Nghiên cứu tổng hợp hệ vật liệu compozit mới trên cơ sở mofs chứa fe và graphen oxit ứng dụng làm quang xúc tác để phân hủy thuốc nhuộm trong môi trường nước

Phổ FT-IR đã được sử dụng để xác định các liên kết trong các vật liệu FeMIL-53, Fe-MIL-88B, Fe-MIL-53/GO, Fe-MIL-88B/GO. Hình 3.24 cho thấy các mẫu vật liệu Fe-MIL-53, Fe-MIL-88B, Fe-MIL-53/GO, Fe-MIL-88B/GO xuất hiện các dao động ở 1680, 1543, 1396 và 1020 cm-1 đặc trưng cho nhóm cacboxylat [120, 121]. Các dải rộng tập trung ở 3440 cm-1 được gán cho dao động của nhóm - OH của nước hấp phụ trên bề mặt. Hai đỉnh sắc nét ở 1543 cm-1 và 1396 cm-1 lần lượt được quy cho các dao động bất đối xứng và đối xứng của các nhóm C-O. Kết quả này xác nhận sự xuất hiện của các phối tử dicacboxylat trong vật liệu Fe-MIL- 53, Fe-MIL-88B. Các đỉnh ở 750 cm-1 và 540 cm-1 được gán cho các dao động biến dạng C-H của benzen và Fe–O tương ứng [122-124] (bảng 3.10). Phổ FT-IR của Fe-MIL-53/GO và Fe-MIL-88B/GO gần như giống với Fe-MIL-53 và Fe-MIL-88 ngoại trừ hai dao động có cường độ thấp xuất hiện ở 2339 – 2360 cm-1 đặc trưng cho liên kết giữa GO và CO2. Điều này là do trong khoảng nhiệt độ từ 50 – 120oC, GO dễ dàng hình thành liên kết cộng hóa trị với CO2 liên kết này bị phá vỡ khi nhiệt độ lớn hơn 210oC

pdf174 trang | Chia sẻ: tueminh09 | Lượt xem: 820 | Lượt tải: 3download
Bạn đang xem trước 20 trang tài liệu Nghiên cứu tổng hợp hệ vật liệu compozit mới trên cơ sở mofs chứa fe và graphen oxit ứng dụng làm quang xúc tác để phân hủy thuốc nhuộm trong môi trường nước, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
u, Hoa T.; Nguyen, Kien T.; Quan, Trang T. T.; Nguyen, Quang K.; Tran, Hoa T. K.; Dang, Phuong T.; Vu, Loi D.; Lee, Gun D. Highly photocatalytic activity of novel Fe-MIL-88B/GO nanocompozit in the degradation of reactive dye from aqueous solution (2017), Material research Express 4 035038, 2017. 3. Hoa T. Vu, Linh T. Tran, Giang H. Le, Quang K. Nguyen, Tan M. Vu and Tuan A. Vu; Synthesis and application of novel Fe-MIL-53/GO nanocomposite for photocatalytic degradation of reactive dye from aqueous solution (2019), Vietnam Journal of Chemistry, 6 (12), 681-685. 4. Vũ Thị Hòa, Phạm Thị Thu Giang, Ngô Thúy Vân, Vũ Minh Tân, Vũ Anh Tuấn (2018); Nghiên cứu tổng hợp vật liệu nano composite mới Fe-MIL88B/GO. Ứng dụng trong phân hủy quang xúc tác thuốc nhuộm trong môi trường nước, Tạp chí Khoa học và Công nghệ trường ĐH Công nghiệp Hà Nội, số 45 (tháng 4), 90-94. 5. Vũ Thị Hòa, Lê Hà Giang, Vũ Minh Tân, Vũ Anh Tuấn; Synthesis of Fe- BTC/GO nano composite by hydrothermal method without using organic solvent (2018), Tạp chí Khoa học và Công nghệ trường ĐH Công nghiệp Hà Nội, số đặc biệt (tháng 11), 96-100. 135 TÀI LIỆU THAM KHẢO 1. Chaoran Jiang, Ki Yip Lee, Christopher M.A. Parlett, Mustafa K. Bayazit, Chi Ching Lau, Qiushi Ruan, Savio J. A. Moniz, Adam F. Lee, Junwang Tang, Size-controlled TiO2 nanoparticles on porous hosts for enhanced photocatalytic hydrogen production, Applied Catalysis A: General (2016) 521, 133–139. 2. Tripathy N, A hmad R, Song JE, Ko HA, Hahn YB, Khang G, Photocatalytic degradation of methyl orange dye by ZnO nanoneedle under UV irradiation, Mater Lett 136, (2014) 171–174. 3. Vázquez A, Hernández-Uresti DB, Obregón S, Electrophoretic deposition of CdS coatings and their photocatalytic activities in the degradation of tetracycline antibiotic, Appl Surf Sci, (2016) 86:412–417. 4. Liu Y, Yu L, Hu Y, Guo CF, Zhang FM, Lou XW, A magnetically separable photocatalyst based on nest-like γ-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity, Nanoscale, (2012) 4 (1):183–187. 5. Liu K, Gao Y, Liu J, Wen Y, Zhao Y, Zhang K and Yu G, Photoreactivity of metal- organic frameworks in aqueous solutions: metal dependence of reactive oxigen species production Environ, Sci. Technol, (2016) 50 3634–40. 6. Cuicui Hu, Xiaoxia Hu, Rong Li, Yanjun Xing, MOF derived ZnO/C nanocomposite with enhanced adsorption capacity and photocatalytic performance under sunlight, Journal of Hazardous Materials, (2020) volume 385, 5, 121599. 7. Imteaz Ahmed, Sung Hwa Jhung, Compozits of metal–organic frameworks: Preparation and application in adsorption, Materialstoday, (2014) volume 17, 3, 136-146. 8. Yuri A. Mezenov, Andrei A. Krasilin, Vladimir P. Dzyuba, Alexandre Nominé, Valentin A, Milichko, Metal–Organic Frameworks in Modern Physics: Highlights and Perspectives, Advanced Science. (2019) First published:18 July. 9. Lijuan Shen, Fenfen Jing, Ling Wu, Preparation of MIL−53(Fe)−Reduced Graphene Oxit Nanocomposite by a Simple Self−Assembly Strategy for Increasing Interfacial Contact: Efficient Visible Light Photocatalysts, ACS Applied Materials & Interfaces (2015) 7(18). 10. Vu, Tuan A.; Le, Giang H.; Vu, Hoa T.; Nguyen, Kien T.; Quan, Trang T. T.; Nguyen, Quang K.; Tran, Hoa T. K.; Dang, Phuong T.; Vu, Loi D.; Lee, Gun D, Highly photocatalytic activity of novel Fe-MIL-88B/GO nanocomposite in the degradation of reactive dye from aqueous solution, Mater. Res. (2017) Express, 4 035038. 11. Yuanyuan Zhang, Peng Yan, Qijin Wan, Nianjun Yang, Integration of chromium terephthalate metal-organic frameworks with reduced graphene oxit for voltammetry of 4-nonylphenol, Carbon, volume 134, (2018) 540-547. 12. Venkata Reddy, Kakarla Raghava Reddy, V.V.N. Harish, Jaesool Shim, M. V. Shankar, Nagaraj P. Shetti, Tejraj M. Aminabhavi, Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: Synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and 136 photodegradation of organic dyes, International Journal of Hydrogen Energy, (2020) 45, 13,7656-7679. 13. Huan V. Doan, Harina Amer Hamzah, Prasanth Karikkethu Prabhakaran, Chiara Petrillo & Valeska P. Ting, Hierarchical Metal–Organic Frameworks with Macroporosity: Synthesis, Achievements, and Challenges, Nano-Micro Letters, (2019) volume 11, 54. 14. Engin Burgaz, Ayse Erciyes, Muberra Andac, OmerAndac, Synthesis and characterization of nano-sized metal organic framework-5 (MOF-5) by using consecutive combination of ultrasound and microwave irradiation methods, Inorganica Chimica Acta, (2019) volume 485, 24, 118-124. 15. Férey G., Mellot-Draznieks C., Serre C., Millange F., Dutour J., Surblé S., Margiolaki I, Chromium terephthalate–based solid with unusually large pore volumes and surface area, Science, (2005) 309, pp. 2040-2042. 16. Lincheng Lia, Yunlan Xua, Dengjie Zhonga, Nianbing Zhong, CTAB-surface- functionalized magnetic MOF@MOF compozit adsorbent for Cr(VI) efficient removal from aqueous solution. Colloids and Surfaces A, Physicochemical and Engineering Aspects, Volume 586, 5 February (2020), 124255. 17. Camilla Catharina Scherb, Controlling the surface growth of metal-organic frameworks, Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München. (2009) 18. Shekhah O., Wang H., Zacher D., Fischer R. A., Wöll C, Growth mechanism of metal–organic frameworks: insights into the nucleation by employing a step-by-step route, Angew. Chem. Int. (2009) Ed. 48, pp.5038 –5041. 19. H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks, Science 341 (2013) 1230444. 20. Chun, H. and H. Jung, Targeted Synthesis of a Prototype MOF Based on Zn 4 (O)(O2C)6 Units and a Nonlinear Dicarboxilate Ligand, Inorganic chemistry (2009) 48: p. 417-9. 21. M. Taddei, P. V. Dau, S. M. Cohen, M. Ranocchiari, J. A. van Bokhoven, F. Costantino, S. Sabatini and R. Vivani, Efficient microwave assisted synthesis of metal–organic framework UiO-66: optimization and scale up, Dalton Trans., (2015), 44, 14019–14026. 22. Chandan Dey, Tanay Kundu, Bishnu P. Biswal, Arijit Mallick and Rahul Banerjee, Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Structural Science, Crystal Engineering and Materials, Acta Cryst, (2014) B70, 3- 10. 23. Gui-Lin Wen, Bo Liu, Dao-Fu Liu, Feng-Wu Wang, Li Li, Liang Zhu, Dong-Mei Song, Chao-Xiu Huang, Yao-Yu Wang, Four congenetic zinc(II) MOFs from delicate solvent-regulated strategy: Structural diversities and fluorescent properties, Inorganica Chimica Acta, (2020) volume 502, 119296. 24. Yue Liang, Wei-Guan Yuan, Shu-Fang Zhang, Zhan He, Junru Xue, Xia Zhang, Lin- Hai Jing and Da-Bin Qin, Hydrothermal synthesis and structural characterization of 137 metal–organic frameworks based on new tetradentate ligands, Dalton Trans, (2016) 45, 1382-1390. 25. Stéphane Diring, Shuhei Furukawa, Yohei Takashima, Susumu Kitagawa, Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes, Chemistry of Materials (2010) 22(16). 26. Chun H, Jung H, Targeted synthesis of a prototype MOF based on Zn4(O)(O2C)6 units and a nonlinear dicarboxilate ligand, Inorg Chem. Jan 19; (2009) 48(2):417-9. 27. Marco Taddei, Phuong V. Dau, Seth M. Cohen, Marco Ranocchiari, Jeroen A. van Bokhoven, Ferdinando Costantino, Stefano Sabatini and Riccardo Vivani, Efficient microwave assisted synthesis of metal–organic framework UiO-66: optimization and scale up, Dalton Transactions, (2015) 44 (31): p. 14019-14026. 28. Feng Zhang, Tingting Zhang, Xiaoqin Zou, Fengyu Qu, Electrochemical synthesis of metal organic framework films with proton conductive property, Solid State Ionics (2017). 301: p. 125-132. 29. Kasra Pirzadeh, Ali Asghar Ghoreyshi, M. Rahimnejad, Maedeh Mohammadi, Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation, Korean Journal of Chemical Engineering, (2018) 35(4): p. 974-983. 30. Zong-Qun Li, Ling-Guang Qiu, Tao Xu, Xia Jiang, Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmental friendly method, Materials Letters, (2009) 63: p. 78-80. 31. R.Seetharaj, P.V.Vandana, P.Arya, S.Mathew, Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture, Arabian Journal of Chemistry, volume 12 (2019), Issue 3, March, Pages 295-315 32. Suryanarayana, C., Mechanical Alloying, A Novel Technique to Synthesize Advanced Materials, Research (Washington, D.C.) (2019), p. 4219812-4219812. 33. Zhu, H. and D. Liu, The synthetic strategies of metal–organic framework membranes, films and 2D MOFs and their applications in devices, Journal of Materials Chemistry A, (2019) 7(37): p. 21004-21035. 34. L. Li, S. Wang, T. Chen, Z. Sun, J. Luo, M. Hong, Solvent-dependent formation of Cd(II) coordination polymers based on a C2-symmetric tricarboxilate linker, Cryst. Growth Des. (2012), 12 (8), pp. 4109-4115. 35. D. Banerjee, J. Finkelstein, A. Smirnov, P.M. Forster, L.A. Borkowski, S.J. Teat, J.B. Parise, Synthesis and structural characterization of magnesium based coordination networks in different solvents, Cryst. Growth Des. (2011), 11 (6), pp. 2572-2579. 36. B. Liu, G.P. Yang, Y.Y. Wang, R.T. Liu, L. Hou, Q. Z. Shi, Two new pH-controlled metal–organic frameworks based on polynuclear secondary building units with conformation-flexible xyclohexan-1,2,4,5-tetracarboxilate ligand, Inorg. Chim. Acta, (2011) 367 (1), pp. 127-134. 138 37. S.T. Wu, L.S. Long, R.B. Huang, L.S. ZhengPH-dependent assembly of supramolecular architectures from 0D to 2D networks, Cryst. Growth Des., 7 (9) (2007), pp. 1746-1752. 38. C.C. Wang, H.P. Jing, P. Wang, S.J. Gao, Series metal–organic frameworks constructed from 1,10-phenanthroline and 3,3′,4,4-biphenyltetracacboxylic acid: Hydrothermal synthesis, luminescence and photocatalytic properties, J. Mol. Struct., 1080 (2015), pp. 44-51. 39. C.Y. Zhang, M.Y. Wang, Q.T. Li, B.H. Qian, X.J. Yang, X.Y. Xu, Hydrothermal synthesis, crystal structure, and luminescent properties of two zinc(II) and cadmium(II) 3D metal-organic frameworks, Zeitschrift für anorganische und allgemeine Chemie, 639 (5) (2013), pp. 826-831. 40. C. A. F. De Oliveira, F. F. Da Silva, I. Malvestiti, V. R. D. S. Malta, J. D. L. Dutra, N. B. Da Costa Jr, R. O. Freire, S. A. Júnior, Effect of temperature on formation of two new lanthanide metal-organic frameworks: synthesis, characterization and theoretical studies of Tm(III)-succinate, J. Solid State Chem., 197 (0) (2013), pp. 7-13. 41. P. Kanoo, K.L. Gurunatha, T.K. Maji, Temperature-controlled synthesis of metal- organic coordination polymers: crystal structure, supramolecular isomerism, and porous property, Cryst. Growth Des., 9 (9) (2009), pp. 4147-4156. 42. Haoxi Jiang, Qianyun Wang, Huiqin Wang, Yifei Chen, Temperature effect on the morphology and catalytic performance of Co-MOF-74 in low-temperature NH3-SCR process, Catalysis Communications 80 (2016) 24–27. 43. Jia Jia, Fujian Xu, Zhou Long, Xiandeng Hou and Michael J. Sepaniak, Metal– organic framework MIL-53(Fe) for highly selective and ultrasensitive direct sensing of MeHg, Chem. Commun. (2013), 49, 4670-4672. 44. Yaghi J. Gassensmith, Hiroyasu Furukawa, Ronald A. Smaldone, Ross S. Forgan, Youssry Y. Botros, Omar M. Yaghi, and J. Fraser Stoddart, Strong and Reversible Binding of Carbon Dioxit in a Green Metal Organic Framework, J. Am. Chem. Soc. (2011), 133, 15312–15315. 45. Brett Chandler, David T Cramb, George K H Shimizu, Microporous Metal−Organic Frameworks Formed in a Stepwise Manner from Luminescent Building Blocks, Journal of the American Chemical Society (2006). 128(32):10403-12. 46. Ryan J.Kuppler, Daren J.Timmons, Qian-Rong Fang, Jian-Rong Li, Trevor A.Makal, Mark D.Young, Daqiang Yuan, Dan Zhao, Wenjuan Zhuang, Hong-CaiZhou, Show more Potential applications of metal-organic frameworks, Coordination Chemistry Reviews, Volume 253, Issues 23–24, December (2009), Pages 3042-3066. 47. Ji-Yong Zoua, Ling Lia, Sheng-Yong Youa, Hong-Min Cuia, Yue-Wei Liua, Kai- Hong Chena, Yan-Hua Chena, Jian-Zhong Cuib, Shao-WeiZhangc, Sensitive luminescent probes of aniline, benzaldehyde and Cr(VI) based on a zinc(II) metal- organic framework and its lanthanide(III) post-functionalizations. Dyes and Pigments, volume 159, December (2018), Pages 429-438. 139 48. Hindelang, K., et al., Tandem post-synthetic modification for functionalized metal– organic frameworks viaepoxidation and subsequent epoxit ring-opening, Chemical Communications, (2012). 48(23): p. 2888-2890. 49. M. Trivedi, Bhaskaran, A. Kumar, G. Singh, A. Kumar, N.P. Rath, Metal–organic framework MIL-101 supported bimetallic Pd–Cu nanocrystals as efficient catalysts for chromium reduction and conversion of carbon dioxit at room temperature, New J. Chem. 40 (2016) 3109-3118. 50. A.R. Oveisi, A. Khorramabadi-zad, S. Daliran, Iron-based metal–organic framework, Fe(BTC): an effective dual-functional catalyst for oxidative cyclization of bisnaphthols and tandem synthesis of quinazolin-4(3H)-ones, RSC Adv. 6 (2016) 1136-1142. 51. A. Herbst, C. Janiak, Selective glucose conversion to 5-hydroximethylfurfural (5- HMF) instead of levulinic acid with MIL-101Cr MOF-derivatives, New J. Chem. 40 (2016) 7958-7967. 52. A. Karmakar, G.M.D.M. Rúbio, M.F.C.G.d. Silva, A.P.C. Ribeiro, A.J.L, Pombeiro. ZnII and CdII MOFs based on an amidoisophthalic acid ligand: synthesis, structure and catalytic application in transesterification, RSC Adv. 6 (2016) 89007-89018. 53. J. Long, H. Liu, S. Wu, S. Liao, Y. Li, Selective Oxidation of Saturated Hydrocarbons Using Au–Pd Alloy Nanoparticles Supported on Metal–Organic Frameworks, ACS Catal. 3 (2013) 647-654. 54. D.A. Islam, A. Chakraborty, H. Acharya, Fluorescent silver nanoclusters (Ag NCs) in the metal–organic framework MIL-101(Fe) for the catalytic hydrogenation of 4- nitroaniline, New J. Chem. 40 (2016) 6745-6751. 55. P. Wang, H. Sun, X. Quan, S, Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH3 at low temperature. Chen, J. Hazard. Mater. 301 (2016) 512-521. 56. F.G. Cirujano, A. Corma, F.X.L.i. Xamena, Hf-based metal–organic frameworks as acid–base catalysts for the transformation of biomass-derived furanic compounds into chemicals, Catal. Today 257 (2015) 213-220. 57. Tu, T.N., et al., New topological Co2(BDC)2(DABCO) as a highly active heterogeneous catalyst for the amination of oxazoles via oxidative C–H/N–H couplings, Catalysis Science & Technology, (2016). 6(5): p. 1384-1392. 58. Truong, T., K. Nguyen, and S. Doan, Efficient and recyclable Cu2(BPDC)2(DABCO)-catalyzed direct amination of activated sp 3 C-H bonds by N- H heterocycles, Applied Catalysis A: General, (2015). 510. 59. Le, T., et al., 1,5-Benzodiazepine synthesis via cyclocondensation of 1,2-diamines with ketones using iron-based metal–organic framework MOF-235 as an efficient heterogeneous catalyst. Journal of Catalysis, (2016). 333: p. 94-101. 60. Vu T. Nguyen, Huy Q. Ngo, Dung T. Le, Thanh Truong, Nam T. S. Phan, Iron- catalyzed domino sequences: One-pot oxidative synthesis of quinazolinones using metal-organic framework Fe3O(BPDC)3 as an efficient heterogeneous catalyst, Chemical Engineering Journal, (2016), 284, 778-785. 140 61. Naseem A. Ramsahye, Thuy Khuong Trung, Lorna Scott, Farid Nouar, Thomas Devic, Patricia Horcajada, Emmanuel Magnier, Olivier David, Christian Serre, and Philippe Trens, Impact of the Flexible Character of MIL-88 Iron(III) Dicarboxilates on the Adsorption of nAlkanes. Chem. Mater. (2013), 25, 479−488. 62. Jia Jia, Fujian Xu, Zhou Long, Xiandeng Hou and Michael J. Sepaniak, Metal– organic framework MIL-53(Fe) for highly selective and ul-trasensitive direct sensing of MeHg, Chem. Commun, (2013) 49, pp. 4670-4672. 63. Tirusew Araya, Chun-cheng Chen, Man-ke Jia, David Johnson, Ruiping Li,Ying- ping Huang, Selective degradation of organic dyes by a resin modified Fe-based metal-organic framework under visible light irradiation. Optical Materials, Volume 64, February 2017, pages 512-523. 64. Luisa Sciortino, Antonino Alessi, Fabrizio Messina, Gianpiero Buscarino, Franco Mario. Gelardi, Structure of the FeBTC Metal–Organic Framework: A Model Based on the Local, Environment Study. J. Phys. Chem. C (2015), 119, 14, 7826-7830. 65. Trần Văn Nhân, Hồ Thị Nga, Giáo trình công nghệ xử lí nước thải, Nhà xuất bản Khoa học và kĩ thuật, Hà Nội (2005). 66. Đặng Xuân Việt, Nghiên cứu phương pháp thích hợp để khử màu thuốc nhuộm hoạt tính trong nước thải dệt nhuộm, luận án tiến sĩ kỹ thuật, Hà nội (2007). 67. Puvaneswari N, Muthukrishnan J, Gunasekaran P, Toxicity assessment and microbial degradation of azo dyes, Indian J Exp Biol.Aug; (2006) 44(8):618-26. 68. S. M. Ghoreishi, R. Haghighi, Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent, Chemical Engineering Journal, Volume 95, Issues (2003) 1–3, Pages 163-169. 69. Roberto Andreozzi, Vincenzo Caprio, Amedeo Insola, Raffaele Marotta, Advanced oxidation processes (AOP) for water purification and recovery, Catalysis Today Volume 53, (1999) Issue 1, 51-59. 70. Qi Wang, Qiaoyuan Gao, Abdullah M. Al-Enizi, Ayman Nafady and Shengqian Ma, Recent advances in MOF-based photocatalysis: environmental remediation under visible light, Inorg. Chem. Front., (2020),7, 300-339. 71. Salgado P., et al., Fenton reaction driven by Iron ligands, Journal of the Chilean Chemical Society, (2013) 58(4), 2096–2101. 72. Linden, K.G., and M. Mohseni, Advanced Oxidation Processes: Applications in Drinking Water Treatment, Comprehensive Water Quality and Purification, In book: Comprehensive Water Quality and Purification (2014) 148–172. 73. Weiguang Li, Yong Wang, Angelidaki Irini, Effect of pH and H2O2 dosage on catechol oxidation in nano-Fe3O4 catalyzing UV–Fenton and identification of reactive oxigen species, Chemical Engineering Journal, (2014) 244, 1–8. 74. Ma, Q. Yang, Y. Wen, W. Liu, Fe-g-C3N4/graphitized mesoporous carbon compozit as an effective Fenton-like catalyst in a wide pH range, Applied Catalysis B: Environmental (2017) 201, 232-240. 141 75. S. Mosleh, M. R. Rahimi, M. Ghaedi, K. Dashtian, S. Hajati, S. Wang, Ag3PO4/AgBr/Ag-HKUST-1-MOF composite as novel blue LED light active photocatalyst for enhanced degradation of ternary mixture of dyes in a rotating packed bed reactor, Chemical Engineering and Processing: Process Intensification. Volume (2017) 114, 24-38. 76. Dongbo Wang, FeiyueJia, Hou Wang, Fei Chen, Ying Fang, Wenbo Dong, Guangming Zeng, Xiaoming Li, Qi Yang, Xingzhong Yuan, Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs, Journal of Colloid and Interface Science (2018), volume 519, 273-284. 77. Ying Chen, Boyin Zhai, Yuning Liang, Yongchao Li, Jing Li, Preparation of CdS/g- C3N4/ MOF compozit with enhanced visible-light photocatalytic activity for dye degradation, Journal of Solid State Chemistry, volume 274, June (2019), Pages 32-39. 78. Jian-Peng Dong, Zhen-Zhen Shi, Bo Li and Li-Ya Wang, Synthesis of a novel 2D zinc(II) metal–organic framework for photocatalytic degradation of organic dyes in water, alton Trans, (2019), 48, 17626-17632. 79. Luis Ángel Alfonso Herrera, Paola Karen Camarillo Reyes, Ali M.Huerta Flores, Leticia Torres Martínez, José MaríaRivera Villanueva, BDC-Zn MOF sensitization by MO/MB adsorption for photocatalytic hydrogen evolution under solar light, Materials Science in Semiconductor Processing, volume 109, April (2020), 104950. 80. Yajun Zhang, Hanjiao Chen, Yi Pan, Xiaoliang Zeng, Xiaofang Jiang, Zhou Long and Xiandeng Hou, Cerium-based UiO-66 metal–organic frameworks explored as efficient redox catalysts: titanium incorporation and generation of abundant oxigen vacancies, Chem. Commun, (2019),55, 13959-13962. 81. Shutao Gao, Tao Feng, Cheng Feng, Ningzhao Shang, Chun Wang, Novel visible- light-responsive Ag/AgCl@MIL-101 hybrid materials with synergistic photocatalytic activity, Journal of Colloid and Interface Science, Volume 466, 15 March (2016), Pages 284-290. 82. Huijun Li, Qingqing Li, Xinglei He, Zhouqing Xu, Yuan Wang, Lei Jia, Synthesis of AgBr@MOFs nanocompozit and its photocatalytic activity for dye degradation, Polyhedron. Volume 165, 1 June (2019), Pages 31-37. 83. E.M. Dias, C. Petit, Towards the use of metal–organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field, J. Mater. Chem. A 3 (2015) 22484– 22506. 84. J. Zhao, W.W. Dong, Y.P. Wu, Y.N. Wang, C. Wang, D.S. Li, Q.C. Zhang, Two (3,6)- connected porous metal–organic frameworks based on linear trinuclear [Co3(COO)6] and paddlewheel dinuclear [Cu2(COO)4] SBUs: gas adsorption, photocatalytic behaviour, and magnetic properties, J. Mater. Chem. A 3 (2015) 6962–6969. 85. F. Wang, C. Dong, C. Wang, Z. Yu, S. Guo, Z. Wang, Y. Zhao, G. Li, Fluorescence detection of aromatic amines and photocatalytic degradation of rhodamine B under 142 UV light irradiation by luminescent metal–organic frameworks, New J. Chem. 39 (2015) 4437–4444. 86. X. Li, Y. Pi, Q. Xia, Z. Li, J. Xiao, TiO2 encapsulated in Salicylaldehyde-NH2-MIL- 101(Cr) for enhanced visible light-driven photodegradation of MB, Appl. Catal. B: Environ. 191 (2016) 192–201. 87. Đặng Thị Quỳnh Lan Trần Thị Hương, Hồ Văn Thành, Dương Tuấn Quang, Vũ Anh Tuấn, Tổng hợp và đặc trưng vật liệu MIL-101, Tạp chí Hóa học, (2011) Tập 49 (AB), pp. 831-834. 88. Dang Thi Quynh Lan, Nguyen Trung Kien, Ho Van Thanh, Duong Tuan Quang, Vu Anh Tuan, Synthesis and characterization of Fe-Cr-MIL- 101 and Cr-MIL-101, Vietnam journal of chemistry, (2013) vol 1( A), pp. 106- 109. 89. Đặng Thị Quỳnh Lan Trần Thị Hương, Hồ Văn Thành, Dương Tuấn Quang, Vũ Anh Tuấn, Tổng hợp và đặc trưng vật liệu MIL-101, Tạp chí Hóa học, (2011) Tập 49 (AB), pp. 831-834. 90. Pham Dinh Du, Huynh Thi Minh Thanh, Thuy Chau To, Ho Sy Thang, Mai Xuan Tinh, Tran Ngoc Tuyen, Tran Thai Hoa, and Dinh Quang Khieu, Metal-Organic Framework MIL-101: Synthesis and Photocatalytic Degradation of Remazol Black B Dye, Journal of Nanomaterials. Volume (2019), Article ID 6061275,15 pages. 91. Phùng Thị Thu, Nghiên cứu tổng hợp vật liệu quang xúc tác trên cơ sở TiO2 và vật liệu khung cơ kim (MOF), Luận văn thạc sĩ khoa học Hà Nội (2014). Đại học Khoa học Tự nhiên Hà Nội. 92. Đặng Huỳnh Giao, Võ Thanh Phúc, Tạ Kiều Anh, Phạm Văn Toàn và Phạm Quốc Yên, Tổng hợp và nghiên cứu hoạt tính xúc tác phân hủy Rhodamine B của vật liệu ZÌ-67 dưới sự hiện diện của Peroximonosulfate, Tạp chí Khoa học Trường Đại học Cần Thơ Tập 55, Số 3A (2019): 1-8 93. Trần Vĩnh Thiện, Huỳnh Hữu Điền, Nghiên cứu tổng hợp vật liệu MIL-100(Fe) và khả năng xúc tác cho phản ứng phân hủy xanh methylene, Tạp chí Phát triển Khoa học và Công nghệ, (2017) tập 20, trang 149-157. 94. Yan Wu, Hanjin Luo and Hou Wang, Synthesis of iron(III)-based metal–organic framework/graphene oxit compozits with increased photocatalytic performance for dye degradation, Cite this: RSC Adv. (2014), 4, 40435 95. Lizhang Huang and Bingsi Liu, Synthesis of a novel and stable reduced graphene oxit/MOF hybrid nanocompozit and photocatalytic performance for the degradation of dyes, RSC Adv. (2016), 6, 17873-1787. 96. Elham Akbarzadeh, Hossein ZareSoheili, Mojtaba Hosseinifard, Mohammad RezaGholami, Preparation and characterization of novel Ag3VO4/Cu-MOF/rGO heterojunction for photocatalytic degradation of organic pollutants, Materials Research Bulletin. Volume 121, January (2020), 110621. 97. Elham Akbarzadeh, Hossein Zare Soheili, Mohammad RezaGholami, Novel Cu2O/Cu-MOF/rGO is reported as highly efficient catalyst for reduction of 4- nitrophenol, Materials Chemistry and Physics, Volume 237, 1 November (2019), 121846 143 98. Jie Yang, Pengfa Li, Liujie Wang, Xiaowei Guo, Jiao Guo, Sheng Liu, In-situ synthesis of Ni-MOF@CNT on graphene/Ni foam substrate as a novel self- supporting hybrid structure for all-solid-state supercapacitors with a high energy density, Journal of Electroanalytical Chemistry, Volume 848, 1 September (2019), 113301. 99. Chengxin Xu, Lingbo Liu, Can Wu, Kangbing Wu, Unique 3D Heterostructures Assembled by Quasi-2D Ni-MOF and CNTs for Ultrasensitive Electrochemical Sensing of Bisphenol A. Sensors and Actuators B: Chemical, Available online 14 February (2020), 127885. 100. Yan Gao, Zhe Liu, Guangfa Hu, Ruimin Gao, Jianshe Zhao, Design and synthesis heteropolyacid modified mesoporous hybrid material CNTs@MOF-199 catalyst by different methods for extraction-oxidation desulfurization of model diesel, Microporous and Mesoporous Materials, Volume 291, 1 January (2020), 109702. 101. Tuan A. Vu, et al., Synthesis, characterization and ability of arsenic removal by graphene oxit and Fe3O4/GO nanocompozit, Jounal of chemistry, (2014) 6A, 143-148. 102. Bittencourt, C., et al., X-ray absorption spectroscopy by full-field X-ray microscopy of a thin graphite flake: Imaging and electronic structure via the carbon K-edge, Beilstein journal of nanotechnology, (2012). 3: p. 345-50. 103. Avouris, P. and C. Dimitrakopoulos, Graphene: synthesis and applications, Materials Today, (2012). 15(3): p. 86-97. 104. Jeongho Park, Tyson Back, William C. Mitchel, Steve S. Kim, Said Elhamri, John Boeckl, Steven B. Fairchild, Rajesh Naik & Andrey A. Voevodin, Approach to multifunctional device platform with epitaxial graphene on transition metal oxit, Scientific Reports volume 5, (2015) Article number: 14374. 105. Jia, J., et al., Metal–organic framework MIL-53(Fe) for highly selective and ultrasensitive direct sensing of MeHg+. Chemical Communications, (2013). 49(41): p. 4670-4672. 106. Yılmaz, E., E. Sert, and F.S. Atalay, Synthesis, characterization of a metal organic framework: MIL-53 (Fe) and adsorption mechanisms of methyl red onto MIL-53 (Fe), Journal of the Taiwan Institute of Chemical Engineers, (2016). 65: p. 323-330. 107. Vuong, G.-T., M.-H. Pham, and T.-O. Do, Direct synthesis and mechanism of the formation of mixed metal Fe2Ni-MIL-88B. CrystEngComm, (2013). 15(45): p. 9694-9703. 108. Zhang, H., et al., Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient Fenton-like catalyst for degradation of organic pollutants, Frontiers of Environmental Science & Engineering, (2019). 13(2): p. 18. 109. Han, Q., et al., Facile Synthesis of Fe-based MOFs (Fe-BTC) as Efficient Adsorbent for Water Purifications, Chemical Research in Chinese Universities, (2019). 35 (4): p. 564-569. 110. Martínez, F., et al., Sustainable Fe-BTC catalyst for efficient removal of mehylene blue by advanced Fenton oxidation, Catalysis Today, (2018). 313: p. 6-11. 144 111. Guoqiang Li, Feifei Li, Jianxin Liu, Caimei Fan, Fe-based MOFs for photocatalytic N2 reduction: Key role of transition metal iron in nitrogen activation, Journal of Solid State Chemistry, (2020) Volume 285, 121245. 112. Choi, J.-S., et al., Metal–organic framework MOF-5 prepared by microwave heating: Factors to be considered. Microporous and Mesoporous Materials, (2008). 116 (1): p. 727-731. 113. Petit, C. and T.J. Bandosz, Exploring the coordination chemistry of MOF–graphite oxit compozits and their applications as adsorbents, Dalton Transactions, (2012). 41(14): p. 4027-4035. 114. Kwon, S.-K., et al., Inhibition of Conversion Process from Fe(OH)3 to β-FeOOH and α-Fe2O3 by the Addition of Silicate Ions, ISIJ International, (2005). 45(1): p. 77-81. 115. Klinowski, J., et al., Microwave-Assisted Synthesis of Metal–Organic Frameworks, Dalton Transactions, (2011). 40 (2): p. 321-330. 116. Yu, J., et al., Functionalized MIL-53(Fe) as efficient adsorbents for removal of tetracycline antibiotics from aqueous solution, Microporous and Mesoporous Materials, (2019). 290: p. 109642. 117. Yin, Y, et al, Inducement of nanoscale Cu–BTC on nanocompozit of PPy–rGO and its performance in ammonia sensing, Materials Research Bulletin, (2018). 99: p. 152-160. 118. Haoxi Jiang, Qianyun Wang, Qianyun Wang, Huiqin Wang, Huiqin Wang, Minhua Zhang, Minhua Zhang, Temperature effect on the morphology and catalytic performance of Co-MOF-74 in low-temperature NH3-SCR process, Catalysis Communications, (2016) Volume 80, 5 May, Pages 24-27. 119. Xiaoshi Hu, Xiaobing Lou, Chao Li, Yanqun Ning, Yuxing Liao, Qun Chen, Eugène S. Mananga, Ming Shen and Bingwen Hu, Facile synthesis of the Basolite F300-like nanoscale Fe-BTC framework and its lithium storage properties, RSC Adv., (2016), 6, 114483-114490 120. Krishnamoorthy, K., et al., The Chemical and structural analysis of graphene oxit with different degrees of oxidation. Carbon, (2013). 53: p. 38-49. 121. Mu, S.-J., et al., X-Ray Difraction Pattern of Graphite Oxit, Chinese Physics Letters, (2013). 30 (9): p. 096101. 122. Pham, V.H., et al., Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxit suspension in N-methyl-2-pyrrolidone, Journal of Materials Chemistry, (2011). 21(10): p. 3371-3377. 123. Urbas, K., et al., Chemical and magnetic functionalization of graphene oxit as a route to enhance its biocompatibility, Nanoscale Research Letters, (2014). 9(1): p. 656. 124. Tuan T Nguyen, Giang H Le, Chi H Le, Manh B Nguyen, Trang T T Quan, Trang T T Pham and Tuan A Vu, Atomic implantation synthesis of Fe-Cu/SBA-15 nanocompozit as a heterogeneous Fenton-like catalyst for enhanced degradation of DDT, Materials Research Express, (2018) 2053-1591. 145 125. Wang C, Luo H J, Zhang Z L, Wu Y, Zhang J and Chen S W, Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxit modified compozits, J. Hazardous Mater. (2014) 268 124–31. 126. Zhu B-J et al, Iron and 1,3,5-benzentricacboxylic metal-organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions, J. Phys. Chem. C (2012) 116 8601–7. 127. Yamashita T and Hayes P, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxit materials, Appl. Surf. Sci. (2008) 254 2441–9. 128. Grosvenor B A, Kobe M C, Biesinger A P and McIntyre N S, Investigation of multiplet splitting of Fe2p XPS spectra and bonding in iron compounds Surf, Interface Anal. (2004) 36 1564–74. 129. Huang Z. H, Liu G. Q and Kang F. Y, Glucose-promoted Zn-based metal-organic framework/graphene oxide compozits for hydrogen sulfide removal ACS Appl. Mater. Interfaces, (2012) 4 4942–7. 130. Maryam Jouyandeh, Farimah Tikhani, Meisam Shabanian, Farnaz Movahedi, Shahab Moghari, Vahideh Akbari, Xavier Gabrionf, Pascal Laheurte, Henri Vahabi, Mohammad RezaSa, Synthesis, characterization, and high potential of 3D metal– organic framework (MOF) nanoparticles for curing with epoxi, Journal of Alloys and Compounds, (2020) volume 829, 154547 131. Xuan Nui Pham, Ba Manh Nguyen, Hoa Tran Thi, Huan Van Doan. Synthesis of Ag- AgBr/Al-MCM-41 nanocomposite and its application in photocatalytic oxidative desulfurization of dibenzothiophene, Advanced Powder Technology, (2018) 29, 1827-1837. 132. Jialing Lin, Han Hu, Naiyun Gao, Jinshao Ye, Yujia Chen, Huase Ou. Fabrication of GO@MIL-101(Fe) for enhanced visible-light photocatalysis degradation of organophosphorus contaminant. Journal of Water Process Engineering. Volume 33, February (2020), 101010. 133. Qiuqiang Chen, Iron pillared vermiculite as a heterogeneous photo-Fenton catalyst for photocatalytic degradation of azo dye reactive brilliant orange X-GN, Separation and Purification Technology, (2010) 71, 315–323. 134. P. V. Nidheesh, Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution, a review, RSC Adv. (2015), 5, 40552–40577. 135. Xuan Nui Pham, Duc Trong Pham, Ha Son Ngo, Manh B Nguyen, Huan V Doan, Characterization and application of C-TiO2 doped cellulose axetat nanocompozit film for removal of Reactive Red195, Chemical Engineering Communications, (2020). https://doi.org/L0.1080/00986445.2020.1712375 136. Martin Hartmann, Simon Kullmanna and Harald Kellerb, Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials, Received 2nd March (2010), Accepted 7th May. Mater. Chem, (2010) 20, 9002-9017. 137. C. T. Zahn, The Significance of Chemical Bond Energies, J. Chem. Phys. 2, 671 (1934); https://doi.org/10.1063/1.1749373. 146 138. Chao Lv, Jianfeng Zhang, GaiyeLia Huan, Xia MengniGe, Takashi Goto, Facile fabrication of self-assembled lamellar PANI-GO-Fe3O4 hybrid nanocomposites with enhanced adsorption capacities and easy recyclicity towards ionic dyes (2020), Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, 124147. 139. Anjali Gupta, Herlys Viltres, Nishesh, Kumar Gupta. Sono-adsorption of organic dyes onto CoFe2O4/graphene oxide nanocomposite (2020). Surfaces and Interfaces, 20, 100563. 140. Jun Xu, Peifang Du, Wendie Bi, Guohong Yao, Sisi Li, Hui Liu. Graphene oxide aerogels co-functionalized with polydopamine and polyethylenimine for the adsorption of anionic dyes and organic solvents (2020). Chemical Engineering Research and Design, 154, 192-202. 141. Priyadharshini Aravinda, Hosimin Selvaraj, Sergio Ferro, Maruthamuthu Sundarama. An integrated (electro- and bio-oxidation) approach for remediation of industrial wastewater containing azo-dyes: Understanding the degradation mechanism and toxicity assessment (2016). Journal of Hazardous Materials 318 203–215. 142. Tayyaba Noor, Muhammad Ammad, Neelam Zaman, Naseem Iqbal, Lubna Yaqoob, Habib Nasir, A Highly Efficient and Stable Copper BTC Metal Organic Framework Derived Electrocatalyst for Oxidation of Methanol in DMFC Application (2020). Catalysis Letters https://doi.org/10.1007/s10562- 019-02904-6. 147 PHỤ LỤC 1 Phổ UV-Vis và đường chuẩn của thuốc nhuộm 1. Phổ UV-Vis và đường chuẩn của thuốc nhuộm RR-195 Phổ UV-Vis của RR-195 với nồng độ 10ppm, 20 ppm, 30 ppm, 40 ppm, 50 ppm, 60 ppm, 70 ppm, 80 ppm, 90 ppm, 100 ppm dùng trong quá trình hấp thụ được mô tả trên hình 1. Hình 1. Phổ UV-Vis của thuốc nhuộm RR-195 Dựa vào cường độ hấp thụ tại bứơc sóng λmax = 541 nm để tiến hành xây dựng đường chuẩn (hình 2). Hình 2. Đường chuẩn của thuốc nhuộm RR-195 2. Phổ UV-Vis và đường chuẩn của thuốc nhuộmRY-145 Phổ UV-Vis của RY-145 với nồng độ 10ppm, 20 ppm, 30 ppm, 40 ppm, 50 ppm, 60 ppm, 70 ppm, 80 ppm, 90 ppm, 100 ppm dùng trong quá trình hấp thụ được mô tả trên hình 3. 148 Hình 3. Phổ UV-Vis của thuốc nhuộm RY-145 Dựa vào cường độ hấp thụ và bứơc sóng hấp thụ λmax = 421 nm để tiến hành xây dựng đường chuẩn (hình 4). Hình 4. Đường chuẩn của thuốc nhuộm RY-145 149 PHỤ LỤC 2 Các sản phẩm trung gian trong quá trình phân hủy thuốc nhuộm RR-195 trên xúc tác Fe-MIL-88B/GO được phân tích bằng LC-MS. 157 d:\bossgiang\1_1 08/20/18 15:19:18 RT: 0.08 - 10.00 SM: 15G 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 Time (min) 0 20 0 20 0 20 0 20 R e la t iv e A b u n d a n c e 0 20 0 20 9.218.988.872.74 8.613.270.730.12 0.35 0.94 8.297.831.34 3.40 7.601.52 7.397.131.74 3.91 6.094.46 6.834.70 5.60 6.445.394.924.23 2.12 8.968.842.28 8.580.31 0.57 8.310.94 2.05 2.401.26 7.861.41 7.663.483.14 7.331.66 5.81 6.282.79 5.644.40 5.054.603.98 6.50 7.075.333.79 6.78 3.06 9.152.49 8.572.79 3.21 8.373.320.32 8.080.54 7.921.00 1.34 3.861.56 6.34 7.594.281.77 4.47 6.51 6.874.73 7.016.045.725.505.232.36 9.27 9.011.67 8.852.27 8.602.352.140.15 0.48 0.75 8.260.90 7.921.40 3.863.50 7.672.69 7.114.983.05 6.375.264.13 5.744.57 6.515.96 3.05 9.002.94 8.912.50 8.573.21 8.453.470.11 0.44 8.080.68 3.83 7.630.92 1.15 1.42 6.82 7.156.614.17 6.075.754.844.30 4.971.76 6.245.432.17 3.05 9.198.992.49 8.812.80 8.473.230.19 8.000.37 3.490.64 7.861.01 1.14 1.75 3.59 7.587.106.623.99 5.27 5.95 6.214.32 5.774.79 2.30 NL: 2.05E6 m/z= 156.5108- 157.5108 MS 1_1 NL: 1.44E6 m/z= 156.5108- 157.5108 MS 2 NL: 3.01E6 m/z= 156.5108- 157.5108 MS 3 NL: 2.18E6 m/z= 156.5108- 157.5108 MS 4 NL: 2.72E6 m/z= 156.5108- 157.5108 MS 5 NL: 2.27E6 m/z= 156.5108- 157.5108 MS 6 1_1 #554 RT: 2.48 AV: 1 SM: 15G NL: 2.00E5 T: FTMS + p ESI Full ms [100.0000-1200.0000] 156.970 156.975 156.980 156.985 156.990 156.995 157.000 157.005 157.010 157.015 157.020 157.025 157.030 157.035 157.040 m/z 0 10 20 30 40 50 60 70 80 90 100 R e la t iv e A b u n d a n c e 157.0108 167.02 150 d:\bossgiang\3 08/20/18 16:25:18 RT: 0.00 - 14.01 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Time (min) 0 50 0 50 0 50 0 50 R e la t iv e A b u n d a n c e 0 50 0 50 10.311.731.71 11.84 12.3310.03 13.041.81 9.589.298.938.567.857.463.420.29 1.52 7.286.210.60 6.555.925.680.88 5.332.04 4.853.47 4.582.55 3.19 13.1711.83 12.321.66 10.6810.379.989.559.258.808.063.02 6.03 7.847.495.592.541.76 4.854.25 6.320.47 3.83 7.143.381.15 5.08 1.74 10.31 11.70 13.121.70 12.2310.069.692.18 9.328.903.42 8.087.860.18 7.096.630.44 1.24 6.335.725.044.834.444.072.56 3.16 10.75 12.2811.71 13.1210.299.879.449.389.063.001.77 2.96 8.668.113.08 7.680.47 5.755.08 7.016.01 6.373.99 4.814.211.360.75 10.43 13.0412.2510.151.721.70 1.74 9.709.379.028.683.40 8.127.607.380.32 6.070.65 6.47 6.961.38 5.845.062.56 4.744.313.672.72 11.67 13.0212.2610.6710.381.71 9.971.69 9.571.78 9.218.928.563.41 7.570.15 6.79 7.181.420.49 0.85 6.205.695.114.672.06 4.233.903.37 NL: 5.60E6 m/z= 166.5677- 167.5677 MS 1_1 NL: 5.23E6 m/z= 166.5677- 167.5677 MS 2 NL: 5.57E6 m/z= 166.5677- 167.5677 MS 3 NL: 6.75E6 m/z= 166.5677- 167.5677 MS 4 NL: 6.78E6 m/z= 166.5677- 167.5677 MS 5 NL: 7.45E6 m/z= 166.5677- 167.5677 MS 6 3 #483 RT: 2.16 AV: 1 SM: 15G NL: 5.75E5 T: FTMS + p ESI Full ms [100.0000-1200.0000] 166.4 166.5 166.6 166.7 166.8 166.9 167.0 167.1 167.2 167.3 167.4 167.5 167.6 167.7 167.8 167.9 168.0 m/z 0 10 20 30 40 50 60 70 80 90 100 110 120 130 R e la t iv e A b u n d a n c e 167.0676 167.1068 285.0483 151 d:\bossgiang\6 08/20/18 18:04:21 RT: 0.00 - 14.01 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Time (min) 0 100 0 100 0 100 0 100 R e la t iv e A b u n d a n c e 0 100 0 100 10.269.77 13.7110.75 13.174.86 13.029.83 10.82 12.65 11.522.40 9.631.77 2.61 5.925.11 8.804.72 8.300.32 1.41 7.864.001.19 6.50 6.923.300.64 7.38 13.289.77 13.21 13.4010.26 10.74 12.9712.6310.79 12.37 9.621.661.32 9.205.170.15 6.090.62 7.937.352.15 6.283.73 4.152.36 8.574.93 6.753.10 5.76 13.24 13.3410.289.78 13.1110.75 13.6012.4810.84 12.282.532.42 9.651.77 2.61 9.448.784.920.63 3.16 6.87 8.451.12 5.59 6.28 7.430.28 4.33 7.843.78 9.77 13.1610.26 12.95 13.36 10.75 12.4810.84 12.251.68 9.652.40 9.492.11 8.32 8.756.323.82 4.971.37 3.640.10 0.92 6.07 7.563.25 4.19 7.085.41 6.59 7.750.51 4.76 13.2010.279.76 13.5013.1510.75 12.7010.85 12.27 9.632.551.76 2.35 8.084.932.80 9.266.63 8.851.14 3.710.90 3.200.43 6.35 7.855.88 7.506.945.444.12 4.36 13.32 13.5413.1410.269.77 10.72 10.77 12.7112.544.91 12.074.952.512.33 2.691.76 9.544.82 9.193.06 8.280.28 8.667.891.35 5.731.07 3.520.67 7.653.84 6.45 6.926.26 NL: 2.32E6 m/z= 283.5446- 284.5446 MS 1_1 NL: 3.16E6 m/z= 283.5446- 284.5446 MS 2 NL: 2.66E6 m/z= 283.5446- 284.5446 MS 3 NL: 2.58E6 m/z= 283.5446- 284.5446 MS 4 NL: 2.29E6 m/z= 283.5446- 284.5446 MS 5 NL: 2.66E6 m/z= 283.5446- 284.5446 MS 6 6 #1102 RT: 4.93 AV: 1 SM: 15G NL: 2.48E4 T: FTMS + p ESI Full ms [100.0000-1200.0000] 284.98 284.99 285.00 285.01 285.02 285.03 285.04 285.05 285.06 285.07 285.08 285.09 285.10 285.11 285.12 285.13 m/z 0 20 40 60 80 100 120 140 R e la t iv e A b u n d a n c e 285.0483 480.7375 152 d:\bossgiang\3 08/20/18 16:25:18 RT: 0.08 - 10.00 SM: 15G 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 Time (min) 0 100 0 100 0 100 0 100 R e la t iv e A b u n d a n c e 0 100 0 100 1.98 1.78 2.541.69 8.342.66 9.798.933.10 9.303.25 3.67 7.85 8.584.110.63 4.944.52 5.08 5.56 7.726.320.80 1.33 5.71 7.237.020.18 5.98 6.60 1.81 1.67 9.966.21 9.205.340.20 7.70 9.444.793.351.05 6.93 7.24 8.808.538.195.15 6.502.530.85 2.04 4.222.731.57 6.144.403.71 5.722.92 1.78 2.04 2.541.65 8.322.76 9.833.252.45 9.713.44 4.13 9.233.96 6.214.26 6.99 8.875.20 5.680.77 6.42 7.40 8.087.905.954.62 8.624.820.36 6.861.12 1.68 1.84 2.18 8.342.28 9.478.62 9.263.79 9.695.702.750.46 7.135.23 8.18 8.936.981.13 7.686.310.58 4.771.42 3.03 4.44 7.456.004.21 6.693.39 1.98 2.02 1.77 2.55 8.332.78 9.512.94 3.35 9.679.259.104.983.54 4.243.86 8.837.871.01 4.361.22 5.70 7.665.56 7.080.21 0.58 6.526.08 6.88 7.34 1.98 1.77 2.55 8.332.75 9.672.14 3.020.11 3.45 8.606.854.30 5.07 9.241.380.43 4.10 8.825.903.71 7.867.490.62 7.194.810.93 6.295.29 6.56 NL: 1.63E6 m/z= 480.2372- 481.2372 MS 1_1 NL: 3.66E4 m/z= 480.2372- 481.2372 MS 2 NL: 1.42E6 m/z= 480.2372- 481.2372 MS 3 NL: 1.42E5 m/z= 480.2372- 481.2372 MS 4 NL: 1.77E6 m/z= 480.2372- 481.2372 MS 5 NL: 1.38E6 m/z= 480.2372- 481.2372 MS 6 3 #458 RT: 2.05 AV: 1 SM: 15G NL: 4.99E5 T: FTMS + p ESI Full ms [100.0000-1200.0000] 479.4 479.6 479.8 480.0 480.2 480.4 480.6 480.8 481.0 481.2 481.4 481.6 481.8 482.0 482.2 m/z 0 20 40 60 80 100 120 140 R e la t iv e A b u n d a n c e 480.7375 481.0923 578.6669 153 d:\bossgiang\1_1 08/20/18 15:19:18 RT: 0.08 - 10.00 SM: 15G 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 Time (min) 0 100 0 100 0 100 0 100 R e la ti v e A b u n d a n c e 0 100 0 100 2.04 1.92 1.74 9.702.37 2.60 9.042.79 9.513.32 3.46 4.12 8.810.44 4.26 6.966.04 8.518.140.83 6.814.82 7.416.573.91 5.30 1.66 1.84 2.70 9.285.960.50 9.100.09 3.98 6.18 7.781.19 3.48 8.025.381.420.97 7.105.56 6.39 6.772.862.41 1.93 2.05 1.73 2.42 2.61 9.729.052.79 9.193.08 4.133.440.49 4.45 7.60 8.263.61 8.795.01 8.438.045.715.484.731.24 6.87 7.191.04 6.52 1.66 1.82 2.41 9.052.62 9.829.483.42 8.624.512.90 5.17 6.66 8.422.150.75 4.670.17 0.36 5.423.871.32 4.33 6.24 2.04 1.92 1.72 9.682.25 2.43 9.042.64 9.432.89 3.24 3.54 8.723.82 7.57 7.754.18 8.030.42 5.730.99 6.555.32 7.30 2.04 1.92 1.72 9.692.28 2.42 9.042.74 9.233.21 5.324.81 7.514.42 5.641.39 8.768.383.47 7.744.03 8.186.343.800.67 6.06 6.615.031.10 NL: 1.29E6 m/z= 578.1669- 579.1669 MS 1_1 NL: 8.17E4 m/z= 578.1669- 579.1669 MS 2 NL: 6.05E5 m/z= 578.1669- 579.1669 MS 3 NL: 4.48E5 m/z= 578.1669- 579.1669 MS 4 NL: 7.00E5 m/z= 578.1669- 579.1669 MS 5 NL: 1.12E6 m/z= 578.1669- 579.1669 MS 6 1_1 #454 RT: 2.03 AV: 1 SM: 15G NL: 4.64E5 T: FTMS + p ESI Full ms [100.0000-1200.0000] 577.8 577.9 578.0 578.1 578.2 578.3 578.4 578.5 578.6 578.7 578.8 578.9 579.0 579.1 579.2 579.3 579.4 579.5 579.6 579.7 m/z 0 20 40 60 80 100 120 140 160 180 200 220 R e la ti v e A b u n d a n c e 578.6669 578.1633 585.8138 154 d:\bossgiang\1_1 08/20/18 15:19:18 RT: 0.08 - 10.00 SM: 15G 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 Time (min) 0 100 0 100 0 100 0 100 R e la ti v e A b u n d a n c e 0 100 0 100 1.93 1.78 9.489.072.04 9.662.431.64 2.75 8.234.434.213.793.33 7.233.20 7.937.645.560.26 9.48 9.33 9.061.81 9.650.98 4.263.73 8.718.234.93 7.942.651.740.22 1.41 5.85 7.680.64 6.832.82 3.953.41 1.93 9.481.78 9.312.25 9.072.44 3.25 9.952.72 5.19 7.82 8.654.353.52 7.643.670.47 8.075.564.48 5.96 7.090.64 6.591.491.29 9.48 9.321.68 9.062.481.82 9.768.768.133.141.240.52 6.322.630.13 3.35 4.39 7.765.084.682.32 6.773.59 6.15 6.985.584.10 1.93 9.46 9.311.78 9.042.18 2.331.72 9.632.87 3.10 8.853.44 8.177.934.683.62 4.041.22 5.570.59 6.564.47 5.27 5.92 7.13 1.93 9.44 1.77 9.309.042.05 2.31 2.69 9.656.60 6.851.63 3.19 7.534.58 8.160.89 7.166.05 7.704.99 5.153.801.28 6.26 NL: 4.54E5 m/z= 585.5239- 586.5239 MS 1_1 NL: 1.25E5 m/z= 585.3138- 586.3138 MS 2 NL: 5.32E5 m/z= 585.3138- 586.3138 MS 3 NL: 1.08E5 m/z= 585.3138- 586.3138 MS 4 NL: 2.79E5 m/z= 585.3138- 586.3138 MS 5 NL: 3.42E5 m/z= 585.3138- 586.3138 MS 6 1_1 #430 RT: 1.92 AV: 1 SM: 15G NL: 2.09E5 T: FTMS + p ESI Full ms [100.0000-1200.0000] 585.0 585.2 585.4 585.6 585.8 586.0 586.2 586.4 586.6 586.8 587.0 587.2 m/z 0 10 20 30 40 50 60 70 80 90 100 R e la t iv e A b u n d a n c e 585.8138 608.8409 155 d:\bossgiang\3 08/20/18 16:25:18 RT: 0.08 - 10.00 SM: 15G 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 Time (min) 0 100 0 100 0 100 0 100 R e la ti v e A b u n d a n c e 0 100 0 100 1.91 1.85 2.05 1.74 2.58 2.74 8.54 9.909.733.01 9.374.09 8.883.25 5.334.263.56 5.65 8.397.816.666.411.461.00 1.83 1.66 9.28 9.922.96 9.629.055.501.23 2.46 4.44 7.737.452.15 6.63 7.25 8.050.61 4.993.39 1.92 1.86 2.06 1.68 4.132.64 8.522.852.50 9.724.313.21 3.54 3.70 9.509.338.318.14 8.944.67 7.42 7.665.660.46 0.61 6.63 1.66 1.82 2.61 9.998.15 8.641.19 9.303.57 6.032.43 8.862.74 7.391.940.24 5.43 7.606.24 6.604.984.354.15 5.593.98 1.92 1.85 2.041.72 2.702.58 8.54 9.712.84 3.61 9.463.14 9.043.89 8.776.634.240.96 7.89 8.154.40 5.561.18 5.84 6.130.24 4.83 1.92 1.83 2.03 2.58 2.71 9.57 9.995.343.06 3.361.63 9.388.538.40 9.028.123.58 7.236.06 6.440.670.45 5.74 7.421.18 4.544.14 6.63 7.04 NL: 7.72E5 m/z= 608.1406- 609.1406 MS 1_1 NL: 7.91E5 m/z= 608.1406- 609.1406 MS 2 NL: 8.84E5 m/z= 608.1406- 609.1406 MS 3 NL: 2.17E5 m/z= 608.1406- 609.1406 MS 4 NL: 6.63E5 m/z= 608.1406- 609.1406 MS 5 NL: 7.57E5 m/z= 608.1406- 609.1406 MS 6 3 #430 RT: 1.92 AV: 1 SM: 15G NL: 8.23E5 T: FTMS + p ESI Full ms [100.0000-1200.0000] 608.3 608.4 608.5 608.6 608.7 608.8 608.9 609.0 609.1 609.2 609.3 m/z 10 20 30 40 50 60 70 80 90 100 R e la ti v e A b u n d a n c e 608.8409 608.8764 689.6150 156 d:\bossgiang\1_1 08/20/18 15:19:18 RT: 0.08 - 10.00 SM: 15G 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 Time (min) 0 100 0 100 0 100 0 100 R e la ti v e A b u n d a n c e 0 100 0 100 2.00 2.25 2.471.84 8.962.85 9.19 9.917.654.343.041.53 3.86 5.28 7.994.58 7.035.62 7.52 1.82 8.96 9.231.68 9.769.602.45 8.618.027.74 8.183.75 7.081.04 6.541.25 5.15 5.825.36 6.01 2.02 2.38 2.491.83 2.67 8.95 9.203.07 8.76 9.573.43 5.77 6.19 8.554.23 7.75 8.056.811.00 5.23 6.49 7.425.613.90 5.051.51 2.49 8.96 9.201.67 1.82 9.772.09 7.73 8.823.13 4.593.60 8.562.92 7.593.96 5.61 6.341.26 6.73 6.980.42 4.95 5.43 2.00 2.37 2.481.84 2.78 8.95 9.183.25 9.899.533.54 6.41 8.20 8.516.014.23 5.33 5.810.32 1.55 7.484.390.65 2.00 2.35 2.481.87 8.95 9.192.92 9.723.07 5.58 8.548.374.20 8.013.63 3.77 7.044.87 6.051.140.65 5.30 6.30 NL: 5.26E6 m/z= 689.1143- 690.1143 MS 1_1 NL: 1.08E5 m/z= 689.1143- 690.1143 MS 2 NL: 5.63E6 m/z= 689.1143- 690.1143 MS 3 NL: 5.22E4 m/z= 689.1143- 690.1143 MS 4 NL: 5.29E6 m/z= 689.1143- 690.1143 MS 5 NL: 5.13E6 m/z= 689.1143- 690.1143 MS 6 1_1 #446 RT: 1.99 AV: 1 SM: 15G NL: 2.17E6 T: FTMS + p ESI Full ms [100.0000-1200.0000] 689.20 689.25 689.30 689.35 689.40 689.45 689.50 689.55 689.60 689.65 689.70 689.75 689.80 689.85 689.90 689.95 690.00 690.05 m/z 0 20 40 60 80 100 120 R e la ti v e A b u n d a n c e 689.6150 706.6323 157 d:\bossgiang\1_1 08/20/18 15:19:18 RT: 0.08 - 10.00 SM: 15G 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 Time (min) 0 100 0 100 0 100 0 100 R e la ti v e A b u n d a n c e 0 100 0 100 1.97 2.04 1.79 2.22 2.47 2.66 9.819.468.523.110.13 8.113.30 4.701.470.90 6.75 6.990.53 1.84 9.04 9.414.64 9.658.696.261.30 6.070.870.10 7.075.81 7.212.91 4.35 5.012.58 5.443.04 2.092.05 2.33 2.501.79 2.60 2.87 9.449.083.93 8.227.76 8.703.330.29 5.874.20 5.17 7.055.31 1.82 2.50 1.63 9.759.509.180.90 8.46 8.893.431.91 2.38 7.212.680.40 7.726.274.881.08 3.24 6.485.23 6.04 1.97 2.04 1.80 2.48 2.59 8.922.95 9.919.573.32 7.935.47 7.01 7.336.210.70 4.390.38 5.64 6.715.120.90 4.89 1.97 2.04 1.78 2.25 2.48 2.74 9.778.94 9.303.28 7.784.29 8.408.123.660.830.12 6.01 7.251.45 6.48 NL: 1.12E6 m/z= 706.1323- 707.1323 MS 1_1 NL: 6.51E4 m/z= 706.1323- 707.1323 MS 2 NL: 9.27E5 m/z= 706.1323- 707.1323 MS 3 NL: 3.76E4 m/z= 706.1323- 707.1323 MS 4 NL: 1.14E6 m/z= 706.1323- 707.1323 MS 5 NL: 9.05E5 m/z= 706.1323- 707.1323 MS 6 1_1 #455 RT: 2.03 AV: 1 SM: 15G NL: 4.24E5 T: FTMS + p ESI Full ms [100.0000-1200.0000] 705.9 706.0 706.1 706.2 706.3 706.4 706.5 706.6 706.7 706.8 706.9 707.0 707.1 707.2 707.3 707.4 707.5 m/z 0 20 40 60 80 100 120 140 160 180 R e la ti v e A b u n d a n c e 706.6323

Các file đính kèm theo tài liệu này:

  • pdfnghien_cuu_tong_hop_he_vat_lieu_compozit_moi_tren_co_so_mofs.pdf
  • pdfTóm tắt luan an tieng anh.pdf
  • pdfTom tat luan an tiếng việt.pdf
  • pdfTrang thông tin đóng góp mới.pdf
  • pdfTrích yếu luận án.pdf
Luận văn liên quan