Luận văn Mô phỏng số FFT hệ số dẫn vĩ mô vật liệu hai pha dạng nền - Cốt liệu elliptic và các phương pháp xấp XI
Báo cáo đã xây dựng được thuật toán FFT và chương trình số dựa trên phần mềm Matlab để tính hệ
số dẫn vĩ mô cho vật liệu nền cốt liệu dạng elliptic sắp xếp tuần hoàn trong không gian hai chiều, trường
hợp này phức tạp hơn trường hợp cốt liệu có dạng hình tròn [6],[8]. Trong việc so sánh giữa FFT và các
phương pháp xấp xỉ khác cho thấy FFT luôn nằm trong đánh giá của HS trong khi các phương pháp xấp xỉ
khác có thể nằm ngoài HS, điều đó chứng tỏ phương pháp FFT cho kết quả chính xác và tin cậy hơn so với
các phương pháp xấp xỉ khác.
8 trang |
Chia sẻ: ngoctoan84 | Lượt xem: 1215 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận văn Mô phỏng số FFT hệ số dẫn vĩ mô vật liệu hai pha dạng nền - Cốt liệu elliptic và các phương pháp xấp XI, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Hội nghị Cơ học toàn quốc lần thứ X
Hà Nội, 8-9/12/2017
Mô phỏng số FFT hệ số dẫn vĩ mô vật liệu hai pha dạng
nền-cốt liệu elliptic và các phương pháp xấp xỉ
Nguyễn Văn Luật1, Nguyễn Trung Kiên2
1 Đại học Công nghiệp Hà Nội
2 Đại học Giao thông vận tải Hà Nội
Email: luatnv1980@gmail.com
Tóm tắt
Bài báo trình bày phương pháp biến đổi Fourier (FFT) để tính hệ số dẫn vĩ mô cho vật liệu hai pha dạng nền-
cốt liệu trong không gian hai chiều, trong đó pha cốt liệu có hình dạng elliptic. Xác định tính chất dẫn vĩ mô (tính chất
dẫn hiệu quả) của vật liệu bằng phương pháp FFT đối với một số mô hình tuần hoàn trong không gian hai chiều, có tỉ
lệ thể tích giữa các pha thay đổi và so sánh với các phương pháp xấp xỉ khác.
Từ khóa: hệ số dẫn, cốt liệu dạng elliptic, phương pháp biến đổi Fourier
1. Mở đầu
Các loại vật liệu tổ hợp ngày nay được áp dụng trong hầu hết các lĩnh vực khoa học, kỹ thuật và đời
sống. Việc nghiên cứu tính chất dẫn vĩ mô hay đồng nhất hóa vật liệu được nhiều nhà khoa học quan tâm
nghiên cứu và đã đưa ra nhiều kết quả xấp xỉ cho các mô hình vật liệu khác nhau. Đối với các mô hình vật
liệu trong tính toán để cho đơn giản có thể được lý tưởng hóa hình học dưới dạng cốt liệu hình cầu hoặc
trong không gian hai chiều là hình tròn. Tuy nhiên trong thực tế cốt liệu có những hình dạng phức tạp hơn
nhiều và cần xấp xỉ dưới dạng hình học không tròn mà có dạng như elliptic. Tính chất vĩ mô của vật liệu tổ
hợp phụ thuộc vào nhiều yếu tố phức tạp như cấu trúc hình học pha, các tính chất của vật liệu thành phần,
tỷ lệ thể tích giữa các pha. Do đó trong các nghiên cứu chủ yếu chỉ tìm được cận trên, dưới và các công thức
xấp xỉ áp dụng cho một số mô hình vật liệu. Hướng tiếp cận để tính xấp xỉ cho các mô hình như của
(Maxwel,1884), (Winner, 1912), (Voight, 1928), (Reuss, 1929), (Bruggeman, 1935), (Hamilton and crosser,
1962), (Lewis and Nielsen, 1970), (Mori and Tanaka, 1973). Một hướng tiếp cận khác là xây dựng biên trên
và biên dưới cho hệ số dẫn vĩ mô như (Hill, 1952), (Hashin and Strikman, 1962), (Pham DC, 1996)Ngoài
ra các phương pháp số hiện nay cũng là cách tiếp cận hiệu quả trong việc xác định tính chất vĩ mô của vật
liệu như phương pháp phần tử hữu hạn (FEM), phương pháp biến đổi Fourier (FFT). Phương pháp FFT áp
dụng trong lĩnh vực cơ học vật liệu tính mô đun đàn hồi cho vật liệu tổ hợp được đề xuất đầu tiên vào năm
bởi (Moulicec and Subquet, 1994). Trong bài báo này sử dụng phương pháp FFT để tính hệ số dẫn vĩ mô
cho một số mô hình vật liệu hai pha với pha cốt liệu có hình học dạng elliptic được sắp xếp tuần hoàn trong
pha nền, trong đó có so sánh với các phương pháp xấp xỉ khác.
2. Phương pháp biến đổi Fourier (FFT)
Nội dung cơ bản của phương pháp biến đổi Fourier là thiết lập được phương trình Lippman-
Schwinger đối với bài toán không đồng nhất và sử dụng toán tử Green tuần hoàn. Sau đó sử dụng thuật toán
lặp. Ứng xử của các vật liệu thành phần được mô tả bởi định luật Fourier:
(x) = -C(x). (x)J E (1)
Nguyễn Văn Luật, Nguyễn Trung Kiên
trong đó (x)E và (x)J lần lượt là trường gradient nhiệt độ và dòng nhiệt địa phương thỏa mãn phương
trình cân bằng
( ) ( ),T E x x . ( ) 0x J (2)
Trường gradient (x)E và (x)T có thể tách thành các thành phần sau:
0
0
( )
(
) ·
per
perT T
E x E e
x E x
(3)
trong đó
0
E là gradient vĩ mô đồng nhất đối với phần tử đặc trưng,
per
e gọi là thành phần nhiễu có tính
chất tuần hoàn. Do tính chất tuần hoàn nên ta có:
0( ) 0; ( )per V V e x E E x (4)
với ký hiệu • V là trung bình trên trên thể tích của phần tử đặc trưng V,
1
• • .V
V
d
V
x
Bài toán trên phần tử đặc trưng có thể quy về tìm các thành phần ,per perT e . Đưa vào môi trường làm chuẩn
có hệ số dẫn 0C , phương trình cân bằng trở thành
0· · ( ) ( ) 0C C J E x (5)
với
0( ) ( )C C C x x
Thay ( )E x từ (2) vào (5) viết lại dưới dạng tương đương sau
0· · ( ) 0perC T τ x (6)
trong đó tenxơ τ( )x gọi là tenxơ "cực" được xác định bởi : 0( ) ( ) ( )perC τ x x E e x
Do tính chất chu kỳ của phần tử đặc trưng nên ,per perT e và ( )τ x được biểu diễn dưới dạng chuỗi Fourier:
. . .1ˆ ˆ( ) ( ) , ( ) ( ) ( )i i i
V
e e e d
V
x x x
F x F F F x F x x (7)
trong đó F chỉ ,
per perT e và τ( )x , còn Fˆ là biến đổi Fourier của các đại lượng này, đó là ˆ ˆ,per perT e và ˆ .
Ở đây tính chất tuần hoàn được thể hiện bởi
.( ) .
1
, 2 , ( 1,2,..., )
d
i i
j j j
j
e e m a j d
x h x h e (8)
với jm là số nguyên bất kỳ, 2 ja là kích thước của phần tử đặc trưng song song với trục ,j jx e là vectơ cở
sở theo hướng ,jx d là số chiều của không gian.
, ( 0, 1, 2...)
j
j jk
j
k
n
n
a
e , không tổng theo j
Thay các biểu diễn dạng chuỗi Fourier của ,per perT e và τ( )x vào phương trình (6) thu được
0 . .ˆ ˆ( ) ( ) ( ) 0per i im mj j mC T e i e
x x (9)
từ đó các trường ˆ perT và ˆ pere có thể xác định như sau:
Mô phỏng số FFT hệ số dẫn vĩ mô vật liệu hai pha dạng nền- cốt liệu elliptic và các phương pháp xấp xỉ
0
0 0
ˆ ˆ. ( ) . ( )ˆ ˆ ˆˆ ˆ, ( ) ( ) ( ). ( )
. .
per per periT i T
C C
e Γ (10)
trong đó
0( )Γ là toán tử Green phụ thuộc môi trường đồng nhất 0C được xác định bởi
0
0
( )
.C
Γ (11)
Từ đó thu được phương trình Lippman-Schwinger
0 0 0 0 0ˆ ˆ ˆ ˆ ˆ ˆˆ( ) ( ) ( ). ( ) ( ) ( ). ( ( ) )* ( )C C E
E E Γ E Γ (12)
Nghiệm của phương trình được tìm bởi sơ đồ lặp sau:
1 0 0
1 0
ˆ ˆ ˆ( ) ( )· ( ( ) ) ( ), 0
ˆ , 0
i i
i
C C
E Γ E
E E
(13)
Chú ý rằng
0 0· ( ) ( )i iC Γ E E với 0 xem Michel(1999-[5]), phương trình (13) được viết lại
dưới dạng sau:
1 0
1 0
ˆ ˆ ˆ ˆ( ) ( ) ( ). ( )
ˆ 0,
, 0i i i
i
E E Γ J
E E
(14)
trong đó ˆ ( )i J là biến đổi Fourier của ( )i xJ . Liên hệ giữa trường dòng J và trường gradient E trong
không gian Fourier được biểu diễn bằng biểu thức:
ˆ ˆ( ) ( )* ( )C J E (15)
trong đó ký hiệu "*" là tích "convolution". Biến đổi Fourier của tenxơ hệ số dẫn:
.( ) ( ) ( )i
V
C C e d C I
x
x x (16)
với ,C I lần lượt là tenxơ hệ số dẫn và hàm dạng của pha , ( )I được xác định theo Nemat-Nasser
(1999-[7]):
.1( ) i
V
I e dV
V
x
(17)
Thay các biểu thức (15), (16) vào (14) thu được
1 0
1 0
ˆ ˆ ˆ ˆ( ) ( ) ( ). ( )* (
,
), 0
ˆ 0
i i i
i
C I
E E Γ E
E E
(18)
Để xác định hệ số dẫn vĩ mô của vật liệu composite, cho phần tử đặc trưng chịu tác dụng của gradient vĩ mô
0
E . Khi quá trình lặp theo (18) hội tụ (số hạng đầu tiên
1 0E E ), ta có
0( 0) effC J E (19)
trong đó
effC là hệ số dẫn hiệu quả của vật liệu composite. Từ đó rút ra thuật toán số để xác định hệ số dẫn
của vật liệu nhiều thành phần có cấu trúc tuần hoàn:
Nguyễn Văn Luật, Nguyễn Trung Kiên
Bước i=1: 1 1 0ˆ ˆ( ) 0 0; (0) E E E
1 1ˆ ˆ( ) ( )* ( )C J E
Bước i: ˆ ˆ( ) và ( )i i E J đã biết
Kiểm tra hội tụ
1 0ˆ ˆ ˆ( ) ( ) ( ). ( )
i
i i E E Γ J
1 1ˆ ˆ( ) ( )* ( )i iC J E
Kiểm tra điều kiện hội tụ được xác định bằng biểu thức sau:
1ˆ ˆ( ) ( )
,
ˆ ( )
i i
i
J J
J
‖ ‖
‖ ‖
với là sai số cho trước (
310 )
3. Một số phương pháp xấp xỉ
Trong mục này giới thiệu một số phương pháp tính xấp xỉ, đánh giá hệ số dẫn vĩ mô (Ceff) của vật liệu
nền-cốt liệu dạng elliptic đẳng hướng trong không gian hai chiều với các ký hiệu: CI, Iv là hệ số dẫn và tỉ lệ
thể tích của pha cốt liệu, CM, Mv là hệ số dẫn và tỉ lệ thể tích của pha nền.
3.1.1 Xấp xỉ Hamilton (1962-[1])
( 1) ( 1) ( )
.
( 1) ( )
eff I M I M I
M
I M I M I
C n C n v C C
C C
C n C v C C
(20)
với
3
n
, là thông số hình học của cốt liệu, trong trường hợp cốt liệu dạng elliptic 0.4 .
3.1.2 Xấp xỉ Maxwell (1892-[1])
1( ) ( 1)
( 1) ( 1)
eff I M
M
I M M M
v v
C d C
C d C C d C
(21)
3.1.3 Xấp xỉ Lewis-Nielsen (1970-[1])
1
.
1
eff I
M
I
A v
C C
v
,
1I
M
I
M
C
C
C
A
C
,
2
1
1 m I
m
v
(22)
Trong đó A, m là các hệ số hình học cốt liệu (lấy giá trị A=1.5, 1m với hình cầu, A=3, 0.637m
với hình dạng khác).
3.1.4 Xấp xỉ Mori-Tanaka (1973-[4])
Trong không gian hai chiều, cốt liệu elliptic xấp xỉ Mori-Tanaka có dạng:
( ).eff M I I MC C v C C (23)
Mô phỏng số FFT hệ số dẫn vĩ mô vật liệu hai pha dạng nền- cốt liệu elliptic và các phương pháp xấp xỉ
trong đó
2( )(1 )
2( )( )
M I M
I M M I
C C C r
C rC C rC
, r là tỉ số giữa hai bán trục chính của elliptic.
3.1.5 Đánh giá Hashin-Strikman (1962-[3])
Hashin-Strikman dựa trên nguyên lý biến phân riêng đưa vào trường khả dĩ phân cực đã xây dựng
được đánh giá trên và dưới cho hệ số dẫn vĩ mô của vật liệu nhiều thành phần đẳng hướng.
(( 1) ) (( 1) ),effC min C maxP d C C P d C (24)
1
0 *
*
( ) ,C
v
P C C
C C
* 0 1 1 ( 1) , ,, , , ,min n max nC d C C min C C C max C C
4. Kết quả so sánh
Trong mục này sẽ đưa ra kết quả tính toán FFT hệ số dẫn vĩ mô cho một số mô hình vật liệu có cốt
liệu dạng elliptic trong không gian hai chiều và so sánh với các phương pháp xấp xỉ khác. Hàm dạng (17)
cho cốt liệu elliptic trong không gian hai chiều [2]
. ( )
1( ) 2 ( ) / .
ciI S J e
x
(25)
Trong đó 1J là hàm Bessel loại 1, S là diện tích bề mặt của cốt liệu, ( )c x là véc tơ xác định vị trí trọng
tâm của pha cốt liệu
2 2 2 2 1/2
1 1 2 2( )a a
1a , 2a là độ dài các bán trục chính của cốt liệu elliptic, 1 , 2 là các thành phần của theo các trục của
elliptic.
- Kết quả tính toán FFT cho mô hình vật liệu có cốt liệu elliptic sắp xếp tuần hoàn trong phần tử đặc
trưng (unit cell) theo hình vuông (square) và so sánh với các mô hình xấp xỉ khác. Do cốt liệu không chồng
lấn nên tỉ lệ thể tích cốt liệu chỉ có thể tăng đến một giới hạn nhất định. Trên hình 2 với pha nền có hệ số
dẫn CM=1, pha cốt liệu có hệ số dẫn CI=10, 2 10.2a a , trong trường hợp này cả FFT và các xấp xỉ khác
đều nằm trong đánh giá của Hashin-Strickman (HS) và gần nhau khi tỉ lệ thể tích cốt liệu nhỏ. Kết quả trên
hình 3 với CM=10, CI=2 thì có thể thấy chỉ có FFT nằm trong đánh giá của HS, điều này khẳng định độ tin
cậy của phương pháp FFT so với các phương pháp xấp xỉ trước đó.
Hình 1: Mô hình cốt liệu elliptic có cấu trúc tuần hoàn
Nguyễn Văn Luật, Nguyễn Trung Kiên
- Xem xét trường hợp cốt liệu gồm 2n elliptic phân bố hỗn độn không chồng lấn trong phần tử đặc
trưng với n elliptic nằm ngang và n elliptic thẳng đứng (hình 4). Kết quả tính toán thể hiện trên hình 5 với
sự thay đổi tỉ lệ thể tích của pha cốt liệu (VI) và các giá trị khác nhau của HSD giữa pha nền (CM) và pha
cốt liệu (CI), có thể thấy FFT cũng luôn nằm trong đánh giá của HS trong khi các kết quả xấp xỉ khác có thể
nằm ngoài đánh giá của HS.
Hình 2: Kết quả FFT và so sánh với các phương pháp xấp xỉ, CM=1, CI=10
Hình 3: Kết quả FFT và so sánh với các phương pháp xấp xỉ, CM=10, CI=2
Mô phỏng số FFT hệ số dẫn vĩ mô vật liệu hai pha dạng nền- cốt liệu elliptic và các phương pháp xấp xỉ
Hình 4: Mô hình elliptic phân bố ngẫu nhiên.
Hình 5: Kết quả FFT và so sánh với các phương pháp xấp xỉ: (a) CM=1, CI=10; (b) CM=10, CI=2,
(a)
(a) (b)
Nguyễn Văn Luật, Nguyễn Trung Kiên
5. Kết luận
Báo cáo đã xây dựng được thuật toán FFT và chương trình số dựa trên phần mềm Matlab để tính hệ
số dẫn vĩ mô cho vật liệu nền cốt liệu dạng elliptic sắp xếp tuần hoàn trong không gian hai chiều, trường
hợp này phức tạp hơn trường hợp cốt liệu có dạng hình tròn [6],[8]. Trong việc so sánh giữa FFT và các
phương pháp xấp xỉ khác cho thấy FFT luôn nằm trong đánh giá của HS trong khi các phương pháp xấp xỉ
khác có thể nằm ngoài HS, điều đó chứng tỏ phương pháp FFT cho kết quả chính xác và tin cậy hơn so với
các phương pháp xấp xỉ khác.
Lời cảm ơn: Các tác giả cảm ơn đền tài NCCB trong cơ học mã số 107.02-2015.05 (Quỹ Nafosted)
Tài liệu tham khảo
[1] Azeem S, Zain-ul-Abdein M. (2012), Investigation of thermal conductivity enhancement inbakelite–graphite
particulate filled polymeric composite. In-ternational Journal of Engineering Science 52, 30-40.
[2] Bonnet G.(2007), Effective properties of elastic periodic composite media with fibers. Journal of the Mechanics
and Physicsof Solids 55, 881-899.
[3] Hashin Z. And Shtrikman S.(1962), Avariational approach to thetheory of the effective magnetic permiability of
multiphase materials. J. Appl.Phys 33, 3125-3131.
[4] Mori T.and Tanaka K.(1973), Averages tress in matrix and average elastic energy of materials with misfitting
inclusions. ActaMetall. 21, 571-574.
[5] Michel J, Moulinec H,Suquet P.(1999), Effective properties of composite materials with periodic microstructure:
a computational approach. Comput. Methods. Appl.Mech. Engrg 172, 109–143.
[6] Nguyen Trung Kien, Nguyen Van Luat, Pham Duc Chinh “ Estimating effective conductivity of unidirectional
transversely isotropic composites” Tạp chí Cơ học Việt Nam (Vietnam Journal of Mechanics), 203-213, Volume 35
(2013).
[7] Nemat-Nasser S, HoriM.(1999), Micromechanics: overall properties of het- ero geneous materials.
Amsterdam;New York:Elsevier, 786p.
[8] Nguyen Van Luat, Nguyen Trung Kien ‘FFT-simulations and multi-coated inclusion model for macroscopic
conductivity of 2D suspensions of compound inclusions” Tạp chí Cơ học Việt Nam (Vietnam Journal of Mechanics),
169-176, Volume 37 (2015).
Các file đính kèm theo tài liệu này:
- bien_doi_fourier_trong_co_hoc_vat_lieu_luat_5484_2065767.pdf