung, 2011. Giáo trình Kinh tế Phát
triển. Hà Nội: Nhà xuất bản Đại Học Kinh Tế Quốc Dân.
29. Phan Thanh Hoàn, Nguyễn Đăng Hào, 2007. Mối quan hệ giữa tỷ giá hối
đoái và cán cân thương mại Việt Nam thời kỳ 1995 – 2004. Tạp chí Khoa
Học, Đại Học Huế, số 43, 2007.
[v]
30. Phó Thị Kim Chi và cộng sự, 2013. Hiệu quả đầu tư công: Nhìn từ tác động
của nó đến tăng trưởng kinh tế. Trung tâm thông tin và dự báo KT-XH Quốc
gia – Bộ Kế hoạch và Đầu tư, trang 18-19.
31. Robert c. Guell, 2008. Giáo trình Kinh tế Phát triển. Dịch từ tiếng Anh.
Người dịch Nguyễn Văn Dung, 2008. Đồng Nai: Nhà Xuất bản Tổng Hợp
Đồng Nai
32. Sử Đình Thành và Nguyễn Minh Tiến, 2014. Tác động của FDI đến tăng
trưởng kinh tế địa phương ở Việt Nam. Tạp chí Phát triển Kinh tế, số 283,
trang: 21-41.
33. Sử Đình Thành, 2011a. Chi tiêu công và tăng trưởng kinh tế ở Việt Nam,
Kiểm định nhân quả trong mô hình đa biến. Tạp chí Phát triển Kinh tế, số
252, trang 54-61
34. Sử Đình Thành, 2011b. Đầu tư công chèn lấn hay thúc đẩy đầu tư tư khu vực
tư nhân ở Việt Nam?. Tạp chí Phát Triển Kinh tế, số 251, trang 37-45
35. Sử Đình Thành, 2013. Hiệu ứng ngưỡng chi tiêu công và tăng trưởng kinh tế
ở Việt Nam, kiểm định bằng phương pháp Bootstrap. Tạp chí Phát Triển Kinh
tế, số 268, trang 12-22.
36. Todaro, M. P. (1998), Kinh tế học cho thế giới thứ ba, Nxb Giáo dục
37. Tô Trung Thành, 2012. Đầu tư công “lấn át” đầu tư tư nhân? Góc nhìn từ
mô hình thực nghiệm VECM. Trung tâm Nghiên cứu Kinh tế và Chính sách,
Bài nghiên cứu số 27.
38. Tổng cục Thống kê, 2011. Tình hình Kinh tế Xã hội Việt Nam mười năm
2001 -2010. Hà Nội: Nhà xuất bản Thống kê.
[vi]
39. Tổng cục Thống kê, 2000-2014. Niên giám thống kê 2000-2013. Hà Nội:
Nhà xuất bản Thống kê.
40. Trần Nguyễn Ngọc Anh Thư và Lê Hoàng Phong, 2014. Tác động của đầu
tư công đối với tăng trưởng kinh tế ở Việt Nam: Gốc nhìn thực nghiệm từ mô
hình ARDL. Tạp chí Phát triển & Hội nhập, số 19 (29), Trang 3-10.
41. Trần Văn Tùng (Chủ biên) và Nguyễn Trọng Hậu, 2002. Mô hình tăng
trưởng kinh tế. Nhà xuất bản Đại học Quốc gia Hà Nội.
42. Ủy Ban Kinh tế Quốc Hội. Kỷ yếu diễn đàn kinh tế mùa thu 2013, 2014
43. Võ Thành Danh & Đặng Hoàng Thống, 2011. Phân tích các yếu tố tác động
đến tăng trưởng kinh tế của thành phố Cần Thơ: Cách tiếp cận năng suất các
yếu tố. Tạp chí Khoa học, số 17, trang 120-129
44. Vũ Hoàng Dương và cộng sự, 2014. Mối quan hệ giữa đầu tư phát triển hạ
tầng giao thông và tăng trưởng. Tạp chí Nghiên cứu Kinh tế, số 433, trang:
20-29
45. Vũ Tuấn Anh, 2010. Tóm tắt về tình hình đầu tư công ở Việt Nam trong
mười năm qua. Kỷ yếu hội thảo đầu tư công, năm 2010, Huế.
[vii]
TÀI LIỆU THAM KHẢO BẰNG TIẾNG ANH
1. Aghion Philippe and Howitt Peter, 1992. A model of growth through creative
destruction. Econometrica, Vol 60, No 2, pp: 323-351
2. Aitken, B., Hanson, G. and Harrison, A., 1997. Spillovers, foreign investment,
and export behaviour. Journal of International Economics, Vol 43, pp: 103-
132.
3. Akinlo, A., 2004. Foreign direct investment and growth in Nigeria. An
empirical investigation. Journal of Policy Modeling, Vol 26, pp: 627-639.
4. Alesina, Alberto, et al, (1996). Political Instability and Economic Growth.
Journal of Economic Growth, Vol 1, No 2, pp: 189-211
5. Alesina, A. and D. Rodrik (1994). Distributive Politics and Economic Growth.
Quarterly Journal of Economics, Vol 109, No 2, pp: 465-490
6. Aviral Kumar Tiwari and Mihai Mutascu, 2011. Economic Growth and FDI in
Asia: A Panel-Data Approach. Economic Analysis & Policy, Vol 41 No 2, pp:
173-187
7. Aschauer, D. A, 1989a. Public Investment And Productivity Growth In The
Group Of Seven. Economic Perspectives, Vol (13:5), pp.17-25.
8. Aschauer, D. A., 1989b. Is public expenditure productive?. Journal of
Monetary Economics, Vol 23, pp: 177–200.
9. Banerjee, Arindam; Merugu, Srujana; Dhillon, Inderjit S.; Ghosh, Joydeep,
2005. Clustering with Bregman divergences. Journal of Machine Learning
Research, Vol 6, pp: 1705–1749
[viii]
10. Balasubramanyam, V. N., M. Salisu and D. Sapsford, 1996. Foreign Direct
Investment and Growth in EP and IS Countries. The Economic Journal, Vol
106, pp: 92-105.
11. Baltagi, B.H, 2004. Comment. Journal of Business and Economic Statistics,
Vol 22, pp: 163-164.
12. Barro, Robert J., and Xavier Sala-i-Martin, 1990. Economic Growth and
Convergence across the United States. Working Paper 3419. Cambridge,
Mass.: National Bureau of Economic Research
13. Barro, R.J. and Sala-I-Martin, X, 1991. Convergence across states and
regions. Brookings Papers on Economic Activity, pp: 29-51.
14. Barro, R.J. and Sala-I-Martin, X, 1992. Convergence. Journal Political
Economic, vol 100, pp: 223-251.
15. Barro, R. J. and X. Sala-i-Martin, 1995. Economic Growth. Cambridge, MA:
MIT Press
16. Barro, R. J. and X. Sala-i-Martin, 2004. Economic Growth. 2nd Edition.
Cambridge, MA: MIT Press
17. Barro, R. J., 1990. Government spending in a simple model of endogenous
growth. Journal of Political Economy, Vol (95:5), pp: 103-125.
18. Barro, R. J., 1991. Economic growth in a cross section of countries. Quarterly
Journal of Economics, Vol 106, pp: 407–443.
19. Barro, R. J., 1997. Determinants of economic growth: A Cross-country
empirical Study, MIT Press.
[ix]
20. Benhabib, J. and Rustichini, A. (1996). Social Conflict and Growth. Journal
of Economic Growth, Vol 1, pp: 112-146.
21. Benabou, R. (1996). Inequality and growth. NBER Macroeconomics Annual
22. Bende-Nabende, A . J., Santoso, F. B., and Sen, S., 2003. The Interaction
between FDI, output and the spillover variables: cointegration and VAR
analyses for APEC, 1965-99. Applied Economics Letters, Vol 10, pp: 165-
172.
23. Bhanumurthy.K.V, 2002. Arguing a case for the cobb-douglas production
function. Review of Commerce Studies, Delhi, India, pp: 75-91.
24. Blankenau, Nicole Simpson, 2004. Public Education Expenditures and
Growth. Journal of Development Economics, April 2004, Vol 73, pp: 583-
605.
25. Blomstrom and Persson, 1983. Foreign Investment and Spillover Efficiency
in an Underdeveloped Economy: Evidence from the Mexican Manufacturing
Industry. World Development, Vol. 11, pp: 493-501.
26. Bose, Niloy., Haque, M. Emranul., Osborn, Denise R, 2007. Public
Expenditure and Economic Growth: A Disaggregated Analysis For
Developing Countries. The Manchester School, Vol 75, No 5 1463-6786, pp:
533 – 556.
27. Baumol William J, 1986. Productivity Growth, Convergence, and Welfare:
What the Long-Run Data Show. The American Economic Review, Vol 76, No
5, pp: 1072-1085
28. Breitung, J., 2000. The Local Power of Some Unit Root Tests for Panel Data.
in B. Baltagi(ed.). Advances in Econometrics, Vol. 15: Non-stationary Panels,
[x]
Panel Cointegration, and Dynamic Panels. Amsterdam: JAI Press, pp: 161-
178.
29. Carkovic, M. and R. Levine, 2002. Does Foreign Direct Investment
Accelerate Economic Growth? in Does Foreign Direct Investment Promote
Development? Washington DC: Institute for International Economics, pp:
195-220.
30. Cass David, 1965. Optimum Growth in an Aggregative Model of Capital
Accumulation. The Review of Economic Studies, Vol 32, No 3, pp: 233-240
31. Chang G. H, 2002. The cause and cure of China’s widening incomedisparity.
China Economic Review, Vol 13, pp: 335-340.
32. Chen J. and Fleisher B.M, 1996. Regional incomeinequality and economic
growth in China. Journal of Comparative Economics, Vol 22, pp: 141-164.
33. Chaudhuri, P. 1989. The economic theory of growth. Ames : Iowa State
University Press, 181 p.
34. Cobb, C. W. and Douglas, P. H., 1928. A Theory of Production. American
Economic Review, Vol 18 (Supplement), pp: 139–165.
35. Dapice, D., Perkins, D., Nguyen X. T., Vu T.T. A., Huynh T. D., Pincus, J., &
Saich, T, 2008. Choosing success: The lessons of East and Southeast Asia and
Vietnam’s future. Cambridge: Harvard University.
36. Devarajan, S., Swaroop, V. and Zou, H., 1996. The composition of public
expenditure and economic growth. Journal of Monetary Economics, Vol 37,
pp: 313-344.
37. Domar Evsey, 1947. Expansion and Employment. American Economic
Review, Vol. 37, No. 1 pp: 34-55.
[xi]
38. Domar Evsey, 1946. Capital Expansion, Rate of Growth, and Employment.
Econometrica, Vol 14, No 2, pp: 137-47;
39. Domar. E. D, 1957. Essays in the Theory of Economic Growth. Edition 2.
Oxford University Press
40. Durham, B.J., 2004. Absorptive capacity and the effects of foreign direct
investment and equity foreign portfolio investment on economic growth.
European Economic Review, Vol 48, pp: 285-306.
41. Dritsaki, M., Dritsaki, C., & Adamopoulos, A., 2004. A causal relationship
between trade, foreign direct investment, and economic growth for Greece.
American Journal of Applied Sciences. Vol 1(3), pp: 230–235.
42. Easterly, W., and Rebelo, S, 1993. Fiscal policy and economic growth: An
empirical assessment. Journal of Monetary Economics, Vol 32(3), pp: 417-
458.
43. Elboiashi, Hosein Ali, 2011. The effect of FDI and other foreign capital
inflows on growth and investment in developing economies. PhD thesis.
University of Glasgow.
44. Eruygur, A., 2009. Public Investment and Economic Growth: A VECM
Approach. Anadolu International Conference in Economics.
45. Evans, J. D, 1996. Straightforward statistics for the behavioral sciences.
Pacific Grove, CA: Brooks/Cole Publishing.
46. Grossman, G.M and Helpman, E, 1991. Innovation and Growth in globle
economy. Cambridge, MIT Press
47. Gundlach E, 1997. Regional convergence of output per workerin China: A
neoclassical interpretation. Asian Economic Journal, Vol 11(4), pp: 423-442.
[xii]
48. Haddad, M., and Harrison, A ., 1993. Are there positive spillovers from direct
foreign investment? Evidence from panel data for Morocco. Journal of
Development Economics, Vol 42, pp: 51-74.
49. Hadjimichael, M. T., and Ghura, D, 1995. Public policies and private savings
and investment in Sub-Saharan Africa: An empirical investigation. IMF
Working Paper, Vol 19, Washington, D.C.
50. Hamuda, A. M. et al., 2013. Ardl Investment Model Of Tunisia. Theoretical
and Applied Economics, Vol(20:2), pp.57-68.
51. Harrod Roy F., 1939. An Essay in Dynamic Theory. Economic Journal, Vol
49, No 193, pp: 14-33
52. Hsiao, F. and M.C. Hsiao, 2006. FDI, exports, and GDP in East and Southeast
Asia-Panel data versus time-series causality analyses. Journal of Asian
Economics, Vol 17, pp: 1082-1106.
53. Im, K.S., Pesaran, M.H. and Y. Shin, 2003. Testing for Unit Roots in
Heterogeneous Panels. Journal of Econometrics, Vol 115, pp: 53-74.
54. Jianyang Hu, 2011. New Empirical Evidence on Economic Convergence.
Journal of Cambridge Studies. Vol 6, No 4, pp: 103-115.
55. Jian, T. Sachs, J.D. and Warner A.M, 1996. Trends in regional inequality in
China. China Economic Review, Vol 7(1), pp: 1-21.
56. Jwan. H and James. B, 2014. Public and Private Investment and Economic
Development in Iraq (1970-2010). International Journal of Social Science
and Humanity, Vol 5, No 9, pp: 743-751
[xiii]
57. Kandenge, F.T., 2010. Public And Private Investment And Economic Growth
In Namibia (1970 - 2005), The Botswana Journal Of Economics, The
Botswana Economics Association (BEA), Vol (7), pp: 2-15.
58. Karikari, J. A., 1992. Causality between Direct Foreign Investment and
Economic Output in Ghana. Journal of Economic Development, Vol 17 (1),
pp: 7-17.
59. Khan, M.S., & Kumar, M.S., 1997. Public and Private Investment and The
Growth Process In Developing Countries. Oxford Bulletin Of Economics And
Statistics, Vol (59:1), pp: 69-88.
60. Khan, M.S., Reinhart, C.M., 1990. Private investment and economic growth
in developing countries. World Development, Vol 18, pp: 19-27.
61. King, R. G. and Rebelo, S., 1990. Public policy and economic growth.
Developing neoclassic implications. NBER Working Paper, Vol 3338.
62. Kim Deok-Ki , Seo Jung-Soo, 2003. Does FDI inflow crowd out domestic
investment in Korea?. Journal of Economic Studies, Vol 30, No 6, pp: 605-
622
63. Kim Ji Uk, 2001. Empirics for Economic Growth and Convergence in Asian
Economies: A Panel Data Approach. Journal of Economic Development, Vol
26, No 2, pp: 49-59.
64. Knell, M. (1998). Social comparisons, inequality and growth. Mimeo,
University of Zurich.
65. Kongphet PhetSaVong and Masaru IchiHaShi, 2012. The Impact of Public
anh Private Investment on Economic Growth: Evidence from Developing
Asian Countries, IDEC Discussion Paper 2012, Hiroshima University.
[xiv]
66. Koopmans, Tjalling C, 1965. On the concept of optimal economic growth.
Econometric Approach to Development Planning , chap. 4, pp: 225–87.
Amsterdam. North-Holland Publishing Co.,.
67. Keynes, J.M, 1936. The General Theory of Employment, Interest, and Money.
London: Macmillan
68. Le, M.V., and T. Suruga, 2005a. Foreign Direct Investment, Public
Expenditure and Economic Growth: The Empirical Evidence for the Period
1970 – 2001. Applied Economics Letters,Vol 12 (1), pp: 45-59.
69. Le, M.V., Suruga, T., 2005b. The Effects of FDI and Public Expenditure on
Economic Growth: From Theoretical Model to Empirical Evidence. GSICS
Working Paper Series 2, Graduate School of International Cooperation
Studies, Kobe University, Japan
70. Levin, A., Lin, C.F., and C.Chu, 2002. Unit Root Tests in Panel Data:
Asymptotic and Finite-Sample Properties. Journal of Econometrics, Vol 108,
pp: 1-24.
71. Lyons T.P, 1991. Interprovincial disparities in China: Output and
consumption, 1952-1987. Economic Development and Cultural Change, Vol
39, No 3, pp: 471-506.
72. Lucas, Robert E. 1988. On the Mechanics of Economic Development. Journal
of Monetary Economics, Vol 22, pp: 3–42.
73. Maddala, G.S. and S. Wu, 1999. A Comparative Study of Unit Root Tests
with Panel Data and A New Simple Test. Oxford Bulletin of Economics and
Statistics, Vol 61, pp: 631-652.
[xv]
74. Makki, S. S., & Somwaru, A., 2004. Impact of foreign direct investment and
trade on economic growth: Evidence from developing countries. American
Journal of Agricultural Economics, Vol 86(3), pp: 795–801.
75. Matthew, B, O. et al., 2014. The Impact of Foreign Direct Investment (FDI)
on Poverty Reduction in Nigeria. Journal of Economics and Sustainable
Development, Vol 5, No 14, pp: 73-90.
76. Miller, N. J., Tsoukis, C., 2001. On the optimality of public capital for long-
run economic growth: Evidence from panel data. Applied Econometrics. Vol
26, No 2, pp: 257-276.
77. Normaz Wana Ismail, 2008. Growth and Convergence in ASEAN: A
Dynamic Panel Approach. Growth and Convergence in ASEAN: A Dynamic
Panel Approach. Journal of Economics and Management, Vol 2(1), pp: 127 –
140
78. Ohno, K, 2008. Chapter 4: Inequality in income and asset. VDF Report
79. Pesaran, M. H., Shin, Y., & Smith, R. J., 1995. Estimating long-run
relationships from dynamic heterogeneous panels. Journal of Econometrics,
Vol 68, No 1, page: 79-113
80. Pesaran, M. H, 1997. The role of economic theory in modelling the long-run,
Economic Journal, Vol 107 No 440, pp: 178-191.
81. Pesaran, M. H., Shin, Y., & Smith, R. J., 1996. Bounds Testing Approaches to
the Analysis of Level Relationships. DEA Working Paper 9622, Department
of Applied Economics, University of Cambridge.
[xvi]
82. Pesaran, M.H, 2004. General diagnostic tests for cross section dependence in
panels. Cambridge Working Papers in Economics, No. 0435, University of
Cambridge.
83. Persson, Torsten and Guido Tabellini (1994). Is Inequality Harmful for
Growth? American Economic Review, Vol 84, No 3, pp: 600-621
84. Perotti, R. (1996). Growth, Income Distribution, and Democracy: What the
Data Say. Journal of Economic Growth, Vol 1, pp: 149–187
85. Pesaran, M.H., & Pesaran B., 1997. Working with Microfit 4.0 - Interactive
Econometric Analysis, Oxford University Press.
86. Raiser M, 1998. Subsidising inequality: Economic reforms, fiscal transfers
and convergence across Chinese provinces. The Journal of Development
Studies, Vol 34(3), pp: 1-26.
87. Rodrik, 1992. The limits of Trade the Policy Reform in Developing
Countries. The Journal of Economic Perspective, Vol 6, No 1, pp: 87-105
88. Romer Paul M, 1990. Endogenous Technological Change. Journal of
Political Economy, Vol 98, No 5, pp: 71-101.
89. Romer Paul M, 1993. Idea gaps and object gaps in economic development.
Journal of Monetary Economics, Vol 32, pp: 543-573.
90. Romer, Paul M. 1986. Increasing Returns and Long Run Growth. Journal of
Political Economy, Vol 94, pp: 1002–1037.
91. Sajid Anwar & Nguyễn Phi Lân, 2010. Foreign Direct Investment and
Economic Growth in Vietnam. Asia Pacific Business Review, Vol 16, pp:183–
202.
[xvii]
92. Sala-i-Martin, 1996a, The Classical Approach to Convergence Analysis. The
Economic Journal, Vol 106, No 437, pp: 1019-1036
93. Sala-i-Martin, 1996b. Regional Cohesion: Evidence and Theories of Regional
Growth and Convergence. European Economic Review, Vol 40, pp: 1325–
1352.
94. Sachs, J.D. and F. Larrain B, 1992. Macroeconomics in the Global Economy,
Englewood Cliffs, Prentice Hall.
95. Sergio Rebelo, 1991. Long-Run Policy Analysis and Long-Run Growth.
Journal of Political Economy, Vol 99, No 3, pp: 500-520
96. Solow R.M., 1957. Technical Change and the Aggregate Production Function.
The Review of Economics and Statistics, Vol. 39, No. 3, pp. 312-320
97. Solow, R.M., 1956. A contribution of the theory of economic growth.
Quarterly Journal of Economics, Vol 70, pp: 65-94.
98. Stela Raleva, 2014. Impact of Labour on Economic Growth in Bulgaria (1991
- 2013). Economic Alternatives, Vol 3, pp: 5-14
99. Swan T. 1956. Economic Growth and Capital Accumulation. Economic
Record, Vol 32, pp: 344-361.
100. Syed, A, H, A, S, B, et al., 2007. Public Investment and Economic Growth
in the Three Little Dragons: Envidence from Heterogeneous Dynamic Panel
Data. International Journal of Business and Information, Vol 2, number 1,
pp.57-59.
101. The World Bank, 2013. An Update on Vietnam's Recent Economic
Development: Key Findings.
[xviii]
102. Tobin James, 1969. A General Equilibrium Approach To Monetary
Theory. Journal of Money, Credit and Banking, Vol 1, No 1, pp: 15–29.
103. Vojinovic Borut, Sanjaya Acharya, Mariusz Próchniak, 2009. Convergence
analysis among the ten European transition economies. Hitotsubashi Journal
of Economics, Vol 50, pp:123-141
104. Wei, Kaile, 2008. Foreign Direct Investment and Economic Growth in
china’s Regions, 1979-2003, PhD thesis, Middlesex University, London, UK
105. William Easterley, 1999. The Gost of the Financing Gap: Testing the
Growth Model of the International Financial Institutions. Journal of
Development Economics, Vol 60, No 2, pp: 423-38.
106. World Bank., 1994. World development report. Infrastructure for
development. Oxford University Press, New York.
107. Yao S. and Zhang Z, 2001a. On regional inequality and diverging clubs: a
case study of contemporary China. Journal of Comparative Economics, Vol
35, pp: 211-234.
108. Yao S. and Zhang Z, 2001b. Regional growth in China under economic
reforms. The Journal of Development Studies, Vol 38(2), pp: 167-186.
109. Zheng F., Xu, L. D. and Tang B, 2000. Forecasting regional
incomeinequality in China. European Journal of Operational Research, Vol
124, pp: 243-254.
[xix]
PHỤ LỤC
Phụ lục 4.1. Kiểm định nghiệm đơn vị các biến
Panel unit root test: Summary
Series: LNGDP
Date: 07/04/16 Time: 09:55
Sample: 2000 2014
Exogenous variables: Individual effects, individual linear trends
Automatic selection of maximum lags
Automatic lag length selection based on SIC: 0 to 2
Newey-West automatic bandwidth selection and Bartlett kernel
Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* -10.1806 0.0000 63 848
Breitung t-stat 6.49571 1.0000 63 785
Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -3.50669 0.0002 63 848
ADF - Fisher Chi-square 185.627 0.0004 63 848
PP - Fisher Chi-square 286.799 0.0000 63 882
** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
Panel unit root test: Summary
Series: D(LNGDP)
Date: 07/04/16 Time: 09:59
Sample: 2000 2014
Exogenous variables: Individual effects, individual linear trends
Automatic selection of maximum lags
Automatic lag length selection based on SIC: 0 to 1
Newey-West automatic bandwidth selection and Bartlett kernel
Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* -15.7871 0.0000 63 805
Breitung t-stat -4.18376 0.0000 63 742
Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -8.19872 0.0000 63 805
ADF - Fisher Chi-square 279.612 0.0000 63 805
PP - Fisher Chi-square 356.352 0.0000 63 819
** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
[xx]
Panel unit root test: Summary
Series: LNSI
Date: 07/04/16 Time: 10:00
Sample: 2000 2014
Exogenous variables: Individual effects, individual linear trends
Automatic selection of maximum lags
Automatic lag length selection based on SIC: 0 to 2
Newey-West automatic bandwidth selection and Bartlett kernel
Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* -7.35587 0.0000 63 846
Breitung t-stat 0.79406 0.7864 63 783
Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -3.19555 0.0007 63 846
ADF - Fisher Chi-square 193.341 0.0001 63 846
PP - Fisher Chi-square 178.950 0.0014 63 882
** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
Panel unit root test: Summary
Series: D(LNSI)
Date: 07/04/16 Time: 10:02
Sample: 2000 2014
Exogenous variables: Individual effects, individual linear trends
Automatic selection of maximum lags
Automatic lag length selection based on SIC: 0 to 1
Newey-West automatic bandwidth selection and Bartlett kernel
Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* -20.4342 0.0000 63 801
Breitung t-stat -8.85122 0.0000 63 738
Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -12.1502 0.0000 63 801
ADF - Fisher Chi-square 364.112 0.0000 63 801
PP - Fisher Chi-square 502.754 0.0000 63 819
** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
[xxi]
Panel unit root test: Summary
Series: DI
Date: 07/04/16 Time: 10:04
Sample: 2000 2014
Exogenous variables: Individual effects, individual linear trends
Automatic selection of maximum lags
Automatic lag length selection based on SIC: 0 to 2
Newey-West automatic bandwidth selection and Bartlett kernel
Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* -6.06077 0.0000 63 850
Breitung t-stat -0.54672 0.2923 63 787
Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -1.81760 0.0346 63 850
ADF - Fisher Chi-square 150.756 0.0656 63 850
PP - Fisher Chi-square 151.562 0.0601 63 882
** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
Panel unit root test: Summary
Series: D(DI)
Date: 07/04/16 Time: 10:06
Sample: 2000 2014
Exogenous variables: Individual effects, individual linear trends
Automatic selection of maximum lags
Automatic lag length selection based on SIC: 0 to 1
Newey-West automatic bandwidth selection and Bartlett kernel
Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* -22.2330 0.0000 63 801
Breitung t-stat -13.9983 0.0000 63 738
Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -14.5940 0.0000 63 801
ADF - Fisher Chi-square 417.636 0.0000 63 801
PP - Fisher Chi-square 635.666 0.0000 63 819
** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
[xxii]
Panel unit root test: Summary
Series: LNFDI
Date: 07/04/16 Time: 10:07
Sample: 2000 2014
Exogenous variables: Individual effects, individual linear trends
Automatic selection of maximum lags
Automatic lag length selection based on SIC: 0 to 2
Newey-West automatic bandwidth selection and Bartlett kernel
Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* -10.9674 0.0000 63 838
Breitung t-stat -2.66343 0.0039 63 775
Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -7.03636 0.0000 63 838
ADF - Fisher Chi-square 261.496 0.0000 63 838
PP - Fisher Chi-square 233.000 0.0000 63 882
** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
Panel unit root test: Summary
Series: D(LNFDI)
Date: 07/04/16 Time: 10:15
Sample: 2000 2014
Exogenous variables: Individual effects, individual linear trends
Automatic selection of maximum lags
Automatic lag length selection based on SIC: 0 to 1
Newey-West automatic bandwidth selection and Bartlett kernel
Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* -30.8449 0.0000 63 803
Breitung t-stat -11.2584 0.0000 63 740
Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -20.7588 0.0000 63 803
ADF - Fisher Chi-square 542.147 0.0000 63 803
PP - Fisher Chi-square 650.407 0.0000 63 819
** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
[xxiii]
Panel unit root test: Summary
Series: LNOPEN
Date: 07/04/16 Time: 10:18
Sample: 2000 2014
Exogenous variables: Individual effects, individual linear trends
Automatic selection of maximum lags
Automatic lag length selection based on SIC: 0 to 2
Newey-West automatic bandwidth selection and Bartlett kernel
Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* -6.48460 0.0000 63 855
Breitung t-stat 4.20426 1.0000 63 792
Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -1.42456 0.0771 63 855
ADF - Fisher Chi-square 165.206 0.0109 63 855
PP - Fisher Chi-square 192.921 0.0001 63 882
** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
Panel unit root test: Summary
Series: D(LNOPEN)
Date: 07/04/16 Time: 10:20
Sample: 2000 2014
Exogenous variables: Individual effects, individual linear trends
Automatic selection of maximum lags
Automatic lag length selection based on SIC: 0 to 1
Newey-West automatic bandwidth selection and Bartlett kernel
Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* -23.5486 0.0000 63 796
Breitung t-stat -7.85594 0.0000 63 733
Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -15.2950 0.0000 63 796
ADF - Fisher Chi-square 438.482 0.0000 63 796
PP - Fisher Chi-square 654.639 0.0000 63 819
** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
[xxiv]
Panel unit root test: Summary
Series: LNSE
Date: 07/04/16 Time: 10:22
Sample: 2000 2014
Exogenous variables: Individual effects, individual linear trends
Automatic selection of maximum lags
Automatic lag length selection based on SIC: 0 to 2
Newey-West automatic bandwidth selection and Bartlett kernel
Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* -10.8075 0.0000 63 857
Breitung t-stat -1.64987 0.0495 63 794
Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -5.51927 0.0000 63 857
ADF - Fisher Chi-square 225.542 0.0000 63 857
PP - Fisher Chi-square 226.006 0.0000 63 882
** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
Panel unit root test: Summary
Series: D(LNSE)
Date: 07/04/16 Time: 10:23
Sample: 2000 2014
Exogenous variables: Individual effects, individual linear trends
Automatic selection of maximum lags
Automatic lag length selection based on SIC: 0 to 1
Newey-West automatic bandwidth selection and Bartlett kernel
Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* -23.5341 0.0000 63 798
Breitung t-stat -6.62774 0.0000 63 735
Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -16.7263 0.0000 63 798
ADF - Fisher Chi-square 473.959 0.0000 63 798
PP - Fisher Chi-square 751.826 0.0000 63 819
** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
[xxv]
Panel unit root test: Summary
Series: LB
Date: 07/04/16 Time: 10:24
Sample: 2000 2014
Exogenous variables: Individual effects, individual linear trends
Automatic selection of maximum lags
Automatic lag length selection based on SIC: 0 to 2
Newey-West automatic bandwidth selection and Bartlett kernel
Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* -5.96849 0.0000 63 842
Breitung t-stat 1.18946 0.8829 63 779
Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -2.82891 0.0023 63 842
ADF - Fisher Chi-square 169.283 0.0061 63 842
PP - Fisher Chi-square 142.558 0.1487 63 882
** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
Panel unit root test: Summary
Series: D(LB)
Date: 07/04/16 Time: 10:27
Sample: 2000 2014
Exogenous variables: Individual effects, individual linear trends
Automatic selection of maximum lags
Automatic lag length selection based on SIC: 0 to 1
Newey-West automatic bandwidth selection and Bartlett kernel
Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* -19.3615 0.0000 63 810
Breitung t-stat -9.73504 0.0000 63 747
Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -12.5852 0.0000 63 810
ADF - Fisher Chi-square 369.679 0.0000 63 810
PP - Fisher Chi-square 518.803 0.0000 63 819
** Probabilities for Fisher tests are computed using an asymptotic Chi
-square distribution. All other tests assume asymptotic normality.
[xxvi]
Phụ lục 4.2. Kết quả hồi quy PMG
Dependent Variable: D(LNGDP)
Method: ARDL
Date: 07/04/16 Time: 09:26
Sample: 2001 2014
Included observations: 882
Dependent lags: 1 (Fixed)
Dynamic regressors (1 lag, fixed): LNSI DI LNFDI LNOPEN LB
Fixed regressors: LNSE C @TREND
Variable Coefficient Std. Error t-Statistic Prob.*
Long Run Equation
LNSI -0.017490 0.005841 -2.994319 0.0029
DI 0.002412 0.000462 5.215459 0.0000
LNFDI 0.009672 0.000575 16.81293 0.0000
LNOPEN 0.019319 0.006265 3.083890 0.0022
LB 0.030277 0.000787 38.48094 0.0000
Short Run Equation
COINTEQ01 -0.434205 0.038679 -11.22592 0.0000
D(LNSI) -0.010755 0.015642 -0.687610 0.4921
D(DI) 0.001039 0.002237 0.464305 0.6427
D(LNFDI) 0.002808 0.009587 0.292900 0.7698
D(LNOPEN) -0.079888 0.019827 -4.029189 0.0001
D(LB) -0.012468 0.004893 -2.548207 0.0112
LNSE -0.056258 0.038381 -1.465780 0.1436
C 0.024809 0.109306 0.226967 0.8206
@TREND 0.067350 0.005635 11.95138 0.0000
Mean dependent var 0.161190 S.D. dependent var 0.085806
S.E. of regression 0.059739 Akaike info criterion -2.767679
Sum squared resid 1.331146 Schwarz criterion 0.168699
Log likelihood 1879.728 Hannan-Quinn criter. -1.648591
*Note: p-values and any subsequent tests do not account for model
selection.
[xxvii]
Phụ lục 4.3. Kết quả hồi quy mô hình hội tụ
Dependent Variable: LNGDP14_00
Method: Least Squares
Date: 07/04/16 Time: 15:01
Sample: 1 63
Included observations: 63
Variable Coefficient Std. Error t-Statistic Prob.
LNGDP0 -0.186983 0.066080 -2.829667 0.0063
C 2.502412 0.093230 26.84118 0.0000
R-squared 0.116032 Mean dependent var 2.256663
Adjusted R-squared 0.101541 S.D. dependent var 0.283899
S.E. of regression 0.269100 Akaike info criterion 0.243763
Sum squared resid 4.417299 Schwarz criterion 0.311799
Log likelihood -5.678528 Hannan-Quinn criter. 0.270522
F-statistic 8.007014 Durbin-Watson stat 1.322742
Prob(F-statistic) 0.006299
Heteroskedasticity Test: Breusch-Pagan-Godfrey
F-statistic 0.208987 Prob. F(1,61) 0.6492
Obs*R-squared 0.215102 Prob. Chi-Square(1) 0.6428
Scaled explained SS 0.404298 Prob. Chi-Square(1) 0.5249
Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 07/04/16 Time: 15:09
Sample: 1 63
Included observations: 63
Variable Coefficient Std. Error t-Statistic Prob.
C 0.049101 0.049349 0.994970 0.3237
LNGDP0 0.015990 0.034977 0.457151 0.6492
R-squared 0.003414 Mean dependent var 0.070116
Adjusted R-squared -0.012923 S.D. dependent var 0.141529
S.E. of regression 0.142440 Akaike info criterion -1.028557
Sum squared resid 1.237642 Schwarz criterion -0.960521
Log likelihood 34.39956 Hannan-Quinn criter. -1.001799
F-statistic 0.208987 Durbin-Watson stat 1.675967
Prob(F-statistic) 0.649186
[xxviii]
Variance Inflation Factors
Date: 07/04/16 Time: 15:11
Sample: 1 63
Included observations: 63
Coefficient Uncentered Centered
Variable Variance VIF VIF
LNGDP0 0.004367 7.561854 1.000000
C 0.008692 7.561854 NA
Dependent Variable: LNGDP14_00
Method: Least Squares
Date: 07/04/16 Time: 15:12
Sample: 1 63
Included observations: 63
Variable Coefficient Std. Error t-Statistic Prob.
LNGDP0 -0.224480 0.077052 -2.913344 0.0050
LNSI -0.064081 0.067571 -0.948348 0.3468
C 2.733520 0.260947 10.47538 0.0000
R-squared 0.129086 Mean dependent var 2.256663
Adjusted R-squared 0.100056 S.D. dependent var 0.283899
S.E. of regression 0.269322 Akaike info criterion 0.260631
Sum squared resid 4.352064 Schwarz criterion 0.362685
Log likelihood -5.209866 Hannan-Quinn criter. 0.300769
F-statistic 4.446584 Durbin-Watson stat 1.336836
Prob(F-statistic) 0.015822
[xxix]
Heteroskedasticity Test: Breusch-Pagan-Godfrey
F-statistic 0.730922 Prob. F(2,60) 0.4857
Obs*R-squared 1.498428 Prob. Chi-Square(2) 0.4727
Scaled explained SS 2.451231 Prob. Chi-Square(2) 0.2936
Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 07/04/16 Time: 15:16
Sample: 1 63
Included observations: 63
Variable Coefficient Std. Error t-Statistic Prob.
C 0.168270 0.128701 1.307450 0.1960
LNGDP0 -0.000410 0.038003 -0.010785 0.9914
LNSI -0.034768 0.033327 -1.043238 0.3010
R-squared 0.023785 Mean dependent var 0.069080
Adjusted R-squared -0.008756 S.D. dependent var 0.132254
S.E. of regression 0.132831 Akaike info criterion -1.153024
Sum squared resid 1.058651 Schwarz criterion -1.050970
Log likelihood 39.32026 Hannan-Quinn criter. -1.112886
F-statistic 0.730922 Durbin-Watson stat 1.762600
Prob(F-statistic) 0.485702
Variance Inflation Factors
Date: 07/04/16 Time: 15:17
Sample: 1 63
Included observations: 63
Coefficient Uncentered Centered
Variable Variance VIF VIF
LNGDP0 0.005937 10.26474 1.357437
LNSI 0.004566 33.28555 1.357437
C 0.068093 59.14272 NA
[xxx]
Dependent Variable: LNGDP14_00
Method: Least Squares
Date: 07/04/16 Time: 15:20
Sample: 1 63
Included observations: 63
Variable Coefficient Std. Error t-Statistic Prob.
LNGDP0 -0.166204 0.070254 -2.365758 0.0212
DI 0.003826 0.004331 0.883392 0.3806
C 2.391224 0.156733 15.25663 0.0000
R-squared 0.127381 Mean dependent var 2.256663
Adjusted R-squared 0.098294 S.D. dependent var 0.283899
S.E. of regression 0.269586 Akaike info criterion 0.262586
Sum squared resid 4.360584 Schwarz criterion 0.364640
Log likelihood -5.271470 Hannan-Quinn criter. 0.302725
F-statistic 4.379284 Durbin-Watson stat 1.327717
Prob(F-statistic) 0.016778
Heteroskedasticity Test: Breusch-Pagan-Godfrey
F-statistic 0.374375 Prob. F(2,60) 0.6893
Obs*R-squared 0.776497 Prob. Chi-Square(2) 0.6782
Scaled explained SS 1.336068 Prob. Chi-Square(2) 0.5127
Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 07/04/16 Time: 15:22
Sample: 1 63
Included observations: 63
Variable Coefficient Std. Error t-Statistic Prob.
C 0.002191 0.079821 0.027446 0.9782
LNGDP0 0.022987 0.035779 0.642475 0.5230
DI 0.001679 0.002206 0.761293 0.4495
R-squared 0.012325 Mean dependent var 0.069216
Adjusted R-squared -0.020597 S.D. dependent var 0.135902
S.E. of regression 0.137295 Akaike info criterion -1.086923
Sum squared resid 1.130994 Schwarz criterion -0.984869
Log likelihood 37.23808 Hannan-Quinn criter. -1.046785
F-statistic 0.374375 Durbin-Watson stat 1.676512
Prob(F-statistic) 0.689314
[xxxi]
Variance Inflation Factors
Date: 07/04/16 Time: 15:23
Sample: 1 63
Included observations: 63
Coefficient Uncentered Centered
Variable Variance VIF VIF
LNGDP0 0.004936 8.516618 1.126261
DI 1.88E-05 8.941407 1.126261
C 0.024565 21.29466 NA
Dependent Variable: LNGDP14_00
Method: Least Squares
Date: 07/04/16 Time: 15:24
Sample: 1 63
Included observations: 63
Variable Coefficient Std. Error t-Statistic Prob.
LNGDP0 -0.275469 0.067059 -4.107842 0.0001
LNFDI 0.038402 0.011730 3.273897 0.0018
C 2.655979 0.098477 26.97068 0.0000
R-squared 0.250010 Mean dependent var 2.256663
Adjusted R-squared 0.225010 S.D. dependent var 0.283899
S.E. of regression 0.249926 Akaike info criterion 0.111148
Sum squared resid 3.747793 Schwarz criterion 0.213202
Log likelihood -0.501149 Hannan-Quinn criter. 0.151286
F-statistic 10.00054 Durbin-Watson stat 1.465155
Prob(F-statistic) 0.000179
[xxxii]
Heteroskedasticity Test: Breusch-Pagan-Godfrey
F-statistic 0.794944 Prob. F(2,60) 0.4563
Obs*R-squared 1.626288 Prob. Chi-Square(2) 0.4435
Scaled explained SS 2.556490 Prob. Chi-Square(2) 0.2785
Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 07/04/16 Time: 15:25
Sample: 1 63
Included observations: 63
Variable Coefficient Std. Error t-Statistic Prob.
C 0.051342 0.044137 1.163256 0.2493
LNGDP0 0.009999 0.030056 0.332692 0.7405
LNFDI 0.005147 0.005257 0.978980 0.3315
R-squared 0.025814 Mean dependent var 0.059489
Adjusted R-squared -0.006659 S.D. dependent var 0.111644
S.E. of regression 0.112016 Akaike info criterion -1.493911
Sum squared resid 0.752849 Schwarz criterion -1.391856
Log likelihood 50.05818 Hannan-Quinn criter. -1.453772
F-statistic 0.794944 Durbin-Watson stat 1.828492
Prob(F-statistic) 0.456305
Variance Inflation Factors
Date: 07/04/16 Time: 15:26
Sample: 1 63
Included observations: 63
Coefficient Uncentered Centered
Variable Variance VIF VIF
LNGDP0 0.004497 9.028446 1.193946
LNFDI 0.000138 1.324666 1.193946
C 0.009698 9.780964 NA
[xxxiii]
Dependent Variable: LNGDP14_00
Method: Least Squares
Date: 07/04/16 Time: 15:27
Sample: 1 63
Included observations: 63
Variable Coefficient Std. Error t-Statistic Prob.
LNGDP0 -0.205050 0.079604 -2.575858 0.0125
LNSI -0.070310 0.067896 -1.035544 0.3046
DI 0.004249 0.004348 0.977233 0.3324
C 2.632513 0.280763 9.376280 0.0000
R-squared 0.142959 Mean dependent var 2.256663
Adjusted R-squared 0.099380 S.D. dependent var 0.283899
S.E. of regression 0.269423 Akaike info criterion 0.276320
Sum squared resid 4.282743 Schwarz criterion 0.412392
Log likelihood -4.704084 Hannan-Quinn criter. 0.329838
F-statistic 3.280493 Durbin-Watson stat 1.339025
Prob(F-statistic) 0.027022
Heteroskedasticity Test: Breusch-Pagan-Godfrey
F-statistic 0.470525 Prob. F(3,59) 0.7040
Obs*R-squared 1.472057 Prob. Chi-Square(3) 0.6887
Scaled explained SS 2.150158 Prob. Chi-Square(3) 0.5418
Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 07/04/16 Time: 15:31
Sample: 1 63
Included observations: 63
Variable Coefficient Std. Error t-Statistic Prob.
C 0.114066 0.132030 0.863942 0.3911
LNGDP0 0.007516 0.037434 0.200765 0.8416
LNSI -0.028991 0.031929 -0.907995 0.3676
DI 0.001200 0.002045 0.586691 0.5596
R-squared 0.023366 Mean dependent var 0.067980
Adjusted R-squared -0.026293 S.D. dependent var 0.125064
S.E. of regression 0.126698 Akaike info criterion -1.232642
Sum squared resid 0.947083 Schwarz criterion -1.096570
Log likelihood 42.82822 Hannan-Quinn criter. -1.179124
F-statistic 0.470525 Durbin-Watson stat 1.765794
Prob(F-statistic) 0.703972
[xxxiv]
Variance Inflation Factors
Date: 07/04/16 Time: 15:32
Sample: 1 63
Included observations: 63
Coefficient Uncentered Centered
Variable Variance VIF VIF
LNGDP0 0.006337 10.94773 1.447758
LNSI 0.004610 33.58149 1.369506
DI 1.89E-05 9.020905 1.136274
C 0.078828 68.41484 NA
Dependent Variable: LNGDP14_00
Method: Least Squares
Date: 07/04/16 Time: 15:32
Sample: 1 63
Included observations: 63
Variable Coefficient Std. Error t-Statistic Prob.
LNGDP0 -0.304253 0.075891 -4.009071 0.0002
LNSI -0.051547 0.063000 -0.818208 0.4165
LNFDI 0.037804 0.011785 3.207834 0.0022
C 2.839490 0.245061 11.58687 0.0000
R-squared 0.258425 Mean dependent var 2.256663
Adjusted R-squared 0.220717 S.D. dependent var 0.283899
S.E. of regression 0.250618 Akaike info criterion 0.131611
Sum squared resid 3.705744 Schwarz criterion 0.267683
Log likelihood -0.145735 Hannan-Quinn criter. 0.185128
F-statistic 6.853452 Durbin-Watson stat 1.482750
Prob(F-statistic) 0.000487
[xxxv]
Heteroskedasticity Test: Breusch-Pagan-Godfrey
F-statistic 0.613272 Prob. F(3,59) 0.6091
Obs*R-squared 1.905142 Prob. Chi-Square(3) 0.5923
Scaled explained SS 2.610717 Prob. Chi-Square(3) 0.4556
Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 07/04/16 Time: 15:34
Sample: 1 63
Included observations: 63
Variable Coefficient Std. Error t-Statistic Prob.
C 0.088565 0.103465 0.855986 0.3955
LNGDP0 0.006854 0.032041 0.213908 0.8314
LNSI -0.012197 0.026599 -0.458561 0.6482
LNFDI 0.004269 0.004976 0.857897 0.3944
R-squared 0.030240 Mean dependent var 0.058821
Adjusted R-squared -0.019069 S.D. dependent var 0.104816
S.E. of regression 0.105811 Akaike info criterion -1.592937
Sum squared resid 0.660563 Schwarz criterion -1.456865
Log likelihood 54.17750 Hannan-Quinn criter. -1.539419
F-statistic 0.613272 Durbin-Watson stat 1.867524
Prob(F-statistic) 0.609094
Variance Inflation Factors
Date: 07/04/16 Time: 15:35
Sample: 1 63
Included observations: 63
Coefficient Uncentered Centered
Variable Variance VIF VIF
LNGDP0 0.005759 11.49951 1.520726
LNSI 0.003969 33.41408 1.362679
LNFDI 0.000139 1.329781 1.198557
C 0.060055 60.23735 NA
[xxxvi]
Dependent Variable: LNGDP14_00
Method: Least Squares
Date: 07/04/16 Time: 15:36
Sample: 1 63
Included observations: 63
Variable Coefficient Std. Error t-Statistic Prob.
LNGDP0 -0.267241 0.073178 -3.651936 0.0006
LNFDI 0.037685 0.012071 3.121986 0.0028
DI 0.001211 0.004132 0.292991 0.7706
C 2.617929 0.163441 16.01759 0.0000
R-squared 0.251100 Mean dependent var 2.256663
Adjusted R-squared 0.213020 S.D. dependent var 0.283899
S.E. of regression 0.251852 Akaike info criterion 0.141440
Sum squared resid 3.742348 Schwarz criterion 0.277512
Log likelihood -0.455350 Hannan-Quinn criter. 0.194957
F-statistic 6.594062 Durbin-Watson stat 1.468495
Prob(F-statistic) 0.000643
Heteroskedasticity Test: Breusch-Pagan-Godfrey
F-statistic 0.612639 Prob. F(3,59) 0.6095
Obs*R-squared 1.903234 Prob. Chi-Square(3) 0.5927
Scaled explained SS 2.849658 Prob. Chi-Square(3) 0.4154
Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 07/04/16 Time: 15:38
Sample: 1 63
Included observations: 63
Variable Coefficient Std. Error t-Statistic Prob.
C 0.019330 0.072486 0.266678 0.7906
LNGDP0 0.016756 0.032455 0.516303 0.6076
LNFDI 0.004422 0.005353 0.826108 0.4121
DI 0.001019 0.001833 0.556111 0.5802
R-squared 0.030210 Mean dependent var 0.059402
Adjusted R-squared -0.019101 S.D. dependent var 0.110645
S.E. of regression 0.111697 Akaike info criterion -1.484671
Sum squared resid 0.736094 Schwarz criterion -1.348599
Log likelihood 50.76715 Hannan-Quinn criter. -1.431154
F-statistic 0.612639 Durbin-Watson stat 1.817341
Prob(F-statistic) 0.609496
[xxxvii]
Variance Inflation Factors
Date: 07/04/16 Time: 15:38
Sample: 1 63
Included observations: 63
Coefficient Uncentered Centered
Variable Variance VIF VIF
LNGDP0 0.005355 10.58740 1.400106
LNFDI 0.000146 1.381450 1.245127
DI 1.71E-05 9.324699 1.174540
C 0.026713 26.53198 NA
Dependent Variable: LNGDP14_00
Method: Least Squares
Date: 07/04/16 Time: 15:49
Sample: 1 63
Included observations: 63
Variable Coefficient Std. Error t-Statistic Prob.
LNGDP0 -0.570942 0.120376 -4.742980 0.0000
LNSI 0.104453 0.089122 1.172024 0.2462
DI 0.000308 0.003943 0.078151 0.9380
LNFDI 0.019795 0.013840 1.430203 0.1583
LNSE -0.329293 0.140650 -2.341221 0.0229
LNOPEN 0.052310 0.044370 1.178952 0.2435
LB -0.000653 0.010527 -0.062049 0.9507
C 3.397790 0.816331 4.162272 0.0001
R-squared 0.385137 Mean dependent var 2.256663
Adjusted R-squared 0.306882 S.D. dependent var 0.283899
S.E. of regression 0.236357 Akaike info criterion 0.071218
Sum squared resid 3.072548 Schwarz criterion 0.343362
Log likelihood 5.756643 Hannan-Quinn criter. 0.178253
F-statistic 4.921543 Durbin-Watson stat 1.426372
Prob(F-statistic) 0.000229
[xxxviii]
Heteroskedasticity Test: Breusch-Pagan-Godfrey
F-statistic 0.810106 Prob. F(7,55) 0.5827
Obs*R-squared 5.888452 Prob. Chi-Square(7) 0.5528
Scaled explained SS 6.974285 Prob. Chi-Square(7) 0.4316
Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 07/04/16 Time: 16:04
Sample: 1 63
Included observations: 63
Variable Coefficient Std. Error t-Statistic Prob.
C -0.094327 0.302607 -0.311713 0.7564
LNGDP0 0.058477 0.044623 1.310472 0.1955
LNSI -0.025294 0.033037 -0.765644 0.4472
DI 0.000158 0.001462 0.107863 0.9145
LNFDI 0.001316 0.005131 0.256518 0.7985
LNSE 0.024405 0.052138 0.468079 0.6416
LNOPEN -0.002154 0.016448 -0.130942 0.8963
LB 0.001537 0.003902 0.393862 0.6952
R-squared 0.093467 Mean dependent var 0.048771
Adjusted R-squared -0.021909 S.D. dependent var 0.086671
S.E. of regression 0.087615 Akaike info criterion -1.913551
Sum squared resid 0.422206 Schwarz criterion -1.641407
Log likelihood 68.27687 Hannan-Quinn criter. -1.806516
F-statistic 0.810106 Durbin-Watson stat 1.734232
Prob(F-statistic) 0.582694
Variance Inflation Factors
Date: 07/04/16 Time: 16:06
Sample: 1 63
Included observations: 63
Coefficient Uncentered Centered
Variable Variance VIF VIF
LNGDP0 0.014490 32.52868 4.301680
LNSI 0.007943 75.18147 3.066019
DI 1.55E-05 9.640699 1.214343
LNFDI 0.000192 2.062133 1.858639
LNSE 0.019783 148.1582 8.280870
LNOPEN 0.001969 30.52635 2.797647
LB 0.000111 360.2235 1.561711
C 0.666396 751.5137 NA
Các file đính kèm theo tài liệu này:
- tac_dong_cua_dau_tu_den_tang_truong_kinh_te_va_hoi_tu_thu_nhap_tai_viet_nam_tv_7787.pdf