Luận án Tác động của sở hữu gia đình và tài sản tình cảm xã hội đến cấu trúc vốn của doanh nghiệp
(i) Một là, có bằng chứng thống kê cho thấy sở hữu gia đình có tác động cùng
chiều đến cấu trúc vốn của các công ty, hay nói cách khác là các công ty gia
đình có xu hướng sử dụng vốn vay nhiều hơn các công ty không có sở hữu
gia đình. Kết quả này phù hợp với giải thích của các lý thuyết cấu trúc vốn,
do chi phí đại diện trong công ty gia đình thấp hơn và thị trường nhìn nhận
thông tin bất đối xứng từ công ty gia đình cao hơn.
(ii) Hai là, có bằng chứng thống kê cho thấy sở hữu gia đình giảm tác động của
hoạt động kinh doanh dưới kỳ vọng đến cấu trúc vốn. Các thông số ước
lượng thể hiện khi hoạt động kinh doanh dưới kỳ vọng, các công ty gia đình
giảm sử dụng nợ vay để hạn chế rủi ro, đảm bảo sự phát triển bền vững của
công ty.
(iii) Ba là, không có bằng chứng thống kê cho thấy CEO thuộc gia đình có tác
động cùng chiều đến cấu trúc vốn của các công ty. Khi CEO là thành viên
gia đình, chi phí đại diện còn thấp hơn và thông tin bất đối xứng cao hơn, vì
quyền lợi của CEO gắn chặt với gia đình, khác với CEO chuyên nghiệp được
thuê ngoài. Tuy nhiên, do đặc điểm quản trị của các công ty tại Việt Nam
còn chưa tách bạch giữa vai trò của hội đồng quản trị và CEO, nên kết quả
phân tích theo dữ liệu thống kê chưa cho thấy bằng chứng về mối quan hệ
này.
209 trang |
Chia sẻ: Minh Bắc | Ngày: 16/01/2024 | Lượt xem: 828 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Tác động của sở hữu gia đình và tài sản tình cảm xã hội đến cấu trúc vốn của doanh nghiệp, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
285607 -.0706419
liq -.0127316 .0007708 -16.52 0.000 -.0142424 -.0112209
mtb .0059744 .0019041 3.14 0.002 .0022425 .0097064
ndts -.2959344 .0697189 -4.24 0.000 -.432581 -.1592878
fam .0412103 .0172747 2.39 0.017 .0073525 .075068
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
Wald chi2(30) = 1000.76
overall = 0.2611 max = 11
between = 0.2812 avg = 10.0
within = 0.2014 min = 2
R-sq: Obs per group:
Group variable: firm Number of groups = 390
Random-effects GLS regression Number of obs = 3,905
23
1.2. Mô hình 1.2: FAM và CEO là các biến độc lập
.
rho .73081237 (fraction of variance due to u_i)
sigma_e .09071412
sigma_u .14946872
_cons -.3890447 .0656666 -5.92 0.000 -.5177488 -.2603405
2020 -.0840174 .0080672 -10.41 0.000 -.0998287 -.068206
2019 -.0744682 .0078106 -9.53 0.000 -.0897767 -.0591597
2018 -.0556856 .0073785 -7.55 0.000 -.0701472 -.041224
2017 -.0485363 .0072827 -6.66 0.000 -.0628102 -.0342625
2016 -.042897 .0071875 -5.97 0.000 -.0569842 -.0288098
2015 -.027641 .0071267 -3.88 0.000 -.0416091 -.013673
2014 -.0200848 .0071923 -2.79 0.005 -.0341814 -.0059882
2013 -.0083102 .0072044 -1.15 0.249 -.0224305 .0058101
2012 -.0066254 .0071703 -0.92 0.355 -.0206789 .0074281
2011 .0039592 .0070997 0.56 0.577 -.009956 .0178744
year
Tourism -.0128815 .0649067 -0.20 0.843 -.1400963 .1143333
Retail -.0560629 .0831096 -0.67 0.500 -.2189546 .1068288
Resources .0184953 .0546526 0.34 0.735 -.0886219 .1256125
Real_estate -.0579982 .0515594 -1.12 0.261 -.1590528 .0430565
Public_services -.0367365 .0572177 -0.64 0.521 -.1488813 .0754082
Medical -.1104012 .0605437 -1.82 0.068 -.2290647 .0082623
Industrial -.0283489 .0515375 -0.55 0.582 -.1293607 .0726628
IT -.0322567 .0676793 -0.48 0.634 -.1649058 .1003924
Foods -.0657421 .0519585 -1.27 0.206 -.1675788 .0360947
Consuming -.0152999 .0569366 -0.27 0.788 -.1268937 .0962939
Constructions .0684503 .0497406 1.38 0.169 -.0290394 .1659401
Communications -.0911741 .0790443 -1.15 0.249 -.2460981 .06375
Chemical -.068243 .0565181 -1.21 0.227 -.1790164 .0425304
ind
tang .0094095 .0163733 0.57 0.566 -.0226816 .0415006
size .0706251 .0033806 20.89 0.000 .0639992 .077251
prof -.0995615 .0147754 -6.74 0.000 -.1285209 -.0706022
liq -.0127642 .0007715 -16.54 0.000 -.0142764 -.011252
mtb .0059521 .0019042 3.13 0.002 .0022199 .0096844
ndts -.2955625 .0697196 -4.24 0.000 -.4322103 -.1589147
ceo .0323742 .0195427 1.66 0.098 -.0059287 .0706772
fam .0549254 .0223482 2.46 0.014 .0111239 .098727
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
Wald chi2(31) = 1001.67
overall = 0.2620 max = 11
between = 0.2822 avg = 10.0
within = 0.2016 min = 2
R-sq: Obs per group:
Group variable: firm Number of groups = 390
Random-effects GLS regression Number of obs = 3,905
. xtreg blev fam ceo ndts mtb liq prof size tang i.ind i.year, re
24
1.3. Mô hình 1.3: FAM và GEN là các biến độc lập
.
rho .73165965 (fraction of variance due to u_i)
sigma_e .09047759
sigma_u .14940068
_cons -.4078564 .0653256 -6.24 0.000 -.5358922 -.2798207
2020 -.0849092 .0080523 -10.54 0.000 -.1006915 -.069127
2019 -.075303 .0077966 -9.66 0.000 -.0905841 -.0600219
2018 -.0560546 .0073641 -7.61 0.000 -.0704879 -.0416212
2017 -.0488407 .0072687 -6.72 0.000 -.0630871 -.0345943
2016 -.0432399 .0071741 -6.03 0.000 -.0573009 -.029179
2015 -.0280747 .0071144 -3.95 0.000 -.0420188 -.0141306
2014 -.020505 .0071801 -2.86 0.004 -.0345778 -.0064322
2013 -.0086695 .0071922 -1.21 0.228 -.022766 .005427
2012 -.0068083 .0071576 -0.95 0.342 -.020837 .0072203
2011 .003813 .0070872 0.54 0.591 -.0100776 .0177037
year
Tourism -.0063792 .0649272 -0.10 0.922 -.1336342 .1208758
Retail -.0579622 .0831314 -0.70 0.486 -.2208968 .1049724
Resources .0303781 .0546562 0.56 0.578 -.0767462 .1375023
Real_estate -.0497502 .0514606 -0.97 0.334 -.1506111 .0511106
Public_services -.0296939 .0571743 -0.52 0.604 -.1417535 .0823657
Medical -.0973336 .0605258 -1.61 0.108 -.215962 .0212949
Industrial -.0268673 .0515068 -0.52 0.602 -.1278187 .0740841
IT -.0126281 .0675637 -0.19 0.852 -.1450506 .1197943
Foods -.0562261 .0518824 -1.08 0.278 -.1579137 .0454615
Consuming -.0085983 .0569526 -0.15 0.880 -.1202234 .1030268
Constructions .0756713 .0496841 1.52 0.128 -.0217078 .1730503
Communications -.0864275 .0788821 -1.10 0.273 -.2410335 .0681785
Chemical -.0690043 .0565177 -1.22 0.222 -.1797769 .0417683
ind
tang .0091513 .0163438 0.56 0.576 -.022882 .0411846
size .0715253 .0033661 21.25 0.000 .0649278 .0781228
prof -.1001364 .0147511 -6.79 0.000 -.1290479 -.0712248
liq -.0127932 .0007698 -16.62 0.000 -.0143021 -.0112844
mtb .0061563 .0019016 3.24 0.001 .0024292 .0098835
ndts -.2935805 .069603 -4.22 0.000 -.4299998 -.1571611
gen -.0086687 .0221709 -0.39 0.696 -.0521228 .0347855
fam .0774394 .0200106 3.87 0.000 .0382192 .1166595
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
Wald chi2(31) = 1016.60
overall = 0.2617 max = 11
between = 0.2805 avg = 10.0
within = 0.2046 min = 2
R-sq: Obs per group:
Group variable: firm Number of groups = 390
Random-effects GLS regression Number of obs = 3,905
. xtreg blev fam gen ndts mtb liq prof size tang i.ind i.year, re
25
1.4. Mô hình 1.4: FAM và BOD là các biến độc lập
rho .7316647 (fraction of variance due to u_i)
sigma_e .09048568
sigma_u .14941596
_cons -.4106254 .0652714 -6.29 0.000 -.5385551 -.2826958
2020 -.0849913 .0080702 -10.53 0.000 -.1008086 -.069174
2019 -.0753715 .0078108 -9.65 0.000 -.0906805 -.0600626
2018 -.0561772 .0073841 -7.61 0.000 -.0706498 -.0417047
2017 -.0489845 .0072941 -6.72 0.000 -.0632806 -.0346884
2016 -.0433657 .0071947 -6.03 0.000 -.0574671 -.0292643
2015 -.0281264 .0071197 -3.95 0.000 -.0420808 -.014172
2014 -.0205213 .0071827 -2.86 0.004 -.0345992 -.0064435
2013 -.0086781 .0071935 -1.21 0.228 -.0227771 .0054209
2012 -.0068156 .0071583 -0.95 0.341 -.0208456 .0072143
2011 .0038284 .0070872 0.54 0.589 -.0100623 .0177191
year
Tourism -.0070059 .0649103 -0.11 0.914 -.1342277 .1202159
Retail -.0553085 .0830275 -0.67 0.505 -.2180393 .1074223
Resources .0297808 .054631 0.55 0.586 -.0772939 .1368556
Real_estate -.0488654 .0515061 -0.95 0.343 -.1498155 .0520848
Public_services -.0267987 .0570586 -0.47 0.639 -.1386316 .0850341
Medical -.0972712 .0605322 -1.61 0.108 -.2159122 .0213698
Industrial -.0245236 .051422 -0.48 0.633 -.1253089 .0762616
IT -.0111978 .0675815 -0.17 0.868 -.1436551 .1212596
Foods -.0561997 .0518877 -1.08 0.279 -.1578977 .0454984
Consuming -.0084831 .0569641 -0.15 0.882 -.1201306 .1031644
Constructions .0778346 .0496524 1.57 0.117 -.0194823 .1751515
Communications -.0832981 .0788559 -1.06 0.291 -.2378529 .0712567
Chemical -.0680553 .0565406 -1.20 0.229 -.1788728 .0427623
ind
tang .0092397 .0163423 0.57 0.572 -.0227905 .04127
size .071466 .0033633 21.25 0.000 .0648741 .078058
prof -.1000812 .0147504 -6.78 0.000 -.1289913 -.071171
liq -.0127855 .0007699 -16.61 0.000 -.0142944 -.0112766
mtb .0061611 .0019023 3.24 0.001 .0024327 .0098895
ndts -.2926647 .0696235 -4.20 0.000 -.4291242 -.1562051
bod .0054857 .025014 0.22 0.826 -.0435408 .0545123
fam .0788028 .0198 3.98 0.000 .0399956 .11761
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
Wald chi2(31) = 1016.46
overall = 0.2623 max = 11
between = 0.2819 avg = 10.0
within = 0.2044 min = 2
R-sq: Obs per group:
Group variable: firm Number of groups = 390
Random-effects GLS regression Number of obs = 3,905
. xtreg blev fam bod ndts mtb liq prof size tang i.ind i.year, re
26
1.5. Mô hình 1.5: FAM và SEW là các biến độc lập
.
rho .73114658 (fraction of variance due to u_i)
sigma_e .09068772
sigma_u .14955224
_cons -.400392 .0656643 -6.10 0.000 -.5290918 -.2716923
2020 -.0854879 .0080853 -10.57 0.000 -.1013349 -.0696409
2019 -.0757867 .0078249 -9.69 0.000 -.0911232 -.0604502
2018 -.0568752 .0073913 -7.69 0.000 -.0713619 -.0423885
2017 -.0497689 .007297 -6.82 0.000 -.0640708 -.035467
2016 -.043968 .0071976 -6.11 0.000 -.058075 -.0298609
2015 -.0282303 .0071268 -3.96 0.000 -.0421986 -.014262
2014 -.0206392 .0071909 -2.87 0.004 -.0347332 -.0065453
2013 -.0087283 .0072016 -1.21 0.226 -.0228431 .0053866
2012 -.0068807 .0071664 -0.96 0.337 -.0209266 .0071652
2011 .0039258 .0070952 0.55 0.580 -.0099805 .0178321
year
Tourism -.0109213 .0649202 -0.17 0.866 -.1381627 .11632
Retail -.052622 .083068 -0.63 0.526 -.2154324 .1101883
Resources .0255263 .0547535 0.47 0.641 -.0817886 .1328413
Real_estate -.0494958 .05173 -0.96 0.339 -.1508848 .0518931
Public_services -.0291755 .0571963 -0.51 0.610 -.1412781 .0829271
Medical -.1051264 .0606005 -1.73 0.083 -.2239011 .0136483
Industrial -.0231084 .0515258 -0.45 0.654 -.1240972 .0778803
IT -.0232381 .0677399 -0.34 0.732 -.1560059 .1095297
Foods -.0607284 .0520219 -1.17 0.243 -.1626895 .0412327
Consuming -.0106502 .0569894 -0.19 0.852 -.1223474 .1010469
Constructions .0756892 .0497892 1.52 0.128 -.0218958 .1732743
Communications -.079428 .0792005 -1.00 0.316 -.2346581 .0758021
Chemical -.0606561 .0566383 -1.07 0.284 -.1716651 .050353
ind
tang .0093388 .0163583 0.57 0.568 -.0227228 .0414004
size .0709495 .0033824 20.98 0.000 .0643202 .0775788
prof -.1001244 .0147661 -6.78 0.000 -.1290656 -.0711833
liq -.012751 .0007711 -16.54 0.000 -.0142623 -.0112398
mtb .0061328 .0019048 3.22 0.001 .0023995 .0098661
ndts -.2918213 .0696995 -4.19 0.000 -.4284299 -.1552127
sew .0169431 .0063831 2.65 0.008 .0044324 .0294539
fam .0285983 .0210946 1.36 0.175 -.0127463 .0699429
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
Wald chi2(31) = 1007.03
overall = 0.2613 max = 11
between = 0.2823 avg = 10.0
within = 0.2024 min = 2
R-sq: Obs per group:
Group variable: firm Number of groups = 390
Random-effects GLS regression Number of obs = 3,905
. xtreg blev fam sew ndts mtb liq prof size tang i.ind i.year, re
27
2. Kết quả hồi quy tác động ngẫu nhiên các mô hình có biến tương tác
2.1. Mô hình 2.1: Biến FAM là biến độc lập
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
Wald chi2(32) = 1064.36
overall = 0.2789 max = 11
between = 0.2988 avg = 10.0
within = 0.2075 min = 2
R-sq: Obs per group:
Group variable: firm Number of groups = 390
Random-effects GLS regression Number of obs = 3,905
. xtreg blev pba fam pba_fam ndts mtb liq prof size tang i.ind i.year, re
rho .69437452 (fraction of variance due to u_i)
sigma_e .08998412
sigma_u .13563382
_cons -.3663133 .061847 -5.92 0.000 -.4875313 -.2450954
2020 -.0810318 .008054 -10.06 0.000 -.0968173 -.0652462
2019 -.0721153 .0077937 -9.25 0.000 -.0873907 -.05684
2018 -.0535445 .0073664 -7.27 0.000 -.0679824 -.0391065
2017 -.0467448 .0072746 -6.43 0.000 -.0610027 -.0324869
2016 -.0413261 .0071967 -5.74 0.000 -.0554313 -.0272208
2015 -.0244032 .0071437 -3.42 0.001 -.0384046 -.0104018
2014 -.0210883 .0072042 -2.93 0.003 -.0352083 -.0069683
2013 -.0102339 .0072267 -1.42 0.157 -.0243979 .0039301
2012 -.0091567 .0072074 -1.27 0.204 -.023283 .0049695
2011 .0041435 .0071132 0.58 0.560 -.0097981 .0180851
year
Tourism -.0151983 .0597689 -0.25 0.799 -.1323432 .1019466
Retail -.054778 .0763906 -0.72 0.473 -.2045007 .0949448
Resources .0233516 .0500076 0.47 0.641 -.0746614 .1213647
Real_estate -.052345 .0472333 -1.11 0.268 -.1449205 .0402304
Public_services -.0332232 .0525677 -0.63 0.527 -.136254 .0698077
Medical -.108376 .0556013 -1.95 0.051 -.2173525 .0006005
Industrial -.0292032 .0473642 -0.62 0.538 -.1220353 .0636289
IT -.0295302 .0619888 -0.48 0.634 -.151026 .0919656
Foods -.0626247 .0475956 -1.32 0.188 -.1559104 .030661
Consuming -.0154184 .0523484 -0.29 0.768 -.1180193 .0871826
Constructions .0688124 .0456291 1.51 0.132 -.020619 .1582438
Communications -.0907971 .0725741 -1.25 0.211 -.2330397 .0514455
Chemical -.0687148 .0519605 -1.32 0.186 -.1705556 .0331259
ind
tang .0073785 .0163419 0.45 0.652 -.0246509 .039408
size .0680272 .003292 20.66 0.000 .061575 .0744795
prof -.0837409 .0150397 -5.57 0.000 -.1132182 -.0542637
liq -.0126155 .0007645 -16.50 0.000 -.0141139 -.0111171
mtb .005232 .0018944 2.76 0.006 .001519 .008945
ndts -.2718539 .0697917 -3.90 0.000 -.4086431 -.1350647
pba_fam -.0171378 .0075634 -2.27 0.023 -.0319618 -.0023139
fam .0461235 .0159735 2.89 0.004 .0148161 .077431
pba .0281989 .0043047 6.55 0.000 .0197618 .036636
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
28
2.2. Mô hình 2.2: Biến CEO là biến độc lập
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
Wald chi2(32) = 1052.73
overall = 0.2742 max = 11
between = 0.2911 avg = 10.0
within = 0.2063 min = 2
R-sq: Obs per group:
Group variable: firm Number of groups = 390
Random-effects GLS regression Number of obs = 3,905
. xtreg blev pba ceo pba_ceo ndts mtb liq prof size tang i.ind i.year, re
_cons .0927044 .0352667 2.63 0.009 .0235614 .1618474
2020 -.0423861 .0136197 -3.11 0.002 -.0690885 -.0156836
2019 -.0403504 .0133528 -3.02 0.003 -.0665297 -.0141712
2018 -.0248129 .0128015 -1.94 0.053 -.0499113 .0002854
2017 -.0223674 .0127585 -1.75 0.080 -.0473814 .0026466
2016 -.0224254 .0127998 -1.75 0.080 -.0475205 .0026696
2015 -.0038489 .0128531 -0.30 0.765 -.0290484 .0213506
2014 -.0143025 .013087 -1.09 0.275 -.0399605 .0113554
2013 -.0107366 .0131507 -0.82 0.414 -.0365195 .0150463
2012 -.0145544 .0131527 -1.11 0.269 -.0403413 .0112325
2011 .0045093 .0130509 0.35 0.730 -.0210779 .0300966
year
Tourism -.048155 .0246912 -1.95 0.051 -.096564 .000254
Retail -.0842527 .0284993 -2.96 0.003 -.1401279 -.0283776
Resources .0236321 .019223 1.23 0.219 -.014056 .0613202
Real_estate -.0405852 .0183435 -2.21 0.027 -.076549 -.0046215
Public_services -.0352331 .0202541 -1.74 0.082 -.0749429 .0044766
Medical -.1450684 .0215016 -6.75 0.000 -.1872239 -.1029128
Industrial -.0648074 .0182411 -3.55 0.000 -.1005704 -.0290444
IT -.0635694 .0232871 -2.73 0.006 -.1092255 -.0179133
Foods -.0688077 .0183257 -3.75 0.000 -.1047367 -.0328787
Consuming -.0451948 .0201857 -2.24 0.025 -.0847705 -.0056191
Constructions .0413669 .0174953 2.36 0.018 .0070661 .0756677
Communications -.1489311 .0281208 -5.30 0.000 -.2040641 -.0937981
Chemical -.0969522 .0199655 -4.86 0.000 -.1360961 -.0578082
ind
tang -.03788 .0169463 -2.24 0.025 -.0711045 -.0046555
size .0365606 .0022147 16.51 0.000 .0322186 .0409027
prof -.0639287 .022487 -2.84 0.004 -.1080163 -.0198412
liq -.0196519 .0008886 -22.12 0.000 -.0213941 -.0179097
mtb -.0050028 .0021203 -2.36 0.018 -.0091598 -.0008459
ndts -.1331287 .0958772 -1.39 0.165 -.3211033 .0548459
pba_ceo -.0442517 .0148074 -2.99 0.003 -.0732827 -.0152207
ceo .0199172 .0090907 2.19 0.029 .0020942 .0377403
pba .0822612 .0068531 12.00 0.000 .0688251 .0956972
blev Coef. Std. Err. t P>|t| [95% Conf. Interval]
rho .62614386 (fraction of variance due to u_i)
sigma_e .07281673
sigma_u .09423581
29
2.3. Mô hình 2.3: Biến GEN là biến độc lập
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
Wald chi2(32) = 1052.69
overall = 0.2701 max = 11
between = 0.2840 avg = 10.0
within = 0.2078 min = 2
R-sq: Obs per group:
Group variable: firm Number of groups = 390
Random-effects GLS regression Number of obs = 3,905
. xtreg blev pba gen pba_gen ndts mtb liq prof size tang i.ind i.year, re
_cons .0976668 .0348683 2.80 0.005 .0293048 .1660289
2020 -.0421319 .0136322 -3.09 0.002 -.0688589 -.015405
2019 -.0398123 .0133669 -2.98 0.003 -.0660191 -.0136055
2018 -.0248888 .0128078 -1.94 0.052 -.0499994 .0002218
2017 -.0216055 .0127677 -1.69 0.091 -.0466375 .0034266
2016 -.022055 .0128121 -1.72 0.085 -.047174 .003064
2015 -.004294 .0128573 -0.33 0.738 -.0295017 .0209138
2014 -.0145245 .0130976 -1.11 0.268 -.0402034 .0111543
2013 -.0109793 .0131632 -0.83 0.404 -.0367867 .0148281
2012 -.0149572 .0131666 -1.14 0.256 -.0407713 .0108568
2011 .0040314 .0130609 0.31 0.758 -.0215755 .0296383
year
Tourism -.0457843 .0247134 -1.85 0.064 -.0942368 .0026682
Retail -.0831892 .0284896 -2.92 0.004 -.1390453 -.0273331
Resources .0243266 .0192466 1.26 0.206 -.0134079 .062061
Real_estate -.0403998 .0182714 -2.21 0.027 -.0762224 -.0045773
Public_services -.0347758 .0201365 -1.73 0.084 -.074255 .0047034
Medical -.1436484 .0214669 -6.69 0.000 -.185736 -.1015608
Industrial -.0640467 .0181748 -3.52 0.000 -.0996797 -.0284137
IT -.064284 .0230502 -2.79 0.005 -.1094757 -.0190923
Foods -.0679316 .018294 -3.71 0.000 -.1037983 -.0320648
Consuming -.0439556 .0201749 -2.18 0.029 -.0835099 -.0044012
Constructions .0415729 .0173442 2.40 0.017 .0075682 .0755775
Communications -.1496052 .0279524 -5.35 0.000 -.2044079 -.0948024
Chemical -.0954624 .0199684 -4.78 0.000 -.134612 -.0563129
ind
tang -.0389257 .016979 -2.29 0.022 -.0722144 -.0056371
size .0364091 .0022233 16.38 0.000 .0320501 .0407681
prof -.065004 .0225341 -2.88 0.004 -.109184 -.0208241
liq -.0197806 .0008872 -22.29 0.000 -.0215201 -.0180412
mtb -.0053731 .002121 -2.53 0.011 -.0095315 -.0012146
ndts -.1398291 .0957254 -1.46 0.144 -.327506 .0478479
pba_gen -.0299968 .017201 -1.74 0.081 -.0637206 .0037271
gen .0110319 .010436 1.06 0.291 -.0094286 .0314925
pba .0775864 .0066077 11.74 0.000 .0646315 .0905413
blev Coef. Std. Err. t P>|t| [95% Conf. Interval]
rho .69580079 (fraction of variance due to u_i)
sigma_e .09004482
sigma_u .13618276
30
2.4. Mô hình 2.4: Biến BOD là biến độc lập
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
Wald chi2(32) = 1057.81
overall = 0.2761 max = 11
between = 0.2938 avg = 10.0
within = 0.2069 min = 2
R-sq: Obs per group:
Group variable: firm Number of groups = 390
Random-effects GLS regression Number of obs = 3,905
. xtreg blev pba bod pba_bod ndts mtb liq prof size tang i.ind i.year, re
rho .69608904 (fraction of variance due to u_i)
sigma_e .09001662
sigma_u .13623288
_cons -.3595292 .0618034 -5.82 0.000 -.4806615 -.2383968
2020 -.0821024 .0080768 -10.17 0.000 -.0979326 -.0662722
2019 -.0732638 .0078097 -9.38 0.000 -.0885706 -.057957
2018 -.0546042 .0073859 -7.39 0.000 -.0690803 -.0401281
2017 -.0479176 .0072984 -6.57 0.000 -.0622222 -.033613
2016 -.0424993 .0072149 -5.89 0.000 -.0566402 -.0283584
2015 -.0250332 .0071494 -3.50 0.000 -.0390457 -.0110207
2014 -.0216924 .0072073 -3.01 0.003 -.0358184 -.0075664
2013 -.0107513 .0072276 -1.49 0.137 -.024917 .0034144
2012 -.0096945 .0072046 -1.35 0.178 -.0238152 .0044263
2011 .0038809 .0071116 0.55 0.585 -.0100575 .0178193
year
Tourism -.0126147 .0599944 -0.21 0.833 -.1302014 .1049721
Retail -.0609036 .0765882 -0.80 0.426 -.2110138 .0892066
Resources .0262517 .050208 0.52 0.601 -.0721541 .1246575
Real_estate -.0510196 .0474628 -1.07 0.282 -.1440449 .0420057
Public_services -.0405895 .052564 -0.77 0.440 -.1436131 .0624341
Medical -.1087609 .0558242 -1.95 0.051 -.2181743 .0006526
Industrial -.0337635 .0474498 -0.71 0.477 -.1267633 .0592363
IT -.03413 .062161 -0.55 0.583 -.1559633 .0877034
Foods -.0621808 .0477896 -1.30 0.193 -.1558467 .0314851
Consuming -.0141431 .0525717 -0.27 0.788 -.1171817 .0888954
Constructions .0647163 .0457216 1.42 0.157 -.0248964 .1543289
Communications -.094651 .0728214 -1.30 0.194 -.2373784 .0480764
Chemical -.0671115 .052188 -1.29 0.198 -.1693982 .0351751
ind
tang .0061915 .0163475 0.38 0.705 -.025849 .0382321
size .0682874 .0032959 20.72 0.000 .0618276 .0747472
prof -.0839936 .0150389 -5.59 0.000 -.1134693 -.0545179
liq -.0125966 .000765 -16.47 0.000 -.014096 -.0110972
mtb .0052999 .0018963 2.79 0.005 .0015832 .0090165
ndts -.2715818 .0698287 -3.89 0.000 -.4084434 -.1347201
pba_bod -.0288241 .0150031 -1.92 0.055 -.0582296 .0005814
bod .0548826 .0234342 2.34 0.019 .0089526 .1008127
pba .0268192 .0041482 6.47 0.000 .0186889 .0349496
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
31
2.5. Mô hình 2.5: Biến SEW là biến độc lập
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
Wald chi2(32) = 1066.57
overall = 0.2768 max = 11
between = 0.2970 avg = 10.0
within = 0.2080 min = 2
R-sq: Obs per group:
Group variable: firm Number of groups = 390
Random-effects GLS regression Number of obs = 3,905
. xtreg blev pba sew pba_sew ndts mtb liq prof size tang i.ind i.year, re
rho .69551841 (fraction of variance due to u_i)
sigma_e .09001969
sigma_u .136054
_cons -.3735676 .0622324 -6.00 0.000 -.4955408 -.2515944
2020 -.082503 .0080715 -10.22 0.000 -.0983228 -.0666831
2019 -.0734998 .007807 -9.41 0.000 -.0888013 -.0581983
2018 -.0547836 .0073813 -7.42 0.000 -.0692506 -.0403165
2017 -.0481249 .0072912 -6.60 0.000 -.0624154 -.0338344
2016 -.0427375 .0072074 -5.93 0.000 -.0568637 -.0286112
2015 -.0251758 .0071467 -3.52 0.000 -.0391831 -.0111686
2014 -.0217673 .0072046 -3.02 0.003 -.0358881 -.0076465
2013 -.0107736 .0072258 -1.49 0.136 -.0249359 .0033887
2012 -.0097367 .0072023 -1.35 0.176 -.023853 .0043796
2011 .0039419 .0071108 0.55 0.579 -.0099951 .0178789
year
Tourism -.0115389 .0599036 -0.19 0.847 -.1289479 .1058701
Retail -.0550964 .0765389 -0.72 0.472 -.2051098 .0949171
Resources .0311561 .0501804 0.62 0.535 -.0671957 .1295079
Real_estate -.044138 .0475335 -0.93 0.353 -.137302 .049026
Public_services -.0304028 .0527731 -0.58 0.565 -.1338361 .0730304
Medical -.1036699 .0558042 -1.86 0.063 -.2130442 .0057044
Industrial -.0270788 .0475209 -0.57 0.569 -.120218 .0660604
IT -.0235587 .062324 -0.38 0.705 -.1457115 .0985941
Foods -.0579056 .0477612 -1.21 0.225 -.151516 .0357047
Consuming -.0110386 .0525149 -0.21 0.834 -.1139658 .0918887
Constructions .0727795 .0458677 1.59 0.113 -.0171195 .1626784
Communications -.0828659 .0729997 -1.14 0.256 -.2259426 .0602108
Chemical -.0616127 .0521895 -1.18 0.238 -.1639023 .0406769
ind
tang .0066756 .0163386 0.41 0.683 -.0253475 .0386987
size .0685431 .0032958 20.80 0.000 .0620835 .0750027
prof -.0838756 .0150336 -5.58 0.000 -.1133409 -.0544103
liq -.0125859 .0007647 -16.46 0.000 -.0140847 -.0110871
mtb .0053584 .0018962 2.83 0.005 .001642 .0090748
ndts -.2694303 .0698117 -3.86 0.000 -.4062587 -.132602
pba_sew -.0062679 .0032602 -1.92 0.055 -.0126579 .000122
sew .0180125 .0060366 2.98 0.003 .0061811 .029844
pba .0267181 .0041253 6.48 0.000 .0186327 .0348036
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
32
PHỤ LỤC 7: KẾT QUẢ HỒI QUY SGMM
1. Kết quả hồi quy SGMM các mô hình không có biến tương tác
1.1. Mô hình 1.1: FAM là biến độc lập
Difference-in-Sargan/Hansen statistics may be negative.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Warning: Two-step estimated covariance matrix of moments is singular.
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
> ation(level)) iv(i.ind i.year) twostep
> of size tang, lag (1 3) equation(diff)) gmm(l.blev fam ndts mtb liq prof size tang, lag (1 1) equ
. xtabond2 blev l.blev fam ndts mtb liq prof size tang i.ind i.year, gmm(l.blev fam ndts mtb liq pr
Prob > chi2 = 0.000 max = 10
Wald chi2(33) = 19015.69 avg = 8.93
Number of instruments = 282 Obs per group: min = 1
Time variable : year Number of groups = 390
Group variable: firm Number of obs = 3482
Dynamic panel-data estimation, two-step system GMM
L1. .8692185 .0125266 69.39 0.000 .8446669 .8937701
blev
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
tang -.0633106 .0091404 -6.93 0.000 -.0812255 -.0453956
size .0079849 .001634 4.89 0.000 .0047823 .0111875
prof -.1020359 .0122142 -8.35 0.000 -.1259752 -.0780966
liq -.0033649 .0006424 -5.24 0.000 -.0046241 -.0021058
mtb .0018647 .0007662 2.43 0.015 .0003631 .0033664
ndts -.0889366 .0592458 -1.50 0.133 -.2050564 .0271831
fam .0358863 .0058134 6.17 0.000 .0244923 .0472803
DL.(L.blev fam ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
_cons
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for levels equation
L(1/3).(L.blev fam ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year)
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
D.(1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for first differences equation
(Robust, but weakened by many instruments.)
Hansen test of overid. restrictions: chi2(223) = 238.46 Prob > chi2 = 0.227
(Not robust, but not weakened by many instruments.)
Sargan test of overid. restrictions: chi2(223) = 289.83 Prob > chi2 = 0.002
Arellano-Bond test for AR(2) in first differences: z = -1.33 Pr > z = 0.184
Arellano-Bond test for AR(1) in first differences: z = -8.83 Pr > z = 0.000
33
1.2. Mô hình 1.2: FAM và CEO là các biến độc lập
Difference-in-Sargan/Hansen statistics may be negative.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Warning: Two-step estimated covariance matrix of moments is singular.
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
> g (1 1) equation(level)) iv(i.ind i.year) twostep
> liq prof size tang, lag (1 3) equation(diff)) gmm(l.blev fam ceo ndts mtb liq prof size tang, la
. xtabond2 blev l.blev fam ceo ndts mtb liq prof size tang i.ind i.year, gmm(l.blev fam ceo ndts mtb
Prob > chi2 = 0.000 max = 10
Wald chi2(34) = 142709.92 avg = 8.93
Number of instruments = 298 Obs per group: min = 1
Time variable : year Number of groups = 390
Group variable: firm Number of obs = 3482
Dynamic panel-data estimation, two-step system GMM
L1. .8537922 .0116445 73.32 0.000 .8309694 .876615
blev
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
tang -.0553512 .0086176 -6.42 0.000 -.0722413 -.0384611
size .0089359 .0014892 6.00 0.000 .0060172 .0118546
prof -.1132514 .011315 -10.01 0.000 -.1354285 -.0910743
liq -.0034314 .0006402 -5.36 0.000 -.0046863 -.0021766
mtb .0017673 .0007524 2.35 0.019 .0002926 .003242
ndts -.1492171 .0439634 -3.39 0.001 -.2353837 -.0630505
ceo .0130222 .0097568 1.33 0.182 -.0061007 .0321451
fam .0250645 .0077575 3.23 0.001 .0098601 .0402689
DL.(L.blev fam ceo ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
_cons
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for levels equation
L(1/3).(L.blev fam ceo ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year)
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
D.(1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for first differences equation
(Robust, but weakened by many instruments.)
Hansen test of overid. restrictions: chi2(237) = 251.12 Prob > chi2 = 0.253
(Not robust, but not weakened by many instruments.)
Sargan test of overid. restrictions: chi2(237) = 313.18 Prob > chi2 = 0.001
Arellano-Bond test for AR(2) in first differences: z = -1.47 Pr > z = 0.141
Arellano-Bond test for AR(1) in first differences: z = -8.71 Pr > z = 0.000
34
1.3. Mô hình 1.3: Biến FAM và GEN là các biến độc lập
Difference-in-Sargan/Hansen statistics may be negative.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Warning: Two-step estimated covariance matrix of moments is singular.
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
> (1 1) equation(level)) iv(i.ind i.year) twostep
> liq prof size tang, lag (1 3) equation(diff)) gmm(l.blev fam gen ndts mtb liq prof size tang, lag
. xtabond2 blev l.blev fam gen ndts mtb liq prof size tang i.ind i.year, gmm(l.blev fam gen ndts mtb
Prob > chi2 = 0.000 max = 10
Wald chi2(34) = 24868.22 avg = 8.93
Number of instruments = 297 Obs per group: min = 1
Time variable : year Number of groups = 390
Group variable: firm Number of obs = 3482
Dynamic panel-data estimation, two-step system GMM
L1. .8603576 .0118314 72.72 0.000 .8371685 .8835466
blev
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
tang -.0591546 .0086023 -6.88 0.000 -.0760148 -.0422944
size .0079316 .0016777 4.73 0.000 .0046434 .0112197
prof -.1023285 .0107062 -9.56 0.000 -.1233123 -.0813447
liq -.0032374 .0006229 -5.20 0.000 -.0044582 -.0020167
mtb .0013872 .0007168 1.94 0.053 -.0000176 .0027921
ndts -.113546 .0570795 -1.99 0.047 -.2254199 -.0016722
gen .0129942 .0116214 1.12 0.264 -.0097834 .0357718
fam .0308306 .0073416 4.20 0.000 .0164414 .0452199
DL.(L.blev fam gen ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
_cons
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for levels equation
L(1/3).(L.blev fam gen ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year)
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
D.(1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for first differences equation
(Robust, but weakened by many instruments.)
Hansen test of overid. restrictions: chi2(236) = 248.61 Prob > chi2 = 0.274
(Not robust, but not weakened by many instruments.)
Sargan test of overid. restrictions: chi2(236) = 313.49 Prob > chi2 = 0.001
Arellano-Bond test for AR(2) in first differences: z = -1.35 Pr > z = 0.178
Arellano-Bond test for AR(1) in first differences: z = -8.84 Pr > z = 0.000
35
1.4. Mô hình 1.4: Biến FAM và BOD là các biến độc lập
Difference-in-Sargan/Hansen statistics may be negative.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Warning: Two-step estimated covariance matrix of moments is singular.
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
> g (1 1) equation(level)) iv(i.ind i.year) twostep
> liq prof size tang, lag (1 3) equation(diff)) gmm(l.blev fam bod ndts mtb liq prof size tang, la
. xtabond2 blev l.blev fam bod ndts mtb liq prof size tang i.ind i.year, gmm(l.blev fam bod ndts mtb
Prob > chi2 = 0.000 max = 10
Wald chi2(34) = 26663.77 avg = 8.93
Number of instruments = 317 Obs per group: min = 1
Time variable : year Number of groups = 390
Group variable: firm Number of obs = 3482
Dynamic panel-data estimation, two-step system GMM
L1. .8711695 .0106584 81.74 0.000 .8502794 .8920596
blev
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
tang -.0558306 .0077678 -7.19 0.000 -.0710551 -.0406061
size .0101472 .0012985 7.81 0.000 .0076022 .0126922
prof -.1214753 .0092924 -13.07 0.000 -.1396879 -.1032626
liq -.0032645 .0006197 -5.27 0.000 -.004479 -.0020499
mtb .0009259 .0006878 1.35 0.178 -.0004221 .0022739
ndts -.1810248 .0384319 -4.71 0.000 -.2563499 -.1056998
bod .0200895 .0079339 2.53 0.011 .0045393 .0356396
fam .0171956 .0071926 2.39 0.017 .0030984 .0312927
DL.(L.blev fam bod ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
_cons
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for levels equation
L(1/3).(L.blev fam bod ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year)
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
D.(1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for first differences equation
(Robust, but weakened by many instruments.)
Hansen test of overid. restrictions: chi2(255) = 249.51 Prob > chi2 = 0.585
(Not robust, but not weakened by many instruments.)
Sargan test of overid. restrictions: chi2(255) = 330.39 Prob > chi2 = 0.001
Arellano-Bond test for AR(2) in first differences: z = -1.30 Pr > z = 0.195
Arellano-Bond test for AR(1) in first differences: z = -8.80 Pr > z = 0.000
36
1.5. Mô hình 1.5: Biến FAM và SEW là các biến độc lập
Difference-in-Sargan/Hansen statistics may be negative.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Warning: Two-step estimated covariance matrix of moments is singular.
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
> g (1 1) equation(level)) iv(i.ind i.year) twostep
> liq prof size tang, lag (1 3) equation(diff)) gmm(l.blev fam sew ndts mtb liq prof size tang, la
. xtabond2 blev l.blev fam sew ndts mtb liq prof size tang i.ind i.year, gmm(l.blev fam sew ndts mtb
Prob > chi2 = 0.000 max = 10
Wald chi2(34) = 26789.29 avg = 8.93
Number of instruments = 317 Obs per group: min = 1
Time variable : year Number of groups = 390
Group variable: firm Number of obs = 3482
Dynamic panel-data estimation, two-step system GMM
L1. .8714316 .0107177 81.31 0.000 .8504252 .892438
blev
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
tang -.0556974 .0077531 -7.18 0.000 -.0708931 -.0405016
size .0109522 .0013273 8.25 0.000 .0083508 .0135537
prof -.122085 .0093916 -13.00 0.000 -.1404923 -.1036778
liq -.0030842 .0006112 -5.05 0.000 -.0042822 -.0018862
mtb .0007983 .0006802 1.17 0.241 -.0005349 .0021315
ndts -.1792125 .0387617 -4.62 0.000 -.2551841 -.1032409
sew .0052268 .001692 3.09 0.002 .0019106 .008543
fam .0149666 .0069934 2.14 0.032 .0012598 .0286734
DL.(L.blev fam sew ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
_cons
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for levels equation
L(1/3).(L.blev fam sew ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year)
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
D.(1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for first differences equation
(Robust, but weakened by many instruments.)
Hansen test of overid. restrictions: chi2(255) = 250.90 Prob > chi2 = 0.561
(Not robust, but not weakened by many instruments.)
Sargan test of overid. restrictions: chi2(255) = 330.34 Prob > chi2 = 0.001
Arellano-Bond test for AR(2) in first differences: z = -1.24 Pr > z = 0.215
Arellano-Bond test for AR(1) in first differences: z = -8.82 Pr > z = 0.000
37
2. Kết quả hồi quy SGMM các mô hình có biến tương tác
2.1. Mô hình 2.1: Biến FAM là biến độc lập
Difference-in-Sargan/Hansen statistics may be negative.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Warning: Two-step estimated covariance matrix of moments is singular.
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
> liq prof size tang, lag (1 1) equation(level)) iv(i.ind i.year) twostep
> pba_fam ndts mtb liq prof size tang, lag(1 3) equation(diff)) gmm(l.blev pba fam pba_fam ndts mtb
. xtabond2 blev l.blev pba fam pba_fam ndts mtb liq prof size tang i.ind i.year, gmm(l.blev pba fam
Prob > chi2 = 0.000 max = 10
Wald chi2(35) = 75892.66 avg = 8.93
Number of instruments = 352 Obs per group: min = 1
Time variable : year Number of groups = 390
Group variable: firm Number of obs = 3482
Dynamic panel-data estimation, two-step system GMM
tang -.0705639 .0252084 -2.80 0.005 -.1199716 -.0211563
size .0121465 .0031366 3.87 0.000 .0059988 .0182941
prof -.131246 .0078813 -16.65 0.000 -.1466931 -.1157988
liq -.0149974 .001904 -7.88 0.000 -.0187291 -.0112657
mtb .002577 .0009569 2.69 0.007 .0007016 .0044525
ndts -.2773513 .1416688 -1.96 0.050 -.555017 .0003145
pba_fam -.0434827 .0109114 -3.99 0.000 -.0648686 -.0220967
fam .0131488 .0053438 2.46 0.014 .0026752 .0236225
pba .0164318 .0043749 3.76 0.000 .0078571 .0250065
L1. .7938374 .0138562 57.29 0.000 .7666798 .8209951
blev
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
DL.(L.blev pba fam pba_fam ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
_cons
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for levels equation
L(1/3).(L.blev pba fam pba_fam ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year)
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
D.(1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for first differences equation
(Robust, but weakened by many instruments.)
Hansen test of overid. restrictions: chi2(170) = 176.82 Prob > chi2 = 0.344
(Not robust, but not weakened by many instruments.)
Sargan test of overid. restrictions: chi2(170) = 279.63 Prob > chi2 = 0.000
Arellano-Bond test for AR(2) in first differences: z = -1.44 Pr > z = 0.149
Arellano-Bond test for AR(1) in first differences: z = -9.04 Pr > z = 0.000
38
2.2. Mô hình 2.2: Biến CEO là biến độc lập
Difference-in-Sargan/Hansen statistics may be negative.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Warning: Two-step estimated covariance matrix of moments is singular.
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
> liq prof size tang, lag (1 1) equation(level)) iv(i.ind i.year) twostep
> pba_ceo ndts mtb liq prof size tang, lag(1 3) equation(diff)) gmm(l.blev pba ceo pba_ceo ndts mtb
. xtabond2 blev l.blev pba ceo pba_ceo ndts mtb liq prof size tang i.ind i.year, gmm(l.blev pba ceo
Prob > chi2 = 0.000 max = 10
Wald chi2(35) = 433447.63 avg = 8.93
Number of instruments = 353 Obs per group: min = 1
Time variable : year Number of groups = 390
Group variable: firm Number of obs = 3482
Dynamic panel-data estimation, two-step system GMM
tang -.0942695 .0222524 -4.24 0.000 -.1378833 -.0506557
size .0129918 .00281 4.62 0.000 .0074844 .0184993
prof -.1252348 .0071933 -17.41 0.000 -.1393335 -.1111362
liq -.0163994 .001707 -9.61 0.000 -.019745 -.0130538
mtb .0024216 .0008879 2.73 0.006 .0006814 .0041619
ndts -.3641976 .1157638 -3.15 0.002 -.5910904 -.1373047
pba_ceo -.0260756 .0091858 -2.84 0.005 -.0440794 -.0080718
ceo .0052866 .0064653 0.82 0.414 -.0073852 .0179585
pba .0072328 .0032767 2.21 0.027 .0008105 .0136551
L1. .7719882 .0128734 59.97 0.000 .7467568 .7972196
blev
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
DL.(L.blev pba ceo pba_ceo ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
_cons
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for levels equation
L(1/3).(L.blev pba ceo pba_ceo ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year)
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
D.(1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for first differences equation
(Robust, but weakened by many instruments.)
Hansen test of overid. restrictions: chi2(210) = 199.48 Prob > chi2 = 0.688
(Not robust, but not weakened by many instruments.)
Sargan test of overid. restrictions: chi2(210) = 342.29 Prob > chi2 = 0.000
Arellano-Bond test for AR(2) in first differences: z = -1.58 Pr > z = 0.115
Arellano-Bond test for AR(1) in first differences: z = -8.76 Pr > z = 0.000
39
2.3. Mô hình 2.3: Biến GEN là biến độc lập
Difference-in-Sargan/Hansen statistics may be negative.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Warning: Two-step estimated covariance matrix of moments is singular.
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
> liq prof size tang, lag (1 1) equation(level)) iv(i.ind i.year) twostep
> pba_gen ndts mtb liq prof size tang, lag(1 3) equation(diff)) gmm(l.blev pba gen pba_gen ndts mtb
. xtabond2 blev l.blev pba gen pba_gen ndts mtb liq prof size tang i.ind i.year, gmm(l.blev pba gen
Prob > chi2 = 0.000 max = 10
Wald chi2(35) = 80395.06 avg = 8.93
Number of instruments = 352 Obs per group: min = 1
Time variable : year Number of groups = 390
Group variable: firm Number of obs = 3482
Dynamic panel-data estimation, two-step system GMM
tang -.0612577 .0237667 -2.58 0.010 -.1078395 -.0146759
size .0117556 .0032008 3.67 0.000 .0054822 .018029
prof -.1298917 .0077742 -16.71 0.000 -.1451289 -.1146545
liq -.0144499 .0018505 -7.81 0.000 -.0180767 -.010823
mtb .0026161 .0009458 2.77 0.006 .0007622 .0044699
ndts -.2598844 .1369725 -1.90 0.058 -.5283454 .0085767
pba_gen -.0226464 .0131079 -1.73 0.084 -.0483374 .0030447
gen .0056178 .0094825 0.59 0.554 -.0129676 .0242032
pba .0069907 .0033778 2.07 0.038 .0003703 .0136112
L1. .7982089 .0136036 58.68 0.000 .7715464 .8248714
blev
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
DL.(L.blev pba gen pba_gen ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
_cons
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for levels equation
L(1/3).(L.blev pba gen pba_gen ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year)
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
D.(1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for first differences equation
(Robust, but weakened by many instruments.)
Hansen test of overid. restrictions: chi2(170) = 177.89 Prob > chi2 = 0.324
(Not robust, but not weakened by many instruments.)
Sargan test of overid. restrictions: chi2(170) = 283.40 Prob > chi2 = 0.000
Arellano-Bond test for AR(2) in first differences: z = -1.63 Pr > z = 0.102
Arellano-Bond test for AR(1) in first differences: z = -9.09 Pr > z = 0.000
40
2.4. Mô hình 2.4: Biến BOD là biến độc lập
Difference-in-Sargan/Hansen statistics may be negative.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Warning: Two-step estimated covariance matrix of moments is singular.
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
> liq prof size tang, lag (1 1) equation(level)) iv(i.ind i.year) twostep
> pba_bod ndts mtb liq prof size tang, lag(1 3) equation(diff)) gmm(l.blev pba bod pba_bod ndts mtb
. xtabond2 blev l.blev pba bod pba_bod ndts mtb liq prof size tang i.ind i.year, gmm(l.blev pba bod
Prob > chi2 = 0.000 max = 10
Wald chi2(35) = 1.08e+06 avg = 8.93
Number of instruments = 370 Obs per group: min = 1
Time variable : year Number of groups = 390
Group variable: firm Number of obs = 3482
Dynamic panel-data estimation, two-step system GMM
tang -.0643794 .0241698 -2.66 0.008 -.1117513 -.0170075
size .0124616 .003071 4.06 0.000 .0064425 .0184807
prof -.1295627 .0077862 -16.64 0.000 -.1448234 -.1143019
liq -.0146763 .001896 -7.74 0.000 -.0183925 -.0109602
mtb .0023233 .0009383 2.48 0.013 .0004843 .0041624
ndts -.2539557 .1403092 -1.81 0.070 -.5289567 .0210453
pba_bod -.0831432 .0222937 -3.73 0.000 -.126838 -.0394484
bod .0287579 .0117565 2.45 0.014 .0057156 .0518003
pba .0144107 .0041917 3.44 0.001 .0061952 .0226263
L1. .7940152 .0137576 57.71 0.000 .7670508 .8209797
blev
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
DL.(L.blev pba bod pba_bod ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
_cons
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for levels equation
L(1/3).(L.blev pba bod pba_bod ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year)
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
D.(1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for first differences equation
(Robust, but weakened by many instruments.)
Hansen test of overid. restrictions: chi2(170) = 180.70 Prob > chi2 = 0.273
(Not robust, but not weakened by many instruments.)
Sargan test of overid. restrictions: chi2(170) = 279.50 Prob > chi2 = 0.000
Arellano-Bond test for AR(2) in first differences: z = -1.57 Pr > z = 0.118
Arellano-Bond test for AR(1) in first differences: z = -9.08 Pr > z = 0.000
41
2.5. Mô hình 2.5: Biến SEW là biến độc lập
Difference-in-Sargan/Hansen statistics may be negative.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Warning: Two-step estimated covariance matrix of moments is singular.
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
> liq prof size tang, lag (1 1) equation(level)) iv(i.ind i.year) twostep
> pba_sew ndts mtb liq prof size tang, lag(1 3) equation(diff)) gmm(l.blev pba sew pba_sew ndts mtb
. xtabond2 blev l.blev pba sew pba_sew ndts mtb liq prof size tang i.ind i.year, gmm(l.blev pba sew
Prob > chi2 = 0.000 max = 10
Wald chi2(35) = 155470.44 avg = 8.93
Number of instruments = 370 Obs per group: min = 1
Time variable : year Number of groups = 390
Group variable: firm Number of obs = 3482
Dynamic panel-data estimation, two-step system GMM
tang -.0634566 .0242513 -2.62 0.009 -.1109884 -.0159249
size .0129718 .00315 4.12 0.000 .0067979 .0191457
prof -.1290612 .0079915 -16.15 0.000 -.1447243 -.1133982
liq -.0149411 .00193 -7.74 0.000 -.0187239 -.0111584
mtb .0023521 .0009467 2.48 0.013 .0004966 .0042076
ndts -.2707068 .1422544 -1.90 0.057 -.5495202 .0081067
pba_sew -.0225901 .0046617 -4.85 0.000 -.0317267 -.0134534
sew .0075113 .0024584 3.06 0.002 .0026928 .0123298
pba .0159033 .0040332 3.94 0.000 .0079983 .0238083
L1. .7923179 .0138835 57.07 0.000 .7651068 .8195291
blev
blev Coef. Std. Err. z P>|z| [95% Conf. Interval]
DL.(L.blev pba sew pba_sew ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
_cons
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for levels equation
L(1/3).(L.blev pba sew pba_sew ndts mtb liq prof size tang)
GMM-type (missing=0, separate instruments for each period unless collapsed)
2015.year 2016.year 2017.year 2018.year 2019.year 2020.year)
12.ind 13.ind 14.ind 2010b.year 2011.year 2012.year 2013.year 2014.year
D.(1b.ind 2.ind 3.ind 4.ind 5.ind 6.ind 7.ind 8.ind 9.ind 10.ind 11.ind
Standard
Instruments for first differences equation
(Robust, but weakened by many instruments.)
Hansen test of overid. restrictions: chi2(170) = 182.35 Prob > chi2 = 0.245
(Not robust, but not weakened by many instruments.)
Sargan test of overid. restrictions: chi2(170) = 274.84 Prob > chi2 = 0.000
Arellano-Bond test for AR(2) in first differences: z = -1.47 Pr > z = 0.142
Arellano-Bond test for AR(1) in first differences: z = -9.05 Pr > z = 0.000