Những kết quả đạt được trong luận án đã mở ra những định hướng nghiên
cứu triển vọng có thể tiếp cận trong thời gian đến. Cụ thể:
1. Thiết lập một cơ sở cho việc phát triển của các phức giữa ion kim loại với
các phối tử huỳnh quang mới, cũng như các phối tử huỳnh quang đã được
công bố trước đây để phát hiện cysteine.
2. Nghiên cứu cơ chế thay đổi đặc tính hấp thụ, huỳnh quang của các sensor
trước và sau khi tương tác với chất phân tích, nhằm xây dựng cơ sở để định
hướng thiết kế các sensor mới, nhất là tăng độ nhạy, độ chọn lọc và độ tan
của các sensor. Đặc biệt, nghiên cứu phát triển các sensor huỳnh quang phát
xạ ở vùng bước sóng dài, hoặc các sensor hoạt động dựa trên sự biến đổi tỉ lệ
huỳnh quang ở hai bước sóng, nhằm hạn chế các ảnh hưởng khi dùng các
sensor để phát hiện các chất trong tế bào sống
                
              
                                            
                                
            
 
            
                
156 trang | 
Chia sẻ: ngoctoan84 | Lượt xem: 1236 | Lượt tải: 0
              
            Bạn đang xem trước 20 trang tài liệu Luận văn Thiết kế, tổng hợp một số sensor huỳnh quang từ dẫn xuất của cyanine, coumarin để xác định biothiol và Hg(II), để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Kết quả tính toán đã cho thấy, sự phát xạ huỳnh quang của AMC, AMC-
Cys, AMC-Hcy và AMC-GSH đều xuất phát từ các trạng thái kích thích 
electron ở mức cao (S2, S4) về trạng thái cơ bản S0. Đây là một trường hợp 
ngoại lệ của quy tắc Kasha. 
OO O
O
AMC
OO O
O
AMC- thiol
S
R
Fluorophore Receptor
+ Thiol
131 
NHỮNG KẾT LUẬN CHÍNH CỦA LUẬN ÁN 
1. Đã kết hợp linh hoạt giữa tính toán hóa học lượng tử và nghiên cứu thực 
nghiệm để phát triển thành công hai sensor huỳnh quang mới là L và AMC. 
Sự kết hợp linh hoạt này đã giảm đáng kể khối lượng tính toán lý thuyết và 
điều tra thực nghiệm, tiết kiệm thời gian và chi phí hóa chất, tăng khả năng 
thành công, làm sáng tỏ được bản chất các quá trình, tạo cơ sở khoa học cho 
các nghiên cứu tiếp theo. Cụ thể: 
 Đối với sensor L, tính toán đã dự đoán và định hướng cho thực nghiệm trong 
giai đoạn thiết kế, tổng hợp và đặc trưng sensor L; nghiên cứu thực nghiệm 
sau đó đã kiểm chứng và khẳng định lại các kết quả tính toán. Đến phức tạo 
bởi L và ion Hg(II), thực nghiệm được khảo sát trước; tính toán lý thuyết sau 
đó để giải thích và làm sáng tỏ ứng dụng của sensor L trong phát hiện ion 
Hg(II). Tiếp đến, việc sử dụng phức Hg2L2 để xác định biothiol lại được dự 
đoán trước từ tính toán; điều tra thực nghiệm sau đó để kiểm chứng và khẳng 
định lại kết quả tính toán. 
 Đối với sensor AMC, tính toán đã dự đoán và định hướng cho thực nghiệm ở 
giai đoạn thiết kế, tổng hợp và phản ứng giữa sensor AMC với các biothiol. 
Các đặc tính và ứng dụng của sensor AMC được nghiên cứu từ thực nghiệm 
trước; tính toán lý thuyết sau đó đã giải thích và làm rõ bản chất các kết quả 
thực nghiệm. 
2. Các phản ứng tổng hợp sensor L và sensor AMC đã được nghiên cứu dự 
đoán và định hướng từ tính toán; thực nghiệm sau đó đã kiểm chứng và 
khẳng định các kết quả tính toán. 
3. Cấu trúc, đặc tính của sensor L và sensor AMC đã được xác định ở mức lý 
thuyết B3LYP/LanL2DZ với kết quả đáng tin cậy, thông qua kiểm tra, đối 
chiếu và khẳng định từ các kết quả thực nghiệm. 
4. (a). Sensor L có thể phát hiện chọn lọc ion Hg(II) trong sự có mặt các ion 
kim loại khác, hoạt động theo kiểu bật-tắt huỳnh quang. Giới hạn phát hiện 
và giới hạn định lượng ion Hg(II) theo phương pháp trắc quang là 0,076 μM 
132 
và 0,25 μM; theo phương pháp huỳnh quang là 0,059 μM và 0,19 μM. Phức 
Hg2L2 có thể phát hiện chọn lọc Cys trong sự hiện diện các amino acids 
không có nhóm thiol, hoạt động theo kiểu tắt-bật huỳnh quang. Giới hạn phát 
hiện và giới hạn định lượng Cys tương ứng là 0,2 μM và 0,66 μM. Sensor L 
phát hiện ion Hg(II) và phức Hg2L2 phát hiện Cys dựa trên phản ứng trao đổi 
phức giữa ion trung tâm Hg(II) với hai phối tử là L và Cys. 
(b). Sensor AMC có thể phát hiện chọn lọc các biothiol (Cys, GSH, Hcy) 
trong sự hiện diện các amino acids không có nhóm thiol, hoạt động dựa trên 
sự biến đổi tỉ lệ cường độ huỳnh quang ở hai bước sóng. Giới hạn phát hiện 
và giới hạn định lượng Cys tương ứng là 0,5 μM và 1,65 μM. Sensor AMC 
phản ứng với các biothiol (Cys, GSH, Hcy) theo cơ chế phản ứng cộng 
Michael. 
(c). Các sensor huỳnh quang Hg2L2 và AMC đều có thể phát hiện Cys trong 
dung dịch với lượng nhỏ dung môi hữu cơ, thời gian của phản ứng xảy ra 
nhanh, có thể phát hiện được Cys với nồng độ thấp hơn trong nội bào và thấp 
hơn so với các sensor đã công bố. 
5. Đã sử dụng phương pháp TD-DFT để nghiên cứu đặc tính huỳnh quang của 
các chất dựa trên hình học tối ưu tại trạng thái cơ bản và các trạng thái kích 
thích; kết hợp với sử dụng phương pháp phân tích NBO để xem xét sự biến 
đổi đặc tính huỳnh quang của các chất dựa trên nghiên cứu bản chất các liên 
kết. Kết quả tính toán cho thấy, ion Hg(II) gây nên phản ứng tạo phức với L 
dẫn đến làm giảm khoảng cách năng lượng giữa HOMO và LUMO, đồng 
thời làm thay đổi hệ liên hợp electron π, là nguyên nhân dẫn đến sự dập tắt 
huỳnh quang trong phức Hg2L2. Sự phát xạ huỳnh quang của AMC, AMC-
Cys, AMC-Hcy và AMC-GSH đều xuất phát từ các trạng thái kích thích 
electron ở mức cao (S2, S4) về trạng thái cơ bản S0. Đây là một trường hợp 
ngoại lệ của quy tắc Kasha. 
133 
ĐỊNH HƯỚNG NGHIÊN CỨU TIẾP THEO 
Những kết quả đạt được trong luận án đã mở ra những định hướng nghiên 
cứu triển vọng có thể tiếp cận trong thời gian đến. Cụ thể: 
1. Thiết lập một cơ sở cho việc phát triển của các phức giữa ion kim loại với 
các phối tử huỳnh quang mới, cũng như các phối tử huỳnh quang đã được 
công bố trước đây để phát hiện cysteine. 
2. Nghiên cứu cơ chế thay đổi đặc tính hấp thụ, huỳnh quang của các sensor 
trước và sau khi tương tác với chất phân tích, nhằm xây dựng cơ sở để định 
hướng thiết kế các sensor mới, nhất là tăng độ nhạy, độ chọn lọc và độ tan 
của các sensor. Đặc biệt, nghiên cứu phát triển các sensor huỳnh quang phát 
xạ ở vùng bước sóng dài, hoặc các sensor hoạt động dựa trên sự biến đổi tỉ lệ 
huỳnh quang ở hai bước sóng, nhằm hạn chế các ảnh hưởng khi dùng các 
sensor để phát hiện các chất trong tế bào sống. 
3. Phát triển, mở rộng việc sử dụng L để phân tích ion Hg(II) trong các đối 
tượng: 
- Nghiên cứu ứng dụng phân tích trong các mẫu nước ăn uống sinh hoạt, các 
mẫu nước thải công nghiệp, nước thải y tế (đặc biệt các phòng nha), các mẫu 
thực phẩm tươi sống (đặc biệt cá biển ăn thịt), các mẫu thực phẩm chế biến 
có sử dụng bao bì đóng gói bảo quản. 
- Nghiên cứu ứng dụng phân tích các ion kim loại Hg(II) trong các tế bào sống. 
4. Phát triển, mở rộng việc sử dụng Hg2L2 và AMC để phân tích các biothiol 
trong các tế bào sống. 
5. Nghiên cứu gắn kết các sensor huỳnh quang, trắc quang trên các vật liệu 
silica mao quản, sản xuất các bộ KIT dùng để phát hiện nhanh ion Hg(II) và 
các biothiol. 
134 
DANH MỤC CÔNG TRÌNH CÔNG BỐ 
LIÊN QUAN LUẬN ÁN 
1. Doan Thanh Nhan, Nguyen Khoa Hien, Hoang Van Duc, Nguyen Thi Ai 
Nhung, Nguyen Tien Trung, Dang Ung Van, Weon Sup Shin, Jong Seung 
Kim, Duong Tuan Quang (2016), A hemicyanine complex for the detection 
of thiol biomolecules by fluorescence, Dyes and Pigments., 131, pp. 301-
306. 
2. Doan Thanh Nhan, Nguyen Thi Ai Nhung, Vo Vien, Nguyen Tien Trung, 
Nguyen Duc Cuong, Nguyen Chi Bao, Dinh Quy Huong, Nguyen Khoa 
Hien, Duong Tuan Quang (2017), A benzothiazolium-derived colorimetric 
and fluorescent chemosensor for detection of Hg2+ ions, Chemistry Letters., 
46, pp. 135-138 
3. Doan Thanh Nhan, Nguyen Thi Ai Nhung, Nguyen Khoa Hien, Duong 
Tuan Quang (2017), A quantum chemical study on the use of complexs 
between Hg(II) ions and fluorescencet ligands for detection cysteine, 
Vietnam Journal of Chemistry, International Edition., 55(6), pp. 700-707. 
4. Nguyen Khoa Hien, Doan Thanh Nhan, Won Young Kim, Mai Van Bay, 
Pham Cam Nam, Dang Ung Van, In-Taek Lim, Jong Seung Kim,Duong 
Tuan Quang (2018), Exceptional case of Kasha's rule: Emission from higher-
lying singlet electron excited states into ground states in coumarin-based 
biothiol sensing, Dyes and Pigments., 152, pp. 118-126. 
5. Le Thi My Hoang, Doan Thanh Nhan, Mai Van Bay, Nguyen Thi Ai 
Nhung, Nguyen Khoa Hien, Duong Tuan Quang (2018), An investigation of 
the excitation and emission properties of fluorescence compounds using DFT 
and TD-DFT methods, Hue University Journal of Science: Natural Science., 
Vol. 127, No. 1A, pp. 51-59. 
135 
TÀI LIỆU THAM KHẢO 
Tiếng Việt 
[1] Phạm Xuân Yêm, Nguyễn Xuân Xanh, Trịnh Xuân Thuận, Chu Hảo, Đào Vọng 
Đức (2009), Max Planck - Người khai sáng thuyết lượng tử, Nhà xuất bản Tri 
Thức, Hà Nội. 
Tiếng Anh 
[2] Ajay K.K., Renuka N., Pavithra G., Vasanth K. G. (2015), Comprehensive 
review on coumarins: Molecules of potential chemical and pharmacological 
interest, Journal of Chemical and Pharmaceutical Research., 7(9), pp. 67-81. 
[3] Amaresh M., Rajani K. B., Pradipta K. B., Bijaya K. M., and Gopa B. B. (2000), 
Cyanines during the 1990s: A Review, Chemical Reviews., 100, pp. 1973-2011. 
[4] Amarnath K., Amarnath V., Amarnath K., Valentine HL., Valentine WM. 
(2003), A specific HPLC-UV method for the determination of cysteine and 
related aminothiols in biological samples, Talanta., 60, pp. 1229-1238. 
[5] Anna P., Giorgio F., Enrico B., Fiorella P. (2003), Analysis of glutathione: 
implication in redox and detoxification, Clinica Chimica Acta., 333, pp. 19-39. 
[6] Bampidis V.A., Nistor E., Nitas D. (2013), Arsenic, cadmium, lead and mercury 
as undesirable substances in animal feeds, Scientific Papers: Animal science and 
biotechnologies., 46 (1), pp. 17-22. 
[7] Banu B., Nurgül S., Müge Ö., Gizem S., Hakan A., Zeynel S. (2016), A novel 
fluorescence turn-on coumarin-pyrazolone based monomethine probe for biothiol 
detection, Tetrahedron., 72(30), pp. 4498-4502. 
[8] Baocun Z., Xiaoling Z., Yamin L., Pengfei W., Hongyan Z. and Xiaoqing Z. 
(2010), A colorimetric and ratiometric fluorescent probe for thiols and its 
bioimaging applications, Chemical Communications., 46, pp. 5710-5712. 
[9] Becke A.D. (1993), Density-functional thermochemistry. III. The role of 
exactexchange, Journal of Chemical Physics., 98, pp. 5648-5652. 
[10] Berthon G. (1995), Critical evaluation of the stability constants of metal 
complexes of amino acids with polar side chains (Technical Report), 
Pure and Applied Chemistry., 67(7), pp. 1117-1240. 
136 
[11] Bo T., Li J.C., Ke H. X., Li L.T., Gui W.Y., Li G.A. (2008), A Sensitive 
and selective near-infrared fluorescent probe for mercuric ions and its 
biological imaging applications, ChemBioChem., 9, pp. 1159-1164. 
[12] Bouffard J., Kim Y., Swager TM., Weissleder R., Hilderbrand SA. (2008), 
A highly selective fluorescent probe for thiol bioimaging, Organic 
Letters,.10(1), pp. 37-40. 
[13] Calonge M.J., Gasparini P., Chillaron J., Chillon M., Gallucci M., Rousaud 
F., Zelante L., Testar X., Dallapiccola B., Disilverio F., et al (1994), 
Cystinuria caused by mutations in rbat, a gene involved in the transport of 
cystine, Nature genetics ., 6, pp. 420-425. 
[14] Capitan P., Malmezat T., Breuille D., Obled C. (1999), Gas 
chromatographic-mass spectrometric analysis of stable isotopes of cysteine 
and glutathione in biological samples, Journal of Chromatography B., 732, 
pp. 127-35. 
[15] Carlo A., and Denis J. (2013), The calculations of excited-state properties 
with time-dependent density functional theory, Chemical Society Reviews., 
42, pp. 845-856. 
[16] Casida M.E. (2009), Time-dependent density-functional theory for 
molecules and molecular solids, Journal of Molecular Structure 
(Theochem)., 914, pp. 3-18. 
[17] Chae M.Y., Czarnik A.W. (1992), Fluorimetric chemodosimetry Hg(II) and 
Ag(I) indication in water via enhanced fluorescence signalling, Journal of 
the American Chemical Society., 114(24), pp. 9704-9705. 
[18] (a) Chen X., Ko SK., Kim MJ., Shin I., Yoon J. (2010), A thiol-
specific fluorescent probe and its application for bioimaging, Chemical 
Communications., 46, pp. 2751-27533. (b) Jung HS., Han JH., Pradhan 
T., Kim S., Lee SW., Kang C., Kim JS. (2012), A cysteine-selective 
fluorescent probe for the cellular detection of cysteine, 
Biomaterials.,33, pp. 945-953. (c) Jung HS., Pradhan T., Han J., Heo 
KJ., Kang C., Kim JS. (2012), Molecular modulated cysteine-selective 
137 
fluorescent probe, Biomaterials.,.33, pp. 8495-8502. 
[19] Cheng X., Li Q., Qin J., Li Z. (2010), A new approach to design ratiometric 
fluorescent probe for mercury(II) based on the Hg2+-promoted deprotection 
of thioacetals, ACS Applied Materials and Interfaces., 2(4), pp. 1066-1072. 
[20] Cheng X., Li S., Zhong A., Qin J., Li Z. (2011), New fluorescent probes for 
mercury(II) with simple structure, Sensors and Actuators B., 157(1), pp. 57-63. 
[21] Dai H.Q., Tri N.N., Trang N.T.T., Trung N.T. (2014), Remarkable effects of 
substitution on stability of complexes and origin of the C-H•••O(N) 
hydrogen bonds formed between acetone’s derivative and CO2, XCN (X = F, 
Cl, Br), Royal Society of Chemistry Advances., 4, pp. 13901-13908. 
[22] David C.Y., (2001), Computational chemistry: A practical guide for 
applying techniques to real-world problems, John Wiley & Sons, Inc. 
[23] De la Torre P., García-Beltrán O., Tiznado W., Mena N., Saavedra L.A., 
Cabrera M.G., Trilleras J., Pavez P., Aliaga M.E. (2014), (E)-2-
(Benzo[d]thiazol-2-yl) -3-heteroarylacrylonitriles as efficient Michael 
acceptors for cysteine: Real application in biological imaging, Sensors and 
Actuators B Chemical., 193, pp. 391-399. 
[24] Droge W., Eck H.P., Mihm S. (1992), Hiv-induced cysteine deficiency and 
T-cell dysfunction-a rationale for treatment with N-acetylcysteine, Immunol 
Today., 13, pp. 211-214. 
[25] Du J., Fan J., Peng X., Sun P., Wang J., Li H., and Sun S. (2010), A new 
fluorescent chemodosimeter for Hg2+: selectivity, sensitivity, and resistance 
to Cys and GSH, Organic Letters., 12(3), pp. 476-479. 
[26] El-Ballouli A.O., Zhang Y.D., Barlow S., Marder S.R., Al-Sayah M.H., 
Kaafarani B.R. (2012), Fluorescent detection of anions by 
dibenzophenazine-based sensors, Tetrahedron Letters., 53 (6), pp. 661-665. 
[27] Erik C. B. J., Stephen B. H. K. (2006), Insights into the Mechanism and 
Catalysis of the Native Chemical Ligation Reaction, Journal of the 
American Chemical Society., 6, 128, pp. 6640–6646. 
138 
[28] Farhadi K., Forough M., Molaei R., Hajizadeh S., Rafipour A. (2012), Highly 
selective Hg2+ colorimetric sensor using green synthesized and unmodified silver 
nanoparticles, Sensors and Actuators B Chemical., 161(1), pp. 880-885. 
[29] Fei X., Yang S., Zhang B., Liu Z., Gu Y. (2007), Solid-phase synthesis and 
modification of thiazole orange and its derivatives and their spectral properties, 
Journal of Combinatorial Chemistry., 9, pp. 943-950. 
[30] Frank J., (2007), Introduction to computational chemistry, (Second Edition), 
John Wiley & Sons Ltd. 
[31] Friedrich B.K. (2000), AIM 2000, University of applied sciences. Germany: 
Bielefeld. 
[32] Frisch M.J., et al. (2004), Gaussian 03, Revision D.01, Wallingford CT: 
Gaussian Inc. 
[33] Gao Y., Li Y., Zou X., Huang H., Su X.G. (2012), Highly sensitive and 
selective detection of biothiols using graphene oxide-based "molecular beacon"-
like fluorescent probe, Analytica Chimica Acta.,731, pp.68-74. 
[34] Gentscheva G., Petrov A., Ivanova E., Havezov I. (2012), Flame AAS 
determination of trace amounts of Cu, Ni, Co, Cd and Pd in waters after 
preconcentration with 2-nitroso-1-naphthol, Bulgarian Chemical 
Communications., 44, pp. 52–56. 
[35] Guan-Ying L., Jiang-Ping L., Huai-Yi H., Ya W., Hui C., Liang-Nian J. (2013), 
Colorimetric and luminescent dual-signaling responsive probing of thiols by a 
ruthenium(II)-azo complex, Journal of Inorganic Biochemistry., 121, pp. 108-113. 
[36] Guan X., Hoffman B., Dwivedi C., Matthees DP. (2003), A simultaneous 
liquid chromatography/mass spectrometric assay of glutathione, cysteine, 
homocysteine and their disulfides in biological samples, Journal of 
Pharmaceutical and Biomedical Analysisl., 31, pp. 251-261. 
[37] Gun-Joong K., Kiwon L., Hyockman K., Hae-Jo K. (2011), Ratiometric 
fluorescence imaging of cellular glutathione, Organic Letters., 13(11), pp. 2799-2801. 
[38] Guo Z., Zhu W., Zhu M., Tian H. (2010), Near-infrared cell-permeable Hg2+-
selective ratiometric fluorescent chemodosimeters and fast indicator paper for 
139 
MeHg+ based on tricarbocyanines, Chemistry - A European Journal., 16(48), pp. 
14424-14432. 
[39] Guo Z., Nam S., Park S., Yoon J. (2012), A highly selective ratiometric 
near-infrared fluorescent cyanine sensor for cysteine with remarkable shift 
and its application in bioimaging. Chemical Science., 3, pp. 2760-2765. 
[40] Hamer F. (2008), In Chemistry of heterocyclic compounds, John Wiley & 
Sons, Inc. 
[41] Hay P.J., Wadt W.R. (1985), Ab initio effective core potentials for 
molecular calculations. Potentials for K to Au including the outermost core 
orbitals, Journal of Chemical Physics., 82, pp. 299-310. 
[42] Hien N.K., Bao N.C., Nhung N.T.A., Trung N.T., Nam P.C., Duong T., Kim 
J.S., Quang D.T. (2015), A highly sensitive fluorescent chemosensor for 
simultaneous determination of Ag(I), Hg(II), and Cu(II) ions: Design, 
synthesis, characterization and application, Dyes and Pigments, 116, pp. 89-96. 
[43] Hien N.K., Nhung N.T.A., Dai H.Q., Trung N.T., Quang D.T. (2015), A 
fluorescent sensor base on dansyl-diethylenetriamine-thiourea conjugate: 
design, synthesis, characterization, and application, Vietnam Journal of 
Chemistry., 53(5e), pp. 541-547. 
[44] Hiraku Y., Murata M., Kawanishi S. (2002), Determination of intracellular 
glutathione and thiols by high performance liquid chromatography with a 
gold electrode at the femtomole level: comparison with a spectroscopic 
assay, Biochim Biophys Acta., 1570, pp. 47-52. 
[45] Hongda L., Longyi J., Yuhe K., Bingzhu Y. (2014), A visual and “turn-on” 
fluorescent probe for rapid detection of cysteine over homocysteine and 
glutathione, Sensors and Actuators B., 196, pp. 546-554. 
[46] Hongqi L., Li C., Zhen C. (2012), Coumarin-derived fluorescent 
chemosensors, Advances in Chemical Sensors, Prof. Wen Wang (Ed.), 
ISBN: 978-953-307-792-5, InTech, Available from: 
derived-fluorescent-chemosensors. 
140 
[47] Hou X., Zeng F., Du F., and Wu S. (2013), Carbon-dot-based fluorescent 
turn-on sensor for selectively detecting sulfide anions in totally aqueous 
media and imaging inside live cells, Nanotechnology., 24(33), 
https://doi.org/10.1088/0957-4484/24/33/335502. 
[48] Hou J.T., Yang J., Li K., Yu K.K., Yu X.Q., (2015), A colorimetric and red 
emissive fluorescent probe for cysteine and its application in bioimaging, 
Sensors and Actuators B Chemical., 214, pp. 92-100. 
[49] Hu J.H., Li J.B., Qi J. and Chen J.J. (2015), Highly selective and effective 
mercury(II) fluorescent sensors, New Journal of Chemistry., 39, pp. 843-848. 
[50] Huang S., He S., Lu Y., Wei F., Zeng X. and Zhao L. (2011), Highly sensitive 
and selective fluorescent chemosensor for Ag+ based on a coumarin–Se2N 
chelating conjugate, Chemical Communications., 47, pp. 2408-2410. 
[51] Hussain S.A. et. al. (2012), An introduction to fluorescence resonance 
energy transfer (FRET), Science Journal of Physics, Volume 2012, Article 
ID sjp-268, 4 Pages, Doi: 10.7237/sjp/268 
[52] Hwang C., Sinskey AJ., Lodish HF. (1992), Oxidized redox state of 
glutathione in the endoplasmic reticulum, Science., 257, pp. 1496-1502. 
[53] Huilin W., Guodong Z., Hongwei G., Xiaoqiang C. (2012), A fluorescein-
based probe with high selectivity to cysteine over homocysteine and 
glutathione, Chemical Communications., 48, pp. 8341-8343. 
[54] Hyockman K., Kiwon L., Hae-Jo K.. (2011), Coumarin-malonitrile 
conjugate as a fluorescent turn-on probe for biothiols and its cellular 
expression, Chemical Communications., 47(6), pp. 1773-1775. 
[55] Iain J., Michelle T.Z.S. (2010), The molecular probes handbook - A guide to 
fluorescent probes and labeling technologies, 11th edition, Life 
Technologies. 
[56] Ibrahim D., Froberg B., Wolf A., Rusyniak D.E. (2006), Heavy metal 
poisoning: clinical presentations and pathophysiology, Clinics in Laboratory 
Medicine., 26, pp. 67-97. 
[57] Ivanov AR., Nazimov IV., Baratova L. (2000), Determination of 
141 
biologically active low-molecular-mass thiols in human blood I. Fast 
qualitative and quantitative, gradient and isocratic reversed-phase high-
performance liquid chromatography with photometric and fluorescence 
detection, Journal of Chromatography A.,89, pp. 157-166. 
[58] Ji S., Yang J., Yang Q., Liu .S, Chen M., Zhao J. (2009), Tuning the 
intramolecular charge transfer of alkynylpyrenes: effect on photophysical 
properties and its application in design of off-on fluorescent thiol probes, 
Journal of Organic Chemistry., 74(13), pp. 4855-4865. 
[59] Jia H,. Yang M., Meng Q., He G., Wang Y., Hu Z., Zhang R., Zhang Z. 
(2016), Synthesis and application of an aldazine-based fluorescence 
chemosensor for the sequential detection of Cu2+ and biological thiols in 
aqueous solution and living cells, Sensors., 16 (1), 79, 
doi:10.3390/s16010079. 
[60] Jinmin S., Yujiao W., Xiaoliang T., Wei L., Huie J., Wei D., Weisheng L. 
(2014), A colorimetric and fluorescent probe for thiols based on 1, 8-
naphthalimide and its application for bioimaging, Dyes and Pigments., 100, 
pp. 255-260. 
[61] Jianjian Z., Bianfei Y., Lulu N., Xinyue Z., Jianxi W., Zhenjie C., Xiaoyan 
L., Xiaojun Y., Xiaoyu Z., Haixia Z. (2015), A near-infrared fluorescence 
probe for thiols based on analyte-specific cleavage of carbamate and its 
application in bioimaging, European Journal of Organic Chemistry., 8, pp. 
1711-1718. 
[62] Jiang W., Wang W. (2009), A selective and sensitive “turn-on” fluorescent 
chemodosimeter for Hg2+ in aqueous media via Hg2+ promoted facile 
desulfurization–lactonization reaction, Chemical Communications., 45, pp. 
3913-3915. 
[63] Jung H.S., Han J.H., Habata Y., Kang C. and Kim J.S. (2011), An 
iminocoumarin–Cu(II) ensemble-based chemodosimeter toward thiols, 
Chemical Communications., 47, pp. 5142-5144. 
[64] Jiang W., Fu Q., Fan H., Ho J., Wang W. (2007), A highly selective 
142 
fluorescent probe for facile detection of thiophenols, Angewandte Chemie 
International Edition., 46:8445–8448. 
[65] Jiasheng W., Ruilong S., Weimin L., Pengfei W., Jingjin M., Hongyan Z., 
Xiaoqing Z. (2011), Reversible fluorescent probe for highly, selective and 
sensitive detection of mercapto biomolecules, Inorganic Chemistry., 50(14), 
pp. 6543-6551. 
[66] Jing L., Yuan-Qiang S., Hongxing Z., Yingying H., Yawei S., Heping S., 
Wei G. (2014), A carboxylic acid-functionalized coumarin-hemicyanine 
fluorescent dye and its application to construct a fluorescent probe for 
selective detection of cysteine over homocysteine and glutathione, RSC 
Advances., 4, pp. 64542-64550. 
[67] Jung HS., Ko KC., Kim GH., Lee AR., Na YC., Kang C., Lee JY., Kim JS. 
(2011), Coumarin-based thiol chemosensor: synthesis, turn-on mechanism, 
and its biological application, Organic Letters., 13(6), pp. 1498-1501. 
[68] Karabacak M., Cinar M., Kurt M., Poiyamozhi A., Sundaraganesan N. 
(2014), The spectroscopic (FT-IR, FT-Raman, UV and NMR) first order 
hyperpolarizability and HOMO–LUMO analysis of dansyl chloride, 
Spectrochimiac Acta Part A., 117, pp. 234-244. 
[69] Keawwangchai T., Morakot N., Wanno B. (2013), Fluorescent sensors 
based on BODIPY derivatives for aluminium ion recognition: an 
experimental and theoretical study, Journal of Molecular Modeling., 19, pp. 
1435-1444. 
[70] Keawwangchai T., Wanno B., Morakot N., Keawwangchai S. (2013), 
Optical chemosensors for Cu(II) ion based on BODIPY derivatives: an 
experimental and theoretical study, Journal of Molecular Modeling., 19, pp. 
4239-4249. 
[71] Khalilah G. R., William H. H., Charlo P. B., Christine K. P., Melissa L. K., 
Niren M. (2012), Fluorescent coumarin -thiols measure biological redox 
couples, Organic Letters.,14(3), pp. 680–683. 
[72] Kim H.J., Kim S.H., Kim J.H., Lee E.H., Kim K.W., and Kim J.S. (2008), 
143 
BODIPY appended crown ethers: selective fluorescence changes for Hg2+ 
binding, Bulletin of the Korean Chemical Society., 29(9), pp. 1831-1834. 
[73] Kim H.J., Quang D.T., Hong J., Kang G., Ham S., Kim J.S. (2007), 
Ratiometry of monomer/excimer emissions of dipyrenyl calix[4]arene in 
aqueous media, Tetrahedron., 63(44), pp. 10788-10792. 
[74] Kim J.S., and Quang D.T. (2007), Calixarene-derived fluorescent probes, 
Chemical Reviews., 107, pp. 3780-3799. 
[75] Kim S.H., Choi H.S., Kim J., Lee S.J., Quang D.T., and Kim J.S. (2010), 
Novel optical/electrochemical selective 1,2,3-triazole ring-appended 
chemosensor for the Al3+ ion, Organic Letters., 12(3), pp. 560-563 
[76] Kluijtmans L.A.J., van den Heuvel L.P.W.J., Boers G.H.J., Frosst P., 
Stevens E.M.B., vanOost B.A., den Heijer M., Trijbels F.J.M.; Rozen R., 
Blom H.J. (1996), Molecular genetic analysis in mild 
hyperhomocysteinemia: A common mutation in the 
methylenetetrahydrofolate reductase gene is a genetic risk factor for 
cardiovascular disease, American Journal of Human Genetics., 58, pp. 
35-41. 
[77] Koch U., Popelier P.L.A. (1995), Characterization of C-H-O hydrogen 
bonds on the basis of the charge density, Journal of Chemical Physics., 99, 
pp. 9747-9754. 
[78] Kumar M., Kumar N., Bhalla V., Singh H., Sharma P.R., and Kaur T. 
(2011), Naphthalimide appended rhodamine derivative: through bond energy 
transfer for sensing of Hg2+ ions, Organic Letters., 13(6), pp. 1422-1425. 
[79] Kun H., Xiaojie J., Chang L., Qing W., Xiaoying Q., Dasheng Z., Song H., 
Liancheng Z., Xianshun Z. (2017), Highly selective and sensitive fluorescent 
probe for mercury ions based on a novel rhodol-coumarin hybrid dye, Dyes 
and Pigments., 142, pp. 437-446. 
[80] Kwon S.K., Kim H.N., Rho J.H., Swamy K.M.K., Shanthakumar S.M., and 
Yoon J. (2009), Rhodamine derivative bearing histidine binding site as a 
fluorescent chemosensor for Hg2+, Bulletin of the Korean Chemical Society., 
144 
30(3), pp. 719-721. 
[81] Lee C., Yang W., and Parr R.G. (1998), Development of the colle-salvetti 
correlation-energy formula into a functional of the electron density, Physical 
Review B., 37, pp. 785-789. 
[82] Lee M.H., Giap T.V., Kim S.H., Lee Y.H., Kang C., Kim J.S. (2010), A 
novel strategy to selectively detect Fe(III) in aqueous media driven by 
hydrolysis of a rhodamine 6G Schiff base, Chemical Communications., 
46(9), pp. 1407-1409. 
[83] Lee M.H., Lee S.W., Kim S.H., Kang C., Kim J.S. (2009), Nanomolar 
Hg(II) detection using Nile Blue chemodosimeter in biological media, 
Organic Letters., 11(10), pp. 2101-2104. 
[84] Lee M.H., Quang D.T., Jung H.S., Yoon J., Lee C.H., Kim J.S. (2007), Ion-
induced FRET on-off in fluorescent calix[4]arene, Journal of Organic 
Chemistry., 72(11), pp. 4242-4245. 
[85] Leng B., Jiang J.B., Tian H. (2010), A mesoporous silica supported 
Hg2+ chemodosimeter, American Institute of Chemical Engineers Journal., 
56(11), pp. 2957-2964. 
[86] Leng B., Zou L., Jiang J.B., Tian H. (2009), Colorimetric detection of 
mercuric ion (Hg2+) in aqueous media using chemodosimeter-functionalized 
gold nanoparticles, Sensors and Actuators B Chemical., 140(1), pp. 162-169. 
[87] Levine I.N. (2000), Quantum chemistry (fifth edition), Prentice-Hall, Inc., 
New Jersey, USA. 
[88] Lim SY., Hong KH., Kim DI., Kwon H., Kim HJ. (2014), Tunable 
heptamethine-azo dye conjugate as an NIR fluorescent probe for the 
selective detection of mitochondrial glutathione over cysteine and 
homocysteine, Journal of the American Chemical Society., 136, pp. 
7018-7025. 
[89] Lin Y.H., Tao Y., Pu, F., Ren J.S., Qu X.G. (2011), Advanced Functional 
Materials, CIAC OpenIR., 21, pp. 4565-4572. 
145 
[90] Liu, J., Bao, C., Zhong, X., Zhao, C., Zhu, L. (2010), Highly 
selective detection of glutathione using a quantum-dot-based OFF–
ON fluorescent probe, Chemical Communications., 46, pp. 2971-2973. 
[91] Liu B., Tian H. (2005), A selective fluorescent ratiometric chemodosimeter for 
mercury ion, Chemical Communications., pp. 3156-3158. 
[92] Li-Ya N., Yu-Zhe C., Hai-Rong Z., Li-Zhu W., Chen-Ho T., and Qing-Zheng 
Y. (2015), Design strategies of fluorescent probes for selective detection among 
biothiols, Chemical Society Reviews., 44, pp. 6143-6160. 
[93] Li-Ya N., Ying-Shi G., Yu-Zhe C., Li-Zhu W., Chen-Ho T., and Qing-Zheng 
Y. (2012), BODIPY-based ratiometric fluorescent sensor for highly selective 
detection of glutathione over cysteine and homocysteine, Chemical Society., 
134(46), pp. 18928-18931. 
 [94] Li-Ya N., Qing-Qing Y., Hai-Rong Z., Yu-Zhe C., Li-Zu W., Chen.-Ho T., 
Qing-Zheng Y. (2015), BODIPY-based fluorescent probe for the simultaneous 
detection of glutathione and cysteine/homocysteine at different excitation 
wavelengths, Royal Society of Chemistry Advances., 5, pp. 3959-3964. 
[95] Lowe T.A., Hedberg J., Lundin M., Wold S., and Wallinder I.O. (2013), 
Chemical speciation measurements of silver ions in alkaline carbonate 
electrolytes using differential pulse stripping voltammetry on glassy carbon 
compared with ion selective electrode measurements, International 
Journal of Electrochemical Science., 8, pp. 3851-3865. 
[96] Lowicka E., Beltowski J. (2007), Hydrogen sulfide (H2S)-the third gas of 
interest for pharmacologists, Pharmacological Reports., 59, pp. 4-24. 
[97] Lu Z.J., Wang P.N., Zhang Y., Chen J.Y., Zhen S., Leng B., Tian H. (2007), 
Tracking of mercury ions in living cells with a fluorescent chemodosimeter 
under single -or two-photon excitation, Analytica Chimica Acta., 597, pp. 
306-312. 
[98] Maity S.B., Bharadwaj P.K. (2015), A polyamide receptor based 
benzothiazole derivative: highly selective and sensitive fluorescent sensor 
for Hg2+ ion in aqueous medium, Journal of Luminescence., 161, pp. 76-81. 
146 
[99] Maeda H., Matsuno H., Ushida M., Katayama K., Saeki K., Itoh N. (2005), 
2,4-dinitrobenzenesulfonyl fluoresceins as fluorescent alternatives to 
Ellman’s reagent in thiol-quantification enzyme assays, Angewandte Chemie 
International Edition., 44, pp. 2922–2925. 
[100] Maeda H., Katayama K., Matsuno H., Uno T. (2006), 3'-(2,4-
dinitrobenzenesulfonyl)-2',7'-dimethylfluorescein as a fluorescent probe for 
selenols, Angewandte Chemie International Edition., 45(11), pp. 1810-1813. 
[101] Malkondu S., Erdemir S. (2015), A novel perylene-bisimide dye as “turn 
on” fluorescent sensor for Hg2+ ion found in DMF/H2O, Dyes and Pigments., 
113, pp. 763-769. 
[102] Mallajosyula S.S., Usha H., Datta A., and Pati S.K. (2008), Molecular 
modelling of a chemodosimeter for the selective detection of As(III) ion in 
water, Journal of Chemical Sciences., 120(6), pp. 627–635. 
[103] Melnyk S., Pogribna M., Pogribny I., Hine RJ., James SJ. (1999), A new 
HPLC method for the simultaneous determination of oxidized and reduced 
plasma aminothiols using coulometric electrochemical detection, Journal of 
Nutritional Biochemistry., 10, pp. 490–497. 
[104] Min H. L., Zhigang Y., Choon W. L., Yun H. L., Sun D. C. K., and Jong S. 
K. (2013), Disulfide-cleavage-triggered chemosensors and their biological 
applications, Chemical Reviews.,113, pp. 5071-5109. 
[105] Miller J.C. and Miller J.N. (1998), Statistics for analytical chemistry, 
Second ed, Chichester, England: Ellis Horwood Limited. 
[106] Murat I., Ruslan G., Safacan K., Yigit A., Berna S., Turgay T., Engin 
U. A. (2014), Designing an intracellular fluorescent probe for glutathione: 
Two modulation sites for selective signal transduction, Organic Letters., 
16(12), pp. 3260-3263. 
[107] Na S., Jianyu J., Hao W., Jing Z., Ronghua ., Winghong C., and Zeper A. 
(2010), Design of bis-spiropyran ligands as dipolar molecule receptors and 
application to in vivo glutathione fluorescent probes, Journal of the 
American Chemical Society., 132(2), 725–736. 
147 
[108] Oleksandr R,, Nadia N. St. L., Rezik A. A., Jorge O. E., Shan J., Isiah M. 
W., Fareed B. D., Kun L., Robert M. S. (2004), Visual detection of cysteine and 
homocysteine, Journal of the American Chemical Society., 126(2), pp. 438-439. 
 [109] Oram P.D., Fang X., Fernando Q., Letkeman P., and Letkeman D (1996), 
The formation constants of mercury(II)−glutathione complexes, Chemical 
Research in Toxicology., 9(4), pp. 709–712. 
[110] Peddiahgari V. G. R., Yang-Wei L., and Huan-Tsung C. (2007), Synthesis 
of novel benzothiazole compounds with an extended conjugated system, 
General Papers., Volume 207 (xvi), pp. 113-122. 
[111] Peng M.J., Yang X.F., Yin B., Guo Y., Suzenet F., En D., Li J., Li C.W., 
Duan Y.W. (2014), A hybrid coumarin-thiazole fluorescent sensor for 
selective detection of bisulfite anions in vivo and in real samples, Chemistry 
Asian Journal., 9(7), pp. 1817-1822. 
[112] Peng L., Zhou Z., Wei R., Li K., Song P., Tong A., (2014), A fluorescent 
probe for thiols based on aggregation-induced emission and its application in 
live-cell imaging, Dyes and Pigments., pp. 24-31. 
[113] Petr K., Jakob W. (2009), Photochemistry of organic compounds: From 
concepts to practice, A John Wiley and Sons Ltd, United Kingdom. 
[114] Petsko G.A., Ringe D. (2004), Protein structure and function: From 
sequence to consequence, New Science Press Ltd.: London, UK. 
[115] Pratim K.C., (2009), Chemical reactivity theory: A density functional view, 
CRC Press, Taylor & Francis Group. 
[116] Pi W., Jing L., Xin L., Yunlong L., Yun Z., and Wei G. (2012), A 
naphthalimide-based glyoxal hydrazone for selective fluorescence turn-on 
sensing of Cys and Hcy, Organic Letters., 14(2), pp. 520-523. 
[117] Qian X., Xiao Y., Xu Y., Guo X., Qian J., Zhu W. (2010), "Alive" dyes as 
fluorescent sensors: fluorophore, mechanism, receptor and images in living 
cells, Chemical Communications, 46(35), pp. 6418-6436. 
[118] Quan L., Sun T.T., Lin W.H., Guan X.G., Zheng M., Xie Z.G., Jing X.B. 
(2014), BODIPY fluorescent chemosensor for Cu detection and its 
148 
applications in living cells: fast response and high sensitivity, Journal of 
Fluorescence., 24, pp. 841-846. 
[119] Quang D.T., Jung H.S., Yoon J.H., Lee S.Y., and Kim J.S. (2007), 
Coumarin appended calix[4]arene as a selective fluorometric sensor for Cu2+ 
ion in aqueous solution, Bulletin of the Korean Chemical Society ., 28(4), 
pp. 682-684. 
[120] Quang D.T., Kim J.S. (2010), Fluoro- and chromogenic chemodosimeters 
for heavy metal ion detection in solution and biospecimens, 
Chemical Reviews., 110, pp. 6280-6310. 
[121] Quang D.T., Wu J.S., Luyen N.D., Duong T., Dan N.D., Bao N.C., Quy 
P.T. (2011), Rhodamine-derived Schiff base for the selective determination 
of mercuric ions in water media, Spectrochimica Acta Part A ., 78(2), pp. 
753-756. 
[122] Rahman I., MacNee W. (2000), Regulation of redox glutathione levels and 
gene transcription in lung inflammation: therapeutic approaches, 
Free Radical Biology and Medicine ., 28(9), pp. 1405-1420. 
[123] Rančić S.M., Nikolić-Mandić S.D., Bojić A.L. (2014), Analytical 
application of the reaction system methylene blue B–K2S2O8 for the 
spectrophotometric kinetic determination of silver in citric buffer media, 
Hemijska Industrija., 68(4), pp. 429-434. 
[124] Refsum H., Ueland PM., Nygard O., Vollset SE. (1998), Homocysteine 
and cardiovascular disease, Annual Review of Medicine ., 49, pp. 31-62. 
[125] Ruangpornvisuti. V. (2007), A DFT study of molecular structures and 
tautomerizations of 2-benzoylpyridine semicarbazone and picolinaldehyde 
N-oxide thiosemicarbazone and their complexations with Ni(II), Cu(II), and 
Zn(II), Structural Chemistry ., 18, pp. 977-984. 
[126] Rui W., Lingxin C., Ping L., Qin Z., Yunqing W. (2012), Sensitive near 
infrared fluorescent probes for thiols based on Se-N bond cleavage: Imaging in 
living cells and tissues, Chemistry-A European Journal., 18, pp. 11343-11349. 
[127] Rurack K., Kollmannsberger M., Resch-Genger U. and Daub J. (2000), A 
149 
selective and sensitive fluoroionophore for Hg(II), Ag(I), and Cu(II) with 
virtually decoupled fluorophore and receptor units, Journal of the American 
Chemical Society ., 122(5), pp. 968-969. 
[128] Sakamoto H., Ishikawa J., Osuga H., Doi K., and Wada H. (2010), Highly 
silver ion selective fluorescence ionophore: fluorescent properties of 
polythiazaalkane derivatives bearing 8-(7-hydroxy-4-methyl)coumarinyl 
moiety in aqueous solution and in liquid–liquid extraction systems, Analyst., 
135, pp. 550-558. 
[129] Salarvand Z. (2008), Quantitative analysis of Ag, Sn and Cu in dental 
amalgam powder by gravimetric, AAS and ICP methods and comparing their 
precisions, Research Journal of Biological Sciences, 3(6), pp. 557-561. 
[130] Samb I., Bell J., Toullec P.Y., Michelet V., Leray I. (2011), Fluorescent 
phosphane selenide as efficient mercury chemodosimeter, Organic Letters., 
13, pp. 1182-1185. 
[131] Saita K., Nakazono M., Zaitsu K., Nanbo S., Sekiya H. (2009), 
Theoretical study of photophysical properties of bisindolylmaleimide 
derivatives, Journal of Physical Chemistry B., 113, pp. 8213-8220. 
[132] Schacklette H.T., Boerngen J.G. (1984), Element concentrations in soils 
and other surficial materials of the conterminous United States. U. S. 
Geological Survey Professional Paper 1270. Washington: United States 
Government Printing Office. 
[133] Seda S., Hacer P. (2009), Spectroscopic and DFT studies of flurbiprofen as 
dimer and its Cu(II) and Hg(II) complexes, Spectrochimica Acta Part A., 73, 
pp. 181-194. 
[134] Seshadri S., Beiser A., Selhub J., Jacques PF., Rosenberg IH., D’Agostino 
RB., et al.(2002), Plasma homocysteine as a risk factor for dementia and 
Alzheimer’s disease, New England Journal of Medicine., 346, pp. 476-483. 
[135] Shibata A., Furukawa K., Abe H., Tsuneda S., Ito Y. (2008), Rhodamine-
based fluorogenic probe for imaging biological thiol, 
Bioorganic and Medicinal Chemistry Letters.,18(7), pp. 2246-2249. 
150 
[136] Shiraishi Y., Sumiya S., Hirai T. (2010), A coumarin–thiourea conjugate 
as a fluorescent probe for Hg(II) in aqueous media with a broad pH range 2–
12, Organic and Biomolecular Chemistry., 8, pp. 1310-1314. 
[137] Sholl D.S., Steckel J.A. (2009), Density functional theory: A practical 
introduction. Published online: 11 AUG 2009. Print ISBN: 9780470373170. 
Online ISBN: 9780470447710. DOI: 10.1002/9780470447710. Published by 
John Wiley & Sons, Inc., Hoboken, New Jersey. 
[138] Silva A.P.D., Moody T.S. and Wright G.D. (2009), Fluorescent PET 
(Photoinduced Electron Transfer) sensors as potent analytical tools, Analyst., 
134, pp. 2385-2393. 
[139] Soo-Yeon L., Sanghee L., Seung Bum P., Hae-Jo K. (2011), Highly 
selective fluorescence turn-on probe for glutathione, Tetrahedron Letters., 
52(30), pp. 3902-3904. 
[140] Su D., Teoh C.L., Sahu S., Das R.K., Chang Y.T., (2014), Live cells 
imaging using a turn-on FRET-based BODIPY probe for biothiols. 
Biomaterials, 35, pp. 6078-6085. 
[141] Stobiecka M., Molinero A.A., Chalupa A., Hepel M. (2012), 
Mercury/homocysteine ligation-induced ON/OFF-switching of a T-T 
mismatch-based oligonucleotide molecular-beacon, Analytical Chemistry., 84, 
pp. 4970-4978. 
[142] Su H., Chen X., and Fang W. (2014), ON–OFF mechanism of a fluorescent 
sensor for the detection of Zn(II), Cd(II), and Cu(II) transition metal ions, 
Analytical Chemistry., 86 (1), pp. 891-899. 
[143] Sumiya S., Sugii T., Shiraishi Y., Hirai T. (2011), A benzoxadiazole–
thiourea conjugate as a fluorescent chemodosimeter for Hg(II) in aqueous 
media, Journal of Photochemistry and Photobiology., 219, pp. 154-158. 
[144] Tang, B., Xing, Y., Li, P., Zhang, N., Yu, F., Yang, G. (2007), A 
rhodamine-based fluorescent probe containing a Se−N bond for detecting 
thiols and its application in living cells, Journal of the American Chemical 
Society., 129(38), pp. 11666-11667. 
151 
[145] Ulusoy H.I. (2014), Determination of trace inorganic mercury species in 
water samples by cloud point extraction and UV-vis spectrophotometry, 
Journal of AOAC International ., 97(1), pp. 238-244. 
[146] Valeur B. (2001), Molecular Fluorescence: Principles and Applications. 
Wiley-VCH: Weinheim-New York- Chichester -Brisbane- Singapore -
Toronto. 
[147] Van Meurs JBJ., Dhonukshe-Rutten RAM., Pluijm SMF., van der Klift M., 
de Jonge R., Lindemans J., de Groot LCPGM., Hofman A., Witteman JCM., 
van Leeuwen JPTM., Breteler MMB., Lips P., Pols HAP., Uitterlinden AG. 
(2004), Homocysteine levels and the risk of osteoporotic fracture, New 
England Journal of Medicine., 350(20), pp. 2033-2041. 
[148] Van L.N., Ulf S., Kwangho N., Erik B. (2017), Thermodynamic stability 
of mercury(II) complexes formed with environmentally relevant low-
molecular-mass thiols studied by competing ligand exchange and density 
functional theory, Environmental Chemistry., 14(4), pp. 243-253. 
[149] Vikas P., Ponnadurai R., Nagaiyan S. (2013), TD-DFT Study of excited-state 
intramolecular proton transfer (ESIPT) of 2-(1,3-benzothiazol-2-yl)-5-(N,N-
diethylamino)phenol with benzoxazole and benzimidazole analogues, 
Procedia Computer Science., 18, pp. 797 – 805 
[150] Venkatachalam S., Karunathana R., Kannappan V. (2013), Molecular 
Modeling and Spectroscopic Studies of Benzothiazole, Journal of Chemistry., 
Volume 2013, Article ID 258519, 14 pages 
 [151] Wadt W.R., Hay P.J. (1985), Ab initio effective core potentials for molecular 
calculations. Potentials for main group elements Na to Bi, Journal of 
Chemical Physics., 82, pp. 284-298. 
[152] Wang H.F., Wu S.P. (2013), A pyrene-based highly selective turn-on 
fluorescent sensor for copper(II) ions and its application in living cell imaging, 
Sensors and Actuators B-Chemical., 181, pp. 743-748. 
152 
[153] Wang H.F., Wu S.P. (2013), Highly selective fluorescent sensors for 
mercury(II) ions and their applications in living cell imaging, Tetrahedron, 69, 
pp. 1965-1969. 
[154] Wang H., Zhou G., Gai H. and Chen X. (2012), A fluorescein-based probe 
with high selectivity to cysteine over homocysteine and glutathione, Chemical 
Communications., 48, pp. 8341-8343. 
[155] Wang L., Zhou Q., Zhu B., Yan L., Ma Z., Du B., Zhang X. (2012), A 
colorimetric and fluorescent chemodosimeter for discriminative and 
simultaneous quantification of cysteine and homocysteine, 
Dyes and Pigments, 95(2), pp. 275-279. 
[156] Warren J.H., (2003), A Guide to molecular mechanics and quantum chemical 
calculations, Wavefunction, Inc. 
[157] Weinhold F., Landis C.R. (2001), Natural bond orbitals and extensions of 
localized bonding concepts, Chemistry Education Research and Practice., 2, 
pp. 91-104. 
[158] Wheeler S.E. and Houk K.N. (2009), Substituent effects in cation/π 
interactions and electrostatic potentials above the center of substituted 
benzenes are due primarily to through-space effects of the substituents, 
Journal of the American Chemical Society ., 131(9), pp. 3126–3127. 
[159] William R. S., and Eli R. (1968), Fluorescence of substituted 7-
hydroxycoumarins, Analytical Chemistry., 40 (4), pp 803–805. 
[160] Wolfram K., Max C.H. (2001), A chemist’s guide to density funtional theory, 
Villey-VCH. 
[161] Wu J.S., Hwang I.C., Kim K.S., Kim J.S. (2007), Rhodamine-based Hg2+-
selective chemodosimeter in aqueous solution: fluorescent OFF-ON, Organic 
Letters., 9, pp. 907-910 
[162] Wu G.Y., Fang Y.Z., Yang S., Lupton J.R., Turner N.D. (2004), 
Glutathione metabolism and its implications for health, Journal of 
Nutrition., 134, pp. 489-492. 
153 
[163] Weiying L., Lingliang L., Lin Y., Zengmei C., Bingbing C., and Wen T. 
(2008), A ratiometric fluorescent probe for cysteine and homocysteine 
displaying a large emission shift, Organic Letters., 10(24), pp. 5577-5580. 
[164] Xiong X., Song F., Chen G., Sun W., Wang J., Gao P., Zhang Y., Qiao B., Li 
W., Sun S, Fan J., Peng X., (2013), Construction of long-wavelength 
fluorescein analogues and their application as fluorescent probes, 
Chemistry European Journal., 19, pp. 6538-6545. 
[165] Xiaofeng Y., Yixing G., and Robert M. S. (2012), A seminaphthoflu- 
orescein-based fluorescent chemodosimeter for the highly selective detection 
of cysteine, Organic and Biomolecular Chemistry ., 10(14), pp. 2739-2741. 
[166] Xiaohong C., Shaohua Q., LiXiao, Wangnan L., Ping H. (2018), 
Thioacetalized coumarin-based fluorescent probe for mercury(II): ratiometric 
response, high selectivity and successful bioimaging application, Journal of 
Photochemistry and Photobiology A: Chemistry., 364, pp. 503-509. 
[167] Xin Z., Xuejun J., Guangyan S., Dan L., and Xuesong W. (2012), 
A cysteine probe with high selectivity and sensitivity promoted by response-
assisted electrostatic attraction, Chemical Communications., 48, pp. 8793-8795. 
[168] Xin Z., Xuejun J., Guangyan S., and Xuesong W. (2013), A sensitive and 
selective fluorescent probe for cysteine based on a new response-assisted 
electrostatic attraction strategy: The role of spatial charge configuration, 
Chemistry European Journal., 19, pp. 7817-7824. 
[169] Xu H., Hepel M. (2011), “Molecular beacon”-based fluorescent assay for 
selective setection of glutathione and cysteine, Analytical Chemistry., 83(3), 
pp. 813-819. 
[170] Xu W., Jianzheng Lv., Xueying Y., Yong L., Fang H., Mengmeng 
L., Jie Y., Xiuyun R., Bo T. (2014), Screening and investigation of a 
cyanine fluorescent probe for simultaneous sensing of glutathione and cysteine 
under single excitation, Chemical Communications., 50, pp. 15439-15442. 
[171] Yan-Fei K., Hai-Xia Q., Ya-Li M., Zhen-Hui X., Li-Ping G., Jin-Nan Z., 
Yi-Na W. (2017), A simple and sensitive fluorescent probe for specific 
154 
detection of cysteine, Journal of Chemical Sciences., 129(8), pp. 1219-1223. 
[172] Yang Y., Zhao Q., Feng W., and Li F. (2013), Luminescent 
chemodosimeters for bioimaging, Chemical Reviews., 113, pp. 192-270. 
[173] Yin C.X., Qu L.J., Huo F.J. (2014), A pyridoxal-based chemosensor for 
visual detection of copper ion and its application in bioimaging, Chinese 
Chemical Letters., 25, pp. 1230-1234. 
[174] Ying H., Cheol H. H., Gyoungmi K., Eun J. J., Jun Y., Hwan M. K., and 
Juyoung Y. (2015), One-photon and two-photon sensing of biothiols using a 
bis-pyreneCu(II) ensemble and its application to image GSH in the cells and 
tissues, Analytical Chemistry., 87 (6), pp. 3308–3313. 
[175] Yinhui L., Yu D., Jishan L., Jing Z., Huan Y., and Ronghua Y. (2012), 
Simultaneous nucleophilic-substituted and electrostatic interactions for 
thermal switching of spiropyran: A new approach for rapid and selective 
colorimetric detection of thiol-containing amino acids, Analytical 
Chemistry., 84(11), pp. 4732-4738. 
[176] Yawei L., Song Z., Xin L., Yuan-Qiang S., Jing L., and Wei G. 
(2014), Constructing a fluorescent probe for specific detection of cysteine 
over homocysteine and glutathione based on a novel cysteine-binding group 
but-3-yn-2-one, Analyst., 139, pp. 4081-4087. 
[177] Yin J., Kwon Y., Kim D., Lee D., Kim G., Hu Y., Ryu JH., Yoon J. (2015), 
Preparation of a cyanine-based fluorescent probe for highly selective detection 
of glutathione and its use in living cells and tissues of mice, Nature 
Protocols.,10, pp. 1742-1754. 
[178] Yi L., Li H., Sun L., Liu L., Zhang C., Xi Z. (2009), A highly sensitive 
fluorescence probe for fast thiol-quantification assay of glutathione reductase, 
Angewandte Chemie International Edition., 48, pp. 4034-4037. 
[179] Yin J., Kwon Y., Kim D., Lee D., Kim G., Hu Y., Ryu JH., Yoon J. (2014), 
Cyanine-based fluorescent probe for highly selective detection of glutathione in 
cell cultures and live mouse tissues, Journal of the American Chemical Society., 
136, pp. 5351-5358. 
155 
[180] Yong G.S., Jian H.Y., Yu L.D., Qi L. M., Jian H.C., Quan Q.X.,Ying Z., Jun 
F. Z., Gao Z.G. (2013), 1,8-Naphthalimide–Cu(ІІ) ensemble based turn-on 
fluorescent probe for the detection of thiols in organic aqueous media, 
Bioorganic and Medicinal Chemistry Letters., 23, pp. 2538-2542. 
[181] Yuan X., Tay Y.Q., Dou X.Y., Luo Z.T., Leong D.T., Xie J.P.(2013), 
Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and 
colorimetric probe, Analytical Chemistry., 85, pp. 1913-1919. 
[182] Yuanyuan L., Song H., Yan L., Xianshun Z. (2011), Novel 
hemicyanine dye as colorimetric and fluorometric dual-modal chemosensor for 
mercury in water, Organic and Biomolecular Chemistry., 9, pp. 2606-2609. 
[183] Yordanova S., Stoianov S., Grabchev I., and Petkov I. (2013), Detection of 
metal ions and protons with a new blue fluorescent bis(1,8-naphthalimide), 
International Journal of Inorganic Chemistry, Article ID 628946, 
[184] Zhao Y.G., Lin Z.H., He C., Wu H.M., Duan C.Y. (2006), A “turn-on” 
fluorescent sensor for selective Hg(II) detection in aqueous media based on 
metal-induced dye formation, Inorganic Chemistry., 45(25), pp. 10013-10015. 
[185] Zhao C., Qu K.G., Song Y.J., Xu C., Ren J.S., Qu X.G. (2010), A reusable 
DNA single-walled carbon-nanotube-based fluorescent sensor for highly 
sensitive and selective detection of Ag+ and cysteine in aqueous solutions, 
Chemistry European Journal., 16(27), pp. 8147-8154. 
[186] Zhiqian G., Weihong Z., Mingming Z., Xumeng W., He T. (2010), Near-
infrared cell-permeable Hg2+ - selective ratiometric fluorescent 
chemodosimeters and fast indicator paper for MeHg+ based on 
tricarbocyanines, Chemistry - A European Journal., 16 (48), pp. 14424-14432. 
[187] Zhou L., Lin Y.H., Huang Z.Z., Ren J.S., Qu X.G. (2012), Carbon nanodots 
as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and 
biothiols in complex matrices, Chemical Communications., 48, pp. 1147-1149. 
156 
[188] Zhou C., Xiao N., Li Y. (2014), Simple quinoline-based “turn-on” fluorescent 
sensor for imaging copper (II) in living cells, Canadian Journal of Chemistry, 
92(11)., pp. 1092-1097. 
[189] Zhu B., Guo B., Zhao Y., Zhang B., Du B., (2014), A highly sensitive 
ratiometric fluorescent probe with a large emission shift for imaging 
endogenous cysteine in living cells, Biosens Bioelectron., 55, pp. 72-75. 
[190] Zou Q., Zou L., Tian H. (2011), Detection and adsorption of Hg2+ by new 
mesoporous silica and membrane material grafted with a chemodosimeter, 
Journal of Materials Chemistry., 21, pp. 14441-14447. 
[191] Zuo QP., Li B., Pei Q., Li Z., Liu SK. (2010), A highly selective 
fluorescent probe for detection of biological samples thiol and its application 
in living cells, Journal of Fluorescence., 20(6), pp. 1307-1313. 
            Các file đính kèm theo tài liệu này:
32_noidungla_0422_2071959.pdf