Phổ FT-IR đã được sử dụng để xác định các liên kết trong các vật liệu FeMIL-53, Fe-MIL-88B, Fe-MIL-53/GO, Fe-MIL-88B/GO. Hình 3.24 cho thấy các
mẫu vật liệu Fe-MIL-53, Fe-MIL-88B, Fe-MIL-53/GO, Fe-MIL-88B/GO xuất hiện
các dao động ở 1680, 1543, 1396 và 1020 cm-1 đặc trưng cho nhóm cacboxylat
[120, 121]. Các dải rộng tập trung ở 3440 cm-1 được gán cho dao động của nhóm -
OH của nước hấp phụ trên bề mặt. Hai đỉnh sắc nét ở 1543 cm-1 và 1396 cm-1 lần
lượt được quy cho các dao động bất đối xứng và đối xứng của các nhóm C-O. Kết
quả này xác nhận sự xuất hiện của các phối tử dicacboxylat trong vật liệu Fe-MIL-
53, Fe-MIL-88B. Các đỉnh ở 750 cm-1 và 540 cm-1 được gán cho các dao động biến
dạng C-H của benzen và Fe–O tương ứng [122-124] (bảng 3.10). Phổ FT-IR của
Fe-MIL-53/GO và Fe-MIL-88B/GO gần như giống với Fe-MIL-53 và Fe-MIL-88
ngoại trừ hai dao động có cường độ thấp xuất hiện ở 2339 – 2360 cm-1 đặc trưng
cho liên kết giữa GO và CO2. Điều này là do trong khoảng nhiệt độ từ 50 – 120oC,
GO dễ dàng hình thành liên kết cộng hóa trị với CO2 liên kết này bị phá vỡ khi nhiệt
độ lớn hơn 210oC
174 trang |
Chia sẻ: tueminh09 | Lượt xem: 820 | Lượt tải: 3
Bạn đang xem trước 20 trang tài liệu Nghiên cứu tổng hợp hệ vật liệu compozit mới trên cơ sở mofs chứa fe và graphen oxit ứng dụng làm quang xúc tác để phân hủy thuốc nhuộm trong môi trường nước, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
u, Hoa T.; Nguyen, Kien T.; Quan, Trang T. T.;
Nguyen, Quang K.; Tran, Hoa T. K.; Dang, Phuong T.; Vu, Loi D.; Lee, Gun D.
Highly photocatalytic activity of novel Fe-MIL-88B/GO nanocompozit in the
degradation of reactive dye from aqueous solution (2017), Material research
Express 4 035038, 2017.
3. Hoa T. Vu, Linh T. Tran, Giang H. Le, Quang K. Nguyen, Tan M. Vu and Tuan
A. Vu; Synthesis and application of novel Fe-MIL-53/GO nanocomposite for
photocatalytic degradation of reactive dye from aqueous solution (2019), Vietnam
Journal of Chemistry, 6 (12), 681-685.
4. Vũ Thị Hòa, Phạm Thị Thu Giang, Ngô Thúy Vân, Vũ Minh Tân, Vũ Anh Tuấn
(2018); Nghiên cứu tổng hợp vật liệu nano composite mới Fe-MIL88B/GO. Ứng
dụng trong phân hủy quang xúc tác thuốc nhuộm trong môi trường nước, Tạp chí
Khoa học và Công nghệ trường ĐH Công nghiệp Hà Nội, số 45 (tháng 4), 90-94.
5. Vũ Thị Hòa, Lê Hà Giang, Vũ Minh Tân, Vũ Anh Tuấn; Synthesis of Fe-
BTC/GO nano composite by hydrothermal method without using organic solvent
(2018), Tạp chí Khoa học và Công nghệ trường ĐH Công nghiệp Hà Nội, số đặc
biệt (tháng 11), 96-100.
135
TÀI LIỆU THAM KHẢO
1. Chaoran Jiang, Ki Yip Lee, Christopher M.A. Parlett, Mustafa K. Bayazit, Chi Ching
Lau, Qiushi Ruan, Savio J. A. Moniz, Adam F. Lee, Junwang Tang, Size-controlled
TiO2 nanoparticles on porous hosts for enhanced photocatalytic hydrogen
production, Applied Catalysis A: General (2016) 521, 133–139.
2. Tripathy N, A hmad R, Song JE, Ko HA, Hahn YB, Khang G, Photocatalytic
degradation of methyl orange dye by ZnO nanoneedle under UV irradiation, Mater
Lett 136, (2014) 171–174.
3. Vázquez A, Hernández-Uresti DB, Obregón S, Electrophoretic deposition of CdS
coatings and their photocatalytic activities in the degradation of tetracycline
antibiotic, Appl Surf Sci, (2016) 86:412–417.
4. Liu Y, Yu L, Hu Y, Guo CF, Zhang FM, Lou XW, A magnetically separable
photocatalyst based on nest-like γ-Fe2O3/ZnO double-shelled hollow structures with
enhanced photocatalytic activity, Nanoscale, (2012) 4 (1):183–187.
5. Liu K, Gao Y, Liu J, Wen Y, Zhao Y, Zhang K and Yu G, Photoreactivity of metal-
organic frameworks in aqueous solutions: metal dependence of reactive oxigen
species production Environ, Sci. Technol, (2016) 50 3634–40.
6. Cuicui Hu, Xiaoxia Hu, Rong Li, Yanjun Xing, MOF derived ZnO/C nanocomposite
with enhanced adsorption capacity and photocatalytic performance under sunlight,
Journal of Hazardous Materials, (2020) volume 385, 5, 121599.
7. Imteaz Ahmed, Sung Hwa Jhung, Compozits of metal–organic frameworks: Preparation
and application in adsorption, Materialstoday, (2014) volume 17, 3, 136-146.
8. Yuri A. Mezenov, Andrei A. Krasilin, Vladimir P. Dzyuba, Alexandre Nominé,
Valentin A, Milichko, Metal–Organic Frameworks in Modern Physics: Highlights
and Perspectives, Advanced Science. (2019) First published:18 July.
9. Lijuan Shen, Fenfen Jing, Ling Wu, Preparation of MIL−53(Fe)−Reduced
Graphene Oxit Nanocomposite by a Simple Self−Assembly Strategy for Increasing
Interfacial Contact: Efficient Visible Light Photocatalysts, ACS Applied Materials &
Interfaces (2015) 7(18).
10. Vu, Tuan A.; Le, Giang H.; Vu, Hoa T.; Nguyen, Kien T.; Quan, Trang T. T.;
Nguyen, Quang K.; Tran, Hoa T. K.; Dang, Phuong T.; Vu, Loi D.; Lee, Gun D,
Highly photocatalytic activity of novel Fe-MIL-88B/GO nanocomposite in the
degradation of reactive dye from aqueous solution, Mater. Res. (2017) Express, 4
035038.
11. Yuanyuan Zhang, Peng Yan, Qijin Wan, Nianjun Yang, Integration of chromium
terephthalate metal-organic frameworks with reduced graphene oxit for voltammetry
of 4-nonylphenol, Carbon, volume 134, (2018) 540-547.
12. Venkata Reddy, Kakarla Raghava Reddy, V.V.N. Harish, Jaesool Shim, M. V.
Shankar, Nagaraj P. Shetti, Tejraj M. Aminabhavi, Metal-organic frameworks
(MOFs)-based efficient heterogeneous photocatalysts: Synthesis, properties and its
applications in photocatalytic hydrogen generation, CO2 reduction and
136
photodegradation of organic dyes, International Journal of Hydrogen Energy, (2020)
45, 13,7656-7679.
13. Huan V. Doan, Harina Amer Hamzah, Prasanth Karikkethu Prabhakaran, Chiara
Petrillo & Valeska P. Ting, Hierarchical Metal–Organic Frameworks with
Macroporosity: Synthesis, Achievements, and Challenges, Nano-Micro Letters,
(2019) volume 11, 54.
14. Engin Burgaz, Ayse Erciyes, Muberra Andac, OmerAndac, Synthesis and
characterization of nano-sized metal organic framework-5 (MOF-5) by using
consecutive combination of ultrasound and microwave irradiation methods,
Inorganica Chimica Acta, (2019) volume 485, 24, 118-124.
15. Férey G., Mellot-Draznieks C., Serre C., Millange F., Dutour J., Surblé S.,
Margiolaki I, Chromium terephthalate–based solid with unusually large pore
volumes and surface area, Science, (2005) 309, pp. 2040-2042.
16. Lincheng Lia, Yunlan Xua, Dengjie Zhonga, Nianbing Zhong, CTAB-surface-
functionalized magnetic MOF@MOF compozit adsorbent for Cr(VI) efficient
removal from aqueous solution. Colloids and Surfaces A, Physicochemical and
Engineering Aspects, Volume 586, 5 February (2020), 124255.
17. Camilla Catharina Scherb, Controlling the surface growth of metal-organic
frameworks, Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie
und Pharmazie der Ludwig-Maximilians-Universität München. (2009)
18. Shekhah O., Wang H., Zacher D., Fischer R. A., Wöll C, Growth mechanism of
metal–organic frameworks: insights into the nucleation by employing a step-by-step
route, Angew. Chem. Int. (2009) Ed. 48, pp.5038 –5041.
19. H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The Chemistry and
Applications of Metal-Organic Frameworks, Science 341 (2013) 1230444.
20. Chun, H. and H. Jung, Targeted Synthesis of a Prototype MOF Based on Zn 4
(O)(O2C)6 Units and a Nonlinear Dicarboxilate Ligand, Inorganic chemistry (2009)
48: p. 417-9.
21. M. Taddei, P. V. Dau, S. M. Cohen, M. Ranocchiari, J. A. van Bokhoven, F.
Costantino, S. Sabatini and R. Vivani, Efficient microwave assisted synthesis of
metal–organic framework UiO-66: optimization and scale up, Dalton Trans., (2015),
44, 14019–14026.
22. Chandan Dey, Tanay Kundu, Bishnu P. Biswal, Arijit Mallick and Rahul Banerjee,
Crystalline metal-organic frameworks (MOFs): synthesis, structure and function.
Structural Science, Crystal Engineering and Materials, Acta Cryst, (2014) B70, 3-
10.
23. Gui-Lin Wen, Bo Liu, Dao-Fu Liu, Feng-Wu Wang, Li Li, Liang Zhu, Dong-Mei
Song, Chao-Xiu Huang, Yao-Yu Wang, Four congenetic zinc(II) MOFs from
delicate solvent-regulated strategy: Structural diversities and fluorescent properties,
Inorganica Chimica Acta, (2020) volume 502, 119296.
24. Yue Liang, Wei-Guan Yuan, Shu-Fang Zhang, Zhan He, Junru Xue, Xia Zhang, Lin-
Hai Jing and Da-Bin Qin, Hydrothermal synthesis and structural characterization of
137
metal–organic frameworks based on new tetradentate ligands, Dalton Trans, (2016)
45, 1382-1390.
25. Stéphane Diring, Shuhei Furukawa, Yohei Takashima, Susumu Kitagawa,
Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro
Regimes, Chemistry of Materials (2010) 22(16).
26. Chun H, Jung H, Targeted synthesis of a prototype MOF based on Zn4(O)(O2C)6
units and a nonlinear dicarboxilate ligand, Inorg Chem. Jan 19; (2009) 48(2):417-9.
27. Marco Taddei, Phuong V. Dau, Seth M. Cohen, Marco Ranocchiari, Jeroen A.
van Bokhoven, Ferdinando Costantino, Stefano Sabatini and Riccardo Vivani,
Efficient microwave assisted synthesis of metal–organic framework UiO-66:
optimization and scale up, Dalton Transactions, (2015) 44 (31): p. 14019-14026.
28. Feng Zhang, Tingting Zhang, Xiaoqin Zou, Fengyu Qu, Electrochemical synthesis of
metal organic framework films with proton conductive property, Solid State Ionics
(2017). 301: p. 125-132.
29. Kasra Pirzadeh, Ali Asghar Ghoreyshi, M. Rahimnejad, Maedeh Mohammadi,
Electrochemical synthesis, characterization and application of a microstructure
Cu3(BTC)2 metal organic framework for CO2 and CH4 separation, Korean Journal of
Chemical Engineering, (2018) 35(4): p. 974-983.
30. Zong-Qun Li, Ling-Guang Qiu, Tao Xu, Xia Jiang, Ultrasonic synthesis of the
microporous metal-organic framework Cu3(BTC)2 at ambient temperature and
pressure: An efficient and environmental friendly method, Materials Letters, (2009)
63: p. 78-80.
31. R.Seetharaj, P.V.Vandana, P.Arya, S.Mathew, Dependence of solvents, pH, molar
ratio and temperature in tuning metal organic framework architecture, Arabian
Journal of Chemistry, volume 12 (2019), Issue 3, March, Pages 295-315
32. Suryanarayana, C., Mechanical Alloying, A Novel Technique to Synthesize Advanced
Materials, Research (Washington, D.C.) (2019), p. 4219812-4219812.
33. Zhu, H. and D. Liu, The synthetic strategies of metal–organic framework
membranes, films and 2D MOFs and their applications in devices, Journal of
Materials Chemistry A, (2019) 7(37): p. 21004-21035.
34. L. Li, S. Wang, T. Chen, Z. Sun, J. Luo, M. Hong, Solvent-dependent formation of
Cd(II) coordination polymers based on a C2-symmetric tricarboxilate linker, Cryst.
Growth Des. (2012), 12 (8), pp. 4109-4115.
35. D. Banerjee, J. Finkelstein, A. Smirnov, P.M. Forster, L.A. Borkowski, S.J. Teat,
J.B. Parise, Synthesis and structural characterization of magnesium based
coordination networks in different solvents, Cryst. Growth Des. (2011), 11 (6), pp.
2572-2579.
36. B. Liu, G.P. Yang, Y.Y. Wang, R.T. Liu, L. Hou, Q. Z. Shi, Two new pH-controlled
metal–organic frameworks based on polynuclear secondary building units with
conformation-flexible xyclohexan-1,2,4,5-tetracarboxilate ligand, Inorg. Chim. Acta,
(2011) 367 (1), pp. 127-134.
138
37. S.T. Wu, L.S. Long, R.B. Huang, L.S. ZhengPH-dependent assembly of
supramolecular architectures from 0D to 2D networks, Cryst. Growth Des., 7 (9)
(2007), pp. 1746-1752.
38. C.C. Wang, H.P. Jing, P. Wang, S.J. Gao, Series metal–organic frameworks
constructed from 1,10-phenanthroline and 3,3′,4,4-biphenyltetracacboxylic acid:
Hydrothermal synthesis, luminescence and photocatalytic properties, J. Mol. Struct.,
1080 (2015), pp. 44-51.
39. C.Y. Zhang, M.Y. Wang, Q.T. Li, B.H. Qian, X.J. Yang, X.Y. Xu, Hydrothermal
synthesis, crystal structure, and luminescent properties of two zinc(II) and
cadmium(II) 3D metal-organic frameworks, Zeitschrift für anorganische und
allgemeine Chemie, 639 (5) (2013), pp. 826-831.
40. C. A. F. De Oliveira, F. F. Da Silva, I. Malvestiti, V. R. D. S. Malta, J. D. L. Dutra, N.
B. Da Costa Jr, R. O. Freire, S. A. Júnior, Effect of temperature on formation of two
new lanthanide metal-organic frameworks: synthesis, characterization and theoretical
studies of Tm(III)-succinate, J. Solid State Chem., 197 (0) (2013), pp. 7-13.
41. P. Kanoo, K.L. Gurunatha, T.K. Maji, Temperature-controlled synthesis of metal-
organic coordination polymers: crystal structure, supramolecular isomerism, and
porous property, Cryst. Growth Des., 9 (9) (2009), pp. 4147-4156.
42. Haoxi Jiang, Qianyun Wang, Huiqin Wang, Yifei Chen, Temperature effect on the
morphology and catalytic performance of Co-MOF-74 in low-temperature NH3-SCR
process, Catalysis Communications 80 (2016) 24–27.
43. Jia Jia, Fujian Xu, Zhou Long, Xiandeng Hou and Michael J. Sepaniak, Metal–
organic framework MIL-53(Fe) for highly selective and ultrasensitive direct sensing
of MeHg, Chem. Commun. (2013), 49, 4670-4672.
44. Yaghi J. Gassensmith, Hiroyasu Furukawa, Ronald A. Smaldone, Ross S. Forgan,
Youssry Y. Botros, Omar M. Yaghi, and J. Fraser Stoddart, Strong and Reversible
Binding of Carbon Dioxit in a Green Metal Organic Framework, J. Am. Chem. Soc.
(2011), 133, 15312–15315.
45. Brett Chandler, David T Cramb, George K H Shimizu, Microporous Metal−Organic
Frameworks Formed in a Stepwise Manner from Luminescent Building Blocks,
Journal of the American Chemical Society (2006). 128(32):10403-12.
46. Ryan J.Kuppler, Daren J.Timmons, Qian-Rong Fang, Jian-Rong Li, Trevor A.Makal,
Mark D.Young, Daqiang Yuan, Dan Zhao, Wenjuan Zhuang, Hong-CaiZhou, Show
more Potential applications of metal-organic frameworks, Coordination Chemistry
Reviews, Volume 253, Issues 23–24, December (2009), Pages 3042-3066.
47. Ji-Yong Zoua, Ling Lia, Sheng-Yong Youa, Hong-Min Cuia, Yue-Wei Liua, Kai-
Hong Chena, Yan-Hua Chena, Jian-Zhong Cuib, Shao-WeiZhangc, Sensitive
luminescent probes of aniline, benzaldehyde and Cr(VI) based on a zinc(II) metal-
organic framework and its lanthanide(III) post-functionalizations. Dyes and
Pigments, volume 159, December (2018), Pages 429-438.
139
48. Hindelang, K., et al., Tandem post-synthetic modification for functionalized metal–
organic frameworks viaepoxidation and subsequent epoxit ring-opening, Chemical
Communications, (2012). 48(23): p. 2888-2890.
49. M. Trivedi, Bhaskaran, A. Kumar, G. Singh, A. Kumar, N.P. Rath, Metal–organic
framework MIL-101 supported bimetallic Pd–Cu nanocrystals as efficient catalysts
for chromium reduction and conversion of carbon dioxit at room temperature, New
J. Chem. 40 (2016) 3109-3118.
50. A.R. Oveisi, A. Khorramabadi-zad, S. Daliran, Iron-based metal–organic
framework, Fe(BTC): an effective dual-functional catalyst for oxidative cyclization
of bisnaphthols and tandem synthesis of quinazolin-4(3H)-ones, RSC Adv. 6 (2016)
1136-1142.
51. A. Herbst, C. Janiak, Selective glucose conversion to 5-hydroximethylfurfural (5-
HMF) instead of levulinic acid with MIL-101Cr MOF-derivatives, New J. Chem. 40
(2016) 7958-7967.
52. A. Karmakar, G.M.D.M. Rúbio, M.F.C.G.d. Silva, A.P.C. Ribeiro, A.J.L, Pombeiro.
ZnII and CdII MOFs based on an amidoisophthalic acid ligand: synthesis, structure
and catalytic application in transesterification, RSC Adv. 6 (2016) 89007-89018.
53. J. Long, H. Liu, S. Wu, S. Liao, Y. Li, Selective Oxidation of Saturated
Hydrocarbons Using Au–Pd Alloy Nanoparticles Supported on Metal–Organic
Frameworks, ACS Catal. 3 (2013) 647-654.
54. D.A. Islam, A. Chakraborty, H. Acharya, Fluorescent silver nanoclusters (Ag NCs)
in the metal–organic framework MIL-101(Fe) for the catalytic hydrogenation of 4-
nitroaniline, New J. Chem. 40 (2016) 6745-6751.
55. P. Wang, H. Sun, X. Quan, S, Enhanced catalytic activity over MIL-100(Fe) loaded
ceria catalysts for the selective catalytic reduction of NOx with NH3 at low
temperature. Chen, J. Hazard. Mater. 301 (2016) 512-521.
56. F.G. Cirujano, A. Corma, F.X.L.i. Xamena, Hf-based metal–organic frameworks as
acid–base catalysts for the transformation of biomass-derived furanic compounds
into chemicals, Catal. Today 257 (2015) 213-220.
57. Tu, T.N., et al., New topological Co2(BDC)2(DABCO) as a highly active
heterogeneous catalyst for the amination of oxazoles via oxidative C–H/N–H
couplings, Catalysis Science & Technology, (2016). 6(5): p. 1384-1392.
58. Truong, T., K. Nguyen, and S. Doan, Efficient and recyclable
Cu2(BPDC)2(DABCO)-catalyzed direct amination of activated sp
3 C-H bonds by N-
H heterocycles, Applied Catalysis A: General, (2015). 510.
59. Le, T., et al., 1,5-Benzodiazepine synthesis via cyclocondensation of 1,2-diamines
with ketones using iron-based metal–organic framework MOF-235 as an efficient
heterogeneous catalyst. Journal of Catalysis, (2016). 333: p. 94-101.
60. Vu T. Nguyen, Huy Q. Ngo, Dung T. Le, Thanh Truong, Nam T. S. Phan, Iron-
catalyzed domino sequences: One-pot oxidative synthesis of quinazolinones using
metal-organic framework Fe3O(BPDC)3 as an efficient heterogeneous catalyst,
Chemical Engineering Journal, (2016), 284, 778-785.
140
61. Naseem A. Ramsahye, Thuy Khuong Trung, Lorna Scott, Farid Nouar, Thomas
Devic, Patricia Horcajada, Emmanuel Magnier, Olivier David, Christian Serre, and
Philippe Trens, Impact of the Flexible Character of MIL-88 Iron(III) Dicarboxilates
on the Adsorption of n Alkanes. Chem. Mater. (2013), 25, 479−488.
62. Jia Jia, Fujian Xu, Zhou Long, Xiandeng Hou and Michael J. Sepaniak, Metal–
organic framework MIL-53(Fe) for highly selective and ul-trasensitive direct sensing
of MeHg, Chem. Commun, (2013) 49, pp. 4670-4672.
63. Tirusew Araya, Chun-cheng Chen, Man-ke Jia, David Johnson, Ruiping Li,Ying-
ping Huang, Selective degradation of organic dyes by a resin modified Fe-based
metal-organic framework under visible light irradiation. Optical Materials, Volume
64, February 2017, pages 512-523.
64. Luisa Sciortino, Antonino Alessi, Fabrizio Messina, Gianpiero Buscarino, Franco
Mario. Gelardi, Structure of the FeBTC Metal–Organic Framework: A Model Based
on the Local, Environment Study. J. Phys. Chem. C (2015), 119, 14, 7826-7830.
65. Trần Văn Nhân, Hồ Thị Nga, Giáo trình công nghệ xử lí nước thải, Nhà xuất bản
Khoa học và kĩ thuật, Hà Nội (2005).
66. Đặng Xuân Việt, Nghiên cứu phương pháp thích hợp để khử màu thuốc nhuộm hoạt
tính trong nước thải dệt nhuộm, luận án tiến sĩ kỹ thuật, Hà nội (2007).
67. Puvaneswari N, Muthukrishnan J, Gunasekaran P, Toxicity assessment and microbial
degradation of azo dyes, Indian J Exp Biol.Aug; (2006) 44(8):618-26.
68. S. M. Ghoreishi, R. Haghighi, Chemical catalytic reaction and biological oxidation
for treatment of non-biodegradable textile effluent, Chemical Engineering Journal,
Volume 95, Issues (2003) 1–3, Pages 163-169.
69. Roberto Andreozzi, Vincenzo Caprio, Amedeo Insola, Raffaele Marotta, Advanced
oxidation processes (AOP) for water purification and recovery, Catalysis Today
Volume 53, (1999) Issue 1, 51-59.
70. Qi Wang, Qiaoyuan Gao, Abdullah M. Al-Enizi, Ayman Nafady and Shengqian Ma,
Recent advances in MOF-based photocatalysis: environmental remediation under
visible light, Inorg. Chem. Front., (2020),7, 300-339.
71. Salgado P., et al., Fenton reaction driven by Iron ligands, Journal of the Chilean
Chemical Society, (2013) 58(4), 2096–2101.
72. Linden, K.G., and M. Mohseni, Advanced Oxidation Processes: Applications in
Drinking Water Treatment, Comprehensive Water Quality and Purification, In book:
Comprehensive Water Quality and Purification (2014) 148–172.
73. Weiguang Li, Yong Wang, Angelidaki Irini, Effect of pH and H2O2 dosage on
catechol oxidation in nano-Fe3O4 catalyzing UV–Fenton and identification of
reactive oxigen species, Chemical Engineering Journal, (2014) 244, 1–8.
74. Ma, Q. Yang, Y. Wen, W. Liu, Fe-g-C3N4/graphitized mesoporous carbon compozit
as an effective Fenton-like catalyst in a wide pH range, Applied Catalysis B:
Environmental (2017) 201, 232-240.
141
75. S. Mosleh, M. R. Rahimi, M. Ghaedi, K. Dashtian, S. Hajati, S. Wang,
Ag3PO4/AgBr/Ag-HKUST-1-MOF composite as novel blue LED light active
photocatalyst for enhanced degradation of ternary mixture of dyes in a rotating
packed bed reactor, Chemical Engineering and Processing: Process Intensification.
Volume (2017) 114, 24-38.
76. Dongbo Wang, FeiyueJia, Hou Wang, Fei Chen, Ying Fang, Wenbo Dong,
Guangming Zeng, Xiaoming Li, Qi Yang, Xingzhong Yuan, Simultaneously efficient
adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs,
Journal of Colloid and Interface Science (2018), volume 519, 273-284.
77. Ying Chen, Boyin Zhai, Yuning Liang, Yongchao Li, Jing Li, Preparation of CdS/g-
C3N4/ MOF compozit with enhanced visible-light photocatalytic activity for dye
degradation, Journal of Solid State Chemistry, volume 274, June (2019), Pages 32-39.
78. Jian-Peng Dong, Zhen-Zhen Shi, Bo Li and Li-Ya Wang, Synthesis of a novel 2D
zinc(II) metal–organic framework for photocatalytic degradation of organic dyes in
water, alton Trans, (2019), 48, 17626-17632.
79. Luis Ángel Alfonso Herrera, Paola Karen Camarillo Reyes, Ali M.Huerta Flores,
Leticia Torres Martínez, José MaríaRivera Villanueva, BDC-Zn MOF sensitization
by MO/MB adsorption for photocatalytic hydrogen evolution under solar light,
Materials Science in Semiconductor Processing, volume 109, April (2020), 104950.
80. Yajun Zhang, Hanjiao Chen, Yi Pan, Xiaoliang Zeng, Xiaofang Jiang, Zhou
Long and Xiandeng Hou, Cerium-based UiO-66 metal–organic frameworks
explored as efficient redox catalysts: titanium incorporation and generation of
abundant oxigen vacancies, Chem. Commun, (2019),55, 13959-13962.
81. Shutao Gao, Tao Feng, Cheng Feng, Ningzhao Shang, Chun Wang, Novel visible-
light-responsive Ag/AgCl@MIL-101 hybrid materials with synergistic photocatalytic
activity, Journal of Colloid and Interface Science, Volume 466, 15 March (2016),
Pages 284-290.
82. Huijun Li, Qingqing Li, Xinglei He, Zhouqing Xu, Yuan Wang, Lei Jia, Synthesis of
AgBr@MOFs nanocompozit and its photocatalytic activity for dye degradation,
Polyhedron. Volume 165, 1 June (2019), Pages 31-37.
83. E.M. Dias, C. Petit, Towards the use of metal–organic frameworks for water reuse: a
review of the recent advances in the field of organic pollutants removal and
degradation and the next steps in the field, J. Mater. Chem. A 3 (2015) 22484–
22506.
84. J. Zhao, W.W. Dong, Y.P. Wu, Y.N. Wang, C. Wang, D.S. Li, Q.C. Zhang, Two
(3,6)- connected porous metal–organic frameworks based on linear trinuclear
[Co3(COO)6] and paddlewheel dinuclear [Cu2(COO)4] SBUs: gas adsorption,
photocatalytic behaviour, and magnetic properties, J. Mater. Chem. A 3 (2015)
6962–6969.
85. F. Wang, C. Dong, C. Wang, Z. Yu, S. Guo, Z. Wang, Y. Zhao, G. Li, Fluorescence
detection of aromatic amines and photocatalytic degradation of rhodamine B under
142
UV light irradiation by luminescent metal–organic frameworks, New J. Chem. 39
(2015) 4437–4444.
86. X. Li, Y. Pi, Q. Xia, Z. Li, J. Xiao, TiO2 encapsulated in Salicylaldehyde-NH2-MIL-
101(Cr) for enhanced visible light-driven photodegradation of MB, Appl. Catal. B:
Environ. 191 (2016) 192–201.
87. Đặng Thị Quỳnh Lan Trần Thị Hương, Hồ Văn Thành, Dương Tuấn Quang, Vũ Anh
Tuấn, Tổng hợp và đặc trưng vật liệu MIL-101, Tạp chí Hóa học, (2011) Tập 49
(AB), pp. 831-834.
88. Dang Thi Quynh Lan, Nguyen Trung Kien, Ho Van Thanh, Duong Tuan Quang, Vu
Anh Tuan, Synthesis and characterization of Fe-Cr-MIL- 101 and Cr-MIL-101,
Vietnam journal of chemistry, (2013) vol 1( A), pp. 106- 109.
89. Đặng Thị Quỳnh Lan Trần Thị Hương, Hồ Văn Thành, Dương Tuấn Quang, Vũ Anh
Tuấn, Tổng hợp và đặc trưng vật liệu MIL-101, Tạp chí Hóa học, (2011) Tập 49
(AB), pp. 831-834.
90. Pham Dinh Du, Huynh Thi Minh Thanh, Thuy Chau To, Ho Sy Thang, Mai Xuan
Tinh, Tran Ngoc Tuyen, Tran Thai Hoa, and Dinh Quang Khieu, Metal-Organic
Framework MIL-101: Synthesis and Photocatalytic Degradation of Remazol Black B
Dye, Journal of Nanomaterials. Volume (2019), Article ID 6061275,15 pages.
91. Phùng Thị Thu, Nghiên cứu tổng hợp vật liệu quang xúc tác trên cơ sở TiO2 và vật
liệu khung cơ kim (MOF), Luận văn thạc sĩ khoa học Hà Nội (2014). Đại học Khoa
học Tự nhiên Hà Nội.
92. Đặng Huỳnh Giao, Võ Thanh Phúc, Tạ Kiều Anh, Phạm Văn Toàn và Phạm Quốc
Yên, Tổng hợp và nghiên cứu hoạt tính xúc tác phân hủy Rhodamine B của vật liệu
ZÌ-67 dưới sự hiện diện của Peroximonosulfate, Tạp chí Khoa học Trường Đại học
Cần Thơ Tập 55, Số 3A (2019): 1-8
93. Trần Vĩnh Thiện, Huỳnh Hữu Điền, Nghiên cứu tổng hợp vật liệu MIL-100(Fe) và
khả năng xúc tác cho phản ứng phân hủy xanh methylene, Tạp chí Phát triển Khoa
học và Công nghệ, (2017) tập 20, trang 149-157.
94. Yan Wu, Hanjin Luo and Hou Wang, Synthesis of iron(III)-based metal–organic
framework/graphene oxit compozits with increased photocatalytic performance for
dye degradation, Cite this: RSC Adv. (2014), 4, 40435
95. Lizhang Huang and Bingsi Liu, Synthesis of a novel and stable reduced graphene
oxit/MOF hybrid nanocompozit and photocatalytic performance for the degradation
of dyes, RSC Adv. (2016), 6, 17873-1787.
96. Elham Akbarzadeh, Hossein ZareSoheili, Mojtaba Hosseinifard, Mohammad
RezaGholami, Preparation and characterization of novel Ag3VO4/Cu-MOF/rGO
heterojunction for photocatalytic degradation of organic pollutants, Materials
Research Bulletin. Volume 121, January (2020), 110621.
97. Elham Akbarzadeh, Hossein Zare Soheili, Mohammad RezaGholami, Novel
Cu2O/Cu-MOF/rGO is reported as highly efficient catalyst for reduction of 4-
nitrophenol, Materials Chemistry and Physics, Volume 237, 1 November (2019),
121846
143
98. Jie Yang, Pengfa Li, Liujie Wang, Xiaowei Guo, Jiao Guo, Sheng Liu, In-situ
synthesis of Ni-MOF@CNT on graphene/Ni foam substrate as a novel self-
supporting hybrid structure for all-solid-state supercapacitors with a high energy
density, Journal of Electroanalytical Chemistry, Volume 848, 1 September (2019),
113301.
99. Chengxin Xu, Lingbo Liu, Can Wu, Kangbing Wu, Unique 3D Heterostructures
Assembled by Quasi-2D Ni-MOF and CNTs for Ultrasensitive Electrochemical
Sensing of Bisphenol A. Sensors and Actuators B: Chemical, Available online 14
February (2020), 127885.
100. Yan Gao, Zhe Liu, Guangfa Hu, Ruimin Gao, Jianshe Zhao, Design and synthesis
heteropolyacid modified mesoporous hybrid material CNTs@MOF-199 catalyst by
different methods for extraction-oxidation desulfurization of model diesel,
Microporous and Mesoporous Materials, Volume 291, 1 January (2020), 109702.
101. Tuan A. Vu, et al., Synthesis, characterization and ability of arsenic removal by
graphene oxit and Fe3O4/GO nanocompozit, Jounal of chemistry, (2014) 6A, 143-148.
102. Bittencourt, C., et al., X-ray absorption spectroscopy by full-field X-ray microscopy
of a thin graphite flake: Imaging and electronic structure via the carbon K-edge,
Beilstein journal of nanotechnology, (2012). 3: p. 345-50.
103. Avouris, P. and C. Dimitrakopoulos, Graphene: synthesis and applications,
Materials Today, (2012). 15(3): p. 86-97.
104. Jeongho Park, Tyson Back, William C. Mitchel, Steve S. Kim, Said Elhamri, John
Boeckl, Steven B. Fairchild, Rajesh Naik & Andrey A. Voevodin, Approach to
multifunctional device platform with epitaxial graphene on transition metal oxit,
Scientific Reports volume 5, (2015) Article number: 14374.
105. Jia, J., et al., Metal–organic framework MIL-53(Fe) for highly selective and
ultrasensitive direct sensing of MeHg+. Chemical Communications, (2013). 49(41):
p. 4670-4672.
106. Yılmaz, E., E. Sert, and F.S. Atalay, Synthesis, characterization of a metal organic
framework: MIL-53 (Fe) and adsorption mechanisms of methyl red onto MIL-53
(Fe), Journal of the Taiwan Institute of Chemical Engineers, (2016). 65: p. 323-330.
107. Vuong, G.-T., M.-H. Pham, and T.-O. Do, Direct synthesis and mechanism of the formation
of mixed metal Fe2Ni-MIL-88B. CrystEngComm, (2013). 15(45): p. 9694-9703.
108. Zhang, H., et al., Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient
Fenton-like catalyst for degradation of organic pollutants, Frontiers of
Environmental Science & Engineering, (2019). 13(2): p. 18.
109. Han, Q., et al., Facile Synthesis of Fe-based MOFs (Fe-BTC) as Efficient Adsorbent
for Water Purifications, Chemical Research in Chinese Universities, (2019). 35 (4):
p. 564-569.
110. Martínez, F., et al., Sustainable Fe-BTC catalyst for efficient removal of mehylene
blue by advanced Fenton oxidation, Catalysis Today, (2018). 313: p. 6-11.
144
111. Guoqiang Li, Feifei Li, Jianxin Liu, Caimei Fan, Fe-based MOFs for photocatalytic
N2 reduction: Key role of transition metal iron in nitrogen activation, Journal of
Solid State Chemistry, (2020) Volume 285, 121245.
112. Choi, J.-S., et al., Metal–organic framework MOF-5 prepared by microwave
heating: Factors to be considered. Microporous and Mesoporous Materials, (2008).
116 (1): p. 727-731.
113. Petit, C. and T.J. Bandosz, Exploring the coordination chemistry of MOF–graphite
oxit compozits and their applications as adsorbents, Dalton Transactions, (2012).
41(14): p. 4027-4035.
114. Kwon, S.-K., et al., Inhibition of Conversion Process from Fe(OH)3 to β-FeOOH and
α-Fe2O3 by the Addition of Silicate Ions, ISIJ International, (2005). 45(1): p. 77-81.
115. Klinowski, J., et al., Microwave-Assisted Synthesis of Metal–Organic Frameworks,
Dalton Transactions, (2011). 40 (2): p. 321-330.
116. Yu, J., et al., Functionalized MIL-53(Fe) as efficient adsorbents for removal of
tetracycline antibiotics from aqueous solution, Microporous and Mesoporous
Materials, (2019). 290: p. 109642.
117. Yin, Y, et al, Inducement of nanoscale Cu–BTC on nanocompozit of PPy–rGO and its
performance in ammonia sensing, Materials Research Bulletin, (2018). 99: p. 152-160.
118. Haoxi Jiang, Qianyun Wang, Qianyun Wang, Huiqin Wang, Huiqin Wang, Minhua
Zhang, Minhua Zhang, Temperature effect on the morphology and catalytic
performance of Co-MOF-74 in low-temperature NH3-SCR process, Catalysis
Communications, (2016) Volume 80, 5 May, Pages 24-27.
119. Xiaoshi Hu, Xiaobing Lou, Chao Li, Yanqun Ning, Yuxing Liao, Qun Chen,
Eugène S. Mananga, Ming Shen and Bingwen Hu, Facile synthesis of the Basolite
F300-like nanoscale Fe-BTC framework and its lithium storage properties, RSC
Adv., (2016), 6, 114483-114490
120. Krishnamoorthy, K., et al., The Chemical and structural analysis of graphene oxit
with different degrees of oxidation. Carbon, (2013). 53: p. 38-49.
121. Mu, S.-J., et al., X-Ray Difraction Pattern of Graphite Oxit, Chinese Physics Letters,
(2013). 30 (9): p. 096101.
122. Pham, V.H., et al., Chemical functionalization of graphene sheets by solvothermal
reduction of a graphene oxit suspension in N-methyl-2-pyrrolidone, Journal of
Materials Chemistry, (2011). 21(10): p. 3371-3377.
123. Urbas, K., et al., Chemical and magnetic functionalization of graphene oxit as a route to
enhance its biocompatibility, Nanoscale Research Letters, (2014). 9(1): p. 656.
124. Tuan T Nguyen, Giang H Le, Chi H Le, Manh B Nguyen, Trang T T Quan, Trang T
T Pham and Tuan A Vu, Atomic implantation synthesis of Fe-Cu/SBA-15
nanocompozit as a heterogeneous Fenton-like catalyst for enhanced degradation of
DDT, Materials Research Express, (2018) 2053-1591.
145
125. Wang C, Luo H J, Zhang Z L, Wu Y, Zhang J and Chen S W, Removal of As(III) and
As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxit
modified compozits, J. Hazardous Mater. (2014) 268 124–31.
126. Zhu B-J et al, Iron and 1,3,5-benzentricacboxylic metal-organic coordination
polymers prepared by solvothermal method and their application in efficient As(V)
removal from aqueous solutions, J. Phys. Chem. C (2012) 116 8601–7.
127. Yamashita T and Hayes P, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxit
materials, Appl. Surf. Sci. (2008) 254 2441–9.
128. Grosvenor B A, Kobe M C, Biesinger A P and McIntyre N S, Investigation of
multiplet splitting of Fe2p XPS spectra and bonding in iron compounds Surf,
Interface Anal. (2004) 36 1564–74.
129. Huang Z. H, Liu G. Q and Kang F. Y, Glucose-promoted Zn-based metal-organic
framework/graphene oxide compozits for hydrogen sulfide removal ACS Appl.
Mater. Interfaces, (2012) 4 4942–7.
130. Maryam Jouyandeh, Farimah Tikhani, Meisam Shabanian, Farnaz Movahedi, Shahab
Moghari, Vahideh Akbari, Xavier Gabrionf, Pascal Laheurte, Henri Vahabi,
Mohammad RezaSa, Synthesis, characterization, and high potential of 3D metal–
organic framework (MOF) nanoparticles for curing with epoxi, Journal of Alloys
and Compounds, (2020) volume 829, 154547
131. Xuan Nui Pham, Ba Manh Nguyen, Hoa Tran Thi, Huan Van Doan. Synthesis of Ag-
AgBr/Al-MCM-41 nanocomposite and its application in photocatalytic oxidative
desulfurization of dibenzothiophene, Advanced Powder Technology, (2018) 29,
1827-1837.
132. Jialing Lin, Han Hu, Naiyun Gao, Jinshao Ye, Yujia Chen, Huase Ou. Fabrication of
GO@MIL-101(Fe) for enhanced visible-light photocatalysis degradation of
organophosphorus contaminant. Journal of Water Process Engineering. Volume 33,
February (2020), 101010.
133. Qiuqiang Chen, Iron pillared vermiculite as a heterogeneous photo-Fenton catalyst
for photocatalytic degradation of azo dye reactive brilliant orange X-GN, Separation
and Purification Technology, (2010) 71, 315–323.
134. P. V. Nidheesh, Heterogeneous Fenton catalysts for the abatement of organic
pollutants from aqueous solution, a review, RSC Adv. (2015), 5, 40552–40577.
135. Xuan Nui Pham, Duc Trong Pham, Ha Son Ngo, Manh B Nguyen, Huan V Doan,
Characterization and application of C-TiO2 doped cellulose axetat nanocompozit film
for removal of Reactive Red195, Chemical Engineering Communications, (2020).
https://doi.org/L0.1080/00986445.2020.1712375
136. Martin Hartmann, Simon Kullmanna and Harald Kellerb, Wastewater treatment with
heterogeneous Fenton-type catalysts based on porous materials, Received 2nd
March (2010), Accepted 7th May. Mater. Chem, (2010) 20, 9002-9017.
137. C. T. Zahn, The Significance of Chemical Bond Energies, J. Chem. Phys. 2, 671
(1934); https://doi.org/10.1063/1.1749373.
146
138. Chao Lv, Jianfeng Zhang, GaiyeLia Huan, Xia MengniGe, Takashi Goto,
Facile fabrication of self-assembled lamellar PANI-GO-Fe3O4 hybrid
nanocomposites with enhanced adsorption capacities and easy recyclicity
towards ionic dyes (2020), Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 585, 124147.
139. Anjali Gupta, Herlys Viltres, Nishesh, Kumar Gupta. Sono-adsorption of
organic dyes onto CoFe2O4/graphene oxide nanocomposite (2020). Surfaces
and Interfaces, 20, 100563.
140. Jun Xu, Peifang Du, Wendie Bi, Guohong Yao, Sisi Li, Hui Liu. Graphene
oxide aerogels co-functionalized with polydopamine and polyethylenimine for
the adsorption of anionic dyes and organic solvents (2020). Chemical
Engineering Research and Design, 154, 192-202.
141. Priyadharshini Aravinda, Hosimin Selvaraj, Sergio Ferro, Maruthamuthu
Sundarama. An integrated (electro- and bio-oxidation) approach for
remediation of industrial wastewater containing azo-dyes: Understanding the
degradation mechanism and toxicity assessment (2016). Journal of Hazardous
Materials 318 203–215.
142. Tayyaba Noor, Muhammad Ammad, Neelam Zaman, Naseem Iqbal, Lubna
Yaqoob, Habib Nasir, A Highly Efficient and Stable Copper BTC Metal
Organic Framework Derived Electrocatalyst for Oxidation of Methanol in
DMFC Application (2020). Catalysis Letters https://doi.org/10.1007/s10562-
019-02904-6.
147
PHỤ LỤC 1
Phổ UV-Vis và đường chuẩn của thuốc nhuộm
1. Phổ UV-Vis và đường chuẩn của thuốc nhuộm RR-195
Phổ UV-Vis của RR-195 với nồng độ 10ppm, 20 ppm, 30 ppm, 40 ppm, 50
ppm, 60 ppm, 70 ppm, 80 ppm, 90 ppm, 100 ppm dùng trong quá trình hấp thụ
được mô tả trên hình 1.
Hình 1. Phổ UV-Vis của thuốc nhuộm RR-195
Dựa vào cường độ hấp thụ tại bứơc sóng λmax = 541 nm để tiến hành xây dựng
đường chuẩn (hình 2).
Hình 2. Đường chuẩn của thuốc nhuộm RR-195
2. Phổ UV-Vis và đường chuẩn của thuốc nhuộmRY-145
Phổ UV-Vis của RY-145 với nồng độ 10ppm, 20 ppm, 30 ppm, 40 ppm, 50
ppm, 60 ppm, 70 ppm, 80 ppm, 90 ppm, 100 ppm dùng trong quá trình hấp thụ
được mô tả trên hình 3.
148
Hình 3. Phổ UV-Vis của thuốc nhuộm RY-145
Dựa vào cường độ hấp thụ và bứơc sóng hấp thụ λmax = 421 nm để tiến hành
xây dựng đường chuẩn (hình 4).
Hình 4. Đường chuẩn của thuốc nhuộm RY-145
149
PHỤ LỤC 2
Các sản phẩm trung gian trong quá trình phân hủy thuốc nhuộm RR-195
trên xúc tác Fe-MIL-88B/GO được phân tích bằng LC-MS.
157
d:\bossgiang\1_1 08/20/18 15:19:18
RT: 0.08 - 10.00 SM: 15G
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
Time (min)
0
20
0
20
0
20
0
20
R
e
la
t
iv
e
A
b
u
n
d
a
n
c
e
0
20
0
20
9.218.988.872.74 8.613.270.730.12 0.35 0.94 8.297.831.34 3.40 7.601.52 7.397.131.74 3.91 6.094.46 6.834.70 5.60 6.445.394.924.23
2.12
8.968.842.28 8.580.31 0.57 8.310.94 2.05 2.401.26 7.861.41 7.663.483.14 7.331.66 5.81 6.282.79 5.644.40 5.054.603.98 6.50 7.075.333.79 6.78
3.06
9.152.49 8.572.79 3.21 8.373.320.32 8.080.54 7.921.00 1.34 3.861.56 6.34 7.594.281.77 4.47 6.51 6.874.73 7.016.045.725.505.232.36
9.27
9.011.67 8.852.27 8.602.352.140.15 0.48 0.75 8.260.90 7.921.40 3.863.50 7.672.69 7.114.983.05 6.375.264.13 5.744.57 6.515.96
3.05
9.002.94 8.912.50 8.573.21 8.453.470.11 0.44 8.080.68 3.83 7.630.92 1.15 1.42 6.82 7.156.614.17 6.075.754.844.30 4.971.76 6.245.432.17
3.05 9.198.992.49
8.812.80 8.473.230.19 8.000.37 3.490.64 7.861.01 1.14 1.75 3.59 7.587.106.623.99 5.27 5.95 6.214.32 5.774.79
2.30
NL: 2.05E6
m/z=
156.5108-
157.5108 MS 1_1
NL: 1.44E6
m/z=
156.5108-
157.5108 MS 2
NL: 3.01E6
m/z=
156.5108-
157.5108 MS 3
NL: 2.18E6
m/z=
156.5108-
157.5108 MS 4
NL: 2.72E6
m/z=
156.5108-
157.5108 MS 5
NL: 2.27E6
m/z=
156.5108-
157.5108 MS 6
1_1 #554 RT: 2.48 AV: 1 SM: 15G NL: 2.00E5
T: FTMS + p ESI Full ms [100.0000-1200.0000]
156.970 156.975 156.980 156.985 156.990 156.995 157.000 157.005 157.010 157.015 157.020 157.025 157.030 157.035 157.040
m/z
0
10
20
30
40
50
60
70
80
90
100
R
e
la
t
iv
e
A
b
u
n
d
a
n
c
e
157.0108
167.02
150
d:\bossgiang\3 08/20/18 16:25:18
RT: 0.00 - 14.01
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (min)
0
50
0
50
0
50
0
50
R
e
la
t
iv
e
A
b
u
n
d
a
n
c
e
0
50
0
50
10.311.731.71 11.84 12.3310.03 13.041.81 9.589.298.938.567.857.463.420.29 1.52 7.286.210.60 6.555.925.680.88 5.332.04 4.853.47 4.582.55 3.19
13.1711.83 12.321.66 10.6810.379.989.559.258.808.063.02 6.03 7.847.495.592.541.76 4.854.25 6.320.47 3.83 7.143.381.15 5.08
1.74 10.31 11.70 13.121.70 12.2310.069.692.18 9.328.903.42 8.087.860.18 7.096.630.44 1.24 6.335.725.044.834.444.072.56 3.16
10.75 12.2811.71 13.1210.299.879.449.389.063.001.77 2.96 8.668.113.08 7.680.47 5.755.08 7.016.01 6.373.99 4.814.211.360.75
10.43 13.0412.2510.151.721.70 1.74 9.709.379.028.683.40 8.127.607.380.32 6.070.65 6.47 6.961.38 5.845.062.56 4.744.313.672.72
11.67 13.0212.2610.6710.381.71 9.971.69 9.571.78 9.218.928.563.41 7.570.15 6.79 7.181.420.49 0.85 6.205.695.114.672.06 4.233.903.37
NL: 5.60E6
m/z=
166.5677-
167.5677 MS 1_1
NL: 5.23E6
m/z=
166.5677-
167.5677 MS 2
NL: 5.57E6
m/z=
166.5677-
167.5677 MS 3
NL: 6.75E6
m/z=
166.5677-
167.5677 MS 4
NL: 6.78E6
m/z=
166.5677-
167.5677 MS 5
NL: 7.45E6
m/z=
166.5677-
167.5677 MS 6
3 #483 RT: 2.16 AV: 1 SM: 15G NL: 5.75E5
T: FTMS + p ESI Full ms [100.0000-1200.0000]
166.4 166.5 166.6 166.7 166.8 166.9 167.0 167.1 167.2 167.3 167.4 167.5 167.6 167.7 167.8 167.9 168.0
m/z
0
10
20
30
40
50
60
70
80
90
100
110
120
130
R
e
la
t
iv
e
A
b
u
n
d
a
n
c
e
167.0676
167.1068
285.0483
151
d:\bossgiang\6 08/20/18 18:04:21
RT: 0.00 - 14.01
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (min)
0
100
0
100
0
100
0
100
R
e
la
t
iv
e
A
b
u
n
d
a
n
c
e
0
100
0
100
10.269.77 13.7110.75 13.174.86 13.029.83 10.82 12.65
11.522.40 9.631.77 2.61 5.925.11 8.804.72 8.300.32 1.41 7.864.001.19 6.50 6.923.300.64 7.38
13.289.77 13.21 13.4010.26 10.74
12.9712.6310.79 12.37
9.621.661.32 9.205.170.15 6.090.62 7.937.352.15 6.283.73 4.152.36 8.574.93 6.753.10 5.76
13.24 13.3410.289.78 13.1110.75
13.6012.4810.84 12.282.532.42 9.651.77 2.61 9.448.784.920.63 3.16 6.87 8.451.12 5.59 6.28 7.430.28 4.33 7.843.78
9.77 13.1610.26 12.95 13.36
10.75
12.4810.84
12.251.68 9.652.40 9.492.11 8.32 8.756.323.82 4.971.37 3.640.10 0.92 6.07 7.563.25 4.19 7.085.41 6.59 7.750.51 4.76
13.2010.279.76 13.5013.1510.75 12.7010.85 12.27
9.632.551.76 2.35 8.084.932.80 9.266.63 8.851.14 3.710.90 3.200.43 6.35 7.855.88 7.506.945.444.12 4.36
13.32 13.5413.1410.269.77
10.72 10.77 12.7112.544.91 12.074.952.512.33 2.691.76 9.544.82 9.193.06 8.280.28 8.667.891.35 5.731.07 3.520.67 7.653.84 6.45 6.926.26
NL: 2.32E6
m/z=
283.5446-
284.5446 MS 1_1
NL: 3.16E6
m/z=
283.5446-
284.5446 MS 2
NL: 2.66E6
m/z=
283.5446-
284.5446 MS 3
NL: 2.58E6
m/z=
283.5446-
284.5446 MS 4
NL: 2.29E6
m/z=
283.5446-
284.5446 MS 5
NL: 2.66E6
m/z=
283.5446-
284.5446 MS 6
6 #1102 RT: 4.93 AV: 1 SM: 15G NL: 2.48E4
T: FTMS + p ESI Full ms [100.0000-1200.0000]
284.98 284.99 285.00 285.01 285.02 285.03 285.04 285.05 285.06 285.07 285.08 285.09 285.10 285.11 285.12 285.13
m/z
0
20
40
60
80
100
120
140
R
e
la
t
iv
e
A
b
u
n
d
a
n
c
e 285.0483
480.7375
152
d:\bossgiang\3 08/20/18 16:25:18
RT: 0.08 - 10.00 SM: 15G
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
Time (min)
0
100
0
100
0
100
0
100
R
e
la
t
iv
e
A
b
u
n
d
a
n
c
e
0
100
0
100
1.98
1.78
2.541.69 8.342.66 9.798.933.10 9.303.25 3.67 7.85 8.584.110.63 4.944.52 5.08 5.56 7.726.320.80 1.33 5.71 7.237.020.18 5.98 6.60
1.81
1.67
9.966.21 9.205.340.20 7.70 9.444.793.351.05 6.93 7.24 8.808.538.195.15 6.502.530.85 2.04 4.222.731.57 6.144.403.71 5.722.92
1.78
2.04
2.541.65 8.322.76 9.833.252.45 9.713.44 4.13 9.233.96 6.214.26 6.99 8.875.20 5.680.77 6.42 7.40 8.087.905.954.62 8.624.820.36 6.861.12
1.68
1.84 2.18 8.342.28 9.478.62 9.263.79 9.695.702.750.46 7.135.23 8.18 8.936.981.13 7.686.310.58 4.771.42 3.03 4.44 7.456.004.21 6.693.39
1.98 2.02
1.77
2.55 8.332.78 9.512.94 3.35 9.679.259.104.983.54 4.243.86 8.837.871.01 4.361.22 5.70 7.665.56 7.080.21 0.58 6.526.08 6.88 7.34
1.98
1.77
2.55 8.332.75 9.672.14 3.020.11 3.45 8.606.854.30 5.07 9.241.380.43 4.10 8.825.903.71 7.867.490.62 7.194.810.93 6.295.29 6.56
NL: 1.63E6
m/z=
480.2372-
481.2372 MS 1_1
NL: 3.66E4
m/z=
480.2372-
481.2372 MS 2
NL: 1.42E6
m/z=
480.2372-
481.2372 MS 3
NL: 1.42E5
m/z=
480.2372-
481.2372 MS 4
NL: 1.77E6
m/z=
480.2372-
481.2372 MS 5
NL: 1.38E6
m/z=
480.2372-
481.2372 MS 6
3 #458 RT: 2.05 AV: 1 SM: 15G NL: 4.99E5
T: FTMS + p ESI Full ms [100.0000-1200.0000]
479.4 479.6 479.8 480.0 480.2 480.4 480.6 480.8 481.0 481.2 481.4 481.6 481.8 482.0 482.2
m/z
0
20
40
60
80
100
120
140
R
e
la
t
iv
e
A
b
u
n
d
a
n
c
e
480.7375
481.0923
578.6669
153
d:\bossgiang\1_1 08/20/18 15:19:18
RT: 0.08 - 10.00 SM: 15G
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
Time (min)
0
100
0
100
0
100
0
100
R
e
la
ti
v
e
A
b
u
n
d
a
n
c
e
0
100
0
100
2.04
1.92
1.74 9.702.37 2.60 9.042.79 9.513.32 3.46 4.12 8.810.44 4.26 6.966.04 8.518.140.83 6.814.82 7.416.573.91 5.30
1.66
1.84
2.70 9.285.960.50 9.100.09 3.98 6.18 7.781.19 3.48 8.025.381.420.97 7.105.56 6.39 6.772.862.41
1.93
2.05
1.73
2.42 2.61 9.729.052.79 9.193.08 4.133.440.49 4.45 7.60 8.263.61 8.795.01 8.438.045.715.484.731.24 6.87 7.191.04 6.52
1.66
1.82 2.41 9.052.62 9.829.483.42 8.624.512.90 5.17 6.66 8.422.150.75 4.670.17 0.36 5.423.871.32 4.33 6.24
2.04
1.92
1.72 9.682.25 2.43 9.042.64 9.432.89 3.24 3.54 8.723.82 7.57 7.754.18 8.030.42 5.730.99 6.555.32 7.30
2.04
1.92
1.72 9.692.28 2.42 9.042.74 9.233.21 5.324.81 7.514.42 5.641.39 8.768.383.47 7.744.03 8.186.343.800.67 6.06 6.615.031.10
NL: 1.29E6
m/z=
578.1669-
579.1669 MS 1_1
NL: 8.17E4
m/z=
578.1669-
579.1669 MS 2
NL: 6.05E5
m/z=
578.1669-
579.1669 MS 3
NL: 4.48E5
m/z=
578.1669-
579.1669 MS 4
NL: 7.00E5
m/z=
578.1669-
579.1669 MS 5
NL: 1.12E6
m/z=
578.1669-
579.1669 MS 6
1_1 #454 RT: 2.03 AV: 1 SM: 15G NL: 4.64E5
T: FTMS + p ESI Full ms [100.0000-1200.0000]
577.8 577.9 578.0 578.1 578.2 578.3 578.4 578.5 578.6 578.7 578.8 578.9 579.0 579.1 579.2 579.3 579.4 579.5 579.6 579.7
m/z
0
20
40
60
80
100
120
140
160
180
200
220
R
e
la
ti
v
e
A
b
u
n
d
a
n
c
e
578.6669
578.1633
585.8138
154
d:\bossgiang\1_1 08/20/18 15:19:18
RT: 0.08 - 10.00 SM: 15G
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
Time (min)
0
100
0
100
0
100
0
100
R
e
la
ti
v
e
A
b
u
n
d
a
n
c
e
0
100
0
100
1.93
1.78 9.489.072.04 9.662.431.64 2.75 8.234.434.213.793.33 7.233.20 7.937.645.560.26
9.48
9.33
9.061.81 9.650.98 4.263.73 8.718.234.93 7.942.651.740.22 1.41 5.85 7.680.64 6.832.82 3.953.41
1.93
9.481.78 9.312.25 9.072.44 3.25 9.952.72 5.19 7.82 8.654.353.52 7.643.670.47 8.075.564.48 5.96 7.090.64 6.591.491.29
9.48
9.321.68 9.062.481.82 9.768.768.133.141.240.52 6.322.630.13 3.35 4.39 7.765.084.682.32 6.773.59 6.15 6.985.584.10
1.93
9.46
9.311.78 9.042.18 2.331.72 9.632.87 3.10 8.853.44 8.177.934.683.62 4.041.22 5.570.59 6.564.47 5.27 5.92 7.13
1.93
9.44
1.77 9.309.042.05 2.31 2.69 9.656.60 6.851.63 3.19 7.534.58 8.160.89 7.166.05 7.704.99 5.153.801.28 6.26
NL: 4.54E5
m/z=
585.5239-
586.5239 MS 1_1
NL: 1.25E5
m/z=
585.3138-
586.3138 MS 2
NL: 5.32E5
m/z=
585.3138-
586.3138 MS 3
NL: 1.08E5
m/z=
585.3138-
586.3138 MS 4
NL: 2.79E5
m/z=
585.3138-
586.3138 MS 5
NL: 3.42E5
m/z=
585.3138-
586.3138 MS 6
1_1 #430 RT: 1.92 AV: 1 SM: 15G NL: 2.09E5
T: FTMS + p ESI Full ms [100.0000-1200.0000]
585.0 585.2 585.4 585.6 585.8 586.0 586.2 586.4 586.6 586.8 587.0 587.2
m/z
0
10
20
30
40
50
60
70
80
90
100
R
e
la
t
iv
e
A
b
u
n
d
a
n
c
e
585.8138
608.8409
155
d:\bossgiang\3 08/20/18 16:25:18
RT: 0.08 - 10.00 SM: 15G
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
Time (min)
0
100
0
100
0
100
0
100
R
e
la
ti
v
e
A
b
u
n
d
a
n
c
e
0
100
0
100
1.91
1.85
2.05
1.74 2.58 2.74 8.54 9.909.733.01 9.374.09 8.883.25 5.334.263.56 5.65 8.397.816.666.411.461.00
1.83
1.66 9.28 9.922.96 9.629.055.501.23 2.46 4.44 7.737.452.15 6.63 7.25 8.050.61 4.993.39
1.92
1.86
2.06
1.68 4.132.64 8.522.852.50 9.724.313.21 3.54 3.70 9.509.338.318.14 8.944.67 7.42 7.665.660.46 0.61 6.63
1.66
1.82
2.61 9.998.15 8.641.19 9.303.57 6.032.43 8.862.74 7.391.940.24 5.43 7.606.24 6.604.984.354.15 5.593.98
1.92
1.85
2.041.72 2.702.58 8.54 9.712.84 3.61 9.463.14 9.043.89 8.776.634.240.96 7.89 8.154.40 5.561.18 5.84 6.130.24 4.83
1.92
1.83
2.03
2.58 2.71 9.57 9.995.343.06 3.361.63 9.388.538.40 9.028.123.58 7.236.06 6.440.670.45 5.74 7.421.18 4.544.14 6.63 7.04
NL: 7.72E5
m/z=
608.1406-
609.1406 MS 1_1
NL: 7.91E5
m/z=
608.1406-
609.1406 MS 2
NL: 8.84E5
m/z=
608.1406-
609.1406 MS 3
NL: 2.17E5
m/z=
608.1406-
609.1406 MS 4
NL: 6.63E5
m/z=
608.1406-
609.1406 MS 5
NL: 7.57E5
m/z=
608.1406-
609.1406 MS 6
3 #430 RT: 1.92 AV: 1 SM: 15G NL: 8.23E5
T: FTMS + p ESI Full ms [100.0000-1200.0000]
608.3 608.4 608.5 608.6 608.7 608.8 608.9 609.0 609.1 609.2 609.3
m/z
10
20
30
40
50
60
70
80
90
100
R
e
la
ti
v
e
A
b
u
n
d
a
n
c
e
608.8409
608.8764
689.6150
156
d:\bossgiang\1_1 08/20/18 15:19:18
RT: 0.08 - 10.00 SM: 15G
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
Time (min)
0
100
0
100
0
100
0
100
R
e
la
ti
v
e
A
b
u
n
d
a
n
c
e
0
100
0
100
2.00
2.25 2.471.84 8.962.85 9.19 9.917.654.343.041.53 3.86 5.28 7.994.58 7.035.62 7.52
1.82
8.96
9.231.68 9.769.602.45 8.618.027.74 8.183.75 7.081.04 6.541.25 5.15 5.825.36 6.01
2.02
2.38 2.491.83 2.67 8.95 9.203.07 8.76 9.573.43 5.77 6.19 8.554.23 7.75 8.056.811.00 5.23 6.49 7.425.613.90 5.051.51
2.49
8.96 9.201.67 1.82 9.772.09 7.73 8.823.13 4.593.60 8.562.92 7.593.96 5.61 6.341.26 6.73 6.980.42 4.95 5.43
2.00
2.37 2.481.84 2.78 8.95 9.183.25 9.899.533.54 6.41 8.20 8.516.014.23 5.33 5.810.32 1.55 7.484.390.65
2.00
2.35 2.481.87 8.95 9.192.92 9.723.07 5.58 8.548.374.20 8.013.63 3.77 7.044.87 6.051.140.65 5.30 6.30
NL: 5.26E6
m/z=
689.1143-
690.1143 MS 1_1
NL: 1.08E5
m/z=
689.1143-
690.1143 MS 2
NL: 5.63E6
m/z=
689.1143-
690.1143 MS 3
NL: 5.22E4
m/z=
689.1143-
690.1143 MS 4
NL: 5.29E6
m/z=
689.1143-
690.1143 MS 5
NL: 5.13E6
m/z=
689.1143-
690.1143 MS 6
1_1 #446 RT: 1.99 AV: 1 SM: 15G NL: 2.17E6
T: FTMS + p ESI Full ms [100.0000-1200.0000]
689.20 689.25 689.30 689.35 689.40 689.45 689.50 689.55 689.60 689.65 689.70 689.75 689.80 689.85 689.90 689.95 690.00 690.05
m/z
0
20
40
60
80
100
120
R
e
la
ti
v
e
A
b
u
n
d
a
n
c
e
689.6150
706.6323
157
d:\bossgiang\1_1 08/20/18 15:19:18
RT: 0.08 - 10.00 SM: 15G
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
Time (min)
0
100
0
100
0
100
0
100
R
e
la
ti
v
e
A
b
u
n
d
a
n
c
e
0
100
0
100
1.97
2.04
1.79 2.22 2.47 2.66 9.819.468.523.110.13 8.113.30 4.701.470.90 6.75 6.990.53
1.84
9.04 9.414.64 9.658.696.261.30 6.070.870.10 7.075.81 7.212.91 4.35 5.012.58 5.443.04
2.092.05
2.33 2.501.79 2.60 2.87 9.449.083.93 8.227.76 8.703.330.29 5.874.20 5.17 7.055.31
1.82
2.50
1.63
9.759.509.180.90 8.46 8.893.431.91 2.38 7.212.680.40 7.726.274.881.08 3.24 6.485.23 6.04
1.97 2.04
1.80
2.48 2.59 8.922.95 9.919.573.32 7.935.47 7.01 7.336.210.70 4.390.38 5.64 6.715.120.90 4.89
1.97 2.04
1.78 2.25 2.48 2.74 9.778.94 9.303.28 7.784.29 8.408.123.660.830.12 6.01 7.251.45 6.48
NL: 1.12E6
m/z=
706.1323-
707.1323 MS 1_1
NL: 6.51E4
m/z=
706.1323-
707.1323 MS 2
NL: 9.27E5
m/z=
706.1323-
707.1323 MS 3
NL: 3.76E4
m/z=
706.1323-
707.1323 MS 4
NL: 1.14E6
m/z=
706.1323-
707.1323 MS 5
NL: 9.05E5
m/z=
706.1323-
707.1323 MS 6
1_1 #455 RT: 2.03 AV: 1 SM: 15G NL: 4.24E5
T: FTMS + p ESI Full ms [100.0000-1200.0000]
705.9 706.0 706.1 706.2 706.3 706.4 706.5 706.6 706.7 706.8 706.9 707.0 707.1 707.2 707.3 707.4 707.5
m/z
0
20
40
60
80
100
120
140
160
180
R
e
la
ti
v
e
A
b
u
n
d
a
n
c
e
706.6323