MỞ ĐẦU
Sự phát triển nhanh chóng của mạng Internet đã sinh ra một khối lượng khổng lồ các dữ liệu dạng siêu văn bản (dữ liệu Web). Các tài liệu siêu văn bản chứa đựng văn bản và thường nhúng các liên kết đến các tài liệu khác phân bố trên Web. Ngày nay, Web bao gồm hàng tỉ tài liệu của hàng triệu tác giả được tạo ra và được phân tán qua hàng triệu máy tính được kết nối qua đường dây điện thoại, cáp quang, sóng radio . Web đang ngày càng được sử dụng phổ biến trong nhiều lĩnh vực như báo chí, phát thanh, truyền hình, hệ thống bưu điện, trường học, các tổ chức thương mại, chính phủ . Chính vì vậy lĩnh vực Web mining hay tìm kiếm tự động các thông tin phù hợp và có giá trị trên Web là một chủ đề quan trọng trong Data Mining và là vấn đề quan trọng của mỗi đơn vị, tổ chức có nhu cầu thu thập và tìm kiếm thông tin trên Internet [2].
Các hệ thống tìm kiếm thông tin hay nói ngắn gọn là các máy tìm kiếm Web thông thường trả lại một danh sách các tài liệu được phân hạng mà người dùng sẽ phải tốn công chọn lọc trong một danh sách rất dài để có được những tài liệu phù hợp. Ngoài ra các thông tin đó thường rất phong phú, đa dạng và liên quan đến nhiều đối tượng khác nhau. Điều này tạo nên sự nhập nhằng gây khó khăn cho người sự dụng trong việc lấy được các thông tin cần thiết.
Có nhiều hướng tiếp cận khác nhau để giải quyết vấn đề này, các hướng này thường chú ý giảm sự nhập nhằng bằng các phương pháp lọc hay thêm các tùy chọn để cắt bớt thông tin và hướng biểu diễn các thông tin trả về bởi các máy tìm kiếm thành từng cụm để cho người dùng có thể dễ dàng tìm được thông tin mà họ cần. Đã có nhiều thuật toán phân cụm tài liệu dựa trên phân cụm ngoại tuyến toàn bộ tập tài liệu. Tuy nhiên việc tập hợp tài liệu của các máy tìm kiếm là quá lớn và luôn thay đổi để có thể phân cụm ngoại tuyến. Do đó, việc phân cụm phải được ứng dụng trên tập các tài liệu nhỏ hơn được trả về từ các truy vấn và thay vì trả về một danh sách rất dài các thông tin gây nhập nhằng cho người sử dụng cần có một phương pháp tổ chức lại các kết quả tìm kiếm một cách hợp lý.
Do những vấn đề cấp thiết được đề cập ở trên nên em chọn đề tài: "Nghiên cứu một số kỹ thuật lấy tin tự động trên internet"
Mục tiêu của đề tài: Nghiên cứu xây dựng giải pháp phát triển hệ thống phần mềm thu thập, đánh giá và phân cụm thông tin tự động trên Internet phục vụ cho việc nghiên cứu, học tập, giảng dạy.
Ngoài phần mở đầu, phần kết luận, mục lục, tài liệu tham khảo, phụ lục, luận văn gồm 3 chương:
- Chương 1: Khái quát về khai phá dữ liệu và phân cụm tài liệu Web Giới thiệu một số khái niệm cơ bản về khai phá dữ liệu, khai phá dữ liệu web, các hướng tiếp cận, ứng dụng của khai phá dữ liệu, và nêu bài toàn phân cụm tài liệu Web.
- Chương 2: Một số thuật toán phân cụm tài liệu Nghiên cứu một số kỹ thuật phân cụm tài liệu liên quan, tư tưởng của các thuật toán đã được nghiên cứu, nghiên cứu đề xuất phương pháp cải tiến.
- Chương 3: Ứng dụng trong lấy tin tự động Ứng dụng xây dựng bài toán Thu thập dữ liệu về Kinh tế trên Internet.
Để hoàn thành được luận văn Cao học, em xin được gửi lời cảm ơn tới các thầy trong Viện Công nghệ thông tin, các thầy trong Khoa Công nghệ thông tin đã tận tình giảng dạy, cung cấp nguồn kiến thức quý giá trong suốt quá trình học tập.
Đặc biệt em xin chân thành cảm ơn TS. Phạm Việt Bình, đã tận tình hướng dẫn, góp ý, tạo điều kiện cho em hoàn thành luận văn này.
Xin chân thành cảm ơn các thầy cô, anh chị em đang công tác tại phòng VRLAB - Viện công nghệ thông tin - Viện khoa học và Công nghệ Việt Nam, các thầy cô đang công tác tại Viện Công nghệ thông tin - Viện khoa học và Công nghệ Việt Nam.
Cảm ơn đồng nghiệp Đỗ Văn Đại đã cung cấp những tài liệu, cùng những kinh nghiệm quý báu đã được làm trong cuốn Đồ án tốt nghiệp đại học của đồng nghiệp Đỗ Văn Đại giúp cho em trong quá trình nghiên cứu giảm bớt được những khó khăn trong việc tiếp cận vấn đề và nghiên cứu tài liệu. Xin được cảm ơn Ban lãnh đạo Khoa Công nghệ thông tin - Đại học Thái Nguyên, lãnh đạo phòng Công nghệ thông tin - Thư viện, cùng toàn thể các đồng nghiệp trong Khoa Công nghệ thông tin - Đại học Thái Nguyên đã giúp đỡ em về thời gian, vật chất và tinh thần giúp em hoàn thành tốt nhiệm vụ học tập, công tác.
72 trang |
Chia sẻ: lvcdongnoi | Lượt xem: 3614 | Lượt tải: 5
Bạn đang xem trước 20 trang tài liệu Luận văn Nghiên cứu một số kỹ thuật lấy tin tự động trên internet, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
n phân cụm phân hoạch điển hình như k-means,
PAM, CLARA, CLARANS… sẽ được trình bày chi tiết ở những chương sau.
2.1.2 Phân cụm dữ liệu phân cấp
Phân cụm phân cấp sắp xếp một tập dữ liệu đã cho thành một cấu trúc có
dạng hình cây, cây phân cấp này được xây dựng theo kỹ thuật đệ quy. Cây
phân cụm có thể được xây dựng theo hai phương pháp tổng quát: phương
pháp dưới lên (Bottom up) và phương pháp trên xuống (Top down) [5].
Phương pháp “dưới lên” (Bottom up): Phương pháp này bắt đầu với mỗi
đối tượng được khởi tạo tương ứng với các cụm riêng biệt, sau đó tiến hành
nhóm các đối tượng theo một độ đo tương tự (như khoảng cách giữa hai trung
tâm của hai nhóm), quá trình này được thực hiện cho đến khi tất cả các nhóm
được hòa nhập vào một nhóm (mức cao nhất của cây phân cấp) hoặc cho đến
khi các điều kiện kết thúc thỏa mãn. Như vậy, cách tiếp cận này sử dụng
chiến lược ăn tham trong quá trình phân cụm.
Ví dụ: Dùng phương pháp "dưới lên" để phân cụm cho tập dữ liệu
S= {a, b, c, d, e}. Các bước thực hiện phân cụm được diễn tả như sau :
Bước 0: Mỗi đối tượng dữ liệu được gán cho mỗi cụm tương ứng, đồng
thời xác định tâm D cho mỗi cụm, và tính độ tương tự cho các cặp cụm dữ
liệu trên bằng cách xác định độ tương tự giữa cặp tâm của chúng. Như vậy ta
sẽ có các cụm ban đầu là {a}, {b}, {c}, {d}, {e}.
Bước 1: Xác định ngưỡng µ, các cặp cụm có độ tương tự bé hơn hoặc
bằng ngưỡng µ thì được gộp vào một cụm. Các cặp cụm dữ liệu có độ tương
tự lớn hơn µ thì xếp vào các cụm khác nhau. Trong thí dụ này chỉ có {a} và
{b} là được gộp vào thành một cụm lớn hơn là {a, b}. Các cụm thu được sau
bước này là: {a, b}, {c}, {d}, {e}.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
24
Bước 2: Cập nhật lại ngưỡng µ và thực hiện tương tự như trong bước 1,
sau bước này ta gộp cụm {d}, {e} thành {d, e}. Các cụm thu được là {a, b},
{c}, {d, e}.
Bước 3: Cập nhật lại ngưỡng µ và thực hiện tương tự như trong bước 1,
sau bước này ta gộp cụm {c} với {d, e} thành {c, d, e}. Các cụm thu được là
{a, b}, {c, d, e}.
Bước 4: Cập nhật lại ngưỡng µ và thực hiện tương tự như trong bước 1,
sau bước này ta gộp cụm hai cụm {c, d, e} với {a, b} thành {a, b, c, d, e}.
Tuy nhiên, trong quá trình trên chúng ta có thể dừng ở một bước bất kỳ
khi mà việc phân cụm đáp ứng tốt nhất các yêu cầu đã đặt ra. Các bước thực
hiện trên được mô tả trực quan như hình 2.1 dưới đây.
Hình 2.1: Phân cụm phân cấp theo phương pháp “dưới lên”-Bottom Up
Phương pháp “trên xuống” (Top Down): Bắt đầu với trạng thái là tất cả
các đối tượng được xếp trong cùng một cụm. Mỗi vòng lặp thành công, một
cụm được tách thành các cụm nhỏ hơn theo giá trị của một phép đo độ tương
tự nào đó cho đến khi mỗi đối tượng là một cụm, hoặc cho đến khi điều kiện
dừng thỏa mãn. Cách tiếp cận này sử dụng chiến lược chia để trị trong quá
trình phân cụm.
Ví dụ: Dùng phương pháp "dưới lên" để phân cụm cho tập dữ liệu
S= {a, b, c, d, e}. Các bước thực hiện phân cụm được diễn tả như sau:
Bước 0 Bước 1 Bước 2
Bước 3
Bước 4
b
d
c
e
a
a b
d e
c d e
a b c d e
Bottom up
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
25
Bước 0: Các đối tượng dữ liệu ban đầu được xếp vào một cụm, ta thu
được cụm {a, b, c, d, e}. Tính độ tương tự giữa các đối tượng dữ liệu trong
cụm {a, b, c, d, e}.
Bước 1: Xác định ngưỡng µ , cụm ban đầu được tách ra thành các cụm
sao cho các đối tượng dữ liệu trong mỗi cụm con tách ra có độ tương tự bé
hơn hoặc bằng µ Sau bước này thì cụm {a, b, c, d, e} chia thành hai cụm {a,
b} và {c, d, e}.
Bước 2: Cập nhật lại ngưỡng µ và thực hiện tương tự như trong bước 1
cho từng cụm con. Với ngưỡng µ, chỉ có cụm con {c, d, e} được tách ra thành
hai cụm con lần lượt là {c} và {d, e}. Các cụm thu được sau bước này là {a,
b}, {c}, {d, e}.
Bước 3: Cập nhật lại ngưỡng µ và thực hiện tương tự như trong bước 1
cho các cụm đã thu được ở bước 2, ở đây chỉ có cụm {d, e} được chia thành 2
cụm con {d}, {e}. Các cụm thu được sau bước này là {a, b}, {c}, {d}, {e}.
Bước 4: Cập nhật lại ngưỡng µ và thực hiện tương tự như trong bước 1 cho
cụm {a, b} và sau bước này ta thu được các cụm: {a}, {b}, {c}, {d}, {e}.
Tuy nhiên trong quá trình trên chúng ta có thể dừng ở một bước bất kỳ
khi mà việc phân cụm đáp ứng tốt nhất các yêu cầu đã đặt ra. Các bước thực
hiện trên được mô tả trực quan như hình 2.2 dưới đây:
Hình 2.2 : Phân cụm phân cấp theo phương pháp “trên xuống”-Top Down
B Bước 3 Bước 2
Bước 1
Bước 0
b
d
c
e
a
a b
d e
c d e
a b c d e
Top Down
Bước 4
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
26
Thực tế áp dụng, có nhiều trường hợp người ta kết hợp cả hai phương
pháp phân cụm phân hoạch và phương phân cụm phân cấp, nghĩa là kết quả
thu được của phương pháp phân cấp có thể cải tiến thông quan bước phân
cụm phân hoạch. Phân cụm phân hoạch và phân cụm phân cấp là hai phương
pháp Phân cụm dữ liệu cổ điển, hiện nay đã có nhiều thuật toán cải tiến dựa
trên hai phương pháp này đã được áp dụng phổ biến trong Data Mining.
2.1.3 Phân cụm dữ liệu dựa trên mật độ
Phương pháp này nhóm các đối tượng theo hàm mật độ xác định. Mật độ
được định nghĩa như là số các đối tượng lân cận của một đối tượng dữ liệu theo
một ngưỡng nào đó. Trong cách tiếp cận này, khi một cụm dữ liệu đã xác định
thì nó tiếp tục được phát triển thêm các đối tượng dữ liệu mới miễn là số các
đối tượng lân cận của các đối tượng này phải lớn hơn một ngưỡng đã được xác
định trước. Phương pháp phân cụm dựa vào mật độ của các đối tượng để xác
định các cụm dữ liệu có thể phát hiện ra các cụm dữ liệu với hình thù bất kỳ.
Tuy vậy, việc xác định các tham số mật độ của thuật toán rất khó khăn, trong
khi các tham số này lại có tác động rất lớn đến kết quả phân cụm dữ liệu. Hình
2.3 dưới đây là một minh hoạ về các cụm dữ liệu với các hình thù khác nhau
dựa trên mật độ được khám phá từ 3 Cơ sở dữ liệu khác nhau.
Hình 2.3 : Một số hình dạng cụm dữ liệu khám phá được bởi kỹ thuật Phân cụm dữ liệu
dựa trên mật độ
CSDL 1 CSDL 2 CSDL 3
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
27
Một số thuật toán Phân cụm dữ liệu dựa trên mật độ điển hình như
DBSCAN, OPTICS, DENCLUE… sẽ được trình bày chi tiết trong phần tiếp
theo.
2.1.8 Phân cụm dữ liệu dựa trên lưới
Kỹ thuật phân cụm dựa trên mật độ không thích hợp với dữ liệu nhiều
chiều, để giải quyết cho đòi hỏi này, người ta đã dử dụng phương pháp phân
cụm dựa trên lưới. Đây là phương pháp dựa trên cấu trúc dữ liệu lưới để Phân
cụm dữ liệu, phương pháp này chủ yếu tập trung áp dụng cho lớp dữ liệu
không gian [5]. Thí dụ như dữ liệu được biểu diễn dưới dạng cấu trúc hình
học của đối tượng trong không gian cùng với các quan hệ, các thuộc tính, các
hoạt động của chúng. Mục tiêu của phương pháp này là lượng hoá tập dữ liệu
thành các ô (Cell), các cell này tạo thành cấu trúc dữ liệu lưới, sau đó các thao
tác Phân cụm dữ liệu làm việc với các đối tượng trong từng Cell này. Cách
tiếp cận dựa trên lưới này không di chuyển các đối tượng trong các cell mà
xây dựng nhiều mức phân cấp của nhóm các đối tượng trong một cell. Trong
ngữ cảnh này, phương pháp này gần giống với phương pháp phân cụm phân
cấp nhưng chỉ có điều chúng không trộn các Cell. Do vậy các cụm không dựa
trên độ đo khoảng cách (hay còn gọi là độ đo tương tự đối với các dữ liệu
không gian) mà nó được quyết định bởi một tham số xác định trước. Ưu điểm
của phương pháp Phân cụm dữ liệu dựa trên lưới là thời gian xử lý nhanh và
độc lập với số đối tượng dữ liệu trong tập dữ liệu ban đầu, thay vào đó là
chúng phụ thuộc vào số cell trong mỗi chiều của không gian lưới. Một thí dụ
về cấu trúc dữ liệu lưới chứa các cell trong không gian như hình 2.4 sau:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
28
Hình 2.4 : Mô hình cấu trúc dữ liệu lưới
Một số thuật toán Phân cụm dữ liệu dựa trên cấu trúc lưới điển hình
như: STING, WAVECluster, CLIQUE…
2.1.9 Phân cụm dữ liệu dựa trên mô hình
Phương pháp này cố gắng khám phá các phép xấp xỉ tốt của các tham số
mô hình sao cho khớp với dữ liệu một cách tốt nhất. Chúng có thể sử dụng
chiến lược phân cụm phân hoạch hoặc chiến lược phân cụm phân cấp, dựa
trên cấu trúc hoặc mô hình mà chúng giả định về tập dữ liệu và cách mà
chúng tinh chỉnh các mô hình này để nhận dạng ra các phân hoạch.
Phương pháp Phân cụm dữ liệu dựa trên mô hình cố gắng khớp giữa dữ
liệu với mô hình toán học, nó dựa trên giả định rằng dữ liệu được tạo ra bằng
hỗn hợp phân phối xác suất cơ bản. Các thuật toán phân cụm dựa trên mô
hình có hai tiếp cận chính: Mô hình thống kê và Mạng Nơron. Phương pháp
này gần giống với phương pháp dựa trên mật độ, bởi vì chúng phát triển các
cụm riêng biệt nhằm cải tiến các mô hình đã được xác định trước đó, nhưng
đôi khi nó không bắt đầu với một số cụm cố định và không sử dụng cùng một
khái niệm mật độ cho các cụm.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
29
2.1.10 Phân cụm dữ liệu có ràng buộc
Sự phát triển của phân cụm dữ liệu không gian trên Cơ sở dữ liệu lớn đã
cung cấp nhiều công cụ tiện lợi cho việc phân tích thông tin địa lý, tuy nhiên
hầu hết các thuật toán này cung cấp rất ít cách thức cho người dùng để xác
định các ràng buộc trong thế giới thực cần phải được thoả mãn trong quá trình
Phân cụm dữ liệu. Để phân cụm dữ liệu không gian hiệu quả hơn, các nghiên
cứu bổ sung cần được thực hiện để cung cấp cho người dùng khả năng kết
hợp các ràng buộc trong thuật toán phân cụm [5].
2.2. Phân cụm dữ liệu dựa vào thuật toán K-means
2.2.1. Tư tưởng thuật toán
K-means là một trong số những phương pháp học không có giám sát cơ
bản nhất thường được áp dụng trong việc giải các bài toán về phân cụm dữ
liệu. Mục đích của thuật toán k-means là sinh ra k cụm dữ liệu {C1, C2,
…,Ck} từ một tập dữ liệu chứa n đối tượng trong không gian d chiều Xi =
(xi1, xi2, …, xid) ( ni ,1 ), sao cho hàm tiêu chuẩn [5]:
k
i
x iC
mxE
i1
2
đạt
giá trị tối thiểu. Trong đó: mi là trọng tâm của cụm Ci, là khoảng cách giữa
hai đối tượng [2].
Trọng tâm của một cụm là một véc tơ, trong đó giá trị của mỗi phần tử
của nó là trung bình cộng của các thành phần tương ứng của các đối tượng
véc tơ dữ liệu trong cụm đang xét. Tham số đầu vào của thuật toán là số cụm
k, và tham số đầu ra của thuật toán là các trọng tâm của các cụm dữ liệu. Độ
đo khoảng cách d giữa các đối tượng dữ liệu thường được sử dụng là khoảng
cách Euclide, bởi vì đây là mô hình khoảng cách dễ để lấy đạo hàm và xác
định các cực trị tối thiểu. Hàm tiêu chuẩn và độ đo khoảng cách có thể được
xác định cụ thể hơn tuỳ vào ứng dụng hoặc các quan điểm của người dùng.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
30
Để dễ hình dung về thuật toán k-means ta xét ví dụ đơn giản sau:
Cho tập dữ liệu bao gồm có 15 phần tử thực trong không gian 1 chiều S=
{1, 4, 8, 5, 10, 15, 16, 23, 25, 27, 13, 37, 2, 18, 20}, người ta cần phân cụm dữ
liệu này ra thành 3 cụm (k=3) theo thuật toán k-means. Các bước thực hiện
của thuật toán được trình bày như sau:
Bước khởi tạo: chọn 3 tâm ngẫu nhiên CL1 = 8, CL2= 16, CL3= 23
Ta thu được phân hoạch ban đầu như sau:
Cụm 1, với tâm là CL1, gồm có các phần tử: 1, 2, 4, 5, 8, 10
Cụm 2, với tâm là CL2, gồm có các phần tử: 13, 15, 16, 18
Cụm 3, với tâm là CL3, gồm có các phần tử: 23, 25, 27, 20, 37
(Ở đây độ đo tương tự giữa hai đối tượng được xác định bằng công thức:
d(a, b)=|a-b|)
Như vậy, ta có : E = {(1-8)2 + (2-8)2 + (4-8)2+ (5-8)2+ (8-8)2+ (10 -
8)2} + {(13-16)2 + (15-16)2 + (16-16)2+ (18-16)2}+ {(25-23)2 + (23-23)2 +
(27- 23)2+ (37-23)2+ (20-23)2} = 353.
Bước lặp thứ nhất:
Cập nhật lại tâm mới: Cl1 = (1+2+4+5+8+10)/6 = 5;
Tương tự ta có: CL2=13; CL3=26.4;
Phân hoạch tương ứng với các tâm mới như sau:
Cụm 1, với tâm là CL1 gồm có các phần tử: 1, 2, 4, 5, 8
Cụm 2, với tâm là CL2 gồm có các phần tử: 10, 13, 15, 16, 18
Cụm 3, với tâm là CL3 gồm có các phần tử: 23, 25, 27, 20, 37
Với phân hoạch này ta có giá trị hàm mục tiêu là: E= 249.2.
Do giá trị của hàm mục tiêu này bé hơn sơ với trạng thái của nó trước đó
nên ta có bước lặp thứ hai như sau:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
31
Bước lặp thứ hai:
Cập nhật lại tâm mới: Cl1 = (1+2+4+5+8)/5 = 4;
Tương tự ta có: CL2=14.4; CL3=26.4;
Phân hoạch tương ứng với các tâm mới như sau:
Cụm 1, với tâm là CL1 gồm có các phần tử: 1, 2, 4, 5, 8
Cụm 2, với tâm là CL2 gồm có các phần tử: 10, 13, 15, 16, 18, 20
Cụm 3, với tâm là CL3 gồm có các phần tử: 23, 25, 27, 37
Với phân hoạch này ta có giá trị hàm mục tiêu là: E= 224.8
Do giá trị của hàm mục tiêu này bé hơn sơ với trạng thái của nó trước đó
nên ta có bước lặp thứ ba như sau:
Bước lặp thứ ba:
Cập nhật lại tâm mới: Cl1 = (1+2+4+5+8)/5 = 4;
Tương tự ta có: CL2=15.33; CL3=28;
Phân hoạch tương ứng với các tâm mới như sau:
Cụm 1, với tâm là CL1, gồm có các phần tử: 1, 2, 4, 5, 8
Cụm 2, với tâm là CL2, gồm có các phần tử: 10, 13, 15, 16, 20
Cụm 3, với tâm là CL3, gồm có các phần tử: 23, 25, 27, 37
Với phân hoạch này ta có giá trị hàm mục tiêu là: E= 209.33
Chúng ta thực hiện thuật toán với bước tiếp theo do giá trị của hàm mục
tiêu thu được vẫn bé hơn giá trị trước đó. Ở bước tiếp theo ta thấy thuật tóan
sẽ dừng do tâm mới cập nhật sẽ không bị thay đổi. Như vậy, kết quả phân
cụm ta sẽ xác định giá trị của ba tâm như sau: CL1= 4; CL2=15.33; CL3=28;
2.2.2 Mô tả thuật toán
Input: K, và dữ liệu về n mẫu của 1 Cơ sở dữ liệu.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
32
Output: Một tập gồm K cluster sao cho cực tiểu về tổng sai-số vuông.
Các bước thuật toán:
Bước 1: Chọn ngẫu nhiên K mẫu vào K cluster. Coi tâm của cluster
chính là mẫu có trong cluster.
Bước 2: Tìm tâm mới của cluster.
Bước 3: Gán các mẫu vào từng cluster sao cho khoảng cách từ mẫu đó
đến tâm của cluster đó là nhỏ nhất.
Bước 4: Nếu các cluster không có sự thay đổi nào sau khi thực hiện bước
3 thì chuyển sang bước 5, ngược lại sang bước 2.
Bước 5: Dừng thuật toán.
Ví dụ: Trong không gian hai chiều, cho 12 điểm (n = 12) cần phân 12
điểm này thành hai cluster (k=2).
Đầu tiên, chọn hai điểm ngẫu nhiên vào hai cluster (chọn 2 điểm màu đỏ:
(1,3); (9,4))
Coi điểm (1,3) là tâm của cluster 1 và điểm (9,4) là tâm của cluster 2.
Tính toán khoảng cách từ các điểm khác đến hai điểm này và gán được các
điểm còn lại này vào một trong hai cluster, những điểm có màu xanh lơ vào
cluster 1, những điểm có màu xanh đậm vào cluster 2. Hiệu chỉnh lại tâm của
hai cluster, điểm màu đỏ là tâm mới của hai cluster. Tính lại các khoảng cách
các điểm đến tâm mới và gán lại các điểm này. Tiếp tục hiệu chỉnh lại tâm
của hai cluster. Rồi, lặp lại cho đến khi không còn sự thay đổi nữa thì dừng.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
33
Hình 2.5: Minh họa thuật toán K-means
Độ phức tạp của thuật toán này là O(tKn). Trong đó n là số mẫu trong
Cơ sở dữ liệu, K là số cluster, t là số lần lặp. Thông thường t, k << n. Nên
thuật toán này có hiệu quả tương đối với các Cơ sở dữ liệu lớn [2].
2.3 Phân cụm dữ liệu dựa vào thuật toán K-medios
2.3.1. Tư tưởng thuật toán
Để tìm ra k cụm với n đối tượng thì k-medoids chọn ngẫu nhiên k đối
tượng vào k cụm, coi mỗi đối tượng này là tâm của cụm. Phân bổ các đối
tượng còn lại vào cụm mà sự khác nhau của nó với đối tượng tâm của cụm là
gần nhất. Sau đó lặp lại quá trình: Thay đổi đối tượng tâm của mỗi cụm sao
cho chất lượng của cụm được cải thiện. Chất lượng của cụm được lượng giá
bởi một hàm đo sự khác nhau giữa một đối tượng và đối tượng tâm của cụm
chứa nó. Quá trình lặp cho đến khi không còn sự thay đổi nào về lực lượng
cũng như hình dạng của các cụm [2].
Để chọn một đối tượng không là đối tượng tâm Orandom thay thế tốt cho
một đối tượng tâm Oj thì mỗi đối tượng p xét theo 4 trường hợp sau đây:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
34
Trường hợp 1: p đang thuộc vào cụm có tâm là Oj (từ nay gọi là cụm
Oj). Nếu Oj được thay thế bởi Orandom và p gần nhất với Oi (ij) thì p được
gán lại vào Oi
Trường hợp 2: p đang thuộc vào Oj. Nếu Oj được thay thế bởi Orandom
và p gần nhất với Orandom thì p được gán lại vào Orandom.
Trường hợp 3: p đang thuộc vào Oi (ij). Nếu Oj được thay thế bởi
Orandom và p vẫn gần nhất với Oi thì không thay đổi gì cả. Tức là p vẫn
thuộc Oi.
Trường hợp 4: p đang thuộc vào Oi (ij). Nếu Oj được thay thế bởi
Orandom và p gần nhất với Orandom thì p được gán lại vào Orandom.
Hình 2.6: Các trường hợp đối với điểm p
2.3.2. Mô tả thuật toán
Input: Số nguyên k và Cơ sở dữ liệu gồm n đối tượng cần phân cụm.
Output: Một tập gồm k cụm mà tổng giá trị của sự khác nhau của tất cả
các đối tượng đến đối tượng tâm của nhóm chứa nó là nhỏ nhất.
Thuật toán:
Bước 1: Chọn k đối tượng bất kì vào k cụm. Coi mỗi đối tượng này là
tâm của nhóm.
Bước 2: Lặp
Bước 3: Gán mỗi đối tượng còn lại vào một cụm mà nó gần với đối
tượng tâm của cụm nhất.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
35
Bước 4: Chọn ngẫu nhiên một đối tượng không là đối tượng tâm,
Orandom.
Bước 5: Tính lại giá trị, S, đối với việc đổi Oj với Orandom.
Bước 6: Nếu S<0 thì đổi Oj với Orandom để tạo ra một tập với đối
tượngtâm mới.
Bước 7: Đến khi không có sự thay đổi nào nữa thì dừng.
Ví dụ: Trong không gian hai chiều cho n = 10 điểm, cần chia thành k =2
cụm. Các bước thực hiện của thuật toán k-medoids được chỉ ra:
Hình 2.7: Các bước thực hiện của k-medoids
Đầu tiên, chọn hai điểm bất kì vào hai cụm (điểm màu xanh đậm), rồi xét
các điểm còn lại và đưa chúng vào một trong hai cụm với điểm tâm lần lượt là
hai điểm đã chọn ban đầu.
Tiếp theo, chọn một điểm bất kì khác điểm tâm (điểm màu đỏ). Tính giá
của phép chuyển đổi điểm tâm từ điểm màu xanh -> điểm màu đỏ. Nếu giá
này chất lượng hơn thì coi điểm đỏ là tâm của cụm mới và thực lặp lại quá
trình đó cho đến khi không còn sự thay đổi nào.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
36
2.3.3 Nhận xét:
Thuật toán k-medoids mạnh hơn thuật toán k-means trong các trường
hợp dữ liệu có nhiễu vì k-medoids chịu ảnh hưởng ít hơn của nhiễu và các giá
trị chênh lệnh so với giá trị trung bình. Tuy nhiên cả hai thuật toán này đều
yêu cầu đưa vào số lượng cụm k [2].
2.4. Phân cụm dữ liệu dựa vào thuật toán BIRCH
2.4.1. Tư tưởng thuật toán
BIRCH (Balanced Iterative Reducing and Clustering Using Hierarchies)
là thuật toán phân cụm phân cấp sử dụng chiến lược phân cụm trên xuống
(top down). Ý tưởng của thuật toán là không cần lưu toàn bộ các đối tượng dữ
liệu của các cụm trong bộ nhớ mà chỉ lưu các đại lượng thống kê. Đối với mỗi
dữ liệu, BIRCH chỉ lưu một bộ ba (n, LS, SS), trong đó n là số đối tượng
trong cụm, LS là tổng các giá trị thuộc tính của các đối tượng trong cụm và
SS là tổng bình phương của các giá trị thuộc tính của các đối tượng trong
cụm. Các bộ ba này được gọi là các đặc trưng của cụm (Cluster Features -
CF) và được lưu giữ trong một cây được gọi là cây CF (CF-tree). Người ta đã
chứng minh rằng [5][10], các đại lượng thống kê chuẩn, như là độ đo khoảng
cách, có thể xác định từ cây CF. Hình 2.8 dưới đây biểu thị một ví dụ về cây
CF. Chúng ta thấy rằng, tất cả các nút trong của cây lưu tổng các đặc trưng
cụm CF, của nút con, trong khi đó các nút lá lưu trữ các đặc trưng của các
cụm dữ liệu [4].
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
37
Hình 2.8: Cây CF được sử dụng bởi thuật toán BIRCH
Cây CF là cây cân bằng, nhằm để lưu trữ các đặc trưng của cụm (CF).
Cây CF chứa các nút trong và nút lá, nút trong là nút chứa các nút con và nút
lá thì không có con. Nút trong lưu giữ tổng các đặc trưng cụm (CF) của các
nút con của nó. Một cây CF được đặc trưng bởi hai tham số:
Yếu tố nhánh (Branching Factor -B): Nhằm xác định số tối đa các nút
con của mỗi nút trong của cây.
Ngưỡng (Threshold - T): Khoảng cách tối đa giữa bất kỳ một cặp đối
tượng trong nút lá của cây, khoảng cách này còn gọi là đường kính của các
cụm con được lưu tại các nút lá.
Hai tham số này có ảnh hưởng đến kích thước của cây CF. Thuật toán
BIRCH thực hiện qua giai đoạn sau:
Giai đoạn 1: BIRCH duyệt tất cả các đối tượng trong Cơ sở dữ liệu và
xây dựng một cây CF khởi tạo. Trong giai đoạn này, các đối tượng lần lượt
được chèn vào nút lá gần nhất của cây CF (nút lá của cây đóng vai trò là cụm
con), sau khi chèn xong thì tất cả các nút trong cây CF được cập nhật thông
tin. Nếu đường kích của cụm con sau khi chèn là lớn hơn ngưỡng T, thì nút lá
được tách. Quá trình này lặp cho đến khi tất cả các đối tượng đều được chèn
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
38
vào trong cây. Ở đây ta thấy rằng, mỗi đối tượng trong cây chỉ được đọc một
lần, để lưu toàn bộ cây CF trong bộ nhớ thì cần phải điều chỉnh kích thước
của cây CF thông qua điều chỉnh ngưỡng T.
Giai đoạn 2: BIRCH lựa chọn một thuật toán Phân cụm dữ liệu (như
thuật toán phân cụm phân hoạch chẳng hạn) để thực hiện Phân cụm dữ liệu
cho các nút lá của cây.
2.4.2 Mô tả thuật toán:
Bước 1: Các đối tượng dữ liệu lần lượt được chèn vào cây CF, sau khi
chèn hết các đối tượng ta thu được cây CF khởi tạo. Một đối tượng được chèn
vào nút lá gần nhất tạo thành cụm con. Nếu đường kính của cụm con này lớn
hơn T thì nút lá được tách. Khi một đối tượng thích hợp được chèn vào nút lá,
tất cả các nút trỏ tới gốc của cây được cập nhật với các thông tin cần thiết.
Bước 2: Nếu cây CF hiện thời không có đủ bộ nhớ trong thì tiến hành
cây dựng một cây CF nhỏ hơn: Kích thước của cây CF được điều khiển bởi
tham số T và vì vậy việc chọn một giá trị lớn hơn cho nó sẽ hoà nhập một số
các cụm con thành một cụm, điều này làm cho cây CF nhỏ hơn. Bước này
không cần yêu cầu bắt đầu đọc dữ liệu lại từ đầu nhưng vẫn đảm bảo hiệu
chỉnh cây dữ liệu nhỏ hơn.
Bước 3: Thực hiện phân cụm: Các nút lá của cây CF lưu giữ các đại
lượng thống kê của các cụm con. Trong bước này, BIRCH sử dụng các đại
lượng thống kê này để áp dụng một số kỹ thuật phân cụm thí dụ như k-means
và tạo ra một khởi tạo cho phân cụm.
Bước 4: Phân phối lại các đối tượng dữ liệu bằng cách dùng các đối
tượng trọng tâm cho các cụm đã được khám phá từ bước 3: Đây là một bước
tuỳ chọn để duyệt lại tập dữ liệu và gán nhãn lại cho các đối tượng dữ liệu tới
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
39
các trọng tâm gần nhất. Bước này nhằm để gán nhãn cho các dữ liệu khởi tạo
và loại bỏ các đối tượng ngoại lai.
Với cấu trúc cây CF được sử dụng, BIRCH có tốc độ thực hiện Phân
cụm dữ liệu nhanh và có thể áp dụng đối với tập dữ liệu lớn, đặc biệt, BIRCH
hiệu quả khi áp dụng với tập dữ liệu tăng trưởng theo thời gian. BIRCH là chỉ
duyệt toàn bộ dữ liệu một lần với một lần quét thêm tuỳ chọn, nghĩa là độ
phức tạp của nó là O(n), với n là số đối tượng dữ liệu. Nhược điểm của nó là
chất lượng của các cụm được khám phá không được tốt. Nếu BIRCH sử dụng
khoảng cách Euclide, nó thực hiện tốt chỉ với các dữ liệu số. Mặt khác, tham
số vào T có ảnh hưởng rất lớn tới kích thước và tính tự nhiên của cụm. Việc
ép các đối tượng dữ liệu làm cho các đối tượng của một cụm có thể là đối
tượng kết thúc của cụm khác, trong khi các đối tượng gần nhau có thể bị hút
bởi các cụm khác nếu chúng được biểu diễn cho thuật toán theo một thứ tự
khác. BIRCH không thích hợp với dữ liệu đa chiều [4].
2.5. Cải tiến thuật toán K-means trong phân cụm dữ liệu tự động
2.5.1. Tư tưởng thuật toán
Bài toán thu thập, phân cụm dữ liệu tự động là một bài toán mang tính
thời sự, vì trong thời đại công nghệ thông tin, với sự trợ giúp của máy tính thì
việc áp dụng công nghệ thông tin vào thu thập dữ liệu tự động trên internet,
sau đó phân tích phục vụ cho việc phận cụm và từ đó hình thành các chủ đề
thôn tin với các dữ liệu thu thập tự động từ internet. Trên cơ sở đó, chúng ta
tiến hành phân tích dữ liệu và đưa ra những dự báo trong tương lai với từng
chủ đề khác nhau như: dự báo tốc độ tăng trưởng kinh tế, GDP, chỉ số chứng
khoán, giá cả hàng hoá... Điều này làm cơ sở cho chúng ta có thể đưa ra một
chính sách phát triển kinh tế trong cả nước [2].
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
40
Tuy nhiên, để có được những dữ liệu và phân cụm được những dữ liệu
đó theo các chủ đề khác nhau thì chúng ta phải có các kỹ thuật. Như mục 2.2,
nhóm tác giả đã trình bày thuật toán K-Means, tuy nhiên thuật toán có những
hạn chế nhất định [2]. Do đó, nhóm tác giả cải tiến thuật toán này nhằm khắc
phục những hạn chế của thuật toán K-means.
Cải tiến thuật toán K-means: thay vì chọn số điểm (k) làm trọng tâm,
chúng ta không chọn số điểm (k) làm trọng tâm cho số cụm mà sẽ tăng số
cụm từ 1 lên k cụm bằng cách đưa trung tâm cụm mới vào cụm có mức độ
biến dạng Max và tính lại trọng tâm các cụm.
Với thuật toán K- means bắt đầu bằng cách chọn k cụm và chọn ngẫu
nhiên k điểm làm trung tâm cụm, hoặc chọn phân hoạch ngẫu nhiên k cụm và
tính trọng tâm của từng cụm này. Việc chọn ngẫu nhiên k điểm làm trung tâm
cụm như đã nói ở trên có thể cho ra các kết quả khác nhau tùy vào chọn k
điểm này. Thuật toán cải tiến K-means nhìn chung vẫn dựa trên thuật toán k-
means nhưng sẽ không chọn k điểm làm trọng tâm cho k cụm mà sẽ tăng số
cụm từ 1 lên k cụm bằng cách đưa trung tâm cụm mới vào cụm có mức độ
biến dạng max (tăng số cụm) và tính lại trọng tâm các cụm.
2.5.2. Mô tả thuật toán
Bước 1: Khởi tạo giá trị ban đầu cho K: K=1
Bước 2:
Bước 2.1: Kiểm tra điều kiện K
Nếu K=1: chọn bất kỳ một điểm làm trung tâm của cụm.
Nếu K>1: thêm trung tâm của cụm mới vào cụm có biến dạng max.
Bước 2.2: Gán từng điểm vào cụm có trung tâm gần nhất với điểm đang
xét và cập nhật lại trung tâm cụm
Bước 2.3: Nếu trung tâm cụm không thay đổi, chuyển sang bước 3.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
41
Ngược lại, quay trở lại bước 2.2 (bước 2).
Bước 3: (Tăng số cụm)
Nếu K≤ giá trị ấn định số cụm thì K:=K+1, quay trở lại bước 2.1 (bước 2).
Ngược lại, thuật toán dừng.
Với thuật toán K-means cải tiến: đưa ra sự khác biệt, đó là mức độ biến
dạng của các cụm (Dựa trên biến dạng để phân cụm).
Mức độ biến dạng của các cụm được tính như sau:
I=S-N (d (w,x ))
Trong đó: w: trung tâm của cụm,
N: Số các thành phần trong cụm.
S: Tổng bình phương khoảng cách giữa các thành phần trong cụm và
trung tâm của không gian Euclidean.
I: Mức độ biến dạng của cụm
d (w,x): là khoảng cách giữa trung tâm w của cụm và trung tâm của
không gian Euclidean x.
2.5.3 Nhận xét:
+ Một cụm có mức độ biến dạng lớn thì trung tâm cụm đó có vị trí
không thích hợp.
+ Việc xác định các cụm cũng như xác định trung tâm của cụm, như vậy
thuật toán chủ yếu tìm trung tâm cụm chính xác và xác định lại các thành
phần trong cụm.
Với thuật toán K-means cải tiến:
+ Bước 2: như K-means nhưng khác là: không xác định trước k điểm mà
tăng k lên dần từ 1. Và chọn cụm có mức độ biến dạng lớn để phân ra 2 cụm
(khi đó 2 cụm này có mức độ biến dạng giảm, nhỏ hơn).
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
42
+ Thuật toán cải tiến K-means có độ phức tạp là O( k 2 nt), như vậy so với
thuật toán K-means có độ phức tạp O(tkn) thì: O( k 2 nt)>O(tkn), nhưng không
bằng K-mendoids, do k<<n. Tuy nhiên ưu điểm của thuật toán là giảm sự
phụ thuộc vào việc khởi tạo các cụm ban đầu nên ta sẽ không phải lập lại
thuật toán với việc chọn các cụm ban đầu khác nhau để tìm ra kết quả tối ưu
như ở K-Means.
2.3.4 Thử nghiệm:
Để đánh giá thuật toán cải tiến K-means, nhóm tác giả sử dụng các dữ
liệu lấy từ các trang Web với các nguồn chính sau:
+ Các trang được lấy tự động từ các website trên internet, việc tìm kiếm
được thực hiện bằng cách dùng Google, chương trình sẽ dựa vào URL để lấy
tài liệu và lưu trữ lại phục vụ cho quá trình tìm kiếm sau này.
+ Tìm kiếm có chọn lọc với các chủ đề tin về "Chứng khoán", khoảng
250 bài; Chủ đề tin về "Tỷ giá hối đoái", khoảng 100 bài; Chủ đề tin về "Giá
vàng", khoảng 150 bài; Chủ đề tin về "Thời tiết", khoảng 50 bài. Các chủ đề
đều có tần số xuất hiện nhiều.
Trên cơ sở thuật toán K-means, thuật toán K-medoids, nhóm tác giả so
sánh kết quả thực hiện phân cụm với các chủ đề tin trên. Kết quả bảng dưới
đây:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
43
Số tài
liệu
(Cơ sở
dữ liệu)
Số
cụm
Thời gian phân cụm trung bình (giây)
K-means K-medoids
K-means cải
tiến
250 10 9,756 9,106 8,56
250 15 12,375 11,525 10,972
100 10 2,518 2,218 2,118
100 15 3,719 3,119 3,219
150 10 4,115 4,015 3,005
150 15 5,723 5,110 5,123
50 10 0,957 0,907 0,857
50 15 1,13 1,11 1,00
Với độ phức tạp của các thuật toán trên, nhóm tác giả thấy thời gian
thực hiện thuật toán phụ thuộc vào độ lớn cơ sở dữ liệu và số cụm cần phân
cụm [2].
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
44
Chương 3: ỨNG DỤNG TRONG LẤY TIN TỰ ĐỘNG
3.1. Bài toán Thu thập dữ liệu về kinh tế trên Internet
Trong thời đại bùng nổ thông tin như hiện nay thì việc khai thác, thu thập
và chia sẻ thông tin đóng một vai trò quan trọng. Với một dữ liệu khổng lồ trên
mạng, làm sao ta có thể nắm bắt được thông tin mới nhất, nhanh chóng nhất mà
không phải tốn thời gian xem từng website để đọc và tìm kiếm thông tin.
Trên cơ sở này, hệ thống bóc tách thông tin được xây dựng nhằm phục
vụ cho việc trích xuất thông tin từ các website, rồi tất cả thông tin được hiển
thị trên một website, giúp cho người đọc có thể nắm bắt được thông tin một
cách xúc tích, nhanh chóng và tiết kiệm thời gian.
Đối tượng sử dụng hệ thống là tất cả cộng đồng người sử dụng mạng. Quản
trị viên có thể quản lý tài khoản người dùng, quản lý các đường dẫn (link).
Khảo sát, phân tích và đánh giá yêu cầu
Khảo sát một số chương trình hỗ trợ đọc tin tức RSS
3.1.1 iCA
iCA là tên gọi tắt của "Information Catcher", là phần mềm được xây
dựng dựa trên nền tảng và công nghệ dot NET của Microsoft. Phần mềm iCA
hoạt động với tính năng nhận các thông tin từ Website tổng hợp sau đó hiển
thị đầy đủ.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
45
Hình 3.1: Giao diện của iCA
3.1.2 Google Reader
Google Reader là một sản phẩm của Google dựa trên nền Web Form, có
rất nhiều tính năng nổi trội: lựa chọn số tin tức được hiển thị, chia sẻ tin với
bạn bè, phân nhóm tin tức, tìm kiếm tin tức…..
Hình 3.2: Giao diện trang chủ Google Reader
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
46
3.1.3 iGoogle
iGoogle là một cổng cá nhân (Personal Portal), sử dụng công nghệ
AJAX và .NET Framework 3.5. Khi người dùng thêm kênh tin từ trang
Google Reader, thì nó sẽ được tự động cập nhật vào trang iGoogle.
Hình 3.3: Giao diện trang chủ của iGoogle
iGoogle còn cung cấp sẵn một directory
Hình 3.4: Giao diện trang Gagdet của iGoogle
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
47
3.1.4 Trình duyệt Firefox
Hiện nay các trình duyệt phiên bản mới nhất cũng hỗ trợ công nghệ RSS.
Ví dụ như: Internet Explorer 8.0 của Microsoft, Opera, Firefox…
Khi ta vào một website nào đó mà sử dụng công nghệ RSS thì trên trình
duyệt của Firefox có xuất hiện biểu tượng màu da cam, ở giữa có ba chấm
trắng.
Hình 3.5: Giao diện trình duyệt FireFox
Nếu ta muốn lấy tin từ trang tin đó, ta chỉ cần kích vào biểu tượng đó và
nó sẽ tự động chuyển tới trang lấy tin của Google Reader và iGoogle.
Hoặc ta có thể sử dụng Live Bookmark được tích hợp trong trình duyệt
Firefox để lấy tin.
Hình 3.6: Giao diện trang lấy tin RSS
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
48
3.1.5 Tổng hợp yêu cầu của người dùng
Mục tiêu của đề tài là xây dựng nên một hệ thống hỗ trợ người dùng
chọn kênh tin tức, thu thập tin tức, quản lý các kênh tin, tạo ra một website tin
tức cho chính người dùng mà không phải lướt từng website để đọc tin tức.
Thông qua việc khảo sát một số phần mềm đọc tin tức trong và ngoài nước,
và yêu cầu từ phía người dùng, có thể tóm tắt yêu cầu của người dùng đối với
hệ thống bóc tách thông tin như sau:
- Người dùng có thể tạo ra kênh tin tức cho riêng mình bằng cách chỉ cần
đăng ký một tài khoản và đăng nhập vào nhập đường dẫn link tới địa chị trang
website cần lấy tin.
- Người dùng có thể tổ chức, quản lý kênh tin tức của mình với các chức năng:
- Tạo nhóm tin tức (như: tin giáo dục, xã hội, tin chứng khoán…), sửa
nhóm tin và xoá nhóm tin.
- Lựa chọn số tin tức được hiển thị.
- Người dùng còn có thể tìm kiếm thông tin.
3.1.6 Đánh giá và lựa chọn giải pháp
Thông qua việc khảo sát một số website, phần mềm hỗ trợ đọc tin tức
RSS ở trên, ta thấy có giải pháp để xây dựng hệ thống đó là: Win Form và
Web Form. Sau đây là những thuận lợi hay khó khăn của hai giải pháp trên.
Và cuối cùng sẽ lựa chọn giải pháp cho chương trình của mình.
- Sử dụng Win Form:
+ Ưu điểm:
Hỗ trợ nhiều tính năng
Khả năng chạy không cần mạng (offline)
+ Nhược điểm:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
49
Người dùng phải mất thời gian cài đặt
Khó khăn trong việc nâng cấp: mỗi khi hệ thống nâng cấp, cập
nhật thêm chức năng mới thì người dùng phải cài lại chương trình.
- Sử dụng Web Form:
+ Ưu điểm:
Tính cơ động: Không cần cài đặt, không cần cấu hình, với
ứng dụng sử dụng Web Forms, người dùng chỉ cần dùng một
trình duyệt web kết nối với mạng Internet là có thể truy cập ở bất
cứ chỗ nào. Đây có thể nói là ưu điểm lớn nhất của các ứng dụng
Web Forms.
Dễ thay đổi: Sử dụng Web Forms đồng nghĩa với tất cả
dữ liệu và chương trình đã nằm trên máy chủ. Chính vì vậy khi
muốn sửa đổi, nâng cấp hệ thống, việc nâng cấp trên Web Forms
có thể diễn ra rất dễ dàng. Người cung cấp dịch vụ chỉ cần cập
nhật trực tiếp lên máy chủ, còn phía người dùng, các công việc
này hoàn toàn trong suốt.
Tính chia sẻ: có thể chia sẻ tin tức.
Sau khi xem xét các khía cạnh, ưu và nhược điểm của các công nghệ cho
thấy Web Form là một giải pháp tối ưu để phát triển hệ thống. Cụ thể ở đây là
công nghệ .NET của Microsoft, sử dụng ngôn ngữ lập trình C# và hệ quản trị
Cơ sở dữ liệu Microsoft SQL Server 2000.
3.2 Phân tích chức năng hệ thống
3.2.1 Biểu đồ Use Case
Biểu đồ Use Case thể hiện sự tương tác giữa người dùng và hệ thống. Từ
đó xác định được hệ thống cần phải làm gì.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
50
Hình 3.8: Biểu đồ User – case
3.2.2 Đặc tả các Use - case
Đặc tả Use – case đăng nhập
+ Tóm tắt
Use case này mô tả cách đăng nhập vào hệ thống bóc tách thông tin.
+ Dòng sự kiện chính
- Use case này bắt đầu khi một actor (người dùng, quản trị viên)
muốn đăng nhập vào hệ thống.
- Hệ thống yêu cầu các actor nhập tên và mật khẩu.
- Hệ thống kiểm tra tên và mật khẩu mà actor đã nhập. Nếu đúng
hệ thống cho phép actor đăng nhập vào hệ thống.
+ Dòng sự kiện khác
- Tên / mật khẩu sai:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
51
Nếu trong dòng sự kiện chính các actor nhập tên, mật khẩu sai thì hệ
thống sẽ báo lỗi. Actor có thể quay trở về đầu dòng sự kiện hoặc
huỷ bỏ việc đăng nhập, lúc này use case kết thúc.
+ Các yêu cầu đặc biệt
Không có.
+ Điều kiện tiên quyết
Không có.
+ Post condition
Nếu use case thành công thì người đăng nhập sẽ có các quyền sử
dụng hệ thống tương ứng. Ngược lại trạng thái của hệ thống không đổi.
+ Điểm mở rộng
Không có.
Đặc tả Use-case quản lý tin tức
+ Tóm tắt
Use case này cho phép người sử dụng (đã là đăng nhập thành công)
quản lý tin tức: thêm, sửa, xoá nhóm tin, lựa chọn số tin tức được hiển
thị và thêm, xoá kênh tin.
+ Dòng sự kiện
Use case này bắt đầu khi người dùng đăng nhập vào hệ thống và
thêm kênh tin và nhóm tin.
+ Dòng sự kiện chính
- Hệ thông sẽ liệt kê các nhóm tin, kênh tin của riêng thành viên đó.
- Thêm, sửa, xoá nhóm tin và kênh tin, lựa chọn số tin tức hiển thị.
+ Các yêu cầu đặc biệt
Không có
+ Điểu kiện tiên quyết
Không có
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
52
+ Post conditions
Nếu use case thành công, thông tin về nhóm tin, kênh tin sẽ được
cập nhật vào cơ sở dữ liệu.
+ Điểm mở rộng
Không có
Đặc tả Use- case quản lý người dùng
+ Tóm tắt
Use case này cho phép quản trị viên thêm, sửa, xoá, tìm kiếm thông
tin về thành viên sử dụng hệ thống. Quản lý trang tin của các thành viên
(thêm, sửa, xoá trang tin của người sử dụng).
+ Dòng sự kiện chính
- Quản trị viên lựa chọn chức năng quản lý người dùng
- Hệ thống nhận thông tin từ quản trị viên.
- Hệ thống kiểm tra thông tin nhập vào
- Hệ thống truy xuất cơ sở dữ liệu.
- Theo từng yêu cầu của quản trị viên hệ thống sẽ thực hiện như sau:
Nếu quản trị viên yêu cầu thêm, sửa, xoá hoặc cập nhật lại thông
tin về trang tin riêng của người sử dụng thì hệ thống sẽ cập nhật
lại cơ sở dữ liệu tương ứng với các yêu cầu.
Nếu quản trị viên yêu cầu tìm kiếm thông tin người sử dụng thì hệ
thống đưa ra những người sử dụng thoả yêu cầu của quản trị viên.
- Hệ thống thông báo thực hiện thành công.
- Use – case kết thúc.
+ Dòng sự kiện phụ
Nếu hệ thống không truy xuất được cơ sở dữ liêu thì sẽ báo lỗi, use
– case kết thúc.
+ Các yêu cầu đặc biệt
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
53
Không có.
+ Điều kiện tiên quyết
Người quản lý đăng nhập vào hệ thống với quyền quản trị viên trước
khi use – case bắt đầu.
+ Post conditions
Nếu use – case thành công thì thông tin của người sử dụng sẽ được
cập nhật vào hệ thống. Ngược lại trạng thái của hệ thống không thay đổi.
+ Điểm mở rộng
Không có.
Đặc tả Use-case tìm kiếm tin tức
+ Tóm tắt
Use case này cho phép người sử dụng tìm kiếm thông tin mà mình
muốn tìm.
+ Dòng sự kiện
Use case này bắt đầu khi người dùng chọn chức năng tìm kiếm tin tức.
+ Dòng sự kiện chính
- Người dùng nhập thông tin muốn tìm.
- Công cụ Google sẽ tìm kiếm.
- Liệt kê tất cả thông tin thoả yêu cầu.
+ Dòng sự kiện phụ
Nếu không tìm thấy thì thông báo cho người dùng biết là không tìm thấy.
+ Các yêu cầu đặc biệt
Không có.
+ Điều kiện tiên quyết
Không có.
+ Post conditions
Không có.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
54
3.2.3 Biểu đồ tuần tự (Sequence Diagram)
Hoạt động của hệ thống: Nhìn một cách bao quát, hệ thống gồm những
thao tác cơ bản sau:
Hình 3.9: Biểu đồ tuần tự - Toàn cảnh hệ thống
Đăng ký tài khoản: Để có thể tạo trang tin cá nhân người sử dụng cần
phải đăng ký một tài khoản. Người dùng chỉ cần điền đúng và đầy đủ các
thông tin mà chương trình đưa ra. Server có trách nhiệm cung cấp tài khoản
mới cho người dùng.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
55
Hình 3.10: Biểu đồ tuần tự - Đăng ký tài khoản
Đăng nhập hệ thống: Là hành động người dùng sử dụng tài khoản được
cấp để vào hệ thống. Sau khi nhập các thông tin cần thiết, chương trình sẽ kết
nối và kiểm tra tính hợp lệ. Người dùng sẽ được phản hồi kết quả.
Hình 3.11: Biểu đồ tuần tự - Đăng nhập hệ thống
Thêm đường dẫn: Để lấy thông tin từ website khác, người dùng có thể
nhập trực tiếp đường dẫn tới tập tin RSS, chương trình sẽ tự động trích rút tin
tức và hiện thị lên cho người dùng. Hoặc người dùng có thể nhập đường dẫn
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
56
tới website cung cấp RSS, chương trình sẽ trích rút các đường dẫn tới các tập
tin RSS cho người dùng lựa chọn.
Hình 3.12: Biểu đồ tuần tự - Thêm đường dẫn link
Thêm nhóm tin: Là thao tác mà người dùng thêm mới nhóm để phân loại
tin tức.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
57
Hình 3.13: Biểu đồ tuần tự - Thêm nhóm tin
Sắp xếp, phân loại nhóm tin:
Hình 3.14: Biểu đồ tuần tự - Sắp xếp nhóm tin
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
58
Tìm kiếm tin tức: Trước hết người dùng chọn chế độ tìm kiếm, đó là tìm
kiếm tin tức trong hệ thống hay tìm kiếm trên Google search.
Hình 3.15: Biểu đồ tuần tự - Tìm kiếm thông tin
Quản lý người dùng: Đây là thao tác chỉ dành cho người dùng có quyền
là quản trị. Quản trị viên có thể cung cấp tài khoản mới cho người dùng, có
thể xoá tài khoản người dùng, quản lý trang tin cá nhân của người dùng.
Hình 3.16: Biểu đồ tuần tự - Quản lý người dùng
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
59
3.3 Thiết kế cơ sở dữ liệu
3.3.1 Đặc tả chi tiết các bảng dữ liệu
Bảng Urls: chứa thông tin về địa chỉ website chứa các kênh tin.
Bảng 3.1: Bảng Urls (địa chỉ website)
Bảng Channels: chứa thông tin về các kênh tin tức
Bảng 3.2: Bảng Channels (kênh tin)
Bảng Items: chứa thông tin về những tin tức mà hệ thống bóc tách lấy về.
tblItems
STT Tên trường Kiều dữ liệu Độ dài Ghi chú Diễn giải
1 ItemID int 4 Khoá chính Mã tin tức
2 ChannelID int 4 Khác rỗng Mã kênh tin
3 iLink nvarchar 50 Khác rỗng Đường dẫn tới chi tiết của tin tức
4 iTitle nvarchar 50 Khác rỗng Tiêu đề của tin tức
5 iDescription nvarchar MAX Khác rỗng Nội dung chi tiết của tin tức
6 iPubDate datetime Ngày xuất bản tin
7 iAuthor nvarchar 50 Tác giả viết tin
Bảng 3.3: Bảng Items (tin tức)
tblUrls
STT Tên trường Kiểu dữ liệu Độ dài Ghi chú Diễn giải
1 UrlID int 4 Khoá chính Mã địa chỉ
2 uLink nvachar 50 Khác rỗng Đường dẫn tới website
3 uTitle nvarchar 50 Tiêu đề của website
4 uDescription nvarchar 50 Đặc tả về website
tblChannels
STT Tên trường Kiểu dữ liệu Độ dài Ghi chú Diễn giải
1 ChannelID int 4 Khoá chính Mã kênh tin
2 cLink nvachar 50 Khác rỗng Đường dẫn tới file RSS
3 cTitle nvarchar 50 Khác rỗng Tiêu đề của kênh tin
4 cDescription navarchar MAX Khác rỗng Đặc tả chi tiết về kênh tin
5 LastUpdated dateTime Khác rỗng Thời gian cập nhật kênh tin
6 ItemCount int 4 Khác rỗng Số lượng tin tức có trong kênh tin
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
60
Bảng Group: chứa thông tin về nhóm tin của mỗi người sử dụng
Bảng 3.4: Bảng Group (nhóm tin tức)
Bảng User Blog: chứa thông tin về blog tin tức của mỗi người dùng.
Bảng 3.5: Bảng User Blog (kho tin tức của mỗi người dùng)
tblGroup
STT Tên trường Kiểu dữ liệu Độ dài Ghi chú Diễn giải
1 GroupID int 4 Khoá chính Mã nhóm
2 GroupName nvachar 50 Khác rỗng Tên nhóm
3 UserName nvarchar 50 Khác rỗng Tên đăng nhập của người sử dụng
tblUserBlog
STT Tên trường Kiểu dữ liệu Độ dài Ghi chú Diễn giải
1 UserBlogID int 4 Khoá chính Mã trang blog tin tức của
mỗi người dùng
2 UserName nvarchar 50 Khác rỗng Tên đăng nhập của người
sử dụng
3 ChannelID int 4 Khác rỗng Mã kênh tin
4 GroupID int 4 Khác rỗng Mã nhóm
5 NumberToShow int 4 Số lượng tin người dùng
chọn trên mỗi kênh tin
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
61
3.3.2 Mô hình quan hệ
Hình 3.17: Mô hình quan hệ dữ liệu giữa các bảng
3.4 Qui trình tự động lấy đường dẫn tới tập tin RSS
Khi người dùng nhập đường dẫn tới website (chẳng hạn:
), thì nhiệm vụ của hệ thống là lấy tất cả những file RSS
mà website đó cung cấp.
Bước 1: Ta phải tải nội dung trang HTML của website đó về.
Bước 2: Ta sử dụng đến biểu thức chính qui (Regular Expression) để lọc
ra những thẻ chứa đường dẫn tới file RSS.
Bước 3: Lọc ra đường dẫn tới file RSS, ta cũng dùng biểu thức chính qui
để match() được href chứa đường dẫn tới file RSS.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
62
Bước 4: Sau khi đã lấy được đường dẫn tới file RSS, lưu vào Cơ sở dữ
liệu. Tiếp theo, đọc file RSS đó.
3.5 Qui trình đọc tập tin RSS
Người dùng có thể nhập trực tiếp đường dẫn tới file RSS. Nhiệm vụ của
hệ thống là trích rút dữ liệu từ file RSS. Để trích rút dữ liệu ta làm như sau:
Bước 1: Trước tiên là thiết kế lớp RSSItem để chứa các dữ liệu mà ta
trích rút từ file RSS.
Bước 2: Đọc file RSS
3.6 Một số màn hình giao diện đạt được
Hình 3.18: Giao diện trang đăng nhập
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
63
Hình 3.19: Giao diện trang quản lý người dùng
Hình 3.20: Giao diện blog
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
64
Hình 3.21: Giao diện thư mục RSS cung cấp sẵn
Hình 3.22: Giao diện trang lấy link RSS tự động
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
65
Hình 3.23: Giao diện trang tin tức lấy về
Hình 3.24: Giao diện trang quản lý nhóm tin
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
66
PHẦN KẾT LUẬN
Tầm quan trọng của vấn đề lấy tin tự động trên Internet
Với sự phát triển nhanh chóng của Internet như ngày nay, thì mỗi ngày,
tuần, tháng, quý, năm... mỗi con người chúng ta phải xử lý hàng trăm, triệu,
tỷ... thông tin, dữ liệu khác nhau, điều này có nghĩa là chúng ta đã gặp phải
những rắc rối không mong muốn trong thời đại công nghệ số này. Vì vậy, bài
toán tìm kiếm tài liệu Web và phân cụm tài liệu là một bài toán phức tạp và
được ứng dụng trong thực tế, đặc biệt trong các ứng dụng Web. Trên cơ sở
những dữ liệu thu thập được từ internet thì chúng ta cần phải tiến hành phân
loại, nhóm phân cụm thành các cụm khác nhau theo các chủ đề khác nhau từ
đó phục vụ cho việc phân tích dữ liệu và dự báo kinh tế [1].
Hiện nay, có nhiều phương pháp tìm kiếm khác nhau, nhưng nhìn chung
là các cách tiếp cận đều dựa vào các trọng số trang Web (Chỉ số quan trọng
của trang trong tập kết quả), như: Page Bank, HITS...Tức là các trang này chủ
yếu là dựa vào các liên kết để xác định trọng số [16].
Mặt khác, chúng ta có thể dựa vào nội dung các tài liệu để xác định trọng
số, nếu các tài liệu gần nhau về nội dung thì gán cho chúng một trọng số và
khi đó chúng thuộc cùng một nhóm.
Các vấn đề đã được tìm hiểu trong luận văn
Luận văn đã nêu vấn đề cải tiến thuật toán K-means trong phân cụm tài
liệu web, thay vì chọn số điểm làm trọng tâm thì không chọn số điểm làm
trọng tâm cho số cụm mà sẽ tăng số cụm từ 1 lên k cụm bằng cách đưa trung
tâm cụm mới vào cụm có mức độ biến dạng Max và tính lại trọng tâm các
cụm và đã cài đặt thử nghiệm trên các bộ cơ sở dữ liệu, cho kết quả bước đầu
khá khả quan.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
67
Hướng nghiên cứu tiếp theo
Tiếp tục nghiên cứu các kỹ thuật phân cụm dữ liệu, trong đó nhấn mạnh
đến kỹ thuật phân cụm K-Means mở rộng, thời gian tuyến tính đáp ứng được
các yêu cầu của bài toán phân cụm tài liệu Web.
Đề xuất ra giải pháp xây dựng quy trình công nghệ và phát triển hệ thống
phần mềm thu thập, đánh giá và phân cụm thông tin tự động trên Internet
phục vụ cho việc nghiên cứu, học tập và giảng dạy ngành Hệ thống thông tin
Kinh tế, và phục vụ cho việc phân tích, tổng hợp, xử lý dữ liệu và dự báo phát
triển kinh tế xã hội của khu vực trung du và miền núi phía Bắc.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
68
DANH MỤC CÁC CÔNG TRÌNH CÓ LIÊN QUAN
ĐẾN LUẬN VĂN
1. Phạm Việt Bình, Nguyễn Văn Huân, Vũ Xuân Nam, Trương Mạnh
Hà, Nguyễn Thanh Dương (2009), "Tìm kiếm và phân cụm tài liệu Web tự
động", Tập 56, số 8, 2009 - Tạp chí khoa học và công nghệ, Đại học Thái
Nguyên, tr. 60 - 64.
2. Phạm Việt Bình, Nguyễn Văn Huân, Vũ Xuân Nam, Trương Mạnh Hà
(2009), "Cải tiến thuật toán K-Means và ứng dụng phân cụm dữ liệu tự
động", Báo cáo Hội thảo Khoa học tại ĐH Lạc Hồng, Đồng Nai.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
69
TÀI LIỆU THAM KHẢO
Tài liệu tiếng Việt
[1] Phạm Việt Bình, Nguyễn Văn Huân, Vũ Xuân Nam, Trương Mạnh
Hà, Nguyễn Thanh Dương (2009), "Tìm kiếm và phân cụm tài liệu Web tự
động", Tập 56, số 8, 2009 - Tạp chí khoa học và công nghệ, Đại học Thái
Nguyên, tr. 60 - 64.
[2] Phạm Việt Bình, Nguyễn Văn Huân, Vũ Xuân Nam, Trương Mạnh
Hà (2009), "Cải tiến thuật toán K-Means và ứng dụng phân cụm dữ liệu tự
động", Báo cáo Hội thảo Khoa học tại ĐH Lạc Hồng, Đồng Nai.
[3] Lê Thu Trang (2008), "Khai phá dữ liệu bằng phương pháp phân
cụm", Luận văn thạc sĩ Công nghệ thông tin, Khoa Công nghệ thông tin - Đại
học Thái Nguyên.
[4] Hoàng Văn Dũng, "Khai phá dữ liệu web bằng kỹ thuật phân cụm",
[5] Đỗ Văn Đại (2009), "Phân cụm dữ liệu trong không gian có chướng
ngại vật", Đồ án tốt nghiệp Đại học, Khoa Công nghệ thông tin - Đại học
Giao thông vận tải.
Tài liệu tiếng Anh
[6] Athena Vakali (2004), "Web data clustering Current research status
& trends", Aristotle University, Greece.
[7] Raghu Krishnapuram, Anupam Joshi, and Liyu Yi (2001), A Fuzzy
Relative of the K - Medoids Algorithm with Application toWeb Document
and Snippet Clustering.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
70
[8] Filippo Geraci, Marco Pellegrini, Paolo Pisati, and Fabrizio
Sebastiani (2006), A scalable algorithm for high-quality clustering of Web
Snippets, Italy, ACM.
[9] Hiroyuki Kawano (2004), Applications of Web mining- from Web
search engine to P2P filtering, IEEE.
[10] Raymond and Hendrik (2000), Web Mining Research: A Survey, ACM.
[11] Hua-Jun Zeng, Qi-Cai He, Zheng Chen, Wei-Ying Ma, Jinwen
Ma (2004), Learning to Cluster Web Search Results, ACM.
[12] Lizhen Liu, Junjie Chen, Hantao Song (2002), The research of Web
Mining, IEEE.
[13] Maria Rigou, Spiros Sirmakessis, and Giannis Tzimas (2006), A
Method for Personalized Clustering in Data Intensive Web Applications.
[14] Oren Zamir and Oren Etzioni (1998), Web document Clustering: A
Feasibility Demonstration, University of Washington, USA, ACM.
[15] Periklis Andritsos (2002), Data Clusting Techniques, University
Toronto.
[16] Yitong Wang, Masaru Kitsuregawa (2002), Evaluating Contents-
Link Coupled Web Page Clustering for Web Search Results, ACM.
[17] Zifeng Cui, Xu , Weifeng Zhang, Junling Xu (2005), Web
Documents Clustering with Interest Links, IEEE.
[18] Wenyi Ni (2004), A Survey of Web Document Clustering, Southern
Methodist University.
[19] Bing Liu (2007), Web mining, Springer.
Các file đính kèm theo tài liệu này:
- Nghiên cứu một số kỹ thuật lấy tin tự động trên internet.pdf