TÍNH ỔN ĐỊNH VÀ BỀN VỮNG CỦA MỘT SỐ TÍNH CHẤT HỆ ĐỘNG LỰC TUYẾN TÍNH
DƯƠNG ĐẶNG XUÂN THÀNH
Trang nhan đề
Lời cảm ơn
Lời cam đoan
Mục lục
Một số từ viết tắt
Mở đầu
Chương 1:
Hệ liên tục có chậm
Chương 2:
Hệ rời rạc cao cấp
Chương 3:
Phương trình sai phân
Chương 4:
Vô hạn chiều
Chương 5:
Hữu hạn chiều
Chương 6:
Thuật toán tính toán
Kết luận
Danh mục công trình
Tài liệu tham khảo
Mục lục
Danh sách ký hiệu v
Lời mở đầu 1
Phần 1: Bán kính ổn định 9
Chương 1 Hệ liên tục có châm 10
1.1 Toán tử Metzler 11
1.2 Tính ổn định của hệ dương và tựa đa thức đặc trưng 16
1.3 Bán kính ổn định 21
1.4 Tính ổn định không phụ thuộc trễ 23
1.5 Ví dụ .25
Chương 2 Hệ rời rạc cấp cao 27
2.1 Tính ổn định của hệ dương và đa thức đặc trưng 28
2.2 Bán kính ổn định 31
2.3 Ví dụ 36
Chương 3 Phương trình sai phân 39
3.1 Tính ổn định của phương trình sai phân dương 40
3.2 Tính ổn định của hệ phương trình sai phân phụ thuộc tham số 45
3.3 Bán kính ổn định 47
3.3.1 Hệ sai phân phụ thuộc tham số 47
3.3.2 Phương trình sai phân 53
3.4 Ví dụ 55
Phần 2: Bán kính điều khiển được 57
Chương 4 Vô hạn chiều 58
4.1 Kiến thức cơ bản 59
4.2 Bán kính điều khiển được 63
4.2.1 Nhiễu trên cả A và B 63
4.2.2 Nhiễu trên chỉ A 64
4.2.3 Nhiễu trên chỉ B 65
4.2.4 Bán kính điều khiển được thực và phức 66
4.3 Ví dụ 68
Chương 5 Hữu hạn chiều 69
5.1 Kiến thức cơ bản 71
5.2 Bán kính điều khiển được có cấu trúc 74
5.2.1 Nhiễu trên cả A và B 74
5.2.2 Nhiễu trên chỉ A 77
5.2.3 Nhiễu trên chỉ B 79
5.3 Tính bán kính điều khiển được có cấu trúc 80
Chương 6 Thuật toán tính toán 83
6.1 Mở rộng kết quả của Gu 85
6.2 Thuật toán chia ba 87
6.2.1 Thực hiện kiểm tra Gu mở rộng 88
6.2.2 Tìm trị riêng 90
6.3 Kết quả thực nghiệm 91
6.4 Bán kính ổn định hóa được 92
Ket luận 97
Danh mục công trình 99
Tài liệu tham khảo 101
12 trang |
Chia sẻ: lvcdongnoi | Lượt xem: 3018 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Tính ổn định và bền vững của một số tính chất hệ động lực tuyến tính, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu tham khảo
Tiếng Việt
[1] Vũ Ngọc Phát (2001), Nhập Môn Lý Thuyết Điều Khiển Toán Học, ĐHQG Hà Nội.
Tiếng Anh
[2] Aeyels D., Leenheer P. D. (2002), Extension of the Perron-Frobenius theorem to
homogeneous systems, SIAM Journal on Control and Optimization 41, pp. 563-
582.
[3] Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz
J., Greenbaum A., Hammarling S., McKenney A., Sorenson D. (1999), LAPACK
Users’s Guide, 3rd ed., SIAM, Philadelphia.
[4] Anh P.K., Hoang D.S. (2006), Stability of a class of singular difference equations,
Int. J. Difference Equ. 1, no. 2, pp. 181-193.
[5] Anh P.K., Du N.H., Loi L.C. (2007), Singular difference equations: an overview,
Vietnam J. Math. 35, no. 4, pp. 339-372.
[6] Arendt W. (2001), Resolvent positive operator, Proc. London Math. Soc. 54, pp.
321-349.
[7] Avellar C.E., Hale J.H. (1980), On the zeros of exponential polynomials, Journal
of Mathematical Analysis and Applications 73, pp. 434-452
[8] Batkai A., Piazzera S. (2001), Semigroups and linear partial differential, J. Math.
Anal. Appl. 264, pp. 1-20.
[9] Bay J.S. (1998), Fundamentals of linear state space systems, McGraw-Hill.
101
[10] Betcke T. (2005), Numerical computation of eigenfunctions of planar regions,
D.Phil thesis, Computing Laboratory, Oxford University.
[11] Berman A., Plemmons R. J. (1979), Nonnegative Matrices in Mathematical Sci-
ences, Acad. Press, New York.
[12] Bliman P.A. (2000), Lyapunov-Krasovskii method and strong delay-independent
stability of linear delay systems, Proceedings of the Second IFAC Workshop on
Linear Time Delay Systems, Ancona, Italy, pp. 5-9.
[13] Bliman P.A. (2001), LMI characterization of the strong delay-independent stability
of linear delay systems via quadratic Lyapunov-Krasovskii functionals, Systems
and Control Letters 43, pp. 263-274.
[14] Bliman P.A. (2004), From Lyapunov-Krasovskii functionals for delay-independent
stability to LMI conditions for µ- analysis, Lect. Notes Comput. Sci. Eng. 38,
Springer, Berlin, pp. 75-85.
[15] Bliman P.A. (2002), Lyapunov equation for the stability of linear delay systems of
retarded and neutral type, IEEE Transaction on Automatic Control 47, pp. 327-
335.
[16] Blondel V.D., Megretski A. (2004), Unsolved problems in mathematical systems
and control theory, Princeton University Press, Princeton, NJ.
[17] Bobylev N.A., Bulatov A.V. (1999), Estimation of the real stability radius of linear
infinite-dimensional discrete systems, (Russian) Avtomat. i Telemekh. 7, pp. 3-10;
translation in Automat. Remote Control 60, no. 7, part 1, pp. 907-913.
[18] Boley D. (1985), A perturbation result for linear control problems, SIAM J. Alge-
braic Discrete Methods 6, pp. 66-72.
[19] Boley D., Wu-Sheng L. (1986), Measuring how far a controllable system is from
an not approximately controllable one, IEEE Trans. Automat. Control 31, pp. 249-
251.
[20] Boley D., Wu-Sheng L. (1989), Measures of controllability and observability and
residues, IEEE Trans. Automat. Contr. 34, pp. 648-650.
102
[21] Boyd S., Balakrishnan V. (1990), A regularity result for the singular values of
a transfer matrix and a quadratically convergent algorithm for computing its L1-
norm, Systems and Control Letters 15, pp. 1-7.
[22] Burke J.V., Lewis A.S., Overton M.L. ( 2004), Pseudospectral components and the
distance to uncontrollability, SIAM J. Matrix Analysis Appl. 26, pp. 350-361.
[23] Byers R. (1990), Detecting nearly uncontrollable pairs, In Numerical Methods Pro-
ceedings of the International Symposium MTNS-89, Kaashoek M.A., van Schuppen
J.H., and Ran A.C.M. eds., Springer-Verlag, volume III, pp. 447-457.
[24] Chen J., Latchman H.A. (1995), Frequency sweeping tests for stability indepen-
dent of delay, J. Math. Anal. Appl. 40, pp. 1640-1645.
[25] Chuan-Jen C., Du N.H., Linh V.H. (2008), On data-dependence of exponential
stability and stability radii for linear time-varying differential-algebraic systems,
J. Differential Equations 245, no. 8, pp. 2078-2102.
[26] Clark S., Latushkin Y., Montgomery-Smith S., Randolph T. (2000), Stability ra-
dius and internal versus external stability in Banach spaces: an evolution semi-
group approach, SIAM J. Control Optim. 38, no. 6, pp. 1757-1793.
[27] Conway J.B. (1990), A course in functional analysis, Second edition, Graduate
Texts in Mathematics, 96, Springer-Verlag, New York.
[28] Diekmann O., van Gils S.A., Lunel S.M.V., Walther H.O. (1995), Delay Equa-
tions: Functional- Complex- and Nonlinear Analysis, Springer- Verlag, New York.
[29] Du N.H. (2008), Stability radii of differential algebraic equations with structured
perturbations, Systems Control Lett. 57, no. 7, pp. 546-553.
[30] Eckstein G. (1981), Exact controllability and spectrum assignment, Operator The-
ory: Advances and Applications 2, pp. 81-94.
[31] Eising R. (1982), The distance between a system and the set of uncontrollable sys-
tems, In Memo COSOR 82-19, Eindhoven Univ. Technol., Eindhoven, The Nether-
lands.
103
[32] Eising R. (1984), Between controllable and not approximately controllable, Sys-
tems & Control Letters 4, pp. 263-264.
[33] Farhan G.A., Gonzalez M.H. (1994), Real stability radius for time-dependent
structured perturbations, (Spanish) Cienc. Mat. (Havana) 15, no. 2-3, pp. 197-212.
[34] Fischer A. (1997), Stability radii of infinite-dimensional positive systems, Math.
Control Signals Syst. 10, pp. 223-236.
[35] Fischer A., Hinrichsen D., Son N.K. (1998), Stability radii of Metzler operators,
Vietnam J. Math, 26, pp. 147-163.
[36] Fischer A., van Neerven J.M.A.M. (1998), Robust stability of C0-semigroups and
an application to stability of delay equations, J. Math. Anal. Appl. 226, pp. 1169-
1188.
[37] Francis B.A. (1987), A course in H∞ control theory, Lecture Notes in Control and
Information Sciences 88, Springer Verlag, Berlin-Heidelberg-New York.
[38] Gahinet P., Laub A.J. (1992), Algebraic Riccati equations and distance to the
nearest uncontrollable pair, SIAM J. Control Optim. 30, no. 4, pp. 765-786.
[39] Gallestey E., Hinrichsen D., Pritchard A.J. (2000), Spectral value sets of closed
linear operators, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456, no. 1998,
pp. 1397-1418.
[40] Gao M., Neumann M. (1993), A global minimum search algorithm for estimating
the distance to uncontrollability, Linear Algebra Appl. 188-189, pp. 305-350.
[41] Gu M. (2000), New methods for estimating the distance to uncontrollability, SIAM
J. Matrix Analysis Appl. 21, pp. 989-1003.
[42] Gu M., Mengi E., Overton M.L., Xia J., Zhu J. (2006), Fast methods for estimating
the distance to uncontrollability, SIAM J. Matrix Analysis Appl. 28, no. 2, pp. 477-
502.
[43] Hale J.K. (1971), Functional differential Equations, Springer-Verlag, Berlin.
104
[44] Hale J.K. (1975), Parametric stability in difference equations, Boll. Un. Mat. Ital.
11, no. 3, pp. 209-214.
[45] Hale J.K. (1975), Parametric stability in difference equations, Bol. Un. Mat. It. 4,
pp. 209-214.
[46] Hale J.K., Lunel S.M.V. (1993), Introduction to Function Differential Equation,
Springer Verlag, New York.
[47] Hale J.K., Lunel S.M.V. (2002), Strong stabilization of neutral functional differ-
ential equations, IMA Journal of Mathematical Control and Information 19, pp.
5-23.
[48] Hamdan A.M.A., Nayfeh A.H. (1989), Measures of modal controllability and
observability for first- and second-order linear systems, AIAA J. Guid. Control
Dyna. 12, no. 3, pp. 421-428.
[49] Hautus M.L.J. (1969), Controllability and observability conditions of linear au-
tonomous systems, Proc. Koninklijke Nederlnadse Akademie van Weten- schappen
7, pp. 443 - 448.
[50] He C. (1995), Estimating the distance to uncontrollability: A fast method and a
slow one, Systems Control Lett. 26, pp. 275-281.
[51] He C., Watson G.A. (1999), An algorithm for computing the distance to instabil-
ity, SIAM J. Matrix Anal. Appl. 20, no. 1, pp. 101-116.
[52] Henrion D., Arzelier D., Peaucelle D., Lasserre J.B. (2004), On parameter-
dependent Lyapunov functions for robust stability of linear systems, Decision and
Control, CDC. 43rd IEEE Conference Volume 1, pp. 887-892.
[53] Henry D. (1974), Linear autonomous neutral functional differential equations, J.
Differential Equations 15, pp. 106-128.
[54] Hinrichsen D., Pritchard A.J. (1986), Stability radii of linear systems, Systems &
Control Letters 7, pp. 1-10.
105
[55] Hinrichsen D., Pritchard A.J. (1986), Stability radius for structured perturbations
and the algebraic Riccati equation, Systems & Control Letters 8, pp. 105-113.
[56] Hinrichsen D., Pritchard A.J. (1989), An application of state space methods to
obtain explicit formulae for robustness measures of polynomials, In M. Milanese
et al. editor, Robustness in Identification and Control, Birkha¨user, pp. 183-206.
[57] Hinrichsen D., Pritchard A.J. (1988), Robustness measures for linear state space
systems under complex and real parameter perturbations, In Proc. Summer School
Perspectives in Control Theory, Sielpia, Birkha¨user.
[58] Hinrichsen D., Son N.K. (1989), The complex stability radius of discrete-time
systems and symplectic pencils, In Proc. 28th IEEE Conference on Decision and
Control, Tampa, pp. 2265-2270.
[59] Hinrichsen D., Pritchard A.J. (1990), Real and complex stability radii: A survey,
In Hinrichsen D., Martensson B. eds. Control of Uncertain Systems, Progress in
system and Control Theory, Basel, Birkha¨user, pp. 119-162.
[60] Hinrichsen D., Pritchard A.J. (1994), Robust stability of linear evolution operators
on Banach spaces, SIAM J. Control Optim. 32, no. 6, pp. 1503-1541.
[61] Hinrichsen D., Son N.K. (1998), Stability radii of positive discrete-time systems
under affine parameter perturbations, Int. J. Robust Nonlinear Control 8, pp. 1969-
1988.
[62] Hinrichsen D., Son N.K. (1998), µ-analysis and robust stability of positive linear
systems, Appl. Math. Comp. Sci. 8, pp. 253-268.
[63] Hinrichsen D., Son N.K., Ngoc P.H.A (2003), Stability radii of higher order posi-
tive difference systems, Systems Control Lett. 49, no. 5, pp. 377-388.
[64] Horn R.A., Johnson C.R. (1990), Matrix Analysis, Cambridge University Press,
Cambridge, UK.
[65] Hu G., Davison E.J. (2004), Real Controllability/Stabilizability Radius of LTI
Systems, IEEE Trans. Automat. Control 49, pp. 254-257.
106
[66] Jacob B., Partington J.R. (2006), On controllability of diagonal systems with one-
dimensional input space, Systems & Control Letters 55, pp. 321-328.
[67] Kaashoek M.A., van der Mee C.V.M., Rodman L. (1983), Analytic operator func-
tions with compact spectrum, III. Hilbert space case: inverse problem and appli-
cations, J. of Operator Theory 10, pp. 219-250.
[68] Kalman R.E. (1960), Contribution to the theory of optimal control, Bol. Soc.
Math. Mexicana 5, pp. 102-119.
[69] Karow M., Kressner D. (2009), On the structured distance to uncontrollability,
Systems & Control Letters 58, pp. 128-132.
[70] Kato K. (1976), Perturbation Theory for Linear Operators, Heidelberg, Springer-
Verlag.
[71] Lam S., Davison E.J. (2006), The Real Stabilizability Radius of the Multi-Link
Inverted Pendulum, American Control Conference, Minneapolis, pp. 1814-1819.
[72] Leon S.J. (1998), Linear algebra with applications, Prentice-Hall, Inc., Upper
Saddle River Publisher, New Jersey.
[73] Lewkowicz I. (1992), When are the complex and the real stability radii equal?,
IEEE Trans. Automat. Control 37, no. 6, pp. 880-883.
[74] Van Loan C.F. (1976), Generalizing the singular value decomposition, SIAM J.
Numer. Anal. 13 (1976), pp. 76-83.
[75] Lyapunov A.A. (1992), The general problem of the stability of motion, English
transl. (Taylor and Francis, London).
[76] Megan M., Hiric V. (1975), On the space of linear controllable systems in Hilbert
spaces, Glasnik Mat. Ser. III 10, no. 1, pp. 161-167.
[77] Melvin W.R. (1974), Stability properties of functional difference equations, J.
Math. Anal. Appl. 48, pp. 749-763.
107
[78] Mengi E. (2006), Measures for Robust Stability and Controllability, Doctor of
Philosophy Department of Computer Science, Courant Institute of Mathematical
Sciences, New York University.
[79] Meyer-Nieberg P. (1991), Banach lattices, Springer - Verlag, Berlin.
[80] Michiels W., Niculescu S.I. (2007), Characterization of delay-independent stabil-
ity and the delay interference phenomen, SIAM Journal on Control and Optimiza-
tion 45, pp. 2138-2155.
[81] Michiels W., Vyhlidal T. (2005), An eigenvalue based approach for the stablization
of linear time-delay systems of neutral type, Automatica 41 , pp. 991-998.
[82] De Moor B.L.R., Golub G.H. (1989), Generalizing the singular value decomposi-
tion: A proposal for a standardized nomenclature, Manuscript NA-89-05, Stanford
Univ., Stanford, CA.
[83] Moreno C.J. (1973), The zeros of exponential polynomials, I. Compositio Math.
26, pp. 69-78.
[84] Nagel R., Engel K.J. (2000), One-parameter semigroups for linear evolution equa-
tions, Springer-VerLag, Berlin.
[85] Nam P.T., Phat V.N. (2008), Robust exponential stability and stabilization of linear
uncertain polytopic time-delay systems, J. Control Theory Appl. 6, no. 2, pp. 163-
170.
[86] Van Neerven J.M.A.M. (1996), The Asymptotic Behaviour of Semigroups of Lin-
ear Operators, Operator Theory: Advances and Applications, Vol. 88, Birkha¨user,
Basel-Boston-Berlin.
[87] Ngoc P.H.A., Son N.K. (2004), Stability radii of linear systems under multi-
perturbations, Numer. Funct. Anal. Optim. 25, no. 3-4, pp. 221-238.
[88] Ngoc P.H.A. (2006), A Perron-Frobenius theorem for a class of positive quasi-
polynomial matrices, Appl. Math. Lett. 19, pp. 747-751.
108
[89] Ngoc P.H.A., Lee B.S., Son N.K. (2004), Perron Frobenius theorem for positive
polynomial matrices, Vietnam J. Math. 32, pp. 475-481.
[90] Ngoc P.H.A., Naito T., Shin J.S., Murakami S. (2008), On stability and robust
stability of positive linear Volterra equations, SIAM J. Control Optim. 47, no. 2,
pp. 975-996
[91] Ngoc P.H.A. (2007), Stability radii of positive linear Volterra-Stieltjes equations,
J. Differential Equations 243, no. 1, pp. 101-122.
[92] Ngoc P.H.A., Son N.K. (2005), Stability radii of positive linear functional differ-
ential equations under multi-perturbations. SIAM J. Control Optim. 43, no. 6, pp.
2278-2295.
[93] Paige C.C. (1981), Properties of numerical algorithms relating to controllability,
IEEE Trans. Automat. Control AC-26, pp. 130-138.
[94] Phat V.N., Nam P.T. (2005), Exponential stability criteria of linear non-
autonomous systems with multiple delays, Electron. J. Differential Equations 58,
8 pp.
[95] Phat V.N., Nam P.T. (2007), Exponential stability and stabilization of uncertain
linear time-varying systems using parameter dependent Lyapunov function, Inter-
nat. J. Control 80, no. 8, pp. 1333-1341.
[96] Pritchard A.J., Townley S. (1989), Robustness of linear systems, J. Differential
Equations 77, no. 2, pp. 254-286.
[97] Pritchard A.J., Townley S. (1989), Real stability radii for infinite-dimensional
systems, Robust control of linear systems and nonlinear control, pp. 635-646.
[98] Przyluski K.M. (1988), Stability of linear infinite-dimensional systems revisited,
Internat. J. Control 48, pp. 513-523.
[99] Qiu L., Bernhardsson B., Rantzer A., Davison E.J., Young P.M., Doyle J.C. (1995),
A formula for computation of the real stability radius,Automatica 31, pp. 879-890.
109
[100] Rudin W. (1973), Functional analysis, McGraw-Hill Series in Higher Mathemat-
ics, McGraw-Hill Book Co., New York-Dusseldorf-Johannesburg.
[101] Rump S.M. (1997), Theorems of Perron-Frobenius type for matrices without
sign restrictions, Linear Algebra and its Applications 266, pp. 1-42.
[102] Rump S.M. (2003), Perron-Frobenius theory for complex matrices, Linear Alge-
bra and its Applications 363, pp. 251-273.
[103] Silkowskii R.A. (1976), Star-shaped regions of stability in hereditary systems,
Ph.D. thesis, Brown University, Providence, RI, June.
[104] Son N.K., Hinrichsen D. (1996), Robust stability of positive continuous times
systems, Numer Funct. Anal- Optimiz. 17, pp. 649-659.
[105] Son N.K., Huy N.D. (2005), Maximizing the Stability Radius of Discrete - Time
Linear Positive Systems by Linear Feedbacks, Vietnam Jornal of Mathematics 33,
pp. 161 - 172.
[106] Son N.K., Ngoc P.H.A. (1998), Complex stability radius of linear retarded sys-
tems. Vietnam J. Math. 26, pp. 379-383.
[107] Son N.K., Ngoc P.H.A. (1999), Stability radius of linear delay systems, In Pro-
ceedings of the American Control Conference, California, San Diego, pp. 815-816.
[108] Son N.K., Ngoc P.H.A. (1999), Robust stability of positive linear time delay
systems under aftine parameter perturbations,Acta Math. Vietnam. 24, pp. 353-
372.
[109] Son N.K., Ngoc P.H.A. (2001), Robust stability of linear functional differential
equations, Adv. Studies in Contemporary Math. 3, pp. 43-59.
[110] Sreedhar J., Dooren P.V., Tits A.L. (1996), A fast algorithm to compute the
real structured stability radius, Stability theory, Internat. Ser. Numer. Math.,
Birkha¨user, Basel, 121, pp. 219-230,
[111] Takahashi K. (1984), Exact controllability and spectrum assignment, J. of Math.
Anal. and Appl. 104, pp. 537-545.
110
[112] Tuy H. (1997), Convex Analysis and Global Optimization, Kluwer Acad. Publ.,
Amsterdam.
[113] Wicks M., DeCarlo R. (1991), Computing the distance to an uncontrollable sys-
tem, IEEE Trans. Automat. Contr. 36, pp. 39-49.
[114] Wirth F., Hinrichsen D. (1994), On stability radii of infinite-dimensional time-
varying discrete-time systems, IMA J. Math. Control Inform. 11, pp. 253-276.
[115] Wonham M. (1979), Linear multivariable control: geometric approach, Springer
-Verlag, New York.
[116] Wright T.G. (2002), EigTool: A graphical tool for nonsymmetric
eigenproblems, Oxford University Computing Laboratory, Oxford, UK,
eigtool/.
[117] Xiao Y., Du X. (1999), Robust Hurwitz and Schur Stability Test for Polytope of
Matrices, Journal of the China Railway Scociety 21, 5pp. 1-53.
[118] Xiao Y., Unbehauen R., Du X. (1999), Robust Hurwitz and Schur Stability Test
for Rank-One Polytope of Matrices, Proceeding of Eighteenth IASTED Interna-
tional Conference on Modelling, Identification and Control, pp. 144-147.
[119] Xiao Y., Unbehauen R. (2000), Robust Hurwitz and Schur stability test for in-
terval matrices, Decision and Control, Proceedings of the 39th IEEE Conference
Volume 5, pp. 4209 - 4214.
[120] Xiao Y., Unbehauen R. (2002), Schur stability of polytopes of bivariate polyno-
mials, IEEE Trans. Circuits Systems I Fund. Theory Appl. 49, pp. 1020-1023.
[121] Yosida K. (1974), Functional analysis, Springer-Verlag, Berlin.
[122] Zaanen A.C. (1997), Introduction to operator theory in Riesz spaces, Springer-
Verlag, Berlin.
[123] Zabczyk J. (1995), Mathematical: Control Theory, Birkha¨user, Boston.
111
[124] Zames G. (1981), Feedback and optimal sensitivity: Model reference transfor-
mations, multiplicative seminorms, and approximate inverses, IEEE Transactions
on Automatic Control AC-26, pp. 301-320.
112