Luận văn Thiết kế, tổng hợp một số sensor huỳnh quang từ dẫn xuất của cyanine, coumarin để xác định biothiol và Hg(II)

Những kết quả đạt được trong luận án đã mở ra những định hướng nghiên cứu triển vọng có thể tiếp cận trong thời gian đến. Cụ thể: 1. Thiết lập một cơ sở cho việc phát triển của các phức giữa ion kim loại với các phối tử huỳnh quang mới, cũng như các phối tử huỳnh quang đã được công bố trước đây để phát hiện cysteine. 2. Nghiên cứu cơ chế thay đổi đặc tính hấp thụ, huỳnh quang của các sensor trước và sau khi tương tác với chất phân tích, nhằm xây dựng cơ sở để định hướng thiết kế các sensor mới, nhất là tăng độ nhạy, độ chọn lọc và độ tan của các sensor. Đặc biệt, nghiên cứu phát triển các sensor huỳnh quang phát xạ ở vùng bước sóng dài, hoặc các sensor hoạt động dựa trên sự biến đổi tỉ lệ huỳnh quang ở hai bước sóng, nhằm hạn chế các ảnh hưởng khi dùng các sensor để phát hiện các chất trong tế bào sống

pdf156 trang | Chia sẻ: ngoctoan84 | Lượt xem: 819 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận văn Thiết kế, tổng hợp một số sensor huỳnh quang từ dẫn xuất của cyanine, coumarin để xác định biothiol và Hg(II), để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Kết quả tính toán đã cho thấy, sự phát xạ huỳnh quang của AMC, AMC- Cys, AMC-Hcy và AMC-GSH đều xuất phát từ các trạng thái kích thích electron ở mức cao (S2, S4) về trạng thái cơ bản S0. Đây là một trường hợp ngoại lệ của quy tắc Kasha. OO O O AMC OO O O AMC- thiol S R Fluorophore Receptor + Thiol 131 NHỮNG KẾT LUẬN CHÍNH CỦA LUẬN ÁN 1. Đã kết hợp linh hoạt giữa tính toán hóa học lượng tử và nghiên cứu thực nghiệm để phát triển thành công hai sensor huỳnh quang mới là L và AMC. Sự kết hợp linh hoạt này đã giảm đáng kể khối lượng tính toán lý thuyết và điều tra thực nghiệm, tiết kiệm thời gian và chi phí hóa chất, tăng khả năng thành công, làm sáng tỏ được bản chất các quá trình, tạo cơ sở khoa học cho các nghiên cứu tiếp theo. Cụ thể:  Đối với sensor L, tính toán đã dự đoán và định hướng cho thực nghiệm trong giai đoạn thiết kế, tổng hợp và đặc trưng sensor L; nghiên cứu thực nghiệm sau đó đã kiểm chứng và khẳng định lại các kết quả tính toán. Đến phức tạo bởi L và ion Hg(II), thực nghiệm được khảo sát trước; tính toán lý thuyết sau đó để giải thích và làm sáng tỏ ứng dụng của sensor L trong phát hiện ion Hg(II). Tiếp đến, việc sử dụng phức Hg2L2 để xác định biothiol lại được dự đoán trước từ tính toán; điều tra thực nghiệm sau đó để kiểm chứng và khẳng định lại kết quả tính toán.  Đối với sensor AMC, tính toán đã dự đoán và định hướng cho thực nghiệm ở giai đoạn thiết kế, tổng hợp và phản ứng giữa sensor AMC với các biothiol. Các đặc tính và ứng dụng của sensor AMC được nghiên cứu từ thực nghiệm trước; tính toán lý thuyết sau đó đã giải thích và làm rõ bản chất các kết quả thực nghiệm. 2. Các phản ứng tổng hợp sensor L và sensor AMC đã được nghiên cứu dự đoán và định hướng từ tính toán; thực nghiệm sau đó đã kiểm chứng và khẳng định các kết quả tính toán. 3. Cấu trúc, đặc tính của sensor L và sensor AMC đã được xác định ở mức lý thuyết B3LYP/LanL2DZ với kết quả đáng tin cậy, thông qua kiểm tra, đối chiếu và khẳng định từ các kết quả thực nghiệm. 4. (a). Sensor L có thể phát hiện chọn lọc ion Hg(II) trong sự có mặt các ion kim loại khác, hoạt động theo kiểu bật-tắt huỳnh quang. Giới hạn phát hiện và giới hạn định lượng ion Hg(II) theo phương pháp trắc quang là 0,076 μM 132 và 0,25 μM; theo phương pháp huỳnh quang là 0,059 μM và 0,19 μM. Phức Hg2L2 có thể phát hiện chọn lọc Cys trong sự hiện diện các amino acids không có nhóm thiol, hoạt động theo kiểu tắt-bật huỳnh quang. Giới hạn phát hiện và giới hạn định lượng Cys tương ứng là 0,2 μM và 0,66 μM. Sensor L phát hiện ion Hg(II) và phức Hg2L2 phát hiện Cys dựa trên phản ứng trao đổi phức giữa ion trung tâm Hg(II) với hai phối tử là L và Cys. (b). Sensor AMC có thể phát hiện chọn lọc các biothiol (Cys, GSH, Hcy) trong sự hiện diện các amino acids không có nhóm thiol, hoạt động dựa trên sự biến đổi tỉ lệ cường độ huỳnh quang ở hai bước sóng. Giới hạn phát hiện và giới hạn định lượng Cys tương ứng là 0,5 μM và 1,65 μM. Sensor AMC phản ứng với các biothiol (Cys, GSH, Hcy) theo cơ chế phản ứng cộng Michael. (c). Các sensor huỳnh quang Hg2L2 và AMC đều có thể phát hiện Cys trong dung dịch với lượng nhỏ dung môi hữu cơ, thời gian của phản ứng xảy ra nhanh, có thể phát hiện được Cys với nồng độ thấp hơn trong nội bào và thấp hơn so với các sensor đã công bố. 5. Đã sử dụng phương pháp TD-DFT để nghiên cứu đặc tính huỳnh quang của các chất dựa trên hình học tối ưu tại trạng thái cơ bản và các trạng thái kích thích; kết hợp với sử dụng phương pháp phân tích NBO để xem xét sự biến đổi đặc tính huỳnh quang của các chất dựa trên nghiên cứu bản chất các liên kết. Kết quả tính toán cho thấy, ion Hg(II) gây nên phản ứng tạo phức với L dẫn đến làm giảm khoảng cách năng lượng giữa HOMO và LUMO, đồng thời làm thay đổi hệ liên hợp electron π, là nguyên nhân dẫn đến sự dập tắt huỳnh quang trong phức Hg2L2. Sự phát xạ huỳnh quang của AMC, AMC- Cys, AMC-Hcy và AMC-GSH đều xuất phát từ các trạng thái kích thích electron ở mức cao (S2, S4) về trạng thái cơ bản S0. Đây là một trường hợp ngoại lệ của quy tắc Kasha. 133 ĐỊNH HƯỚNG NGHIÊN CỨU TIẾP THEO Những kết quả đạt được trong luận án đã mở ra những định hướng nghiên cứu triển vọng có thể tiếp cận trong thời gian đến. Cụ thể: 1. Thiết lập một cơ sở cho việc phát triển của các phức giữa ion kim loại với các phối tử huỳnh quang mới, cũng như các phối tử huỳnh quang đã được công bố trước đây để phát hiện cysteine. 2. Nghiên cứu cơ chế thay đổi đặc tính hấp thụ, huỳnh quang của các sensor trước và sau khi tương tác với chất phân tích, nhằm xây dựng cơ sở để định hướng thiết kế các sensor mới, nhất là tăng độ nhạy, độ chọn lọc và độ tan của các sensor. Đặc biệt, nghiên cứu phát triển các sensor huỳnh quang phát xạ ở vùng bước sóng dài, hoặc các sensor hoạt động dựa trên sự biến đổi tỉ lệ huỳnh quang ở hai bước sóng, nhằm hạn chế các ảnh hưởng khi dùng các sensor để phát hiện các chất trong tế bào sống. 3. Phát triển, mở rộng việc sử dụng L để phân tích ion Hg(II) trong các đối tượng: - Nghiên cứu ứng dụng phân tích trong các mẫu nước ăn uống sinh hoạt, các mẫu nước thải công nghiệp, nước thải y tế (đặc biệt các phòng nha), các mẫu thực phẩm tươi sống (đặc biệt cá biển ăn thịt), các mẫu thực phẩm chế biến có sử dụng bao bì đóng gói bảo quản. - Nghiên cứu ứng dụng phân tích các ion kim loại Hg(II) trong các tế bào sống. 4. Phát triển, mở rộng việc sử dụng Hg2L2 và AMC để phân tích các biothiol trong các tế bào sống. 5. Nghiên cứu gắn kết các sensor huỳnh quang, trắc quang trên các vật liệu silica mao quản, sản xuất các bộ KIT dùng để phát hiện nhanh ion Hg(II) và các biothiol. 134 DANH MỤC CÔNG TRÌNH CÔNG BỐ LIÊN QUAN LUẬN ÁN 1. Doan Thanh Nhan, Nguyen Khoa Hien, Hoang Van Duc, Nguyen Thi Ai Nhung, Nguyen Tien Trung, Dang Ung Van, Weon Sup Shin, Jong Seung Kim, Duong Tuan Quang (2016), A hemicyanine complex for the detection of thiol biomolecules by fluorescence, Dyes and Pigments., 131, pp. 301- 306. 2. Doan Thanh Nhan, Nguyen Thi Ai Nhung, Vo Vien, Nguyen Tien Trung, Nguyen Duc Cuong, Nguyen Chi Bao, Dinh Quy Huong, Nguyen Khoa Hien, Duong Tuan Quang (2017), A benzothiazolium-derived colorimetric and fluorescent chemosensor for detection of Hg2+ ions, Chemistry Letters., 46, pp. 135-138 3. Doan Thanh Nhan, Nguyen Thi Ai Nhung, Nguyen Khoa Hien, Duong Tuan Quang (2017), A quantum chemical study on the use of complexs between Hg(II) ions and fluorescencet ligands for detection cysteine, Vietnam Journal of Chemistry, International Edition., 55(6), pp. 700-707. 4. Nguyen Khoa Hien, Doan Thanh Nhan, Won Young Kim, Mai Van Bay, Pham Cam Nam, Dang Ung Van, In-Taek Lim, Jong Seung Kim,Duong Tuan Quang (2018), Exceptional case of Kasha's rule: Emission from higher- lying singlet electron excited states into ground states in coumarin-based biothiol sensing, Dyes and Pigments., 152, pp. 118-126. 5. Le Thi My Hoang, Doan Thanh Nhan, Mai Van Bay, Nguyen Thi Ai Nhung, Nguyen Khoa Hien, Duong Tuan Quang (2018), An investigation of the excitation and emission properties of fluorescence compounds using DFT and TD-DFT methods, Hue University Journal of Science: Natural Science., Vol. 127, No. 1A, pp. 51-59. 135 TÀI LIỆU THAM KHẢO Tiếng Việt [1] Phạm Xuân Yêm, Nguyễn Xuân Xanh, Trịnh Xuân Thuận, Chu Hảo, Đào Vọng Đức (2009), Max Planck - Người khai sáng thuyết lượng tử, Nhà xuất bản Tri Thức, Hà Nội. Tiếng Anh [2] Ajay K.K., Renuka N., Pavithra G., Vasanth K. G. (2015), Comprehensive review on coumarins: Molecules of potential chemical and pharmacological interest, Journal of Chemical and Pharmaceutical Research., 7(9), pp. 67-81. [3] Amaresh M., Rajani K. B., Pradipta K. B., Bijaya K. M., and Gopa B. B. (2000), Cyanines during the 1990s: A Review, Chemical Reviews., 100, pp. 1973-2011. [4] Amarnath K., Amarnath V., Amarnath K., Valentine HL., Valentine WM. (2003), A specific HPLC-UV method for the determination of cysteine and related aminothiols in biological samples, Talanta., 60, pp. 1229-1238. [5] Anna P., Giorgio F., Enrico B., Fiorella P. (2003), Analysis of glutathione: implication in redox and detoxification, Clinica Chimica Acta., 333, pp. 19-39. [6] Bampidis V.A., Nistor E., Nitas D. (2013), Arsenic, cadmium, lead and mercury as undesirable substances in animal feeds, Scientific Papers: Animal science and biotechnologies., 46 (1), pp. 17-22. [7] Banu B., Nurgül S., Müge Ö., Gizem S., Hakan A., Zeynel S. (2016), A novel fluorescence turn-on coumarin-pyrazolone based monomethine probe for biothiol detection, Tetrahedron., 72(30), pp. 4498-4502. [8] Baocun Z., Xiaoling Z., Yamin L., Pengfei W., Hongyan Z. and Xiaoqing Z. (2010), A colorimetric and ratiometric fluorescent probe for thiols and its bioimaging applications, Chemical Communications., 46, pp. 5710-5712. [9] Becke A.D. (1993), Density-functional thermochemistry. III. The role of exactexchange, Journal of Chemical Physics., 98, pp. 5648-5652. [10] Berthon G. (1995), Critical evaluation of the stability constants of metal complexes of amino acids with polar side chains (Technical Report), Pure and Applied Chemistry., 67(7), pp. 1117-1240. 136 [11] Bo T., Li J.C., Ke H. X., Li L.T., Gui W.Y., Li G.A. (2008), A Sensitive and selective near-infrared fluorescent probe for mercuric ions and its biological imaging applications, ChemBioChem., 9, pp. 1159-1164. [12] Bouffard J., Kim Y., Swager TM., Weissleder R., Hilderbrand SA. (2008), A highly selective fluorescent probe for thiol bioimaging, Organic Letters,.10(1), pp. 37-40. [13] Calonge M.J., Gasparini P., Chillaron J., Chillon M., Gallucci M., Rousaud F., Zelante L., Testar X., Dallapiccola B., Disilverio F., et al (1994), Cystinuria caused by mutations in rbat, a gene involved in the transport of cystine, Nature genetics ., 6, pp. 420-425. [14] Capitan P., Malmezat T., Breuille D., Obled C. (1999), Gas chromatographic-mass spectrometric analysis of stable isotopes of cysteine and glutathione in biological samples, Journal of Chromatography B., 732, pp. 127-35. [15] Carlo A., and Denis J. (2013), The calculations of excited-state properties with time-dependent density functional theory, Chemical Society Reviews., 42, pp. 845-856. [16] Casida M.E. (2009), Time-dependent density-functional theory for molecules and molecular solids, Journal of Molecular Structure (Theochem)., 914, pp. 3-18. [17] Chae M.Y., Czarnik A.W. (1992), Fluorimetric chemodosimetry Hg(II) and Ag(I) indication in water via enhanced fluorescence signalling, Journal of the American Chemical Society., 114(24), pp. 9704-9705. [18] (a) Chen X., Ko SK., Kim MJ., Shin I., Yoon J. (2010), A thiol- specific fluorescent probe and its application for bioimaging, Chemical Communications., 46, pp. 2751-27533. (b) Jung HS., Han JH., Pradhan T., Kim S., Lee SW., Kang C., Kim JS. (2012), A cysteine-selective fluorescent probe for the cellular detection of cysteine, Biomaterials.,33, pp. 945-953. (c) Jung HS., Pradhan T., Han J., Heo KJ., Kang C., Kim JS. (2012), Molecular modulated cysteine-selective 137 fluorescent probe, Biomaterials.,.33, pp. 8495-8502. [19] Cheng X., Li Q., Qin J., Li Z. (2010), A new approach to design ratiometric fluorescent probe for mercury(II) based on the Hg2+-promoted deprotection of thioacetals, ACS Applied Materials and Interfaces., 2(4), pp. 1066-1072. [20] Cheng X., Li S., Zhong A., Qin J., Li Z. (2011), New fluorescent probes for mercury(II) with simple structure, Sensors and Actuators B., 157(1), pp. 57-63. [21] Dai H.Q., Tri N.N., Trang N.T.T., Trung N.T. (2014), Remarkable effects of substitution on stability of complexes and origin of the C-H•••O(N) hydrogen bonds formed between acetone’s derivative and CO2, XCN (X = F, Cl, Br), Royal Society of Chemistry Advances., 4, pp. 13901-13908. [22] David C.Y., (2001), Computational chemistry: A practical guide for applying techniques to real-world problems, John Wiley & Sons, Inc. [23] De la Torre P., García-Beltrán O., Tiznado W., Mena N., Saavedra L.A., Cabrera M.G., Trilleras J., Pavez P., Aliaga M.E. (2014), (E)-2- (Benzo[d]thiazol-2-yl) -3-heteroarylacrylonitriles as efficient Michael acceptors for cysteine: Real application in biological imaging, Sensors and Actuators B Chemical., 193, pp. 391-399. [24] Droge W., Eck H.P., Mihm S. (1992), Hiv-induced cysteine deficiency and T-cell dysfunction-a rationale for treatment with N-acetylcysteine, Immunol Today., 13, pp. 211-214. [25] Du J., Fan J., Peng X., Sun P., Wang J., Li H., and Sun S. (2010), A new fluorescent chemodosimeter for Hg2+: selectivity, sensitivity, and resistance to Cys and GSH, Organic Letters., 12(3), pp. 476-479. [26] El-Ballouli A.O., Zhang Y.D., Barlow S., Marder S.R., Al-Sayah M.H., Kaafarani B.R. (2012), Fluorescent detection of anions by dibenzophenazine-based sensors, Tetrahedron Letters., 53 (6), pp. 661-665. [27] Erik C. B. J., Stephen B. H. K. (2006), Insights into the Mechanism and Catalysis of the Native Chemical Ligation Reaction, Journal of the American Chemical Society., 6, 128, pp. 6640–6646. 138 [28] Farhadi K., Forough M., Molaei R., Hajizadeh S., Rafipour A. (2012), Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles, Sensors and Actuators B Chemical., 161(1), pp. 880-885. [29] Fei X., Yang S., Zhang B., Liu Z., Gu Y. (2007), Solid-phase synthesis and modification of thiazole orange and its derivatives and their spectral properties, Journal of Combinatorial Chemistry., 9, pp. 943-950. [30] Frank J., (2007), Introduction to computational chemistry, (Second Edition), John Wiley & Sons Ltd. [31] Friedrich B.K. (2000), AIM 2000, University of applied sciences. Germany: Bielefeld. [32] Frisch M.J., et al. (2004), Gaussian 03, Revision D.01, Wallingford CT: Gaussian Inc. [33] Gao Y., Li Y., Zou X., Huang H., Su X.G. (2012), Highly sensitive and selective detection of biothiols using graphene oxide-based "molecular beacon"- like fluorescent probe, Analytica Chimica Acta.,731, pp.68-74. [34] Gentscheva G., Petrov A., Ivanova E., Havezov I. (2012), Flame AAS determination of trace amounts of Cu, Ni, Co, Cd and Pd in waters after preconcentration with 2-nitroso-1-naphthol, Bulgarian Chemical Communications., 44, pp. 52–56. [35] Guan-Ying L., Jiang-Ping L., Huai-Yi H., Ya W., Hui C., Liang-Nian J. (2013), Colorimetric and luminescent dual-signaling responsive probing of thiols by a ruthenium(II)-azo complex, Journal of Inorganic Biochemistry., 121, pp. 108-113. [36] Guan X., Hoffman B., Dwivedi C., Matthees DP. (2003), A simultaneous liquid chromatography/mass spectrometric assay of glutathione, cysteine, homocysteine and their disulfides in biological samples, Journal of Pharmaceutical and Biomedical Analysisl., 31, pp. 251-261. [37] Gun-Joong K., Kiwon L., Hyockman K., Hae-Jo K. (2011), Ratiometric fluorescence imaging of cellular glutathione, Organic Letters., 13(11), pp. 2799-2801. [38] Guo Z., Zhu W., Zhu M., Tian H. (2010), Near-infrared cell-permeable Hg2+- selective ratiometric fluorescent chemodosimeters and fast indicator paper for 139 MeHg+ based on tricarbocyanines, Chemistry - A European Journal., 16(48), pp. 14424-14432. [39] Guo Z., Nam S., Park S., Yoon J. (2012), A highly selective ratiometric near-infrared fluorescent cyanine sensor for cysteine with remarkable shift and its application in bioimaging. Chemical Science., 3, pp. 2760-2765. [40] Hamer F. (2008), In Chemistry of heterocyclic compounds, John Wiley & Sons, Inc. [41] Hay P.J., Wadt W.R. (1985), Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, Journal of Chemical Physics., 82, pp. 299-310. [42] Hien N.K., Bao N.C., Nhung N.T.A., Trung N.T., Nam P.C., Duong T., Kim J.S., Quang D.T. (2015), A highly sensitive fluorescent chemosensor for simultaneous determination of Ag(I), Hg(II), and Cu(II) ions: Design, synthesis, characterization and application, Dyes and Pigments, 116, pp. 89-96. [43] Hien N.K., Nhung N.T.A., Dai H.Q., Trung N.T., Quang D.T. (2015), A fluorescent sensor base on dansyl-diethylenetriamine-thiourea conjugate: design, synthesis, characterization, and application, Vietnam Journal of Chemistry., 53(5e), pp. 541-547. [44] Hiraku Y., Murata M., Kawanishi S. (2002), Determination of intracellular glutathione and thiols by high performance liquid chromatography with a gold electrode at the femtomole level: comparison with a spectroscopic assay, Biochim Biophys Acta., 1570, pp. 47-52. [45] Hongda L., Longyi J., Yuhe K., Bingzhu Y. (2014), A visual and “turn-on” fluorescent probe for rapid detection of cysteine over homocysteine and glutathione, Sensors and Actuators B., 196, pp. 546-554. [46] Hongqi L., Li C., Zhen C. (2012), Coumarin-derived fluorescent chemosensors, Advances in Chemical Sensors, Prof. Wen Wang (Ed.), ISBN: 978-953-307-792-5, InTech, Available from: derived-fluorescent-chemosensors. 140 [47] Hou X., Zeng F., Du F., and Wu S. (2013), Carbon-dot-based fluorescent turn-on sensor for selectively detecting sulfide anions in totally aqueous media and imaging inside live cells, Nanotechnology., 24(33), https://doi.org/10.1088/0957-4484/24/33/335502. [48] Hou J.T., Yang J., Li K., Yu K.K., Yu X.Q., (2015), A colorimetric and red emissive fluorescent probe for cysteine and its application in bioimaging, Sensors and Actuators B Chemical., 214, pp. 92-100. [49] Hu J.H., Li J.B., Qi J. and Chen J.J. (2015), Highly selective and effective mercury(II) fluorescent sensors, New Journal of Chemistry., 39, pp. 843-848. [50] Huang S., He S., Lu Y., Wei F., Zeng X. and Zhao L. (2011), Highly sensitive and selective fluorescent chemosensor for Ag+ based on a coumarin–Se2N chelating conjugate, Chemical Communications., 47, pp. 2408-2410. [51] Hussain S.A. et. al. (2012), An introduction to fluorescence resonance energy transfer (FRET), Science Journal of Physics, Volume 2012, Article ID sjp-268, 4 Pages, Doi: 10.7237/sjp/268 [52] Hwang C., Sinskey AJ., Lodish HF. (1992), Oxidized redox state of glutathione in the endoplasmic reticulum, Science., 257, pp. 1496-1502. [53] Huilin W., Guodong Z., Hongwei G., Xiaoqiang C. (2012), A fluorescein- based probe with high selectivity to cysteine over homocysteine and glutathione, Chemical Communications., 48, pp. 8341-8343. [54] Hyockman K., Kiwon L., Hae-Jo K.. (2011), Coumarin-malonitrile conjugate as a fluorescent turn-on probe for biothiols and its cellular expression, Chemical Communications., 47(6), pp. 1773-1775. [55] Iain J., Michelle T.Z.S. (2010), The molecular probes handbook - A guide to fluorescent probes and labeling technologies, 11th edition, Life Technologies. [56] Ibrahim D., Froberg B., Wolf A., Rusyniak D.E. (2006), Heavy metal poisoning: clinical presentations and pathophysiology, Clinics in Laboratory Medicine., 26, pp. 67-97. [57] Ivanov AR., Nazimov IV., Baratova L. (2000), Determination of 141 biologically active low-molecular-mass thiols in human blood I. Fast qualitative and quantitative, gradient and isocratic reversed-phase high- performance liquid chromatography with photometric and fluorescence detection, Journal of Chromatography A.,89, pp. 157-166. [58] Ji S., Yang J., Yang Q., Liu .S, Chen M., Zhao J. (2009), Tuning the intramolecular charge transfer of alkynylpyrenes: effect on photophysical properties and its application in design of off-on fluorescent thiol probes, Journal of Organic Chemistry., 74(13), pp. 4855-4865. [59] Jia H,. Yang M., Meng Q., He G., Wang Y., Hu Z., Zhang R., Zhang Z. (2016), Synthesis and application of an aldazine-based fluorescence chemosensor for the sequential detection of Cu2+ and biological thiols in aqueous solution and living cells, Sensors., 16 (1), 79, doi:10.3390/s16010079. [60] Jinmin S., Yujiao W., Xiaoliang T., Wei L., Huie J., Wei D., Weisheng L. (2014), A colorimetric and fluorescent probe for thiols based on 1, 8- naphthalimide and its application for bioimaging, Dyes and Pigments., 100, pp. 255-260. [61] Jianjian Z., Bianfei Y., Lulu N., Xinyue Z., Jianxi W., Zhenjie C., Xiaoyan L., Xiaojun Y., Xiaoyu Z., Haixia Z. (2015), A near-infrared fluorescence probe for thiols based on analyte-specific cleavage of carbamate and its application in bioimaging, European Journal of Organic Chemistry., 8, pp. 1711-1718. [62] Jiang W., Wang W. (2009), A selective and sensitive “turn-on” fluorescent chemodosimeter for Hg2+ in aqueous media via Hg2+ promoted facile desulfurization–lactonization reaction, Chemical Communications., 45, pp. 3913-3915. [63] Jung H.S., Han J.H., Habata Y., Kang C. and Kim J.S. (2011), An iminocoumarin–Cu(II) ensemble-based chemodosimeter toward thiols, Chemical Communications., 47, pp. 5142-5144. [64] Jiang W., Fu Q., Fan H., Ho J., Wang W. (2007), A highly selective 142 fluorescent probe for facile detection of thiophenols, Angewandte Chemie International Edition., 46:8445–8448. [65] Jiasheng W., Ruilong S., Weimin L., Pengfei W., Jingjin M., Hongyan Z., Xiaoqing Z. (2011), Reversible fluorescent probe for highly, selective and sensitive detection of mercapto biomolecules, Inorganic Chemistry., 50(14), pp. 6543-6551. [66] Jing L., Yuan-Qiang S., Hongxing Z., Yingying H., Yawei S., Heping S., Wei G. (2014), A carboxylic acid-functionalized coumarin-hemicyanine fluorescent dye and its application to construct a fluorescent probe for selective detection of cysteine over homocysteine and glutathione, RSC Advances., 4, pp. 64542-64550. [67] Jung HS., Ko KC., Kim GH., Lee AR., Na YC., Kang C., Lee JY., Kim JS. (2011), Coumarin-based thiol chemosensor: synthesis, turn-on mechanism, and its biological application, Organic Letters., 13(6), pp. 1498-1501. [68] Karabacak M., Cinar M., Kurt M., Poiyamozhi A., Sundaraganesan N. (2014), The spectroscopic (FT-IR, FT-Raman, UV and NMR) first order hyperpolarizability and HOMO–LUMO analysis of dansyl chloride, Spectrochimiac Acta Part A., 117, pp. 234-244. [69] Keawwangchai T., Morakot N., Wanno B. (2013), Fluorescent sensors based on BODIPY derivatives for aluminium ion recognition: an experimental and theoretical study, Journal of Molecular Modeling., 19, pp. 1435-1444. [70] Keawwangchai T., Wanno B., Morakot N., Keawwangchai S. (2013), Optical chemosensors for Cu(II) ion based on BODIPY derivatives: an experimental and theoretical study, Journal of Molecular Modeling., 19, pp. 4239-4249. [71] Khalilah G. R., William H. H., Charlo P. B., Christine K. P., Melissa L. K., Niren M. (2012), Fluorescent coumarin -thiols measure biological redox couples, Organic Letters.,14(3), pp. 680–683. [72] Kim H.J., Kim S.H., Kim J.H., Lee E.H., Kim K.W., and Kim J.S. (2008), 143 BODIPY appended crown ethers: selective fluorescence changes for Hg2+ binding, Bulletin of the Korean Chemical Society., 29(9), pp. 1831-1834. [73] Kim H.J., Quang D.T., Hong J., Kang G., Ham S., Kim J.S. (2007), Ratiometry of monomer/excimer emissions of dipyrenyl calix[4]arene in aqueous media, Tetrahedron., 63(44), pp. 10788-10792. [74] Kim J.S., and Quang D.T. (2007), Calixarene-derived fluorescent probes, Chemical Reviews., 107, pp. 3780-3799. [75] Kim S.H., Choi H.S., Kim J., Lee S.J., Quang D.T., and Kim J.S. (2010), Novel optical/electrochemical selective 1,2,3-triazole ring-appended chemosensor for the Al3+ ion, Organic Letters., 12(3), pp. 560-563 [76] Kluijtmans L.A.J., van den Heuvel L.P.W.J., Boers G.H.J., Frosst P., Stevens E.M.B., vanOost B.A., den Heijer M., Trijbels F.J.M.; Rozen R., Blom H.J. (1996), Molecular genetic analysis in mild hyperhomocysteinemia: A common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease, American Journal of Human Genetics., 58, pp. 35-41. [77] Koch U., Popelier P.L.A. (1995), Characterization of C-H-O hydrogen bonds on the basis of the charge density, Journal of Chemical Physics., 99, pp. 9747-9754. [78] Kumar M., Kumar N., Bhalla V., Singh H., Sharma P.R., and Kaur T. (2011), Naphthalimide appended rhodamine derivative: through bond energy transfer for sensing of Hg2+ ions, Organic Letters., 13(6), pp. 1422-1425. [79] Kun H., Xiaojie J., Chang L., Qing W., Xiaoying Q., Dasheng Z., Song H., Liancheng Z., Xianshun Z. (2017), Highly selective and sensitive fluorescent probe for mercury ions based on a novel rhodol-coumarin hybrid dye, Dyes and Pigments., 142, pp. 437-446. [80] Kwon S.K., Kim H.N., Rho J.H., Swamy K.M.K., Shanthakumar S.M., and Yoon J. (2009), Rhodamine derivative bearing histidine binding site as a fluorescent chemosensor for Hg2+, Bulletin of the Korean Chemical Society., 144 30(3), pp. 719-721. [81] Lee C., Yang W., and Parr R.G. (1998), Development of the colle-salvetti correlation-energy formula into a functional of the electron density, Physical Review B., 37, pp. 785-789. [82] Lee M.H., Giap T.V., Kim S.H., Lee Y.H., Kang C., Kim J.S. (2010), A novel strategy to selectively detect Fe(III) in aqueous media driven by hydrolysis of a rhodamine 6G Schiff base, Chemical Communications., 46(9), pp. 1407-1409. [83] Lee M.H., Lee S.W., Kim S.H., Kang C., Kim J.S. (2009), Nanomolar Hg(II) detection using Nile Blue chemodosimeter in biological media, Organic Letters., 11(10), pp. 2101-2104. [84] Lee M.H., Quang D.T., Jung H.S., Yoon J., Lee C.H., Kim J.S. (2007), Ion- induced FRET on-off in fluorescent calix[4]arene, Journal of Organic Chemistry., 72(11), pp. 4242-4245. [85] Leng B., Jiang J.B., Tian H. (2010), A mesoporous silica supported Hg2+ chemodosimeter, American Institute of Chemical Engineers Journal., 56(11), pp. 2957-2964. [86] Leng B., Zou L., Jiang J.B., Tian H. (2009), Colorimetric detection of mercuric ion (Hg2+) in aqueous media using chemodosimeter-functionalized gold nanoparticles, Sensors and Actuators B Chemical., 140(1), pp. 162-169. [87] Levine I.N. (2000), Quantum chemistry (fifth edition), Prentice-Hall, Inc., New Jersey, USA. [88] Lim SY., Hong KH., Kim DI., Kwon H., Kim HJ. (2014), Tunable heptamethine-azo dye conjugate as an NIR fluorescent probe for the selective detection of mitochondrial glutathione over cysteine and homocysteine, Journal of the American Chemical Society., 136, pp. 7018-7025. [89] Lin Y.H., Tao Y., Pu, F., Ren J.S., Qu X.G. (2011), Advanced Functional Materials, CIAC OpenIR., 21, pp. 4565-4572. 145 [90] Liu, J., Bao, C., Zhong, X., Zhao, C., Zhu, L. (2010), Highly selective detection of glutathione using a quantum-dot-based OFF– ON fluorescent probe, Chemical Communications., 46, pp. 2971-2973. [91] Liu B., Tian H. (2005), A selective fluorescent ratiometric chemodosimeter for mercury ion, Chemical Communications., pp. 3156-3158. [92] Li-Ya N., Yu-Zhe C., Hai-Rong Z., Li-Zhu W., Chen-Ho T., and Qing-Zheng Y. (2015), Design strategies of fluorescent probes for selective detection among biothiols, Chemical Society Reviews., 44, pp. 6143-6160. [93] Li-Ya N., Ying-Shi G., Yu-Zhe C., Li-Zhu W., Chen-Ho T., and Qing-Zheng Y. (2012), BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine, Chemical Society., 134(46), pp. 18928-18931. [94] Li-Ya N., Qing-Qing Y., Hai-Rong Z., Yu-Zhe C., Li-Zu W., Chen.-Ho T., Qing-Zheng Y. (2015), BODIPY-based fluorescent probe for the simultaneous detection of glutathione and cysteine/homocysteine at different excitation wavelengths, Royal Society of Chemistry Advances., 5, pp. 3959-3964. [95] Lowe T.A., Hedberg J., Lundin M., Wold S., and Wallinder I.O. (2013), Chemical speciation measurements of silver ions in alkaline carbonate electrolytes using differential pulse stripping voltammetry on glassy carbon compared with ion selective electrode measurements, International Journal of Electrochemical Science., 8, pp. 3851-3865. [96] Lowicka E., Beltowski J. (2007), Hydrogen sulfide (H2S)-the third gas of interest for pharmacologists, Pharmacological Reports., 59, pp. 4-24. [97] Lu Z.J., Wang P.N., Zhang Y., Chen J.Y., Zhen S., Leng B., Tian H. (2007), Tracking of mercury ions in living cells with a fluorescent chemodosimeter under single -or two-photon excitation, Analytica Chimica Acta., 597, pp. 306-312. [98] Maity S.B., Bharadwaj P.K. (2015), A polyamide receptor based benzothiazole derivative: highly selective and sensitive fluorescent sensor for Hg2+ ion in aqueous medium, Journal of Luminescence., 161, pp. 76-81. 146 [99] Maeda H., Matsuno H., Ushida M., Katayama K., Saeki K., Itoh N. (2005), 2,4-dinitrobenzenesulfonyl fluoresceins as fluorescent alternatives to Ellman’s reagent in thiol-quantification enzyme assays, Angewandte Chemie International Edition., 44, pp. 2922–2925. [100] Maeda H., Katayama K., Matsuno H., Uno T. (2006), 3'-(2,4- dinitrobenzenesulfonyl)-2',7'-dimethylfluorescein as a fluorescent probe for selenols, Angewandte Chemie International Edition., 45(11), pp. 1810-1813. [101] Malkondu S., Erdemir S. (2015), A novel perylene-bisimide dye as “turn on” fluorescent sensor for Hg2+ ion found in DMF/H2O, Dyes and Pigments., 113, pp. 763-769. [102] Mallajosyula S.S., Usha H., Datta A., and Pati S.K. (2008), Molecular modelling of a chemodosimeter for the selective detection of As(III) ion in water, Journal of Chemical Sciences., 120(6), pp. 627–635. [103] Melnyk S., Pogribna M., Pogribny I., Hine RJ., James SJ. (1999), A new HPLC method for the simultaneous determination of oxidized and reduced plasma aminothiols using coulometric electrochemical detection, Journal of Nutritional Biochemistry., 10, pp. 490–497. [104] Min H. L., Zhigang Y., Choon W. L., Yun H. L., Sun D. C. K., and Jong S. K. (2013), Disulfide-cleavage-triggered chemosensors and their biological applications, Chemical Reviews.,113, pp. 5071-5109. [105] Miller J.C. and Miller J.N. (1998), Statistics for analytical chemistry, Second ed, Chichester, England: Ellis Horwood Limited. [106] Murat I., Ruslan G., Safacan K., Yigit A., Berna S., Turgay T., Engin U. A. (2014), Designing an intracellular fluorescent probe for glutathione: Two modulation sites for selective signal transduction, Organic Letters., 16(12), pp. 3260-3263. [107] Na S., Jianyu J., Hao W., Jing Z., Ronghua ., Winghong C., and Zeper A. (2010), Design of bis-spiropyran ligands as dipolar molecule receptors and application to in vivo glutathione fluorescent probes, Journal of the American Chemical Society., 132(2), 725–736. 147 [108] Oleksandr R,, Nadia N. St. L., Rezik A. A., Jorge O. E., Shan J., Isiah M. W., Fareed B. D., Kun L., Robert M. S. (2004), Visual detection of cysteine and homocysteine, Journal of the American Chemical Society., 126(2), pp. 438-439. [109] Oram P.D., Fang X., Fernando Q., Letkeman P., and Letkeman D (1996), The formation constants of mercury(II)−glutathione complexes, Chemical Research in Toxicology., 9(4), pp. 709–712. [110] Peddiahgari V. G. R., Yang-Wei L., and Huan-Tsung C. (2007), Synthesis of novel benzothiazole compounds with an extended conjugated system, General Papers., Volume 207 (xvi), pp. 113-122. [111] Peng M.J., Yang X.F., Yin B., Guo Y., Suzenet F., En D., Li J., Li C.W., Duan Y.W. (2014), A hybrid coumarin-thiazole fluorescent sensor for selective detection of bisulfite anions in vivo and in real samples, Chemistry Asian Journal., 9(7), pp. 1817-1822. [112] Peng L., Zhou Z., Wei R., Li K., Song P., Tong A., (2014), A fluorescent probe for thiols based on aggregation-induced emission and its application in live-cell imaging, Dyes and Pigments., pp. 24-31. [113] Petr K., Jakob W. (2009), Photochemistry of organic compounds: From concepts to practice, A John Wiley and Sons Ltd, United Kingdom. [114] Petsko G.A., Ringe D. (2004), Protein structure and function: From sequence to consequence, New Science Press Ltd.: London, UK. [115] Pratim K.C., (2009), Chemical reactivity theory: A density functional view, CRC Press, Taylor & Francis Group. [116] Pi W., Jing L., Xin L., Yunlong L., Yun Z., and Wei G. (2012), A naphthalimide-based glyoxal hydrazone for selective fluorescence turn-on sensing of Cys and Hcy, Organic Letters., 14(2), pp. 520-523. [117] Qian X., Xiao Y., Xu Y., Guo X., Qian J., Zhu W. (2010), "Alive" dyes as fluorescent sensors: fluorophore, mechanism, receptor and images in living cells, Chemical Communications, 46(35), pp. 6418-6436. [118] Quan L., Sun T.T., Lin W.H., Guan X.G., Zheng M., Xie Z.G., Jing X.B. (2014), BODIPY fluorescent chemosensor for Cu detection and its 148 applications in living cells: fast response and high sensitivity, Journal of Fluorescence., 24, pp. 841-846. [119] Quang D.T., Jung H.S., Yoon J.H., Lee S.Y., and Kim J.S. (2007), Coumarin appended calix[4]arene as a selective fluorometric sensor for Cu2+ ion in aqueous solution, Bulletin of the Korean Chemical Society ., 28(4), pp. 682-684. [120] Quang D.T., Kim J.S. (2010), Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens, Chemical Reviews., 110, pp. 6280-6310. [121] Quang D.T., Wu J.S., Luyen N.D., Duong T., Dan N.D., Bao N.C., Quy P.T. (2011), Rhodamine-derived Schiff base for the selective determination of mercuric ions in water media, Spectrochimica Acta Part A ., 78(2), pp. 753-756. [122] Rahman I., MacNee W. (2000), Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches, Free Radical Biology and Medicine ., 28(9), pp. 1405-1420. [123] Rančić S.M., Nikolić-Mandić S.D., Bojić A.L. (2014), Analytical application of the reaction system methylene blue B–K2S2O8 for the spectrophotometric kinetic determination of silver in citric buffer media, Hemijska Industrija., 68(4), pp. 429-434. [124] Refsum H., Ueland PM., Nygard O., Vollset SE. (1998), Homocysteine and cardiovascular disease, Annual Review of Medicine ., 49, pp. 31-62. [125] Ruangpornvisuti. V. (2007), A DFT study of molecular structures and tautomerizations of 2-benzoylpyridine semicarbazone and picolinaldehyde N-oxide thiosemicarbazone and their complexations with Ni(II), Cu(II), and Zn(II), Structural Chemistry ., 18, pp. 977-984. [126] Rui W., Lingxin C., Ping L., Qin Z., Yunqing W. (2012), Sensitive near infrared fluorescent probes for thiols based on Se-N bond cleavage: Imaging in living cells and tissues, Chemistry-A European Journal., 18, pp. 11343-11349. [127] Rurack K., Kollmannsberger M., Resch-Genger U. and Daub J. (2000), A 149 selective and sensitive fluoroionophore for Hg(II), Ag(I), and Cu(II) with virtually decoupled fluorophore and receptor units, Journal of the American Chemical Society ., 122(5), pp. 968-969. [128] Sakamoto H., Ishikawa J., Osuga H., Doi K., and Wada H. (2010), Highly silver ion selective fluorescence ionophore: fluorescent properties of polythiazaalkane derivatives bearing 8-(7-hydroxy-4-methyl)coumarinyl moiety in aqueous solution and in liquid–liquid extraction systems, Analyst., 135, pp. 550-558. [129] Salarvand Z. (2008), Quantitative analysis of Ag, Sn and Cu in dental amalgam powder by gravimetric, AAS and ICP methods and comparing their precisions, Research Journal of Biological Sciences, 3(6), pp. 557-561. [130] Samb I., Bell J., Toullec P.Y., Michelet V., Leray I. (2011), Fluorescent phosphane selenide as efficient mercury chemodosimeter, Organic Letters., 13, pp. 1182-1185. [131] Saita K., Nakazono M., Zaitsu K., Nanbo S., Sekiya H. (2009), Theoretical study of photophysical properties of bisindolylmaleimide derivatives, Journal of Physical Chemistry B., 113, pp. 8213-8220. [132] Schacklette H.T., Boerngen J.G. (1984), Element concentrations in soils and other surficial materials of the conterminous United States. U. S. Geological Survey Professional Paper 1270. Washington: United States Government Printing Office. [133] Seda S., Hacer P. (2009), Spectroscopic and DFT studies of flurbiprofen as dimer and its Cu(II) and Hg(II) complexes, Spectrochimica Acta Part A., 73, pp. 181-194. [134] Seshadri S., Beiser A., Selhub J., Jacques PF., Rosenberg IH., D’Agostino RB., et al.(2002), Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease, New England Journal of Medicine., 346, pp. 476-483. [135] Shibata A., Furukawa K., Abe H., Tsuneda S., Ito Y. (2008), Rhodamine- based fluorogenic probe for imaging biological thiol, Bioorganic and Medicinal Chemistry Letters.,18(7), pp. 2246-2249. 150 [136] Shiraishi Y., Sumiya S., Hirai T. (2010), A coumarin–thiourea conjugate as a fluorescent probe for Hg(II) in aqueous media with a broad pH range 2– 12, Organic and Biomolecular Chemistry., 8, pp. 1310-1314. [137] Sholl D.S., Steckel J.A. (2009), Density functional theory: A practical introduction. Published online: 11 AUG 2009. Print ISBN: 9780470373170. Online ISBN: 9780470447710. DOI: 10.1002/9780470447710. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. [138] Silva A.P.D., Moody T.S. and Wright G.D. (2009), Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools, Analyst., 134, pp. 2385-2393. [139] Soo-Yeon L., Sanghee L., Seung Bum P., Hae-Jo K. (2011), Highly selective fluorescence turn-on probe for glutathione, Tetrahedron Letters., 52(30), pp. 3902-3904. [140] Su D., Teoh C.L., Sahu S., Das R.K., Chang Y.T., (2014), Live cells imaging using a turn-on FRET-based BODIPY probe for biothiols. Biomaterials, 35, pp. 6078-6085. [141] Stobiecka M., Molinero A.A., Chalupa A., Hepel M. (2012), Mercury/homocysteine ligation-induced ON/OFF-switching of a T-T mismatch-based oligonucleotide molecular-beacon, Analytical Chemistry., 84, pp. 4970-4978. [142] Su H., Chen X., and Fang W. (2014), ON–OFF mechanism of a fluorescent sensor for the detection of Zn(II), Cd(II), and Cu(II) transition metal ions, Analytical Chemistry., 86 (1), pp. 891-899. [143] Sumiya S., Sugii T., Shiraishi Y., Hirai T. (2011), A benzoxadiazole– thiourea conjugate as a fluorescent chemodosimeter for Hg(II) in aqueous media, Journal of Photochemistry and Photobiology., 219, pp. 154-158. [144] Tang, B., Xing, Y., Li, P., Zhang, N., Yu, F., Yang, G. (2007), A rhodamine-based fluorescent probe containing a Se−N bond for detecting thiols and its application in living cells, Journal of the American Chemical Society., 129(38), pp. 11666-11667. 151 [145] Ulusoy H.I. (2014), Determination of trace inorganic mercury species in water samples by cloud point extraction and UV-vis spectrophotometry, Journal of AOAC International ., 97(1), pp. 238-244. [146] Valeur B. (2001), Molecular Fluorescence: Principles and Applications. Wiley-VCH: Weinheim-New York- Chichester -Brisbane- Singapore - Toronto. [147] Van Meurs JBJ., Dhonukshe-Rutten RAM., Pluijm SMF., van der Klift M., de Jonge R., Lindemans J., de Groot LCPGM., Hofman A., Witteman JCM., van Leeuwen JPTM., Breteler MMB., Lips P., Pols HAP., Uitterlinden AG. (2004), Homocysteine levels and the risk of osteoporotic fracture, New England Journal of Medicine., 350(20), pp. 2033-2041. [148] Van L.N., Ulf S., Kwangho N., Erik B. (2017), Thermodynamic stability of mercury(II) complexes formed with environmentally relevant low- molecular-mass thiols studied by competing ligand exchange and density functional theory, Environmental Chemistry., 14(4), pp. 243-253. [149] Vikas P., Ponnadurai R., Nagaiyan S. (2013), TD-DFT Study of excited-state intramolecular proton transfer (ESIPT) of 2-(1,3-benzothiazol-2-yl)-5-(N,N- diethylamino)phenol with benzoxazole and benzimidazole analogues, Procedia Computer Science., 18, pp. 797 – 805 [150] Venkatachalam S., Karunathana R., Kannappan V. (2013), Molecular Modeling and Spectroscopic Studies of Benzothiazole, Journal of Chemistry., Volume 2013, Article ID 258519, 14 pages [151] Wadt W.R., Hay P.J. (1985), Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, Journal of Chemical Physics., 82, pp. 284-298. [152] Wang H.F., Wu S.P. (2013), A pyrene-based highly selective turn-on fluorescent sensor for copper(II) ions and its application in living cell imaging, Sensors and Actuators B-Chemical., 181, pp. 743-748. 152 [153] Wang H.F., Wu S.P. (2013), Highly selective fluorescent sensors for mercury(II) ions and their applications in living cell imaging, Tetrahedron, 69, pp. 1965-1969. [154] Wang H., Zhou G., Gai H. and Chen X. (2012), A fluorescein-based probe with high selectivity to cysteine over homocysteine and glutathione, Chemical Communications., 48, pp. 8341-8343. [155] Wang L., Zhou Q., Zhu B., Yan L., Ma Z., Du B., Zhang X. (2012), A colorimetric and fluorescent chemodosimeter for discriminative and simultaneous quantification of cysteine and homocysteine, Dyes and Pigments, 95(2), pp. 275-279. [156] Warren J.H., (2003), A Guide to molecular mechanics and quantum chemical calculations, Wavefunction, Inc. [157] Weinhold F., Landis C.R. (2001), Natural bond orbitals and extensions of localized bonding concepts, Chemistry Education Research and Practice., 2, pp. 91-104. [158] Wheeler S.E. and Houk K.N. (2009), Substituent effects in cation/π interactions and electrostatic potentials above the center of substituted benzenes are due primarily to through-space effects of the substituents, Journal of the American Chemical Society ., 131(9), pp. 3126–3127. [159] William R. S., and Eli R. (1968), Fluorescence of substituted 7- hydroxycoumarins, Analytical Chemistry., 40 (4), pp 803–805. [160] Wolfram K., Max C.H. (2001), A chemist’s guide to density funtional theory, Villey-VCH. [161] Wu J.S., Hwang I.C., Kim K.S., Kim J.S. (2007), Rhodamine-based Hg2+- selective chemodosimeter in aqueous solution: fluorescent OFF-ON, Organic Letters., 9, pp. 907-910 [162] Wu G.Y., Fang Y.Z., Yang S., Lupton J.R., Turner N.D. (2004), Glutathione metabolism and its implications for health, Journal of Nutrition., 134, pp. 489-492. 153 [163] Weiying L., Lingliang L., Lin Y., Zengmei C., Bingbing C., and Wen T. (2008), A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission shift, Organic Letters., 10(24), pp. 5577-5580. [164] Xiong X., Song F., Chen G., Sun W., Wang J., Gao P., Zhang Y., Qiao B., Li W., Sun S, Fan J., Peng X., (2013), Construction of long-wavelength fluorescein analogues and their application as fluorescent probes, Chemistry European Journal., 19, pp. 6538-6545. [165] Xiaofeng Y., Yixing G., and Robert M. S. (2012), A seminaphthoflu- orescein-based fluorescent chemodosimeter for the highly selective detection of cysteine, Organic and Biomolecular Chemistry ., 10(14), pp. 2739-2741. [166] Xiaohong C., Shaohua Q., LiXiao, Wangnan L., Ping H. (2018), Thioacetalized coumarin-based fluorescent probe for mercury(II): ratiometric response, high selectivity and successful bioimaging application, Journal of Photochemistry and Photobiology A: Chemistry., 364, pp. 503-509. [167] Xin Z., Xuejun J., Guangyan S., Dan L., and Xuesong W. (2012), A cysteine probe with high selectivity and sensitivity promoted by response- assisted electrostatic attraction, Chemical Communications., 48, pp. 8793-8795. [168] Xin Z., Xuejun J., Guangyan S., and Xuesong W. (2013), A sensitive and selective fluorescent probe for cysteine based on a new response-assisted electrostatic attraction strategy: The role of spatial charge configuration, Chemistry European Journal., 19, pp. 7817-7824. [169] Xu H., Hepel M. (2011), “Molecular beacon”-based fluorescent assay for selective setection of glutathione and cysteine, Analytical Chemistry., 83(3), pp. 813-819. [170] Xu W., Jianzheng Lv., Xueying Y., Yong L., Fang H., Mengmeng L., Jie Y., Xiuyun R., Bo T. (2014), Screening and investigation of a cyanine fluorescent probe for simultaneous sensing of glutathione and cysteine under single excitation, Chemical Communications., 50, pp. 15439-15442. [171] Yan-Fei K., Hai-Xia Q., Ya-Li M., Zhen-Hui X., Li-Ping G., Jin-Nan Z., Yi-Na W. (2017), A simple and sensitive fluorescent probe for specific 154 detection of cysteine, Journal of Chemical Sciences., 129(8), pp. 1219-1223. [172] Yang Y., Zhao Q., Feng W., and Li F. (2013), Luminescent chemodosimeters for bioimaging, Chemical Reviews., 113, pp. 192-270. [173] Yin C.X., Qu L.J., Huo F.J. (2014), A pyridoxal-based chemosensor for visual detection of copper ion and its application in bioimaging, Chinese Chemical Letters., 25, pp. 1230-1234. [174] Ying H., Cheol H. H., Gyoungmi K., Eun J. J., Jun Y., Hwan M. K., and Juyoung Y. (2015), One-photon and two-photon sensing of biothiols using a bis-pyreneCu(II) ensemble and its application to image GSH in the cells and tissues, Analytical Chemistry., 87 (6), pp. 3308–3313. [175] Yinhui L., Yu D., Jishan L., Jing Z., Huan Y., and Ronghua Y. (2012), Simultaneous nucleophilic-substituted and electrostatic interactions for thermal switching of spiropyran: A new approach for rapid and selective colorimetric detection of thiol-containing amino acids, Analytical Chemistry., 84(11), pp. 4732-4738. [176] Yawei L., Song Z., Xin L., Yuan-Qiang S., Jing L., and Wei G. (2014), Constructing a fluorescent probe for specific detection of cysteine over homocysteine and glutathione based on a novel cysteine-binding group but-3-yn-2-one, Analyst., 139, pp. 4081-4087. [177] Yin J., Kwon Y., Kim D., Lee D., Kim G., Hu Y., Ryu JH., Yoon J. (2015), Preparation of a cyanine-based fluorescent probe for highly selective detection of glutathione and its use in living cells and tissues of mice, Nature Protocols.,10, pp. 1742-1754. [178] Yi L., Li H., Sun L., Liu L., Zhang C., Xi Z. (2009), A highly sensitive fluorescence probe for fast thiol-quantification assay of glutathione reductase, Angewandte Chemie International Edition., 48, pp. 4034-4037. [179] Yin J., Kwon Y., Kim D., Lee D., Kim G., Hu Y., Ryu JH., Yoon J. (2014), Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues, Journal of the American Chemical Society., 136, pp. 5351-5358. 155 [180] Yong G.S., Jian H.Y., Yu L.D., Qi L. M., Jian H.C., Quan Q.X.,Ying Z., Jun F. Z., Gao Z.G. (2013), 1,8-Naphthalimide–Cu(ІІ) ensemble based turn-on fluorescent probe for the detection of thiols in organic aqueous media, Bioorganic and Medicinal Chemistry Letters., 23, pp. 2538-2542. [181] Yuan X., Tay Y.Q., Dou X.Y., Luo Z.T., Leong D.T., Xie J.P.(2013), Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe, Analytical Chemistry., 85, pp. 1913-1919. [182] Yuanyuan L., Song H., Yan L., Xianshun Z. (2011), Novel hemicyanine dye as colorimetric and fluorometric dual-modal chemosensor for mercury in water, Organic and Biomolecular Chemistry., 9, pp. 2606-2609. [183] Yordanova S., Stoianov S., Grabchev I., and Petkov I. (2013), Detection of metal ions and protons with a new blue fluorescent bis(1,8-naphthalimide), International Journal of Inorganic Chemistry, Article ID 628946, [184] Zhao Y.G., Lin Z.H., He C., Wu H.M., Duan C.Y. (2006), A “turn-on” fluorescent sensor for selective Hg(II) detection in aqueous media based on metal-induced dye formation, Inorganic Chemistry., 45(25), pp. 10013-10015. [185] Zhao C., Qu K.G., Song Y.J., Xu C., Ren J.S., Qu X.G. (2010), A reusable DNA single-walled carbon-nanotube-based fluorescent sensor for highly sensitive and selective detection of Ag+ and cysteine in aqueous solutions, Chemistry European Journal., 16(27), pp. 8147-8154. [186] Zhiqian G., Weihong Z., Mingming Z., Xumeng W., He T. (2010), Near- infrared cell-permeable Hg2+ - selective ratiometric fluorescent chemodosimeters and fast indicator paper for MeHg+ based on tricarbocyanines, Chemistry - A European Journal., 16 (48), pp. 14424-14432. [187] Zhou L., Lin Y.H., Huang Z.Z., Ren J.S., Qu X.G. (2012), Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices, Chemical Communications., 48, pp. 1147-1149. 156 [188] Zhou C., Xiao N., Li Y. (2014), Simple quinoline-based “turn-on” fluorescent sensor for imaging copper (II) in living cells, Canadian Journal of Chemistry, 92(11)., pp. 1092-1097. [189] Zhu B., Guo B., Zhao Y., Zhang B., Du B., (2014), A highly sensitive ratiometric fluorescent probe with a large emission shift for imaging endogenous cysteine in living cells, Biosens Bioelectron., 55, pp. 72-75. [190] Zou Q., Zou L., Tian H. (2011), Detection and adsorption of Hg2+ by new mesoporous silica and membrane material grafted with a chemodosimeter, Journal of Materials Chemistry., 21, pp. 14441-14447. [191] Zuo QP., Li B., Pei Q., Li Z., Liu SK. (2010), A highly selective fluorescent probe for detection of biological samples thiol and its application in living cells, Journal of Fluorescence., 20(6), pp. 1307-1313.

Các file đính kèm theo tài liệu này:

  • pdf32_noidungla_0422_2071959.pdf