Luận văn Ứng dụng lý thuyết điều khiển thích nghi bền vững nâng cao chất lượng hệ truyền động quấn băng vật liệu

Xây dựng được hệ điều khiển thích nghi bền vững theo mô hình mẫu và ứng dụng luật thích nghi bền vững vào sơ đồ MRAC. Kết quả được ứng dụng vào thiết kế bộ điều khiển cho hệ thống quấn băng vật liệu. Qua kết quả kiểm nghiệm bằng mô phỏng đã xác định được tính đúng đắn của đề xuất trên và cho phép áp dụng vào điều khiển hệ thực phục vụ cho sản xuất.

pdf77 trang | Chia sẻ: lylyngoc | Lượt xem: 3205 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận văn Ứng dụng lý thuyết điều khiển thích nghi bền vững nâng cao chất lượng hệ truyền động quấn băng vật liệu, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
còn đảm bảo với một họ đối tượng, trong đó có đối tượng đang khảo sát. Xét mô hình hệ thống kín mô tả trên hình Hình 1-12. Trong đó C(s), F(s) là thiết bị điều khiển được thiết kế để đảm bảo ổn định cho phần chuẩn của mô hình đối tượng và phần này có hàm truyền là G0(s) và xác định được. G0(s): Hàm truyền danh định của mô hình chuẩn. G(s): Hàm truyền của đối tượng thực. ∆N N0 M0-1 ∆M u + + - y Hình 1-11: Sơ đồ mô tả sai lệch hệ số Luận văn thạc sỹ kỹ thuật - 33 - Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên d, du,dn,um: Trị số biên của các tín hiệu đầu vào. G(s) là đại diện cho một họ đối tượng thực trong đó có mô hình chuẩn có hàm truyền danh định là G0(s) và có sai lệch mô hình được mô tả bằng biên chặn trên nào đó trong miền tần số. Sai lệch mô hình chuẩn G0(s) và đối tượng G(s) được mô tả bằng một trong ba dạng sai lệch đã phân tích ở trên. Thiết bị điều khiển C(s), F(s) là bền vững đối với phần không xác định của đối tượng G(s), nghĩa là ngoài mô hình G0(s) nó còn ổn định cả với G(s). Đặc tính của C(s), F(s) làm ổn định đối với G(s) gọi là tính ổn định bền vững của hệ điều khiển. Điều kiện cần và đủ để hệ trên (Hình 1-12) ổn định bền vững là : a. 1)( )()()(1 )()( 0 < + ∞ ωδ asGsFsC sFsC (1.2-17) b. 1)( )()()(1 )()()( 0 0 < + ∞ ωδmsGsFsC sGsFsC (1.2-18) c. 1 )()()()( )()()()( 00 12 < + ∆+∆ ∞ sNsFsCsM ssFsCs (1.2-19) Trong đó: G(s) = G0(s)+∆a(s) ứng với trường hợp a G(s) = G0(s)[1+∆m(s)] ứng với trường hợp b d0 dy C(s) G(s) F(s) u + + u0 + + dn yn yc Hình 1-12 : Hệ thống điều khiển tổng quát Luận văn thạc sỹ kỹ thuật - 34 - Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên G(s) = ( ) )( )()(, )( )()( 0 0 0 20 10 sM sNsG ssD ssN = ∆+ ∆+ ứng với trường hợp c G(s): Là hàm truyền của đối tượng. G0(s): Hàm truyền của đối tượng chuẩn (phần mô hình hoá được) ∆a(s): Là nhiễu cộng (bộ phận không mô hình hóa được của đối tượng) ∆m(s): Là nhiễu nhân (bộ phận không mô hình hoá được của đối tượng) δa(ω): Là biên trên của Ga(jω) δm(ω): Là biên trên được xác định từ thực nghiệm. Các điều kiện (1.2-8) (1.2-9) (1.2-10) không chỉ là điều kiện đủ mà còn là điều kiện cần, nếu điều kiện trên bị vi phạm thì trong họ đối tượng đang xem xét có một đối tượng Gi để hệ thống có phản hồi với các khâu bù C(s), F(s) là không ổn định. Các điều kiện (1.2-17); (1.2-18); (1.2-19) được gọi là điều kiện bền vững. Các điều kiện này được dùng để chọn C(s), F(s) sao cho ngoài vấn đề ổn định với đối tượng chuẩn còn ổn định với một lớp các sai lệch mô hình. 1.3. HỆ ĐIỀU KHIỂN THÍCH NGHI BỀN VỮNG Khi cần điều khiển các hệ phi tuyến chứa các tham số không biết trước thay đổi theo thời gian và chịu ảnh hưởng của nhiễu với các phần tử phi tuyến không thể hoặc khó mô hình hoá được. Các bộ điều khiển cần thoả mãn các yêu cầu đặt trước thường được thiết kế theo các hướng sau: + Điều khiển bền vững. + Điều khiển thích nghi. + Điều khiển thích nghi bền vững. * Điều khiển bền vững. Mục đích của thiết bị điều khiển là đạt được các tính năng theo yêu cầu. Để đạt được mục đích đó bộ điều khiển phải thiết kế sao cho có tính bền vững Luận văn thạc sỹ kỹ thuật - 35 - Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên đối với một lớp đặc tính không xác định mà chắc chắn sẽ gặp trong thực tế. Nói cách khác là bộ điều khiển bền vững đảm bảo tính ổn định của hệ kín và tính năng của nó không những đảm bảo với mô hình chuẩn của đối tượng mà còn đảm bảo với một lớp các mô hình đối tượng. Một trong những phương pháp bền vững ra đời sớm nhất là phương pháp bề mặt chuyển đổi. Phần cơ bản của phương pháp này là bề mặt chuyển đổi được thiết kế sao cho nếu các trạng thái nằm trên bề mặt này thì hệ thoả mãn các yêu cầu điều khiển cần thiết. Tín hiệu điều khiển được thiết kế sao cho các trạng thái luôn nằm trên bề mặt này. Phương pháp này có nhược điểm là chỉ ứng dụng cho hệ thoả mãn điều kiện cùng mức nghĩa là nhiễu ảnh hưởng vào hệ ở cùng mức với tín hiệu điều khiển, quá trình thiết kế là quá trình thử dần. Nhược điểm quan trọng nữa là tín hiệu điều khiển bị gián đoạn khi các trạng thái thay đổi qua lại bề mặt. Một số phương pháp điều khiển bền vững khác dựa vào luật Lyapunov thứ II. Đối với các hệ chịu nhiễu và chứa các phần tử phi tuyến không mô hình hoá được, khi sử dụng phương pháp thiết kế này cần thoả mãn điều kiện cùng mức. Điều kiện cùng mức chỉ thoả mãn ở một số trường hợp hữu hạn trong thực tế, do vậy cần phải có phương pháp để loại bỏ giới hạn này. Trong trường hợp này người ta chia các thông số không biết trước, nhiễu và các phần tử phi tuyến không thể mô hình hoá được thành 2 thành phần: Thoả mãn điều kiện cùng mức và không thoả mãn điều kiện cùng mức. Sau đó dùng phương pháp Lyapunov thứ II để thiết kế ổn định cho phần của hệ thoả mãn điều kiện cùng mức và dùng phương pháp ổn định năng lượng để thiết kế ổn định cho phần không thoả mãn điều kiện cùng mức. * Điều khiển thích nghi Luận văn thạc sỹ kỹ thuật - 36 - Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên Để thoả mãn các yêu cầu đặt trước, khi cần điều khiển các hệ phi tuyến có thể theo hướng điều khiển thứ hai là sử dụng hệ ĐKTN. Phương pháp này được thiết kế cho các hệ thoả mãn các điều kiện cùng mức cũng như các hệ không thoả mãn điều kiện này. Luật điều khiển là luật nhận dạng các tham số được xây dựng dựa vào nguyên lý tương đương dùng cho các hệ tuyến tính. Đặc điểm cơ bản của điều khiển thích nghi là chỉ xây dựng cho những hệ có tham số biết trước sau đó các tham số này được thay thế bởi nhận dạng của chúng. Đây chính là các phương pháp ĐKTN cho các hệ tuyến tính và được cải tiến để áp dụng cho các hệ phi tuyến. Nhược điểm cơ bản của ĐKTN là không bền vững khi chịu nhiễu tác động và khi đối tượng có các phần tử phi tuyến không mô hình hoá được. * Điều khiển thích nghi bền vững Từ nội dung của hai phương pháp điều khiển trên ta kết hợp để đưa ra phương pháp điều khiển thích nghi bền vững(ĐKTNBV). Nội dung của phương pháp này là xây dựng một bộ điều khiển sao cho tận dụng được ưu điểm của hai phương pháp điều khiển trên. Nghĩa là xây dựng được bộ ĐKTN mà nó có thể ổn định không những đối với một đối tượng chuẩn mà nó có thể ổn định với một lớp đối tượng trong đó bao hàm cả đối tượng chuẩn nói trên. Trong trường hợp chung lớp đối tượng trên có thể có thông số không biết trước và có thành phần động học không mô hình hoá được. 1.4. KẾT LUẬN CHƯƠNG 1 Qua tìm hiểu ta thấy ĐKTN bền vững là phương pháp điều khiển tự động hiện đại, có nhiều ưu điểm được ứng dụng để điều khiển các hệ thống phức tạp trong thực tế nhằm đáp ứng các yêu cầu của nền sản xuất hiện đại. Luận văn thạc sỹ kỹ thuật - 37 - Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên Các hệ trong thực tế là các hệ có tham số biến thiên và mô hình có phần không mô hình hoá được. Vì vậy khi sử dụng hệ điều khiển thích nghi bền vững thì phần thích nghi sẽ khắc phục được sự biến thiên tham số còn phần bền vững sẽ đảm bảo cho hệ ổn định với một lớp các mô hình tức là khắc phục được các sai lệch về mô hình. Như vậy hệ ĐKTNBV đã tận dụng được ưu điểm của cả hai phương pháp để điều khiển hệ thực. Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -38- CHƯƠNG 2 HỆ ĐIỀU KHIỂN THÍCH NGHI BỀN VỮNG Hệ điều khiển thích nghi điển hình bao gồm hai phần chính: luật điều khiển và luật thích nghi (luật đánh giá tham số). Bài toán nâng cao tính bền vững của hệ điều khiển thích nghi cũng đi theo hai hướng sau: - Hướng 1: Tìm các bộ đánh giá tham số đặc biệt (luật thích nghi bền vững) để đạt được tính bền vững của hệ. - Hướng 2: Tìm các luật điều khiển bền vững để ứng dụng vào tổng hợp sơ đồ điều khiển thích nghi. Nguyên nhân chủ yếu của sự mất ổn định là do luật thích nghi gây nên. Vì vậy luận văn tập trung giải quyết theo hướng sử dụng các luật thích nghi bền vững để ứng dụng cho các sơ đồ thích nghi với các luật điều khiển thông thường. 2.1. CÁC LUẬT THÍCH NGHI BỀN VỮNG Các luật thích nghi làm cho hệ bền vững đối với các sai lệch mô hình và nhiễu được gọi là luật thích nghi bền vững. Các luật thích nghi bền vững được xây dựng dựa trên cơ sở cải tiến các luật thích nghi thông thường nhờ hai phép biến đổi chủ yếu sau: + Tín hiệu chuẩn hoá m: Tín hiệu này được chọn sao cho chặn trên đối với sai số mô hình η và véc tơ tín hiệu φ. Tín hiệu chuẩn hoá đảm bảo là sai số mô hình đã chuẩn hoá η/m được giới hạn và do đó nó có tác dụng như một nhiễu đầu vào đã giới hạn trong luật thích nghi. + Phép “ khe hở”, phép “Chiếu”, hoặc “Vùng chết” để thay đổi thành phần tích phân của luật thích nghi. Phép “Chiếu ” cưỡng bức các đánh giá tham số nằm bên trong một tập hợp lồi giới hạn nào đó trong không gian tham số mà có chứa véc tơ chưa biết θ* sẽ đảm bảo cho tham số đánh giá bị giới hạn. Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -39- Các hệ điều khiển thích nghi bền vững điển hình là: - Thuật toán hiệu chỉnh khe hở (Leakage) - Thuật toán Gradient có khe hở. - Thuật toán bình phương cực tiểu có khe hở. - Phương pháp chiếu (Prorection). - Phương pháp vùng chết (Dead-Zone). 2.2. HỆ MRAC BỀN VỮNG TRỰC TIẾP Các hệ ĐKTN thiết kế cho các mô hình đã đơn giản hoá sẽ không đảm bảo được tính ổn định khi áp dụng cho đối tượng thực có ∆m(s)?0 hoặc du?0. Nguyên nhân chủ yếu của sự mất ổn định là do luật thích nghi gây nên. Luật thích nghi làm cho các vòng kín tổng thể trở lên phi tuyến và nhạy cảm đối với tác động của sai số mô hình. Tính bền vững của hệ MRAC với các luật thích nghi đã chuẩn hoá có thể đạt được bằng cách sử dụng nguyên tắc tương đương để phối hợp luật điều khiển MRAC với luật thích nghi bền vững. Trình tự thiết kế giống như đối với trường hợp lý tưởng, nghĩa là ta sử dụng luật điều khiển giống như trường hợp tham số đã biết nhưng thay các tham số chưa biết đó bằng các luật đánh giá trực tuyến nhờ các luật thích nghi bền vững. Xét đối tượng SISO được mô tả bằng: [ ]us as y m )(1 1 ∆+ − = (2.2.1) Có hàm truyền là phù hợp tuyệt đối, trong đó a là tham số chưa biết và ∆m(s) là sai lệch nhân của đối tượng. Ta xét luật điều khiển sau: Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -40- Trong đó: am là điểm cực mong muốn của hệ thống kín θ là đánh giá của θ* = a+am Các công thức (2.2.2) được thiết kế cho mô hình đối tượng y = u as − 1 nhưng lại áp dụng cho đối tượng (2.2.1) là: [ ]us as y m )(1 1 ∆+ − = Trong đó ∆m(s)? 0 và sai lệch mô hình ∆m(s) này sẽ dẫn đến nhiễu trong luật thích nghi. Điều đó dễ làm cho θ trôi đến giá trị không xác định nào đó, dẫn đến một số tín hiệu trở thành không giới hạn kể cả khi ∆m(s) nhỏ. Cuối cùng làm cho luật thích nghi (2.2.3) không bền vững đối với độ bất định ∆m(s) của đối tượng. Sơ đồ ĐKTN này sẽ trở nên bền vững nếu ta thay luật thích nghi (2.2.3) bằng luật thích nghi bền vững đã trình bày ở trên và vẫn giữ các luật điều khiển thông thường. Trình tự thiết kế như sau: 1. Trước hết biểu diễn tham số điều khiển mong muốn θ* = a+am ở dạng mô hình tham số tuyến tính: Z = θ*φ+η Trong đó z, φ được xác định từ (2.2.3) và η = us as mm )(1 ∆ + là sai số mô hình. Nếu ta giả thiết rằng giới hạn độ dự trữ ổn định của các điểm cực ∆m(s) Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -41- đã biết, có nghĩa là ∆m(s) giải tích trong miền Re[s] ≥ δ0/2 (với hằng số δ0 dương đã biết ) thì có thể chứng minh rằng tín hiệu m tạo ra theo biểu thức: m2 = 1+ms 220 . yumm s ++−= δ ms(0) = 0;δ0<2a Sẽ đảm bảo cho η/m và φ/m∈Ê∞ và do đó có thể dùng làm tín hiệu chuẩn hoá. Khi đó ta có thể kết hợp phép chuẩn hoá với bất kỳ một phép biến đổi nào như thuật toán khe hở, thuật toán chiếu, thuật toán vùng chết để tạo nên hệ ĐKTN bền vững. Trường hợp tổng quát điều kiện ∆m(s) phải thoả mãn để hệ ổn định bền vững là: Trong đó: 0 )( δ∞ ∞ + ∆ =∆ m m as s ; 02 2 )( δm m as s + ∆ =∆ Hằng số δ0 > 0 phải chọn sao cho ∆m(s) giải tích trong Re[s] ≥ δ0/2 c: Biểu thị hằng số xác định có thể tính toán được. Hằng số α0 > max[1, δ0/2] là một hằng số bất kỳ và có thể chọn sao cho thoả mãn các bất đẳng thức trên đối với ∆2 và ∆∞ nhỏ. Sơ đồ điều khiển thích nghi bền vững theo mô hình mẫu ở trên có thể tóm tắt lại bằng công thức sau: u = - θy 2 . ; m z s θφεγθσγεφθ −=−= Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -42- y as m+ = 1φ , u as yz m+ −= 1 m2 = 1+ms; ms(0) = 0 220 yumm s ++−= δ Trong đó: σs là σ chuyển tiếp. Khi áp dụng cho đối tượng có mô tả toán học: y = us as m )](1[1 ∆+ − Trong đó: giả sử a = 1 và ∆m(s) = s s µ µ + − 1 2 với µ > 0 Ta có thể kiểm tra được đáp ứng của y(t) tương ứng với các giá trị µ khác nhau (nghĩa là ∆m khác nhau) bằng mô phỏng. Với µ nhỏ thì đặc tính điều chỉnh tốt và ổn định. Nhưng khi µ tăng lên thì tính ổn định của hệ sẽ xấu đi và khi µ = 0,35 thì hệ thống trở lên không ổn định. Trường hợp tổng quát: Đối tượng SISO cho bởi phương trình sau đây: yP = G0(s)[1+∆m(s)][uP+du] (2.2.4) Mô hình đối tượng có dạng lý tưởng là: yP = G0(s)uP ;với G0(s) = kP )( )( sR sz p p (2.2.5) Trong đó: du là nhiễu loạn đầu vào bị giới hạn. G0(s): là hàm truyền của phần có mô hình hoá được của đối tượng. ∆m(s) là sai lệch nhân chưa biết có các điểm cực ổn định. Giả thiết: Hàm truyền tổng thể của đối tượng và G0(s) là phù hợp tuyệt đối. Trong đó G0(s) thoả mãn các giả thiết sau. P1:ZP(s) là đa thức Hurwit bậc mP P2: RP(s) là đa thức Hurwit bậc nP có giới hạn trên nP đã biết Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -43- P3: Bậc tương đối n* = nP-mP của G0(s) đã biết. P4: dấu của hệ số tần cao đã biết. Độ bất định ∆m(s) thoả mãn các giả thiết sau: S1: ∆m(s) giải tích trong Re[s]≥-δ0/2 với δ0>0 đã biết nào đó . S2: Tồn tại hàm truyền phù hợp W(s), giải tích trong miền: Re(s)≥ -δ0/2 Để sao cho W(s) ∆m(s) cũng phù hợp. Các giả thiết S1, S2 có nghĩa là ∆2, ∆∞ là hằng số xác định với ∆2, ∆∞ được định nghĩa như sau: ∆∞ 00 22 )()(¦ ; )()(¦ δδ ssWssW mm ∆=∆∆ ∆ ∞ ∆ Do tính phù hợp tuyệt đối của hàm truyền đối tượng tổng thể và của G0(s) nên G0(s);∆m(s) cũng phù hợp tuyệt đối. Mục tiêu của điều khiển là phải chọn uP và xác định các giới hạn của ∆2, ∆∞ để tất cả các tín hiệu trong hệ thống kín bị giới hạn và tín hiệu đầu ra yP bám theo đầu ra ym của mô hình mẫu càng sớm càng tốt. Tín hiệu đầu ra của mô hình mẫu ym xác định như sau: Ym = Wm(s).r(t) = km )(. )( )( tr sR sz m m (2.2.6) Với tín hiệu chủ đạo r(t) có giới hạn Hàm truyền Wm(s) của mô hình mẫu thoả mãn các giả thiết: M1: Zm(s), Rm(s) là đa thức Hurwit có bậc tương ứng qm, pm với qm ≤ pm M2: bậc tương đối n*m = pm- qmcủa Wm(s) giống bậc của GP(s): n*m = n*. Việc thiết kế tín hiệu điều khiển uP được thiết kế dựa trên mô hình đối tượng lý tưởng có ∆m(s)≡0 và dn≡0 nhưng đòi hỏi phải thoả mãn với hệ thực Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -44- cos ∆m(s)≠0 và dn≠0. Xét luật điều khiển cho mô hình đối tượng ∆m(s)≡0 và dn≡0: uP = θTω (2.2.7) Trong đó θ = [θ1,θ2,θ3,c0] là véc tơ tham số được tạo ra trực tuyến nhờ một luật thích nghi nào đó. ω = [ω1,ω2,yP,r] Trong đó các véc tơ tín hiệu ω1,ω3 được tạo ra bằng cách lọc đầu vào uP và đầu ra yP của đối tượng. Luật điều khiển (2.2.7) sẽ tạo nên sơ đồ Điều khiển thích nghi bền vững đối với các sai lệch mô hình đối tượng ∆m(s), du nếu ta sử dụng các luật thích nghi bền vững đã nêu ở phần trước để cập nhật các tham số điều khiển chứ không dùng các luật thích nghi thông thường. Đầu tiên ta triển khai mô hình tham số phù hợp với véc tơ tham số điều khiển mong muốn θ* rồi sau đó chọn luật thích nghi bền vững thích hợp ở 2.1 để đánh giá tham số. Trình tự tiến hành như sau: Ta viết phương trình đối tượng ở dạng: RPyP = kPZP(1+∆m)(uP+du) (2.2.8) Sau đó sử dụng công thức phù hợp hàm truyền: mPP T PP T RZZkR 0 * 3 * 2 * 1 )()( Λ=Λ+−−Λ θαθαθ (2.2.9) Trong đó: α = αn-2(s) = [sn-2,…,s,1]T Từ (2.2.8) ta suy ra: ( αθ T*1−Λ ) RPyP = ( )uPmPPT duZk +∆+−Λ )1()( *1 αθ Kết hợp với (2.2.9) ta có phương trình sau: ( )[ ] ))(1()( *10*3*2 upmppTpmTpp duZkyRkZ +∆+−Λ=Λ+Λ+ αθθαθ lọc hai vế với bộ lọc ổn định 1/ pZΛ và sắp xếp các số hạng ta thu được: Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -45- ])()[(1)/()( *1 * 1 * 3 * 2 uup T pp T ppppmmp T p ddukukukyZRyk ++∆−ΛΛ + Λ −=++ Λ αθαθθαθ hay uupm T pm p m ppp T p T dduyW k kuyyu ++∆−Λ Λ +=−+ Λ + Λ − )()[(1)( *1 1* 3 * 2 * 1 αθθ αθαθ do p m k kc =*0 nên phương trình trên có thể viết thành: 0 * 0 * 3 * 2 * 1 ).()( ηθ αθαθ sWcuyyuW mppp T p T m +−=−+Λ + Λ (2.2.10) Trong đó: ])()[(1 *10 uupmT ddu ++∆−ΛΛ = αθη là sai số mô hình do ∆m, du chưa biết gây ra. Tương tự như trường hợp lý tưởng công thức (2.2.10) ta có thể viết lại thành: Wm(s)uP = ηφθ −PT*1 (2.2.11) Trong đó: TTT c ],,,[ *0*3*2*1* θθθθ = T ppmp T mp T mp yyWyWuW       ΛΛ = ,,, ααφ )(])()[(1)( *10 sWduusW mudpmTm ++∆−ΛΛ == αθηη Công thức (2.2.11) có dạng của mô hình tham số tuyến tính (2.2.5) đã xét. Biểu thức (2.2.10) có thể biểu diễn ở dạng mô hình tham số bán tuyến tính: e1 = Wm(s) ρ*(up-θ*T+η0) (2.2.12) e1 = yP-ym; ρ* = 1/c*0 Trong đó ω = T pp TT p ryy aau       ΛΛ ,,, Nhờ sử dụng các mô hình (2.2.11) và (2.2.12) ta có thể tạo ra nhiều sơ đồ MRAC bền vững khác nhau bằng cách chọn một luật thích nghi bền vững và Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -46- sử dụng nó để cập nhật θ(t) trong luật điều khiển (2.2.7). Sơ đồ khối của hệ thống kín MRAC bền vững khi có các đặc tính động không cấu trúc và nhiễu đầu vào giới hạn như hình (H2.2.1): Tổng quát hoá tính chất ổn định của các sơ đồ MRAC với các luật thích nghi bền vững như sau: - Xét sơ đồ MRAC được thiết kế cho mô hình đối tượng: yp = G0(s).up nhưng áp dụng cho đối tượng: yP = G0(s)[1+∆m(s)][up+du] có các sai lệch mô hình đối tượng là ∆m(s)?0 và du?0. Nếu: c.[1/α02+α02k ∆2∞]<1 và c.[ 1/α02+α02k] (f0+∆i2)≤δ/2 Trong đó : + ∆i = ∆02 và k = n*+1 đối với các luật thích nghi ở bảng 9.2[37]. + ∆i = ∆2 và k = n* đối với các luật thích nghi ở bảng 9.2, 9.3[37]. + ∆∞ = 0 )()( δ∞ ∆ ssW m y r c0* G0(s) (si-F)-1g θ1 *T (si-F)-1g θ3 * θ2 *T + + + + + + + ω1 ω2 ωθ T ~ η1 = ∆m(up+du)+du Hình 2-1: MRAC bền vững trực tiếp Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -47- + ∆02 = 020 01 * 1 )()( )( )()( δ αθ s hs hsL s ss m T ∆ +Λ −Λ − + 02 * 1 2 )()()( )()( δ αθ ssW s ss mm T ∆ Λ −Λ =∆ + δ∈(0,δ0) sao cho G0-1(s) giải tích trong Re[s]≥-δ/2 + α0 > max(1, 2/0δ ) là một hằng số bất kỳ. + h0 > δ0/2 là một hằng số bất kỳ. + c ≥ 0 đại diện cho các hằng số xác định mà có thể tính toán được và f0 = σ trong trường hợp biến đổi σ cố định f0 = ν0 trong trường hợp ε. f0 = g0 trong trường hợp biến đổi vùng kém nhạy. f0 = 0 trong trường hợp biến đổi σ chuyển tiếp và phép chiếu. Khi đó: Tất cả các tín hiệu trong hệ thống kín đều bị giới hạn và sai số bám e1 thoả mãn: ∫ >≥∀+++∆≤ T Tt T cfdcde T 0 0 2 0 22 1 0;0)( 1 τ Trong đó: d0 là một giới hạn trên của ud ∆2 = 1/α02+∆2∞+∆22+∆202 cho MRAC với luật thích nghi ở bảng 9.2[37]. ∆2 = ∆22 đối với MRAC có các luật thích nghi trong bảng 9.2, 9.3[37] Ngoài các điều kiện trên, nếu tín hiệu chủ đạo r là tín hiệu trội mạnh bậc 2n và ZP, RP là đồng hạng thì sai số ~ θ và sai số bám e1 sẽ hội tụ về tập dư:       +∆+≤+∈∈= )(, 001 ~ 12 ~ dfceReRS n θθ Trong đó f0, ∆ được định nghĩa như trên. Sự hội tụ về tập dư S sẽ là hội tụ hàm mũ trong trường hợp sơ đồ MRAC với luật thích nghi trong bảng 9.3 [37]. Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -48- 2.3. HỆ MRAC BỀN VỮNG GIÁN TIẾP Các sơ đồ MRAC gián tiếp cũng tồn tại những vấn đề không bền vững giống như ở sơ đồ MRAC trực tiếp. Tính bền vững của các sơ đồ này có thể đạt được bằng cách sử dụng các luật thích nghi bền vững để đánh giá tham số trực tuyến (tương tự như trường hợp của sơ đồ MRAC trực tiếp). Trường hợp sơ đồ MRAC gián tiếp dùng luật thích nghi không chuẩn hoá, việc bền vững hoá sẽ dẫn đến sự ổn định bán toàn cục(semiglobal stability) khi có các đặc tính động không cấu trúc tần số cao. Đối với sơ đồ MRAC gián tiếp dùng luật thích nghi chuẩn hoá, tính ổn định toàn cục có thể đạt được kể cả khi các đặc tính động không cấu trúc nếu ta sử dụng các luật thích nghi bền vững với sự chuẩn hoá đặc tính động giống như ở phần 2.1. Có thể minh hoạ sự bền vững hoá một sơ đồ MRAC gián tiếp có luật thích nghi chuẩn hoá qua việc khảo sát ví dụ sau. Xét sơ đồ MRAC áp dụng cho đối tượng: [ ] ))(1( pm Usas by ∆+ − = (2.3.1) Trong đó ∆m: là một hàm truyền phù hợp và giải tích trong Re[s]≥-δ0/2 với δ0>0 đã biết và a, b là hằng số chưa biết. Mô hình mẫu được biểu diễn bằng công thức : y = m m as b + với am>0 Nếu ∆m(s) = 0 thì MRAC gián tiếp sau đáp ứng được mục tiêu điều khiển: up = -k(t)yp+1(t)r ∧∧ ∧ = + = b bt b aatk mm )(1,)( (2.3.2) Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -49- Trong đó : 22εφγ= ∧ a Với 2m zz ∧ − =ε , z = 21; φφλ ∧∧∧ += + abzy s s p m2 = 1+φ12+φ22 ; φ1 = pus λ+ 1 ; φ2 = pys λ+ 1 0)0( bb ≥ ∧ là một giới hạn dưới đã biết của ε và λ là một hằng số thiết kế. Nếu áp dụng (2.3.2) và (2.3.3) cho đối tượng thực tế (2.3.1) thì các tính chất của trường hợp lý tưởng như tính ổn định, bám tiệm cận, không thể đảm bảo được khi ∆m ? 0. Bằng các phương pháp đã nêu ở trên ta có thể biến đổi sơ đồ MRAC mô tả bởi (2.3.2) và (2.3.3) để nó có thể trở thành bền vững. Ví dụ ta có thể thay luật thích nghi (2.3.3) bằng luật thích nghi bền vững sau: ∧∧ −= aa s 122 . γσεφγ = ∧ b     − ∧ 0 11 bsγσεφγ khi 0bb > ∧ hoặc 0bb = ∧ và )1()1()( −−= ∧∧ ttt Ty θϕ Trong đó: 2m zz ∧ − =ε ; pys sz λ+ = ; 21 φφ ∧∧∧ += abz pus λ φ + = 1 1 ; pys λ φ + = 1 2 với m2 = 1+ns2; ns2 = ms =sm . -σ0ms+up2+yp2;ms(0) = 0 Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -50- Các hằng số thiết kế λ và am được chọn sao cho λ > δ0/2; am> δ0/2; σs là biến đổi σ chuyển tiếp; b0 là giới hạn dưới thoả mãn 0<b0< b . Luật thích nghi bền vững trên được triển khai dựa trên mô hình tham số: Z = θ*TφP+η của đối tượng (2.3.4) trong đó: θ* = [a,b]T ; η = pm us sb λ+ ∆ )(. TTpp ys u s ],[]1,1[ 21 φφλλ φ = ++ = Như đã trình bày ở 2.1, luật thích nghi (2.3.4) đảm bảo rằng: a. ε,εm, ∈ ∧∧∧ . . . ,,, baba Ê∞ b. ε, εns , ∈ ∧∧ .. ,ba S(∆22) với ∆2 = 02 )( δλ+ ∆ s sm - Tổng quát: Sơ đồ hệ thống kín MRAC gián tiếp cho bởi (2.3.1), (2.3.2) và (2.3.3) có các tính chất sau: Nếu r, . r∈Ê∞ và độ bất định ∆m(s) của đối tượng thoả mãn các bất đẳng thức 1. 220 2 2 0 <∆+∆+ ∞ λαα ccc và c.∆22≤ 2 0δ Trong đó: ∆∞ = 0 )()( δ∞ ∆ ssW mm ; 00 )( ; )( 2 2 δ λ δ λλ ∞+ ∆ =∆ + ∆ =∆ s s s s mm Với a0>δ0 đại diện cho bất kỳ hằng số xác định nào. Khi đó: Tất cả các tín hiệu đều bị giới hạn và sai số bám e1 thoả mãn: 0 0 22 2 1 ≥∀>+∆≤∫ + tTccde T vµ bÊt kú víiτ Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -51- 2.4. KẾT LUẬN CHƯƠNG 2 Với việc sử dụng luật thích nghi bền vững và giữ nguyên luật điều khiển ta đã tạo ra được hệ ĐKTN bền vững: - Thoả mãn tính thích nghi đối với sự biến thiên tham số. - Bền vững đối với các sai lệch của mô hình. Nghĩa là hệ điều khiển vừa đảm bảo tính thích nghi vừa đảm bảo được tính bền vững đối với sai lệch của mô hình và nhiễu. Bộ điều khiển trên sẽ đáp ứng được yêu cầu của các hệ trong thực tế. Để điều khiển hệ truyền động quấn băng vật liệu ở đây ta ứng dụng hệ ĐKTN bền vững trực tiếp. Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -52- CHƯƠNG 3 TỔNG HỢP HỆ ĐKTNBV NÂNG CAO CHẤT LƯỢNG HỆ TRUYỀN ĐỘNG QUẤN BĂNG VẬT LIỆU 3.1. NỘI DUNG BÀI TOÁN 3.1.1. Giới thiệu cơ cấu truyền động Xét cơ cấu quấn băng vật liệu như hình vẽ: Trong đó: M: Động cơ điện một chiều kích từ độc lập d1, d2: Lô quấn dây vật liệu Khi quấn vật liệu dưới dạng dây phải đảm bảo: - Dây vật liệu không chịu lực tác động (lực căng) làm thay đổi đặc tính cơ hoặc bị đứt - Không bị rối do dây bị chùng; - Vì vậy yêu cầu công nghệ đặt ra trong quá trình làm việc là: Vận tốc dài của dây không đổi v=const vì vậy: + Trong cùng một lớp dây tốc độ động cơ không đổi: Vd = const; + Khi đường kính cuộn dây tăng lên thì tốc độ động cơ giảm xuống và ngược lại; Hình 3.1: Cơ cấu hệ truyền động quấn băng vật liệu Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -53- + Trong quá trình làm việc trọng lượng của lô quán dây thay đổi dẫn đến mô men quán tính J là biến thiên. Để đáp ứng yêu cầu công nghệ trên tốc độ và mô men của động cơ biến thiên theo quy luật sau: Xét truyền động quán dây: Trong quá trình làm việc đường kính lô dây và lực cản tăng dần dẫn đến mô men quán tính động cơ J thay đổi, Mặt khác điện trở, điện cảm dây quấn động cơ thay đổi; lực cản thay đổi nên đây là đối tượng phi tuyến có phần không mô hình hoá được do nhiễu và lực cản chuyển động thay đổi theo thời gian. Cơ cấu quấn dây trên hình 3-4 Thông số cụ thể của cơ cấu: Trong đó dây vật liệu có kích thước 5mm ; Khối lượng lô quấn định mức là 100kg Hình 3-4: 1. Rulo quấn sản phẩm; 2. Dây vật liệu; 3. Động cơ điện ; 4 : Hộp giảm tốc 1 2 4 3 Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -54- Động cơ điện một chiều sử dụng trong hệ thống có các thông số như sau: Pdm = 2,2kW; Udm = 220(V); Idm = 12,5(A); ndm = 3000(v/f); Ru = 1,22(Ω); Lu = 0,0334(H); GD2 = 0,055(kg,m2) 3.1.2. Lựa chọn phương pháp điều khiển Để đảm bảo yêu cầu công nghệ đặt trước ta sử dụng hệ ĐKTNBV có sơ đồ cấu trúc như hình vẽ. Trong đó mô hình đối tượng có dạng : yP = G0(s)[1+∆m(s)][uP+du] (3.1-1) Mô hình đối tượng có dạng lý tưởng là: yP0 = G0(s)uP ; với G0(s) = kP )( )( sR sz p p (3.1-2) Trong đó: du là nhiễu loạn đầu vào bị giới hạn. y r c0* G0(s) (si-F)-1g θ1 *T (si-F)-1g θ3 * θ2 *T + + + + + + + ω1 ω2 ωθ T ~ η1 = ∆ (up+du)+du Hình 3.5: Sơ đồ cấu trúc hệ thống Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -55- G0(s): là hàm truyền của động cơ ở chế độ định mức. ∆m(s) là sai lệch nhân chưa biết có các điểm cực ổn định. Giả thiết: Hàm truyền tổng thể của đối tượng và G0(s) là phù hợp tuyệt đối. Trong đó G0(s) thoả mãn các giả thiết sau. P1: ZP(s) là đa thức Hurwit bậc mP P2: RP(s) là đa thức Hurwit bậc nP có giới hạn trên nP đã biết P3: Bậc tương đối n* = nP-mP của G0(s) đã biết. P4: dấu của hệ số tần cao đã biết. Hàm truyền của động cơ lượng vào là Uư lượng ra là n theo tài liệu [4] ta có như sau : 21)( )( )( )()( pTTpT K pU pn pX pXpW MM D VV R ∋++ === (3.1-3) Trong đó: Hệ số khuếch đại động cơ: KD = 1/Ke Ke: Hệ số sức điện động động cơ; Hằng số thời gian cơ học : Tc = RuJ/Ke2 KM = 9,55 Ke : là hệ số mô men. 3.2. TỔNG HỢP HỆ 3.2.1. Tổng hợp mạch vòng dòng điện Trong hệ điều chỉnh tự động, mạch điều chỉnh dòng điện là mạch vòng cơ bản. Nó có tính chất quyết định về chất lượng của hệ thống và ảnh hưởng trực tiếp đến momen của động cơ và các đại lượng khác. Xét động cơ điện một chiều kích từ độc lập điều chỉnh tốc độ bằng cách điều chỉnh điện áp phần ứng đặt vào động cơ và dùng bộ biến đổi Thyristor có hằng số thời gian Tđk eM u M KK RGD T ..375 .2 = Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -56- Hàm truyền đạt của BBĐ: WT = uk . dk PT e − (3.2-1) Khai triển Taylo và lấy giá trị gần đúng cấp một ta được: WT = Ku PTdk+1 1 Ta coi bộ tạo xung hoạt động như bộ lọc có hằng số thời gian Ts . Bộ biến đổi dòng điện (Cảm biến dòng và khuyếch đại cảm ứng) có hệ số khuyếch đại KI và hằng số thời gian TI. Trong mạch vòng dòng điện ta đưa thêm bộ lọc để lấy giá trị trung bình nhằm giảm sai số so sánh giữa UId và Ud. Ta có sơ đồ cấu trúc mạch vòng dòng điện: Trong đó Ui là điện áp bộ phản hồi dòng điện, F là mạch lọc tín hiệu. Thông thường trong hệ truyền động điện hằng số TC >>TƯ đồng thời do thời gian quá độ mạch vòng dòng điện rất nhanh nên có thể bỏ qua phản hồi sức điện động bên trong động cơ. Ta có sơ đồ cấu trúc mạch vòng dòng điện sau khi biến đổi trên hình 3-7 PTf+1 1 RI )1)(1( 1 pTpT vdk ++ α∂ ∂ dU )1( 1 pTR uu + PT K I I +1 Ui UI - -E I Hình 3-6: Sơ đồ cấu trúc mạch vòng dòng điện RI Uidk UI - U Hình 3-7: Sơ đồ cấu trúc mạch vòng dòng điện đã biến đổi Kf.KI/RƯ (1+Tfp)(1+TIp)(1+Tvp1+Tđkp) Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -57- Tất cả các hằng số thời gian Tf, , Tđk , TV đều rất nhỏ so với thời gian điện từ Tư vì vậy có thể thay thế các hằng số thời gian trên bằng hàng số thời gian TS với TS = Tf + Tđk + TV + TI (3.2-2) Hàm truyền của hệ có thể xấp xỉ bằng: Sok(p) = )1)(1( pTpT R KK us u If ++ (3.2-3) áp dụng phương pháp modul tối ưu và hàm truyền chuẩn ta tính được hàm truyền của bộ điều chỉnh: RI = )1( c c FS F − (3.2-4) Trong đó: S: Là hàm truyền của hệ thống; Fc là hàm tối ưu modul. Fc = 22221 1 pp ∂∂ ++ ττ (3.2-5) Chọn T∂ = TS ta được: RI(p) = pT R KK pT S u ICL u 2 1+ (3.2-6) Ta có 1)1(2 11 )( )( ++ = pTpTKpU pI SSI (3.2-7) Trên quan điểm giảm bậc ta đưa hàm truyền của động cơ về bậc một như sau: 1.2 11 1.22 1.1 )( )( 2 + ≈ ++ = sTKsTTKsU sI sIssIId (3.2-8) 3.2.2. Tổng hợp mạch vòng tốc độ Từ mạch vòng dòng điện ta có thể xây dựng sơ đồ cấu trúc mạch vòng điều chỉnh tốc độ như hình 3-8, trong đó Rω(s) là bộ điều chỉnh tốc độ. Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -58- Từ sơ đồ khối trên ta có quan hệ giữa tín hiệu vào và tín hiệu ra của hệ thống điều khiển như sau: yp = p Iu sc ss IuR p s R c s Iu u KC sTM sTJ KCKu J KM sT KC       + −      + =      − + / )1.2( 1 )1..2( / 1.2 / (3.2-9) Đặt yP = G0(s)[1+∆m(s)]uP Trong đó hàm truyền chuẩn G0(s) của động cơ là: )2/1( 2/. )1.2( /. )(0 ss IsuR ss IuR TsJ KTCK sTJ KCKsG + = + = )()( / )( )( * 0 ss G ss G fss a fss JK fsJ KsG + = + = + = (3.2-10) Đặt G0(s) = p p p R Z k (3.2-11) Với: kp = a* =KG/J; Zp(s) = 1 và RP(s) = s2+sfs Sai lệch nhân của mô hình ∆m(s) = ∆ + −= + − K fsM KC sTM sc Iu sc )( / )1..2( (3.2-12) Với fs = 1/2Ts; K∆ = Cufs/KI; KG = K∆KR; a* = KG/J (3.2-13) Từ công thức (3.3-9), (3.3-10) ta có phương trình sau: s2 yP+sfsyP = (1+∆m).a*uP s2yP = a*.uP-sfsyP+∆m.a*.uP (3.2-14) Yp Rω(s) )1.2( 1 +sTK si Cu 1/J 1/s Kr - Mc UP UI d Iu Mdc Hình 3.8: Sơ đồ cấu trúc mạch vòng điều chỉnh tốc độ Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -59- Lọc hai vế của phương trình (3.3-11) với )1( 1 2s+ ta có mô hình : ηφθ += + ∆ + + − + = + . )1( . )1( . )1()1( * 2 * 22 * 2 2 T p p m P s Pp z u s ay s sfu s ay s s (3.2-15) Trong đó: T s T p T pp P m p fay s su s u s ay s sz ],[; )1( , )1( 1][ )1( . ; )1( ** 222,11 2 * 2 2 =      + − + == + ∆ = + = θφφφ η Công thức (3.3-12) có dạng của mô hình tham số tuyến tính vì vậy ta có thể áp dụng các luật thích nghi bền vững đã nêu ở chương 2 để đánh giá véc tơ tham số TP*θ của đối tượng điều khiển. áp dụng luật thích nghi bền vững dựa trên phương pháp Gradient có “khe hở” và chuẩn hoá tín hiệu để tạo ra đánh giá Pθ của TP*θ . + Luật thích nghi bền vững có “khe hở” : . 11 ).(.. .. awawa PP −=−= Γ−Γ= • εφγγγεφ εθφεθ Trong đó 0>γ là một hằng số bất kỳ và w là hệ số σ chuyển tiếp.        > ≤<      − ≤ == 00 000 0 0 2 21 0 Makhi MakhiM M a Makhi w s σ σσ (3.2-16) + Sai số đánh giá chuẩn hoá : 22 ^ m z m zz TPφθε −=−= (3.2-17) + Tín hiệu chuẩn hoá m2 = 1+ns2; ns2 = ms (3.2-18) 0)0(;. 220 =++−= • sppss myumm δ Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -60- Ta chọn mô hình mẫu của hệ điều khiển thích nghi bền vững có dạng: p ssm m mmm usTsT r sR sZkrsW . 1.4.8 1. )( )( ).( 22 ++ ===ω p ss s u fsfs f . )2/.( 1. 2 22 2 ++ = (3.2-19) Với: ;1)(; 2 2 == sZfk msm 2/)( 22 ssm fsfssR ++= Tín hiệu điều khiển up ở đầu vào của đối tượng xác định theo công thức sau: rcyy s su s su p T p T p T p 03211 .)( )(. )( )( ++ Λ + Λ = θαθαθ (3.2-20) Trong đó: 1)(;1)()( 2 +=Λ== − ssss nαα Thay vào công thức trên ta được: rcyy s u s u P T P T P T p ...1 1. 1 1 0321 +++ + + = θθθ Luật điều khiển có thể viết thành: ωθ ωω ωω . 22 11 T p p p u y u = +−= +−= • • Với: ω = [ω1 ,ω2,yP,r]T là tín hiệu lọc của uP, yP, r. θ = [θ1T,θ2T,θ3T,c0]T = [θ1,θ2,θ3,c0]T là véc tơ tham số của bộ điều khiển. Véc tơ này được tính toán dựa trên những đánh giá véc tơ tham số của đối tượng điều khiển. + Các phần tử của véc tơ θ được tính toán từ công thức : ^ 2 ^0 2a f k kc s P m == (3.2-21) Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -61- )().(1)()( ^^ ^1 sQsZ k ss p p −Λ=αθ Trong đó: Q(s) là thương số của )().( )().( )( )().( ^^ 0 sRsZ sRs sR sRs pm m P m Λ= Λ ^ ^^ )(),(, sRsZk ppp là các đánh giá của kP, ZP(s), RP(s) Thay các đa thức vào biểu thức trên ta có: a f s a fs ffsssfsss a s RRQ k ss sa a s s s sss mp p 2 ,0 )1( 2 )1( )]2/.)(1().)(1[(1)1( ].[1)()( 0)1.(.11 2 32 2 32 222 32 0 ^^ ^32 1 −== +−=++ +++−++=++ Λ−=Λ+ =+−+= θθ θθ θθ θαθ θ (3.2-22) 3.2.3. Tính toán tham số của sơ đồ Động cơ điện một chiều sử dụng trong hệ thống có các thông số sau: Pđm = 2,2kW; Uđm = 220(V); Iđm = 12,5(A); nđm = 3000(v/f); Rư = 1,22(Ω); Lư = 0,0334(H); GD2 = 0,055(kg,m2) Ta có: ωđm = 2πnđm.60-1 = 2.3,14.3000.60-1 = 313,9(rad/s). Mđm = Pđm/ωđm = 1500/313.9 = 4,778(Nm) Ke = 0,615(VS); KD = 1/Ke = 1,626 (rad/s); Hằng số thời gian điện từ: u u R L T =∋ = 0,027(s); Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -62- Hằng số thời gian điện cơ Tc: Tc = JR.Rư/Ke2 = 0,352(s) Trong thực tế điện cảm, điện trở dây quấn mạch phần ứng Lư, Rư, cũng như Ke là các đại lượng phụ thuộc vào dòng điện theo quan hệ phi tuyến: Trên cơ sở các thông số tính toán được của động cơ, ta chọn thông số của mạch vòng dòng điện và mạch vòng tốc độ như sau: Jđm = GD2/4 = 0,055/4 = 0,01375(kg.m) = 0,01375.9,81 = 0.134 (N.m) KI = 0,32(V/A); KR = 0,18(V/rad.s-1); Ts = Tf+Tđk+Tv+TI = 0,2(s); Tf : Hằng số thời gian của mạch lọc Tđk: Hằng số thời gian của mạch điều khiển chỉnh lưu Tv: Hằng số thời gian của sự chuyển mạch chỉnh lưu TI: Hằng số thời gian của bộ cảm biến dòng điện KI: Hệ số khuếch đại của bộ điều chỉnh dòng điện KR: Hệ số khuếch đại của bộ điều chỉnh tốc độ. Tính toán các thông số hàm truyền của động cơ, mô hình đối tượng, mô hình mẫu và các thông số của bộ điều khiển. Ta có: - Hàm truyền của động cơ điện : = 200007.0002657.01 626,1 Pp ++ - Mô hình của đối tượng: fS = 1/2.TS = 1/2.0,2 = 2.5 )()( / )( )( * 0 ss G ss G fss a fss JK fsJ KsG + = + = + = = )5,2( 4,6 +ss Với: KG= K∆.KR = 4,8046.0,18 = 0,8648 K∆ = Cufs/KI = 0,615.2,5/0,32=4,8046; 21)( )( )( )()( pTTpT K pU pn pX pXpW MM D VV R ∋++ === Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -63- ∆m(s)= - 8046,4 5,2+s ; - Mô hình mẫu có dạng: )2/.( 1. 2 22 2 ss s m fsfs f ++ =ω .up = 2/)5,2.5,2(5,2 2/)5,2.5,2( 2 ++ ss .up= 125,35,2 125,3 2 ++ ss .up - Các phần tử của véc tơ θ : ^ 2 ^0 .2 25,6 2 aa f k kc s P m === aa f s a fs ffsssfsss a s RRQ k ss sa a s s s sss mp p 2 25,6 2 ,0 )1( 2 )1( )]2/.)(1().)(1[(1)1( ].[1)()( 0)1.(.11 2 32 2 32 222 32 0 ^^ ^32 1 −=−== +−=++ +++−++=++ Λ−=Λ+ =+−+= θθ θθ θθ θαθ θ 3.3. ĐÁNH GIÁ CHẤT LƯỢNG CỦA HỆ 3.3.1 Mô phỏng hệ thống Với các thông số của hệ thống đã tính toán, áp dụng các luật điều khiển và các luật thích nghi bền vững đã tìm hiểu ở trên. Dùng phần mềm Matlab (Simulink) ta xây dựng được sơ đồ mô phỏng của hệ điều khiển trên hình (hình 3-9). Sơ đồ khối của các modul thành phần trên các hình từ H3-10 đến H3-15 Tiến hành mô phỏng so sánh chất lượng động của hệ thích nghi bền vững với hệ điều khiển thông thường với tín hiệu đặt và nhiễu thay đổi được chỉ ra trên các hình 3-16 đến hình 3-22 : Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -64- yP = G0(s)[1+∆m(s)]uP G0(s) = p p p R Z k = )( * sfss a + = ss 5,2 93,34324,4 2 + → Hình 3-9: Sơ đồ mô phỏng Simulink của hệ truyền động điện Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -65- ∆m(s) = ∆ + −= + − K fsM KC sTM sc Iu sc )( / )1..2( ω = [ω1 ,ω2,yP,r]T θ = [θ1T,θ2T,θ3T,c0]T = [θ1,θ2,θ3,c0]T Hình 3-11: Khối véc tơ tín hiệu lọc ω Hình 3- 12. Véc tơ tham số θ của bộ điều khiển Hình 3 - 13: Mô đun điều khiển Up Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -66- Với: rcyy s su s su p T p T p T p 03211 .)( )(. )( )( ++ Λ + Λ = θαθαθ 22 ^ m z m zz TPφθε −=−= Hình 3- 15: Luật đánh giá véc tơ tham số θP của đối tượng Hình 3-14: Khối modul chuẩn hoá Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -67- Với: . 11 ).(.. .. awawa PP −=−= Γ−Γ= • • εφγγγεφ εθφεθ 3.3.2 Kết quả mô phỏng Trên cơ sở sơ đồ Simulink ta tiến hành khảo sát nhiều lần với sự thay đổi của tín hiệu đặt r, nhiễu, mô men Mc nhằm đánh giá chất lượng của hệ ĐKTNBV, khả năng chịu nhiễu tác động của hệ. So sánh đặc tính ra của hệ với đặc tính ra của hệ điều khiển thông thường (ĐKTT), ta sẽ chứng minh được hệ thích nghi đối với sự thay đổi của mô men quán tính (khắc phục được sự biến thiên tham số) và bền vững đối với và nhiễu, điều mà hệ ĐKTT khó đạt được. * Khi cho Mc là và nhiễu bất kỳ tác động tác động vào hệ thống, tín hiệu đặt r là không đổi ta có kết quả như sau (H3.16) r Hình 3-16: Đặc tính ra của hệ khi r không đổi và Mc bất kỳ Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -68- Với: Ym: Đặc tính của mô hình mẫu – là đặc tính mong muốn; Yp: Đặc tính ra của hệ khi tín hiệu đặt không đổi và Mc là bất kỳ; Yc: Đặc tính ra của hệ ĐKTT; r: Tín hiệu đặt; Mc: Nhiễu tác động vào hệ thống Từ kết quả mô phỏng ta thấy: - Đặc tính ra của hệ ĐKTNBV Yp luôn luôn bám theo đặc tính của mô hình mẫu Ym, thời gian quá độ nhỏ, ít chịu nhiễu tác động và ở chế độ xác lập thì đặc tính ra của hệ trùng với đặc tính mong muốn thoả mãn yêu cầu của hệ thống quấn băng vật liệu; - Đặc tính ra của hệ ĐKTT Yc không ổn định và luôn dao đông quanh đặc tính mong muốn vì vậy nó không thoả mãn yêu cầu công nghệ của hệ thống. * Cho Mc là nhiễu có dạng xung tác động vào hệ thống, tín hiệu đặt là r không đổi ta có kết quả như sau (H3-17) Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -69- Với: Yp: Đặc tính ra của hệ khi tín hiệu đặt không đổi và Mc có dạng xung; Yc: Đặc tính ra của hệ ĐKTT; r: Tín hiệu đặt; Mc: Nhiễu tác động vào hệ thống Từ kết quả mô phỏng ta thấy: - Đặc tính ra của hệ ĐKTNBV Yp luôn luôn bám theo đặc tính của mô hình mẫu Ym, thời gian quá độ nhỏ, ít chịu nhiễu tác động và ở chế độ xác lập thì đặc tính ra của hệ trùng với đặc tính mong muốn thoả mãn yêu cầu của hệ; - Đặc tính ra của hệ ĐKTT Yc không ổn định và luôn dao động quanh đặc tính mong muốn, vì vậy nó sẽ không thoả mãn yêu cầu công nghệ của hệ thống. * Cho Mc là nhiễu có dạng xung tác động vào hệ thống, tín hiệu đặt là r dạng chữ nhật ta có kết quả như sau (H3-18) Hình 3-17: Đặc tính ra của hệ khi r không đổi và Mc có dạng xung Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -70- Khi cho tín hiệu ngẫu nhiên tác động ta có kết quả như sau: Với: Yp: Đặc tính ra của hệ khi tín hiệu đặt thay đổi và Mc là bất kỳ; Yc: Đặc tính ra của hệ ĐKTT; r: Tín hiệu đặt; Mc: Nhiễu tác động vào hệ thống Từ kết quả mô phỏng ta thấy: - Đặc tính ra của hệ ĐKTNBV Yp vẫn luôn luôn bám theo đặc tính của mô hình mẫu Ym, thời gian quá độ nhỏ, ít chịu nhiễu tác động và ở chế độ xác lập thì đặc tính ra của hệ trùng với đặc tính mong muốn thoả mãn yêu cầu của hệ; - Đặc tính ra của hệ ĐKTT Yc không ổn định và luôn dao động khi có nhiễu Mc và trùng với đặc tính mong muón khi Mc = 0. r Hình 3-18: Đặc tính ra của hệ khi r thay đổi và Mc có dạng xung Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -71- * Cho Mc là nhiễu có dạng ngẫu nhiên tác động vào hệ thống, tín hiệu đặt là r không đổi có dạng hình xung ta có kết quả như sau (H3-19) Với: Yp: Đặc tính ra của hệ khi tín hiệu đặt thay đổi và Mc là bất kỳ; Yc: Đặc tính ra của hệ ĐKTT; r: Tín hiệu đặt; Mc: Nhiễu tác động vào hệ thống Từ kết quả mô phỏng ta thấy: - Đặc tính ra của hệ ĐKTNBV Yp vẫn luôn luôn bám theo đặc tính của mô hình mẫu Ym, chịu được nhiễu tác động và ở chế độ xác lập thì đặc tính ra của hệ trùng với đặc tính mong muốn thoả mãn yêu cầu của hệ; - Đặc tính ra của hệ ĐKTT Yc không ổn định và luôn dao động xung quanh đặc tính mong muốn. r Hình 3-19: Đặc tính ra của hệ khi r thay đổi và Mc có dạng bất kỳ Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -72- * Cho Mc là nhiễu có dạng ngẫu nhiên tăng dần tác động vào hệ thống, tín hiệu đặt là r thay đổi ta có kết quả như sau (H3-20) Yp: Đặc tính ra của hệ khi tín hiệu đặt thay đổi và Mc là bất kỳ; Yc: Đặc tính ra của hệ ĐKTT; r: Tín hiệu đặt; Mc: Nhiễu tác động vào hệ thống Từ kết quả mô phỏng ta thấy: - Đặc tính ra của hệ ĐKTNBV Yp vẫn luôn luôn bám theo đặc tính của mô hình mẫu Ym khi Mc tăng dần và ở chế độ xác lập khi Mc vẫn tăng thì đặc tính ra của hệ trùng với đặc tính mong muốn; - Đặc tính ra của hệ ĐKTT Yc không ổn định và giảm dần khi Mc tăng dần, xa dần đặc tính mong muốn. Hình 3-20: Đặc tính ra của hệ khi r thay đổi và Mc biến thiên Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -73- * Cho Mc là nhiễu có dạng ngẫu nhiên tăng dần tác động vào hệ thống, tín hiệu đặt r thay đổi tăng ta có kết quả như sau (H3-21) Với: Yp: Đặc tính ra của hệ khi tín hiệu đặt thay đổi và Mc là bất kỳ; Yc: Đặc tính ra của hệ ĐKTT; r: Tín hiệu đặt; Mc: Nhiễu tác động vào hệ thống Từ kết quả mô phỏng ta thấy: - Khi lượng đặt thay đổi và nhiễu thay đổi theo dạng hình sin đặc tính ra của hệ Yp vẫn bám theo đặc tính của mô hình mẫu Ym và ít chịu ảnh hưởng của nhiễu. Như vậy hệ luôn thích nghi với sự thay đổi tham số và bền vững với nhiễu tác động. Hình 3-21: Đặc tính ra của hệ khi r thay đổi và Mc biến thiên Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -74- - Đặc tính ra của hệ ĐKTT Yc khi lượng đặt thay đổi và nhiễu thay đổi theo dạng hình sin thì không ổn định và dao động xung quang đặc tính mong muốn. * Khảo sát đặc tính ra của hệ khi cho tín hiệu đặt thay đổi theo yêu cầu công nghệ của hệ thống quấn băng vật liệu với tốc độ của động cơ giảm dần và mô men tăng dần và chịu nhiễu tác động ta có được kết quả như sau (Hình 3-22). Với: Yp: Đặc tính ra của hệ khi tín hiệu đặt thay đổi và Mc là bất kỳ; Yc: Đặc tính ra của hệ ĐKTT; r: Tín hiệu đặt; Mc: Nhiễu tác động vào hệ thống - Khi tốc độ và mô men của động cơ thay đổi tương ứng với quá trình động cơ đang quấn vật liệu, đường kính của lô quấn tăng dần dẫn đến để vận r Hình 3-22: Đặc tính ra của hệ khi r thay đổi và Mc biến thiên tăng dần r Hình 3-22: Đặc tính ra của hệ khi r thay đổi và Mc biến thiên tăng dần Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -75- tốc dài không đổi thì tốc độ động cơ phải giảm xuống và mô men của động cơ phải tăng lên tương ứng với mô men tải và chịu nhiễu tác động. Ta thấy: - Với hệ ĐKTNBV thì tốc độ động cơ (Yp) vẫn bám theo đặc tính mong muốn, ổn định và ở chế độ xác lập đặc tiính trùng với đặc tính mong muốn thoả mãn yêu cầu công nghệ của hệ thống; - Đối với hệ điều khiển thông thường thì tốc độ động cơ (Yc) giảm dần khi mô men tăng dần dẫn đến dây vật liệu có thể bị trùng do không quấn kịp do vậy không thoả mãn yêu cầu công nghệ của hệ thống. 3.4. KẾT LUẬN CỦA CHƯƠNG 3. Bằng cách sử dụng luật thích nghi bền vững áp dụng vào sơ đồ MRAC, luận văn đã tổng hợp được hệ điều khiển thích nghi bền vững theo mô hình mẫu và áp dụng vào điều khiển hệ truyền động quấn băng vật liệu. Đây là một hệ truyền động phi tuyến, đòi hỏi chỉ tiêu điều chỉnh tốc độ cao, ổn định. Kết quả khảo sát đánh giá bằng mô phỏng luận văn đã đưa ra được các kết luận như sau: Hệ truyền động quấn băng vật liệu sử dụng động cơ điện một chiều là hệ phi tuyến và trong thực tế khi làm việc hệ luôn chịu nhiễu tác động từ môi trường cũng như trong bản thân của hệ, nhưng với bộ điều khiển thích nghi bền vững thì chất lượng ra của hệ luôn đáp ứng được yêu cầu mong muốn. - Chất lượng động của hệ tốt hơn hệ điều khiển thông thường, thời gian quá độ nhỏ, lượng quá điều chỉnh nhỏ, ít dao động. - Sai lệch giữa đặc tính của mô hình mẫu và đặc tính của hệ nhỏ; - Chất lượng động và chất lượng tĩnh của hệ ít phụ thuộc vào mô men cản có nghĩa là hệ bền vững với nhiễu. Như vậy hệ luôn thích nghi với sự thay đổi tham số và bền vững với nhiễu tác động. Với kết quả trên cho phép ta xây dựng được hệ truyền động quấn băng vật liệu thoả mãn các yêu cầu công nghệ của hệ thống. Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -76- KẾT LUẬN CHUNG Mục tiêu của luận văn là thiết kế bộ ĐKTNBV cho hệ thống quấn băng vật liệu nói riêng và các đối tượng phi tuyến nói chung, thoả mãn tính thích nghi đối với sự thay đổi tham số, bền vững dối với sai lệch và nhiễu. Nghĩa là xây dựng được hệ ĐKTNBV thoả mãn các chỉ tiêu đặt trước không chỉ cho hệ Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -77- thống quấn băng vật liệu mà cho một lớp các đối tượng trong đó có đối tượng đang xét. Luận văn đi theo hướng áp dụng luật thích nghi bền vững vào sơ đồ ĐKTN để tạo ra các sơ đồ ĐKTNBV. Những kết quả mà luận văn đạt được như sau: xây dựng được hệ điều khiển thích nghi bền vững theo mô hình mẫu và ứng dụng luật thích nghi bền vững vào sơ đồ MRAC. Kết quả được ứng dụng vào thiết kế bộ điều khiển cho hệ thống quấn băng vật liệu. Qua kết quả kiểm nghiệm bằng mô phỏng đã xác định được tính đúng đắn của đề xuất trên và cho phép áp dụng vào điều khiển hệ thực phục vụ cho sản xuất. Kết quả nghiên cứu lý thuyết và thực nghiệm của luận văn nhằm góp phần vận dụng lý thuyết ĐKTNBV vào điều khiển nâng cao chất lượng hệ truyền động quấn băng vật liệu nói riêng và các hệ phi tuyến nói chung./. TÀI LIỆU THAM KHẢO Tiếng Việt 1. Phạm Thượng Hàn - Nguyễn Trọng Quế- Nguyễn Văn Hoà (1994), Điều khiển tối ưu và bền vững, Nhà xuất bản Giáo dục, Hà Nội. 2. Nguyễn Doãn Phước – Phan Xuân Minh (2000), Điều khiển tối ưu và bền vững, Nhà xuất bản Khoa Học và Kỹ Thuật. Luận văn thạc sỹ kỹ thuật Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên -78- 3. Nguyễn Công Hiền,(2000), “ Bài toán ổn định bền vững của hệ điều khiển thích nghi”. Tuyển tập Hội tự động hoá toàn quốc VICA-4,187- 191, 4. Bùi Quốc Khánh, Nguyễn Văn Liễn, Nguyễn Thị Hiền (1996), Truyền động điên, Nhà xuất bản Khoa học và kỹ thuật, Hà Nội. 5. Bùi Quốc Khánh, Phạm Quốc Hải, Nguyễn Văn Liễn, Dương Văn Nghi (1999), Điều chỉnh tự động truyền động điện, Nhà xuất bản Khoa học và kỹ thuật, Hà Nội. 6. Phạm Công Ngô (1996), Lý thuyết điều khiển tự động, Nhà xuất bản Khoa học và kỹ thuật, Hà Nội. 7. Nguyễn Thương Ngô, (1998), Lý thuyết điều khiển tự động hiện đại, Nhà xuất bản Khoa học và kỹ thuật, Hà Nội. 8. Nguyễn Doãn Phước, Phan Xuân Minh, (1999), Điều khiển phi tuyến, Nhà xuất bản Khoa học và kỹ thuật, Hà Nội. 9. Nguyễn Doãn Phước, Phan Xuân Minh, (1999), Điều khiển tối ưu và bền vững, Nhà xuất bản Khoa học và kỹ thuật, Hà Nội. Tiếng Anh 10. Andrew P, Bin Yao, Indirect adaptive robust control of nonlinear systems amplication to electro-mechanical,(2000), August. 11. Petros A.loannou(1996), “ Robust Adaptive Control”. Prentice- Hall PRT

Các file đính kèm theo tài liệu này:

  • pdfLuận văn Ứng dụng lý thuyết điều khiển thích nghi bền vững nâng cao chất lượng hệ truyền động quấn băng vật liệu.pdf