Nghiên cứu và đề xuất giải pháp thu thập tín hiệu nhịp thở bằng cảm biến
gia tốc MMA8451Q. Kết quả thực nghiệm trên cơ sở đếm số nhịp thở thu
được từ cảm biến gia tốc so với số nhịp thở thực tế ở trạng thái thở chậm,
thở thường chính xác 100% và thở nhanh đạt độ chính xác trên 98,35%
Với các kết quả như trên, giải pháp đề xuất trong luận án có thể góp phần
hỗ trợ bác sĩ tuyến cơ sở trong việc chẩn đoán, khám và điều trị các bệnh về
tim. Tiếp theo sau, các ý tưởng và giải pháp đã đề xuất trong luận án có thể
được tiếp tục bổ sung và phát triển theo một số định hướng như sau:
27 trang |
Chia sẻ: toanphat99 | Lượt xem: 2191 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Tóm tắt Luận án Nâng cao chất lượng nhận dạng tín hiệu điện tim dựa trên giải pháp loại bỏ ảnh hưởng từ nhịp thở của người bệnh, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI
NGUYỄN ĐỨC THẢO
NÂNG CAO CHẤT LƯỢNG NHẬN DẠNG TÍN HIỆU ĐIỆN TIM
DỰA TRÊN GIẢI PHÁP LOẠI BỎ ẢNH HƯỞNG TỪ NHỊP THỞ
CỦA NGƯỜI BỆNH
Chuyên ngành : Kỹ thuật điều khiển và Tự động hóa
Mã số : 62520216
TÓM TÁT LUẬN ÁN TIẾN SĨ
KỸ THUẬT ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA
Hà Nội - 2016
1
Công trình được hoàn thành tại:
Trường Đại học Bách Khoa Hà Nội
Người hướng dẫn khoa học: PGS.TSKH. Trần Hoài Linh
Phản biện 1: GS.TS. Nguyễn Đức Thuận
Phản biện 2: PGS.TS. Nguyễn Linh Trung
Phản biện 3: TS. Phạm Văn Thuận
Luận án được bảo vệ trước Hội đồng đánh giá luận án tiến sĩ cấp
trường họp tại Trường Đại học Bách khoa Hà Nội
Vào hồigiờ, ngày thángnăm.
Có thể tìm hiểu luận án tại thư viện:
1. Thư viện Tạ Quang Bửu – Trường Đại học Bách khoa Hà Nội
2. Thư viện Quốc gia Việt Nam
- 1 -
MỞ ĐẦU
1. Tính cấp thiết của đề tài
Tín hiệu nhịp thở và điện tim (ECG - ElectroCardioGraph) là hai tín hiệu y
sinh cơ bản và quan trọng được sử dụng để xác định tình trạng sức khỏe của
một người [72]. Tín hiệu ECG là nguồn thông tin quý giá để xác định các
bệnh lý về tim mạch [98]. Phương pháp thu thập tín hiệu ECG vẫn được thực
hiện bằng cách đo sự chênh lệch điện áp của cặp điện cực gắn trên người
bệnh. Vì vậy khi ta hít thở làm thay đổi thể tích của lồng ngực dẫn đến thay
đổi trở kháng tiếp xúc giữa điện cực – bề mặt cơ thể của người bệnh và véctơ
trục điện tim dẫn đến làm ảnh hưởng đến chất lượng tín hiệu ECG đưa về
mạch thu thập [21,27,29,31,38,40,49,56,70,94]. Đã có nhiều nghiên cứu đề
xuất giải pháp loại bỏ ảnh hưởng nhịp thở trong tín hiệu ECG
[10,17,21,49,61,76,94,96] nhưng còn làm ảnh hưởng lớn đến hình dạng và
đặc tính tín hiệu ECG. Vì vậy, việc đề xuất một giải pháp loại bỏ ảnh hưởng
của nhịp thở trong tín hiệu ECG phù hợp làm ảnh hưởng nhỏ đến đặc tính tín
hiệu ECG để nâng cao chất lượng nhận dạng tín hiệu ECG hỗ trợ cho các bác
sĩ trong công tác chẩn đoán, xác định bệnh, điều trị và theo dõi diễn biến của
bệnh là rất cần thiết.
2. Mục đích nghiên cứu
Mục đích của luận án là tìm hiểu các ảnh hưởng của nhịp thở gây ra trong
tín hiệu ECG từ đó đề xuất một giải pháp phù hợp loại ảnh hưởng của nhịp
thở trong tín hiệu ECG. Trong trường hợp đo được tín hiệu nhịp thở đồng
thời với tín hiệu ECG luận án đề xuất sử dụng thêm các đặc tính từ thông tin
nhịp thở để cải thiện chất lượng nhận dạng tín hiệu ECG.
Tín hiệu ECG sau khi đã được loại bỏ ảnh hưởng của nhịp thở hoặc sử
dụng thêm các thông tin từ nhịp thở sẽ được đưa vào một số mô hình nhận
dạng để kiểm chứng kết quả so với trước khi loại bỏ ảnh hưởng của nhịp thở
hoặc không sử dụng thông tin từ nhịp thở. Luận án sẽ thử nghiệm nhận dạng
với 4 kịch bản sau để so sánh:
Kịch bản 1 (là kịch bản cơ sở để so sánh): Nhận dạng tín hiệu ECG trước
khi loại bỏ ảnh hưởng của nhịp thở
Kịch bản 2: Nhận dạng tín hiệu ECG sau khi loại bỏ ảnh hưởng của nhịp
thở
Kịch bản 3: Nhận dạng tín hiệu ECG trước khi loại bỏ ảnh hưởng của
nhịp thở nhưng có sử dụng thêm các đặc tính từ các thông tin của nhịp thở
- 2 -
Kịch bản 4: Nhận dạng tín hiệu ECG sau khi loại bỏ ảnh hưởng của nhịp
thở và có sử dụng thêm các đặc tính từ các thông tin của nhịp thở
3. Đối tượng và phạm vi nghiên cứu
Đối tượng nghiên cứu của luận án gồm:
Giải phẫu sinh lý học của hệ tim mạch - hô hấp và sự ảnh hưởng của nhịp
thở gây ra trong tín hiệu ECG,
Các giải pháp được sử dụng để loại bỏ ảnh hưởng của nhịp thở trong tín
hiệu ECG,
Khả năng bổ sung các đặc tính từ nhịp thở để hỗ trợ nhận dạng tín hiệu
ECG,
Với các đối tượng nghiên cứu đã đề xuất ở trên, luận án sẽ được thực hiện
với phạm vi nghiên cứu như sau:
Tìm hiểu và lựa chọn một số dạng ảnh hưởng của nhịp thở tới tín hiệu
ECG để tìm các giải pháp khắc phục các ảnh hưởng này,
Khảo sát và lựa chọn họ wavelet với bậc phù hợp để loại bỏ ảnh hưởng
của nhịp thở gây ra trong tín hiệu ECG;
Khảo sát và lựa chọn một số đặc tính từ nhịp thở tức thời để bổ sung cho
véc-tơ đặc tính dùng trong nhận dạng tín hiệu ECG.
Tìm hiểu và sử dụng một mô hình nhận dạng chung và các cơ sở dữ liệu
mẫu để so sánh và kiểm chứng chất lượng khi áp dụng các giải pháp đề
xuất trên,
Tìm hiểu và phát triển các giải pháp xử lý tín hiệu trong luận án trên mạch
phần cứng (để hướng tới tích hợp giải pháp trên thiết bị nhỏ gọn).
4. Phương pháp nghiên cứu
Phối hợp lý thuyết với các mô hình thử nghiệm theo chu trình kín (đề xuất
lý thuyết triển khai các thử nghiệm để kiểm nghiệm hiệu chỉnh lại
mô hình lý thuyết ...)
Các mô hình được phát triển theo hướng khối hóa, phân tích hệ thống
theo chu trình từ tổng thể đến chi tiết.
Các giải pháp sẽ được đánh giá bằng thực nghiệm, trên cơ sở tính toán độ
tin cậy và độ cải thiện của các mô hình nhận dạng khi sử dụng các giải
pháp đề xuất của luận án so với không sử dụng đề xuất của luận án. Giải
pháp được lựa chọn là giải pháp có độ chính xác cao nhất.
- 3 -
5. Tiêu chí chọn dữ liệu và phương pháp đánh giá kết quả
Để đánh giá chất lượng của các giải pháp, luận án sẽ sử dụng các bộ số
liệu mẫu chuẩn từ 2 cơ sở dữ liệu MIT-BIH và cơ sở dữ liệu MGH/MF
được công bố tại địa chỉ www.physionet.org.
Đối với mỗi mô hình nhận dạng, nghiên cứu sinh sẽ tạo một bộ mẫu đa
dạng gồm nhiều loại bệnh với số lượng phân bố tương đối đều từ nhiều
người bệnh khác nhau.
Chất lượng của các giải pháp được đánh giá trên cơ sở so sánh trực tiếp
về độ chính xác của quá trình nhận dạng các mẫu trong các bộ số liệu đã
được xây dựng với cùng một mô hình nhận dạng và cùng một phương
pháp trích chọn đối với các đặc tính dùng chung.
6. Ý nghĩa khoa học và thực tiễn của đề tài
6.1. Ý nghĩa khoa học
Đề xuất một giải pháp phù hợp sử dụng wavelet loại bỏ ảnh hưởng của
nhịp thở trong tín hiệu ECG với ảnh hưởng nhỏ hơn đến hình dạng và đặc
tính tín hiệu ECG,
Đề xuất sử dụng hai đặc tính tức thời từ nhịp thở để bổ sung cho véc-tơ
đặc tính của tín hiệu để cải thiện độ chính xác của quá trình nhận dạng,
Xây dựng nhiều kịch bản thử nghiệm để kiểm chứng chứng tỏ rằng khi
loại bỏ ảnh hưởng của nhịp thở hoặc khi sử dụng thêm các thông tin trực
tuyến của nhịp thở thì có thể cải thiện được chất lượng nhận dạng tín hiệu
ECG.
6.2. Ý nghĩa thực tiễn
Bài toán nhận dạng tín hiệu ECG có ý nghĩa thực tiễn cao, chất lượng nhận
dạng có ảnh hưởng tới sức khỏe của người bệnh. Vì vậy đề xuất một giải
pháp mới nhằm nâng cao chất lượng nhận dạng tín hiệu ECG có ý nghĩa
quan trọng trong thực tiễn, góp phần bổ sung vào các giải pháp hỗ trợ cho
quá trình chẩn đoán, xác định, điều trị và theo dõi bệnh của bác sĩ tuyến cơ
sở.
7. Những đóng góp của luận án
Đã khảo sát để đề xuất sử dụng họ wavelet phù hợp (cụ thể là wavelet họ
Coiflets bậc 4) trong phân tích thành phần xấp xỉ bậc 8 (còn gọi là thành
phần A8) tương ứng với dải tần số của nhịp thở làm cơ sở để loại bỏ ảnh
hưởng của nhịp thở khi phân tích tín hiệu ECG.
- 4 -
Đã đề xuất sử dụng hai đặc tính từ nhịp thở là biên độ tức thời của nhịp
thở tại đỉnh R của nhịp tim và trung bình 10 chu kỳ cuối cùng của nhịp
thở để cải thiện chất lượng nhận dạng,
Xây dựng các bộ số liệu phục vụ bài toán nhận dạng tín hiệu ECG có xét
tới ảnh hưởng của nhịp thở.
Xây dựng 4 kịch bản nhận dạng tín hiệu ECG để kiểm chứng mức độ ảnh
hưởng của thông tin từ nhịp thở tới chất lượng nhận dạng.
8. Bố cục của luận án
Luận án gồm phần Mở đầu, 4 chương chính, phần Kết luận và hướng phát
triển.
Phần Mở đầu trình bày các vấn đề chung của luận án, tóm tắt về nội dung
nghiên cứu, những đóng góp của luận án và bố cục của luận án.
Chương 1 tổng quan về hệ tim mạch - hô hấp, các ảnh hưởng của nhịp thở
trong tín hiệu ECG, tổng quan một số giải pháp đã được sử dụng để loại bỏ
ảnh hưởng của nhịp thở trong tín hiệu ECG, đề xuất các định hướng của luận
án và mô tả khái quát hai cơ sở dữ liệu được sử dụng trong luận án.
Chương 2 tổng quan một số giải pháp sử dụng bộ lọc thông cao để loại bỏ
ảnh hưởng của nhịp thở trong tín hiệu ECG, lý thuyết về wavelets, hàm
Hermite trong phân tích tín hiệu và mạng nơ-ron logic mờ TSK.
Chương 3 trình bày hai đề xuất của luận án là: 1. ứng dụng phép biến đổi
wavelet để loại bỏ ảnh hưởng nhịp thở trong tín hiệu ECG, 2. sử dụng các
đặc tính từ nhịp thở tức thời nhằm năng cao chất lượng nhận dạng tín hiệu
ECG. Đồng thời bước đầu tìm hiểu và xây dựng một giải pháp đo nhịp thở
với kích thước gọn nhẹ sử dụng cảm biến gia tốc
Chương 4 trình bày ừng dụng hàm Hermite phân tích và trích chọn đặc tính
tín hiệu ECG, ứng dụng mạng nơ-ron logic mờ nhận dạng tín hiệu ECG và
kết quả nhận dạng tín hiệu ECG.
Cuối cùng là phần Kết luận và hướng phát triển cũng như các công trình đã
công bố của luận án.
CHƯƠNG I: TỔNG QUAN VỀ ẢNH HƯỞNG CỦA NHỊP THỞ
TRONG TÍN HIỆU ECG
1.1. Tổng quan về hệ tim mạch - hô hấp
Trong cơ thể con người, trái tim đóng vai trò trung tâm của hệ tim mạch.
Phổi đóng vai trò chủ đạo trong hệ hô hấp của con người, phổi đảm bảo việc
hấp thụ O2 loại bỏ CO2 trong các tế bào máu. Trái tim và phổi được kết nối
- 5 -
rất chặt chẽ với nhau để đảm bảo rằng tất cả các bộ phận trong cơ thể nhận
được lượng O2 và dưỡng chất cần thiết.
1.2. Các ảnh hưởng của nhịp thở trong tín hiệu ECG
Khi ta hít thở làm cho thể tích của lồng ngực thay đổi dẫn đến làm thay đổi
trở kháng tiếp xúc giữa bề mặt da của cơ thể với điện cực thu thập tín hiệu
ECG [49] làm ảnh hưởng đến chất lượng tín hiệu ECG đưa về mạch thu thập
[35,39,63]. Xét về mặt tín hiệu nhịp thở gây ra ba ảnh hưởng trong tín hiệu
ECG như sau:
1.2.1. Rối loạn nhịp tim
Rối loạn nhịp tim là hiện tượng khoảng thời gian R-R của tín hiệu ECG bị
thay đổi theo nhịp thở [17,21,23,29,38,40,47,56,75].
Hình 1.1: Tín hiệu ECG có khoảng R-R thay đổi và tín hiệu nhịp thở
1.2.2. Điều chế biên độ tín hiệu ECG
Điều chế biên độ tín hiệu ECG là hiện tượng mà đỉnh R của tín hiệu ECG
bị điều chế theo nhịp thở [49,70,94].
Hình 1.2: Tín hiệu ECG bị điều chế biên độ và tín hiệu nhịp thở
1.2.3. Trôi dạt đường cơ sở
Trôi dạt đường cơ sở là hiện tượng đường cơ sở của tín hiệu ECG bị thay
đổi theo tín hiệu nhịp thở [10,28,36,58,61,64,69,97,103].
- 6 -
Hình 1.3: Tín hiệu ECG bị trôi dạt đường cơ sở và tín hiệu nhịp thở
1.3. Một số phương pháp loại bỏ ảnh hưởng của nhịp thở trong
tín hiệu ECG
Các tác giả trong [45,48,76,84,95] đề xuất sử dụng bộ lọc thông cao, trong
[17,64,69,92,97] để xuất bộ lọc thích nghi, trong [78] đề xuất sử dụng
phương pháp phân tích thành phần độc lập (ICA - Independent Component
Analysis), trong [21,49] đề xuất sử dụng phương pháp phân tích theo thành
phần chính (PCA - Principal Component Analysis) và phân tích thành phần
chính cốt lõi (kPCA - Kernel PCA) để loại bỏ ảnh hưởng của nhịp thở
trong tín hiệu ECG. Phương pháp sử dụng bộ lọc thông cao làm ảnh hưởng
mạnh đến hình dạng và đặc tính tín hiệu ECG, phương pháp sử dụng bộ lọc
thích nghi có nhược điểm là yêu cầu tín hiệu nhịp thở thực để tham chiếu và
cập nhật hệ số của bộ lọc dẫn đến thời gian tính toán lớn. Phương pháp phân
tích thành phần độc lập có nhược điểm là tín hiệu ECG và thành phần do
nhịp thở gây ra phải độc lập tuyến tính; phương pháp PCA đặcbiệt là kPCA
có nhược điểm là thời gian tính toán lớn.
1.4. Định hướng của luận án
Một trong những khó khăn trong việc loại bỏ ảnh hưởng của nhịp thở trong
tín hiệu ECG nhằm nâng cao chất lượng nhận dạng tín hiệu ECG đó là: Các
ảnh hưởng của nhịp thở gây ra trong tín hiệu ECG là gián tiếp và phi tuyến
[17,21,49,94]; trong các trường hợp bệnh lý tín hiệu ECG thường biến thiên
mạnh cả về biên độ và hình dạng; quá trình thu thập tín hiệu ECG và nhịp
thở trên các bênh nhân thực tế gặp nhiều khó khăn, đặc biệt là các bệnh nhân
tim mạch. Một số giải pháp đề xuất loại bỏ ảnh hưởng của nhịp thở trong tín
hiệu ECG làm ảnh hưởng mạnh đến hình dạng và đặc tính của tín hiệu ECG,
yêu cầu tín hiệu nhịp thở thực để tham chiếu và thời gian tính toán lớn, Vì
vậy trong luận án này sẽ đề xuất giải pháp loại bỏ ảnh hưởng của nhịp thở
trong tín hiệu ECG khăc phục được một số nhược điểm trên. Các giải pháp
đề xuất của luận án được kiểm chứng với các bộ mẫu là các véc-tơ đặc tính
- 7 -
của các đoạn tín hiệu trích từ các cơ sở dữ liệu ECG được các trung tâm
nghiên cứu quốc tế xây dựng. Với mỗi bộ các véc-tơ mẫu, ta sẽ thực hiện
đánh giá trên cơ sở các thông số độ chính xác, sai số, khi sử dụng cùng
một mô hình nhận dạng, cụ thể như sau: Số trường hợp mẫu bị nhận dạng
sai, Số trường hợp chẩn đoán âm tính giả (FN) và số trường hợp chẩn đoán
dương tính giả (FP).
Giải pháp đề xuất trong luận án được thực hiện tuần tự theo ba bước như
sau: Trước tiên, tín hiệu ECG từ các bộ cơ sở dữ liệu ECG được loại bỏ ảnh
hưởng của nhịp thở. Ở bước thứ hai, tín hiệu ECG sau khi được loại bỏ ảnh
hưởng của nhịp thở được phân tích, trích chọn đặc trưng để xây dựng các
véc-tơ đặc tính (đối với cơ sở dữ liệu ECG có tín hiệu nhịp thở tức thời được
thu thập cùng với tín hiệu ECG, luận án đề xuất sử dụng thêm các đặc tính
tức thời từ nhịp thở để xây dựng các véc-tơ đặc tính). Trong bước cuối cùng,
bước thứ ba, các giá trị đăc trưng được xử lý tiếp bằng một mô hình phi
tuyến để phân loại chính xác hơn các mẫu nhịp điện tim. Sơ đồ khối ý tưởng
này được trình bày trên hình 1.1.
Hình 1.1: Sơ đồ khối mô hình tổng quát thực hiện giải pháp đề xuất của luận án
Cụ thể để có thể loại bỏ được ảnh hưởng của nhịp thở trong tín hiệu ECG,
luận án đề xuất sử dụng phép phân tích tín hiệu theo các hàm cơ sở wavelet.
Wavelet là một phương pháp được sử dụng phổ biến để phân tích tín hiệu bất
định như tín hiệu ECG có thể khắc phục được một số hạn chế của các
phương sử dụng bộ lọc thích nghi, ICA, PCA,.. Đặc biệt với tín hiệu ECG thì
các họ wavelet có hình dạng càng tương đồng với tín hiệu ECG thì hiệu quả
loại nhiễu càng tốt.
Đã có nhiều nghiên cứu đề xuất sử dụng phép biến đổi wavelet để loại bỏ
ảnh hưởng của nhiễu nói chung và nhịp thở nói riêng trong tín hiệu ECG [35,
43, 46, 51, 61, 71, 83, 97, 101]. Tuy nhiên các đề xuất sử dụng họ wavelet và
bậc cũng khá khác biệt, chưa thấy khảo sát cụ thể và đưa ra các kết quả định
lượng về sự khác biệt giữa các họ wavelet cũng như giữa các bậc với nhau.
Vì vậy luận án này đề xuất nghiên cứu các nội dung sau:
Khảo sát các họ wavelet với các bậc khác nhau để lựa chọn ra một họ
wavelet và bậc phù hợp để loại bỏ ảnh hưởng của nhịp thở, đồng thời làm
ảnh hưởng nhỏ đến hình dạng và đặc tính của tín hiệu ECG.
- 8 -
Trong trường hợp có tín hiệu nhịp thở đo được đồng thời với tín hiệu
ECG, đề xuất sử dụng thêm các đặc tính từ nhịp thở đo được này để nâng
cao chất lượng nhận dạng tín hiệu ECG.
Kiểm tra chất lượng lọc và các đặc tính dùng thêm khi sử dụng chung một
mô hình nhận dạng (luận án đề xuất dùng mạng nơrơn TSK) theo 4 kịch
bản như đã được trình bày ở mục 2 (Mục đích nghiên cứu)
Luận án thực hiện với nhiều kịch bản nhận dạng nhằm kiểm chứng chất
lượng lọc và chất lượng các thông tin sử dụng thêm từ nhịp thở tức thời.
Trong định hướng nghiên cứu của luận án, các kết quả tính toán, mô phỏng
sẽ thể hiện các kịch bản 2 và 3 sẽ có kết quả tốt hơn kịch bản 1, còn kịch bản
4 sẽ có kết quả tốt nhất..
1.4.1. Kịch bản 1 (Kịch bản cơ sở để so sánh)
Trong kịch bản cơ sở này, từ đường tín hiệu ECG ban đầu, mỗi nhịp tim
được đặc trưng bởi 18 đặc tính gồm 16 hệ số khai triển đoạn QRS theo các
hàm cơ sở Hermite và 2 đặc tính theo thời gian là chu kỳ giữa hai đỉnh R và
trung bình của 10 chu kỳ giữa hai đỉnh R liên tiếp cuối cùng.
Hình 1.2: Sơ đồ khối kịch bản 1(kịch bản cơ sở) nhận dạng tín hiệu ECG
1.4.2. Kịch bản 2
Trong trường hợp thử nghiệm này, trước khi trích chọn đặc tính theo cùng
phương pháp như ở kịch bản 1, tín hiệu ECG được lọc bằng bộ lọc wavelet
để loại bỏ ảnh hưởng của nhịp thở.
Hình 1.3: Sơ đồ khối kịch bản 2 nhận dạng tín hiệu ECG đã lọc bằng wavelet
1.4.3. Kịch bản 3
Hình 1.4: Sơ đồ khối kịch bản 3 nhận dạng tín hiệu ECG sử dụng thêm 2 đặc tính từ
nhịp thở (không lọc ECG bằng wavelet)
- 9 -
Trong trường hợp thử nghiệm này, khi cơ sở dữ liệu có cả các kết quả đo
nhịp thở đồng thời với nhịp tim thì ngoài các đặc tính đã sử dụng như ở kịch
bản 1, luận án đề xuất sử dụng thêm 2 đặc tính tức thời từ nhịp thở là: biên
độ tức thời của nhịp thở tại đỉnh R của tín hiệu ECG và trung bình của 10
chu kỳ thở liên tiếp cuối cùng.
1.4.4. Kịch bản 4
Đây là kịch bản tổng hợp nhất, bao gồm cả hai đề xuất trong kịch bản 2 và
3 đồng thời, có nghĩa là trước tiên tín hiệu ECG được lọc bằng bộ lọc
wavelet và sau đó 20 đặc tính sẽ đươc trích chọn (18 đặc tính như ở kịch bản
1 và 2, 2 đặc tính bổ sung như kịch bản 3) để phục vụ cho nhận dạng.
Hình 1.5: Sơ đồ khối kịch bản 4 nhận dạng tín hiệu ECG đã được lọc bằng wavelet
và sử dụng thêm 2 đặc tính từ nhịp thở
Trong định hướng nghiên cứu của luận án, các kết quả tính toán, mô phỏng
sẽ thể hiện các kịch bản 2 và 3 sẽ có kết quả tốt hơn kịch bản 1, còn kịch bản
4 sẽ có kết quả tốt nhất.
1.5. Các cơ sở dữ liệu được sử dụng trong luận án
Cơ sở dữ liệu MIT-BIH, luận án sử dụng 16 bản ghi để xây dựng các mẫu ở
dạng MIT/16-16, có nghĩa là ta sử dụng một phần các mẫu ECG từ 16 bản
ghi (16 bệnh nhân) để xây dựng mô hình, sau đó sử dụng các mẫu khác của
cùng 16 bệnh nhân này để kiểm tra lại độ tin cậy của mô hình. Khi đó ta sẽ
có 02 thử nghiệm cho kịch bản 1 và kịch bản 2 như bảng 1.1.
Bảng 1.1. Các trường hợp thử nghiệm phục vụ các kịch bản nhận dạng
MIT/16-16 MGH/20-20 MGH/15-5 MGH/19-1
1
Không sử dụng
giải pháp đề xuất
1.1 1.2 1.3 1.4
2 Lọc wavelet 2.1 2.2 2.3 2.4
3 Sử dụng nhịp thở - 3.2 - -
4 Lọc + Nhịp thở - 4.2 - -
Đối với cơ sở dữ liệu MGH/MF có chứa tín hiệu nhịp thở tức thời được thu
thập đồng thời cùng với tín hiệu ECG. Vì vậy trong luận án sử dụng tổng
cộng 20 bản ghi xây dựng 8 trường hợp thử nghiệm với các bản ghi tín hiệu
- 10 -
ECG trước, sau khi loại bỏ ảnh hưởng của nhịp thở và có sử dụng thêm các
thông tin từ nhịp thở để thử nghiệm với 4 kịch bản nhận dạng cụ thể như sau:
04 thử nghiệm theo 4 kịch bản cho bộ mẫu MGH/20-20, 02 thử nghiệm cho
kịch bản 1 và 2 cho bộ mẫu MGH/15-5, 02 thử nghiệm cho kịch bản 1 và 2
cho bộ mẫu MGH/19-1 như bảng 1.1.
CHƯƠNG II: TỔNG QUAN PHƯƠNG PHÁP LOẠI BỎ ẢNH
HƯỞNG CỦA NHỊP THỞ VÀ NHẬN DẠNG TÍN HIỆU ECG
Chương này trình bày tổng quan một số giải pháp sử dụng bộ lọc thông cao
[45,48,76,84,95] để loại bỏ ảnh hưởng của nhịp thở trong tín hiệu ECG. Để
kiểm chứng hiệu quả loại bỏ ảnh hưởng của nhịp thở cũng như mức độ ảnh
hưởng của nhịp thở trong tín hiệu ECG sau khi loại bỏ ảnh hưởng của nhịp
thở của các bộ lọc này, trong luận án nghiên cứu sinh thực hiện hai thử
nghiệm như sau:
Thử nghiệm 1: Sử dụng tín hiệu ECG trộn tuyến tính với tín hiệu nhịp
thở.
Thử nghiệm 2: Sử dụng tín hiệu ECG có ảnh hưởng của nhịp thở trong
các cơ sở dữ liệu MIT-BIH và MGH/MF
Luận án đã tiến hành thử nghiệm nhiều bộ lọc khác nhau (trong các công
trình tham khảo) và kết quả tính toán các thông số: Tỷ số tín hiệu trên tạp âm
(SNR), độ tương quan (CORR), phần trăm trung bình bình phương sai lệch
(PRD) và tỉ lệ thành phần tần số dưới 1Hz trong tín hiệu (TH1) với hai thử
nghiệm trên đã cho thấy bộ lọc Butterworth_2 (đề xuất trong [76]) là tốt hơn
so với các bộ lọc còn lại như trên bảng 2.1
Bảng 2.1. Kết quả tính toán thông số SNR, CORR, PRD và TH1 trung bình
khi sử dụng bộ lọc thông cao
Thử nghiệm 1 Thử nghiệm 2
Loại bộ lọc
SNR CORR PRD TH1 SNR CORR PRD TH1
Butterworth_2 17.12 92.57 37.56 1.99 15.12 88.86 50.95 4.75
Kaiser_56 6.67 81.41 57.96 15.66 6.71 79.19 57.79 14.03
Kaiser_255 16.40 92.67 37.57 15.53 5.57 66.68 84.48 17.27
Rectang_100 7.81 83.20 55.37 2.27 8.29 84.09 55.78 7.79
Bảng 2.1 trình bày các kết quả tính toán các thông số SNR, CORR, PRD và
TH1 trung bình của hai thử nghiệm cho thấy bộ lọc Butterworth_2 có chất
lượng tốt hơn so với một số bộ lọc còn lại. Vì vậy các giải pháp của luận án
được trình bày ở chương 3 tiếp theo sẽ được so sánh với bộ lọc này.
- 11 -
Ngoài ra nội dung chương này còn trình bày lý thuyết tổng quát về biến đổi
wavelet, phân tích tín hiệu bằng hàm Hermite và mạng nơ-ron logic mờ
TSK.
CHƯƠNG III: CÁC GIẢI PHÁP ĐỀ XUẤT LOẠI BỎ ẢNH HƯỞNG
CỦA NHỊP THỞ TRONG TÍN HIỆU ECG
3.1. Ứng dụng wavelets loại bỏ ảnh hưởng của nhịp thở trong
tín hiệu ECG
Đã có nhiều nghiên cứu đề xuất sử dụng phép biến đổi wavelet để loại bỏ
ảnh hưởng của nhiễu nói chung và nhịp thở nói riêng trong tín hiệu ECG
[35,43,46,51,61,71,83,97,101]. Tuy nhiên các đề xuất họ wavelet và bậc của
các tác giả cũng rất khác nhau (như đã trình bày chi tiết trong luận án).
Trong luận án nghiên cứu sinh đã thực hiện lại hai thử nghiệm như ở
chương 2 để khảo sát, so sánh, đánh giá chất lượng với các họ wavelet
Daubechies, Biorthogonal, Symlet và Coiflet. Dựa trên các kết quả khảo sát,
luận án đề xuất loại bỏ thành phần A8 khi phân tích tín hiệu ECG bằng
wavelet để loại bỏ ảnh hưởng của nhịp thở tới tín hiệu ECG. Kết quả tính
toán các thông số SNR, CORR, PRD và TH1 trung bình của hai thử nghiệm
cho thấy các họ wavelet từ bậc 4 trở lên đã cho kết quả tốt hơn so với bộ lọc
thông cao Butterworth_2 và họ wavelet Coiflet bậc 4 có kết quả tốt hơn các
họ wavelet còn lại cùng bậc bậc 4 (như bảng 3.1). Vì vậy luận án đề xuất sử
dụng họ wavelet Coiflet bậc 4 làm bộ lọc thông cao để loại bỏ ảnh hưởng của
nhịp thở trong tín hiệu ECG
Bảng 3.1. Kết quả tính toán các thông số SNR, CORR, PRD và TH1 trung
bình khi sử dụng các họ wavelet bậc 4 và bộ lọc Butterworth_2
Thử nghiệm 1 Thử nghiệm 2
Loại bộ lọc
SNR CORR PRD TH1 SNR CORR PRD TH1
Butterworth_2 17.12 92.57 37.56 1.99 15.12 88.86 50.95 4.75
Db4 17.16 92.51 40.73 1.85 17.09 88.98 54.69 2.82
Sym4 17.19 92.53 40.66 1.85 16.22 88.99 54.86 3.79
Bior2.4 17.72 93.00 39.23 1.89 17.02 88.86 56.77 3.77
Coif4 19.27 94.17 35.45 1.83 18.79 90.35 51.31 2.61
Bảng 3.1 trình bày các kết quả tính toán các thông số SNR, CORR, PRD và
TH1 trung bình của hai thử nghiệm cho thấy việc sử dụng các họ wavelet bậc
4 đều có kết quả tốt hơn giải pháp Butterworth_2, và trong số các họ wavelet
thì họ Coiflet là có kết quả tốt nhất.
- 12 -
3.2. Sử dụng các đặc tính từ nhịp thở tức thời nhằm năng cao
chất lượng nhận dạng tín hiệu ECG
Từ các kết quả loại bỏ ảnh hưởng của nhịp thở gây ra trong tín hiệu ECG
bằng họ wavelet Coiflet bậc 4 để loại bỏ ảnh hưởng của nhịp thở thì không
làm thay đổi vị trí đỉnh R của tín hiệu ECG. Vì vậy việc lọc này sẽ không
loại bỏ được tác động thứ 3 của nhịp thở gây ra rối loạn nhịp tim trong tín
hiệu ECG làm khoảng R-R rút ngắn trong thời gian hít vào và kéo dài trong
thời gian thở ra [17, 21, 23, 29, 38, 40, 47, 56, 75], sự thay đổi này dễ bị
nhầm lẫn với một số dạng bệnh lý như ngoại tâm thu nhĩ (A - Atrial
premature beat), ngoại tâm thu thất (V - Ventricular premature beat).
Các kết quả nghiên cứu trong [29, 32] cũng chỉ ra rằng rối loạn nhịp tim là
một hiện tượng tương tác sinh học giữa hô hấp và tuần hoàn, nhịp tim thay
đổi đồng bộ với nhịp thở. Vì vậy để hỗ trợ mô hình nhận dạng phân loại
được việc thay đổi khoảng R-R là do thở hay do bệnh lý trong luận án nghiên
cứu đề xuất sử dụng thêm 2 đặc tính tức thời từ nhịp thở là: biên độ tức thời
của nhịp thở tại đỉnh R của nhịp tim đang nhận dạng và trung bình của 10
chu kỳ nhịp thở cuối cùng để hỗ trợ cho quá trình nhận dạng
3.3. Thu thập tín hiệu nhịp thở
Với các định hướng của luận án (như trình bày ở mục 1.5 và 3.2), việc sử
dụng các thông tin từ nhịp thở tức thời có thể giúp cải thiện chất lượng nhận
dạng tín hiệu ECG. Tuy nhiên các thiết bị đo nhịp thở hiện dùng vẫn còn
cồng kềnh, phức tạp trong sử dụng. Vì vậy luận án sẽ xây dựng thử nghiệm
một giải pháp gọn nhẹ sử dụng cảm biến gia tốc để đo nhịp thở. Thiết bị
được thiết kế có chức năng đo tín hiệu nhịp thở sử dụng cảm biến gia tốc,
hiển thị và lưu dữ liệu đo trên máy tính hoặc máy đo ECG. Sơ đồ khối chức
năng của thiết bị được trình bày trên hình 3.1.
Hình 3.1: Sơ đồ khối mạch thu thập tín hiệu nhịp thở
Để triển khai giải pháp đã đề xuất với mô hình như trên hình 3.1. Luận án
sử dụng cảm biến gia tốc ba trục MMA8451Q gắn trên ngực để thu thập tín
hiệu nhịp thở.
Hình 3.2 là tín hiệu nhịp thở thu được từ z của cảm biến gia tốc ở tư thế
ngồi ít di chuyển với các trạng thái thở khác nhau: thở thường 60s, thở chậm
- 13 -
60s và thở nhanh 30s được tách ra tương ứng với thành phần A8 khi phân tích
bằng họ wavelet Coiflet bậc 4
Hình 3.2: Tín hiệu thu được từ trục z và tín hiệu tách ra bằng thành phần A8
Để đếm số nhịp thở luận án sử dụng thuật toán dịch một cửa sổ có độ rộng
200ms (đủ hẹp để phát hiện đỉnh max và min của nhịp thở nhanh tần số
khoảng 1Hz) dọc theo đường tín hiệu. Kết quả tính toán số nhịp thở từ thành
phần A8 được phân tích bằng wavelet của tín hiệu thu được bằng cảm biến
gia tốc so với nhịp thở thực tế của người được thu thập trong 10 lần thử
nghiệm đạt độ chính xác 100% trong trường hợp thở chậm và thở thường và
đạt 98,35% trong trường hợp thở nhanh.
CHƯƠNG IV: TRÍCH CHỌN ĐẶC TRƯNG VÀ NHẬN DẠNG TÍN
HIỆU ECG BẰNG MẠNG TSK
4.1. Cơ sở dữ liệu
Hai cơ sở dữ liệu được sử dụng trong luận án là MIT-BIH và MGH/MF. Cả
hai cơ sở dữ liệu này đều có thể tải về được từ www.physionet.org
4.2. Ứng dụng SVD để phân tích tín hiệu ECG theo các hàm
Hermite
Phân tích và trích chọn đặc tính là bước quan trọng trong bài toán nhận
dạng, đặc biệt tín hiệu ECG thường chứa nhiều thành phần tần số khác nhau
và biến thiên liên tục theo tình trạng sức khỏe, tâm lý,... của người bệnh. Các
hàm phân tích tín hiệu chuẩn Hermite đã được nhiều nghiên cứu đề xuất sử
dụng để khai triển tín hiệu ECG [57, 68, 93] vì hình dạng khá tương đồng với
tín hiệu ECG. Trong luận án này sử dụng 16 hàm Hermite đầu tiên để phân
tích đoạn phức bộ QRS làm 16 đặc tính của véctơ đặc tính. Mặt khác cũng
như trong [68,93] luận án sử dụng thêm hai đặc tính trong miền thời gian của
tín hiệu ECG, đó là chu kỳ R-R tức thời và giá trị trung bình của 10 chu kỳ
R-R cuối cùng. Tổng cộng véctơ đặc tính của tín hiệu ECG gồm 18 đặc tính.
- 14 -
4.3. Ứng dụng mô hình nhận dạng TSK trong bài toán nhận
dạng tín hiệu ECG
Để kiểm chứng giải pháp đề xuất của luận án. Trong luận án đề xuất sử
dụng mạng nơron TSK [57, 68, 93] xây dựng các kịch bản nhận dạng để
kiểm chứng các giải pháp đề xuất của luận án. Véctơ đặc tính đầu vào của
mô hình nhận dạng được xây dựng trên cơ sở phân tích tín hiệu bằng hàm
phân tích tín hiệu chuẩn Hermite.
4.3.1. Xây dựng các bộ số liệu
4.3.1.1. Cơ sở dữ liệu MIT-BIH
Từ cơ sở dữ liệu MIT-BIH luận án xây dựng các bộ mẫu số liệu cho hai thử
nghiệm 1.1 và 2.1 (theo bảng 1.1). Đối với cơ sở dữ liệu MIT-BIH, luận án
lựa chọn 7 loại mẫu nhịp là: N, L, R, A, V, I và E để xây dựng các bộ số liệu,
do đây là các mẫu bệnh có thể xuất hiện trong cùng một bệnh nhân (ví dụ
như bệnh nhân ở bản ghi 207). Để bổ sung cho số lượng mẫu tương đối cân
đối và phong phú giữa 7 loại nhịp đã nêu, trong luận án sử dụng thêm tổng
cộng 16 bản ghi của 16 bệnh nhân với các mã số là: 106, 109, 111, 114, 116,
118, 119, 200, 202, 207, 208, 209, 212, 214, 221 và 222 với tổng số mẫu
trích ra là 3577. Do các mô hình được xây dựng trên cơ sở hai bộ số liệu học
và kiểm tra [55,66,89], nên ta sẽ chia 3577 mẫu tổng cộng thành hai bộ con:
bộ 2835 mẫu của 16 bệnh nhân để xây dựng mô hình (còn gọi là bộ số liệu
học) và 1192 mẫu còn lại của 16 bệnh nhân để kiểm tra độ tin cậy (còn gọi là
bộ số liệu kiểm tra). Số lượng tổng cộng và số lượng chi tiết mẫu lấy từ các
bản ghi và phân chia vào bộ số liệu học và kiểm tra được thống kê trong
bảng 4.1.
Bảng 4.1: Bảng phân chia số lượng mẫu học và kiểm tra của 7 loại nhịp
Loại nhịp Tổng số mẫu Số mẫu học Số mẫu kiểm tra
N 1000 667 333
L 500 333 167
R 500 333 167
A 500 334 166
V 500 333 167
I 472 315 157
E 105 70 35
Tổng 3577 2385 1192
Để tạo được một mẫu số liệu (tạo được véc-tơ đặc tính và tín hiệu đầu ra
tương ứng) từ đường ECG, ta sẽ tách một cửa số chứa phức bộ QRS tương
- 15 -
ứng của nhịp điện tim đó và tính toán các đặc tính từ cửa số này. Do trong cơ
sở dữ liệu MIT-BIH, ta đã có các tín hiệu ECG đã được đánh dấu vị trí đỉnh
R và đã được gán nhãn phân loại bệnh bởi các bác sỹ chuyên ngành nên mỗi
mẫu được tạo theo quy trình sau:
Để xây dựng số liệu mẫu cho kịch bản 1 hoặc 3 (theo bảng 1.1) thì các tín
hiệu ECG đọc từ cơ sở dữ liệu không cần xử lý thêm, để xây dựng số liệu
mẫu cho kịch bản 2 và 4 thì tín hiệu ECG sẽ được lọc loại bỏ thành phần
A8 theo khai triển wavelet Coiflet bậc 4.
Đọc tuần tự các vị trí đỉnh R liên tiếp của phức bộ QRS trong đường tín
hiệu ECG.
Xác định khoảng của phức bộ QRS và trích ra phức bộ này ra bằng cách
cắt cửa sổ 250ms xung quanh đỉnh R (125ms trước và 125ms sau vị trí
đỉnh R).
Khai triển phức bộ QRS vừa trích ở trên theo các đa thức Hermite theo
công thức (2.18) để xác định 16 hệ số khai triển đầu tiên làm đặc tính.
Xác định khoảng cách R-R từ đỉnh R đang xét tới đỉnh R liền trước để
làm đặc tính thứ 17. Giá trị trung bình của 10 đoạn R-R cuối cùng sẽ là
đặc tính thứ 18 của phức bộ QRS đang xét
Tương ứng với 18 đặc tính vừa xác định làm mẫu đầu vào, đầu ra là mã
của loại bệnh của nhịp đang xét (đã được các bác sĩ đánh dấu trong cơ sở
dữ liệu). Với K=7 loại bệnh khác nhau cho cơ sở dữ liệu MIT-BIH, đầu
ra tương ứng sẽ là 7 kênh có giá trị 0 và 1
Đồng thời do mỗi bản ghi có 1 hoặc nhiều chuyển đạo nên để thuận tiện
cho việc lập trình, tính toán và so sánh kết quả, luận án sẽ chọn sử dụng
chuyển đạo chung của các bản ghi là chuyển đạo II.
4.3.1.2. Cơ sở dữ liệu MGH/MF
Tương tự như với cơ sở dữ liệu MIT-BIH, do luận án sử dụng nhiều bản
ghi khác nhau nên ta chọn sử dụng chuyển đạo chung của các bản ghi là
chuyển đạo II. Trong cơ sở dữ liệu MGH/MF, số loại nhịp nhiều nhất của
một bệnh nhân là 3 gồm: N, S và V do đây là các mẫu bệnh có thể xuất hiện
trong cùng một bệnh nhân đồng thời (ví dụ như bệnh nhân ở bản ghi 106,
111, ). Vì vậy bộ mẫu xây dựng sẽ gồm 3 loại nhịp này, đồng thời để có
số lượng mẫu tương đối phong phú, luận án sử dụng 20 bản ghi của 20 bệnh
nhân với mã số là: 029, 030, 058, 105, 106, 107, 108, 110, 111, 114, 117,
119, 121, 123, 124, 125, 128, 131, 137 và 142 với tổng số mẫu trích ra là
4500. Chi tiết về số lượng các mẫu lấy từ các bản ghi được tổng hợp trong
- 16 -
bảng 4.2. Quy trình tạo các mẫu tương tự như đã thực hiện với cơ sở dữ liệu
MIT-BIH, trong đó ta có hai dạng véc-tơ đặc tính với 18 và 20 đặc tính (gồm
18 đặc tính như cơ sở dữ liệu MIT-BIH và 2 đặc tính từ tín hiệu nhịp thở).
Từ tập hợp tổng cộng 4500 mẫu này, trong luận án xây dựng 8 bộ số liệu
cho 8 trường hợp thử nghiệm 1.2, 2.2, 3.2, 4.2, 1.3, 1.4, 2.3 và 2.4 theo 4
kịch bản như đã nêu ở bảng 1.1. Trong đó, các thử nghiệm theo kịch bản 1 và
3 (thử nghiệm 1.2, 1.3, 1.4 và 3.2) được thực hiện với tín hiệu ECG không
lọc, các thử nghiệm theo kịch bản 2 và 4 (2.2, 2.3, 2.4 và 4.2) được thực hiện
với tín hiệu ECG có lọc bằng wavelet Coiflet bậc 4.
Bảng 4.2: Bảng phân chia số lượng mẫu của 3 loại mẫu nhịp
Loại nhịp
STT Recoder
N S V
1 Mgh029 150 50 1
2 Mgh030 150 50 12
3 Mgh058 150 65 0
4 Mgh105 150 1 65
5 Mgh106 150 45 50
6 Mgh107 150 9 65
7 Mgh108 150 1 65
8 Mgh110 150 0 50
9 Mgh111 150 75 45
10 Mgh114 150 60 28
11 Mgh117 150 0 65
12 Mgh119 150 0 50
13 Mgh121 150 4 50
14 Mgh123 150 50 55
15 Mgh124 150 0 65
16 Mgh125 150 65 65
17 Mgh128 150 75 0
18 Mgh131 150 50 0
19 Mgh137 150 75 2
20 Mgh142 150 75 17
Tổng 3000 750 750
Với 4 trường hợp 1.2, 2.2, 3.2 và 4.2 ta thử nghiệm theo dạng MGH/20-20,
có nghĩa là cả tập số liệu mẫu và tập số liệu kiểm tra đều chứa các nhịp của
- 17 -
toàn bộ 20 bệnh nhân. Chi tiết phân chia số lượng các mẫu được tổng hợp
trong bảng 4.3.
Các trường hợp 1.3 và 2.3 ta thử nghiệm theo dạng MGH/15-5, có nghĩa là
tập số liệu mẫu chỉ chứa các mẫu của 15 bệnh nhân và tập số liệu kiểm tra
chỉ chứa các mẫu mới của 5 bệnh nhân còn lại. Luận án mới tạm xét 4 trường
hợp con phân chia đó là tập hợp kiểm tra gồm toàn bộ mẫu các bệnh nhân
(theo bảng 4.2): 1. từ 1 đến 5, 2. từ 6 đến 10, 3. từ 11 đến 15 và 4. từ 16 đến
20; tập hợp học gồm mẫu của các bệnh nhân còn lại.
Các trường hợp 1.4 và 2.4 ta thử nghiệm theo dạng MGH/19-1, có nghĩa là
tập số liệu mẫu chỉ chứa các mẫu của 19 bệnh nhân và tập số liệu kiểm tra
chỉ chứa các mẫu của bệnh nhân còn lại. Tổng cộng luận án đã xét 20 trường
hợp con là tập hợp kiểm tra gồm toàn bộ các mẫu của 1 bệnh nhân từ 1 đến
20 (theo bảng 4.2), tập hợp học gồm mẫu các bệnh nhân còn lại.
Bảng 4.3. Bảng phân chia số lượng mẫu cho thử nghiệm MGH/20-20
Loại bệnh Tổng số nhịp Số mẫu học Số mẫu kiểm tra
N 3000 2100 900
S 750 525 225
V 750 375 375
Tổng 4500 3000 1500
4.3.2. Xây dựng mô hình nhận dạng
Đối với các trường hợp thử nghiệm với cơ sở dữ liệu MIT-BIH (các thử
nghiệm 1.1 và 2.1) với 7 loại mẫu nhịp N, A, E, L, R, I và V, mỗi nhịp tim
được đặc trưng bởi 18 đặc tính ta cần xây dựng mạng TSK với 18 đầu vào
(tương ứng với 18 đặc tính) và 7 đầu ra nhị phân (đối với mỗi nhịp chỉ có 1
đầu ra bằng “1” và 6 đầu ra còn lại bằng “0”) tương ứng với 7 loại mẫu nhịp.
Đối với các trường hợp thử nghiệm với cơ sở dữ liệu MGH/MF ta chia
thành hai nhóm thử nghiệm chính là:
Các thử nghiệm 1.2, 2.2, 1.3, 2.3, 1.4 và 2.4 theo dạng MGH/20-20,
MGH/15-5, MGH/19-1 với 3 loại mẫu nhịp N, S và V và mỗi nhịp tim
được đặc trưng bởi 18 đặc tính ta cần xây dựng mạng TSK với 18 đầu vào
(tương ứng với 18 đặc tính) và 3 đầu ra nhị phân tương ứng với 3 loại
mẫu nhịp.
Các thử nghiệm 3.2 và 4.2 theo dạng MGH/20-20 với 3 loại mẫu nhịp N,
S và V. Véc-tơ đặc tính được đặc trưng bởi 20 đặc tính (gồm 18 đặc tính
từ tín hiệu ECG và 2 đặc tính từ nhịp thở) ta cần xây dựng mạng TSK với
- 18 -
20 đầu vào (tương ứng với 20 đặc tính) và 3 đầu ra nhị phân tương ứng
với 3 loại mẫu nhịp.
Độ tin cậy của mô hình nhận dạng được đánh giá trên cơ sở sai số kiểm
tra, chỉ số FN và chỉ số FP như đã mô tả ở mục 1.5.
Độ cải thiện về sai số kiểm tra, số trường hợp FN và số trường hợp FP của
mô hình nhận dạng khi sử dụng lọc wavelet hoặc khi sử dụng bổ sung các
đặc tính mới cho mô hình nhận dạng được tính theo các công thức:
100%
truoc sau
cai thien
truoc
E E
E
E
(4.1)
100%
truoc sau
cai thien
truoc
FN FN
FN
FN
(4.2)
100%
truoc sau
cai thien
truoc
FP FP
FP
FP
(4.3)
100%
TP
Sens
TP FN
(4.4)
100%
TN
Spec
TN FP
(4.5)
Với các chỉ số như trên, mô hình được coi là tốt hơn khi các sai số FP, FN
là nhỏ hoặc các chỉ số theo công thức từ (4.1) đến (4.5) là càng lớn càng tốt.
4.3.3. Kết quả nhận dạng tín hiệu ECG
4.3.3.1. Các thử nghiệm dạng MIT/16-16 cho kịch bản 1 và 2
Các thử nghiệm này sử dụng tập các mẫu của 16 bản ghi để xây bộ số liệu
học và bộ số liệu kiểm tra của mô hình nhận dạng. Mạng TSK được xây
dựng với 18 đầu vào tương ứng với 18 thành phần của véc-tơ đặc tính, 7 đầu
ra nhị phân tương ứng với 7 loại mẫu nhịp.Thuật toán tính toán các chỉ số
được khảo sát với số quy tắc suy luận mờ (số luật TSK) biến thiên từ 1 đến
20. Kết quả khảo sát cho thấy ứng với 17 luật mô hình có sai số kiểm tra nhỏ
nhất.
Bảng 4.4. Kết quả tính toán các chỉ số chất lượng của các thử nghiệm dạng
MIT/16-16
Các chỉ số Thử nghiệm 1.1 Thử nghiệm 2.1 Độ cải thiện
Sai số tổng 35 31 4
FN 20 15 5
FP 10 9 1
- 19 -
Nhận xét 1
Từ các thử nghiệm 1.1 và 2.1 theo dạng MIT/16-16 cho thấy việc loại bỏ
ảnh hưởng của nhịp thở trong tín hiệu ECG bằng wavelet đã giúp cải thiện
được chất lượng nhận dạng, cụ thể là:
Sai số kiểm tra đã giảm 4 mẫu, tương ứng: 4 35 100 11 43% , %
Các trường hợp FN đã giảm 5 mẫu, tương ứng: 5 15 100 33 33% , %
Các trường hợp FP đã giảm 1 mẫu , tương ứng: 1 9 100 1111% , %
Chỉ số Sensitivity đã được cải thiện từ 98,25% lên 98,86% ; chỉ số
Specificity đã được cải thiện từ 97,30% lên 97,60% .
4.3.3.2. Các thử nghiệm dạng MGH/20-20 cho cả 4 kịch bản nhận
dạng
Các thử nghiệm này sử dụng tập các mẫu của 20 bản ghi để xây bộ số liệu
học và bộ số liệu kiểm tra của mô hình nhận dạng. Do cơ sở dữ liệu
MGH/MF có chứa nhịp thở đo đồng thời với tín hiệu ECG. Vì vậy ta có thể
xây dựng các bộ số liệu cho tất cả 4 kịch bản nhân dạng, cụ thể như sau:
Các thử nghiệm 1.2 và 2.2 mạng TSK được xây dựng với 18 đầu vào tương
ứng với 18 thành phần của véc-tơ đặc tính; Các thử nghiệm 3.2 và 4.2 mạng
TSK được xây dựng với 20 đầu vào tương ứng với 20 thành phần của véc-tơ
đặc tính (18 đặc tính từ tín hiệu ECG và 2 đặc tính từ tín hiệu nhịp thở) và 3
đầu ra nhị phân tương ứng với 3 loại mẫu nhịp.
Thuật toán tính toán các chỉ số sai số kiểm tra cũng được khảo sát với số
quy tắc suy luận mờ (số luật TSK) biến thiên từ 1 đến 20. Kết quả khảo sát
cho thấy ứng với 11 luật mô hình có sai số kiểm tra nhỏ nhất.
Bảng 4.5. Kết quả tính toán các chỉ số chất lượng của các thử nghiệm dạng
MGH/20-20
Các chỉ số
Thử nghiệm
1.2
Thử nghiệm
2.2
Thử nghiệm
3.2
Thử nghiệm
4.2
Sai số tổng 62 55 57 51
FN 30 26 28 23
FP 16 14 13 11
- 20 -
Nhận xét 2:
Từ các thử nghiệm 1.2 và 2.2 theo dạng MGH/20-20 cho thấy việc loại bỏ
ảnh hưởng của nhịp thở trong tín hiệu ECG bằng wavelet đã giúp cải thiện
được chất lượng nhận dạng, cụ thể là:
Sai số kiểm tra đã giảm 7 mẫu, tương ứng: 7 62 100 11 29% , %
Các trường hợp FN đã giảm 4 mẫu, tương ứng: 4 30 100 13 33% , %
Các trường hợp FP đã giảm 2 mẫu, tương ứng: 2 16 100 12 50% , %
Chỉ số Sensitivity đã được cải thiện từ 95,0% lên 95,67% ; chỉ số
Specificity đã được cải thiện từ 98,22% lên 98,44%
Từ các thử nghiệm 1.2 và 3.2 theo dạng MGH/20-20 cho thấy việc sử dụng
thêm các thông tin từ nhịp thở tức thời cũng giúp cải thiện được chất lượng
nhận dạng, cụ thể là:
Sai số kiểm tra đã giảm 5 mẫu, tương ứng: 5 62 100 8 06% , %
Các trường hợp FN đã giảm 2 mẫu, tương ứng: 2 30 100 6 67% , %
Các trường hợp FP đã giảm 3 mẫu, tương ứng: 3 16 100 18 75% , %
Chỉ số Sensitivity đã được cải thiện từ 95,0% lên 95,33% ; chỉ số
Specificity đã được cải thiện từ 98,22% lên 98,56% .
Từ các thử nghiệm 1.2 và 4.2 theo dạng MGH/20-20 cho thấy việc sử dụng
đồng thời loại bỏ ảnh hưởng của nhịp thở bằng wavelet và các thông tin từ
nhịp thở tức thời cho chất lượng nhận dạng tốt nhất, cụ thể là:
Sai số kiểm tra đã giảm 11 mẫu, tương ứng: 11 62 100 17 74% , %
Các trường hợp FN đã giảm 7 mẫu tương ứng: 7 30 100 23 33% , %
Các trường hợp FP đã giảm 5 mẫu, tương ứng: 5 16 100 31 25% , %
Chỉ số Sensitivity đã được cải thiện từ 95,0% lên 96,17% ; chỉ số
Specificity đã được cải thiện từ 98,22% lên 98,78% .
4.3.3.3. Các thử nghiệm dạng MGH/15-5 cho kịch bản 1 và 2
Các thử nghiệm này sử dụng tập các mẫu nhịp của 15 bản ghi để xây dựng
mô hình và sử dụng các mẫu nhịp của 5 bản ghi còn lại để kiểm tra và mạng
TSK 18 được xây dựng với 18 đầu vào tương ứng với 18 thành phần của véc-
tơ đặc tính, 3 đầu ra nhị phân tương ứng với 3 loại mẫu nhịp.
- 21 -
Luận án xét 4 trường hợp con có thể phân chia tập mẫu ban đầu theo dạng
MGH/15-5 gồm toàn bộ mẫu các bệnh nhân (theo bảng 4.2): 1. từ 1 đến 5, 2.
từ 6 đến 10, 3. từ 11 đến 15 và 4. từ 16 đến 20; tập hợp học gồm mẫu của các
bệnh nhân còn lại. Khi đó các chỉ số sai số được ước lượng là giá trị trung
bình của các chỉ số đó trong 4 trường hợp con
Mô hình nhận dạng vẫn sử dụng mạng TSK với 18 đầu vào tương ứng với
18 thành phần của véc-tơ đặc tính, 3 đầu ra nhị phân tương ứng với 3 loại
mẫu nhịp. Số luật của mạng TSK vẫn được khảo sát thủ công như đã trình
bày ở trên để xác định giá trị tốt (tương ứng với sai số kiểm tra cho trường
hợp đó là nhỏ nhất). Với 4 trường hợp con đã thử nghiệm cho bộ mẫu
MGH/15-5, số lượng luật cần sử dụng dao động trong khoảng từ 18 đến 20
luật.
Bảng 4.6. Kết quả tính toán các chỉ số chất lượng trung bình của các thử
nghiệm dạng MGH/15-5
Các chỉ số Thử nghiệm 1.3 Thử nghiệm 2.3 Độ cải thiện
Sai số tổng 558 516 42
FN 64 53 11
FP 415 384 31
Nhận xét 3:
Từ các thử nghiệm 1.3 và 2.3 theo dạng MGH/15-5 cho thấy việc loại bỏ
ảnh hưởng của nhịp thở trong tín hiệu ECG bằng lọc wavelet đã giúp cải
thiện được chất lượng nhận dạng, cụ thể là:
Sai số kiểm tra đã giảm 42 mẫu, tương ứng: 42 558 100 7 53% , %
Các trường hợp FN đã giảm 11 mẫu, tương ứng: 11 64 100 17 19% , %
Các trường hợp FP đã giảm 31 mẫu, tương ứng: 31 415 100 7 47% , %
4.3.3.4. Các thử nghiệm dạng MGH/19-1 cho kịch bản 1 và 2
Với các thử nghiệm này sử dụng tập các mẫu nhịp của 19 bản ghi để xây
dựng mô hình và sử dụng các mẫu nhịp của 1 bản ghi còn lại để kiểm tra.
Luận án sẽ xét toàn bộ 20 trường hợp có thể phân chia tập mẫu ban đầu
theo dạng MGH/19-1, đó là tuần tự tập hợp mẫu kiểm tra gồm toàn bộ các
mẫu của 1 bệnh nhân từ 1 đến 20 (theo bảng 4.2), tập hợp mẫu học gồm mẫu
các bệnh nhân còn lại. Khi đó các chỉ số sai số được ước lượng là giá trị
trung bình của các chỉ số đó trong 20 trường hợp con.
- 22 -
Mô hình nhận dạng vẫn sử dụng mạng TSK với 18 đầu vào tương ứng với
18 thành phần của véc-tơ đặc tính, 3 đầu ra nhị phân tương ứng với 3 loại
mẫu nhịp. Số luật của mạng TSK vẫn được khảo sát thủ công như đã trình
bày ở trên để xác định giá trị tốt (tương ứng với sai số kiểm tra cho trường
hợp đó là nhỏ nhất). Với 20 trường hợp con đã thử nghiệm cho bộ mẫu
MGH/19-1, số lượng luật cần sử dụng dao động trong khoảng từ 15 đến 20
luật.
Bảng 4.7. Kết quả tính toán các chỉ số chất lượng trung bình của các thử
nghiệm dạng MGH/19-1
Các chỉ số Thử nghiệm 1.4 Thử nghiệm 2.4 Độ cải thiện
Sai số tổng 91 75 16
FN 17 12 5
FP 57 49 8
Nhận xét 4:
Từ các thử nghiệm 1.4 và 2.4 theo dạng MGH/19-1 cho thấy việc loại bỏ
ảnh hưởng của nhịp thở trong tín hiệu ECG bằng wavelet cũng đã giúp cải
thiện được chất lượng nhận dạng, cụ thể là:
Sai số kiểm tra đã giảm 16 mẫu, tương: 16 91 100 17 58% , %
Các trường hợp FN đã giảm 5 mẫu, tương ứng: 5 17 100 29 41% , %
Các trường hợp FP đã giảm 8 mẫu, tương ứng: 8 57 100 14 04% , %
Riêng đối với trường hợp này, do ta có 20 trường hợp kiểm tra với các kết
quả khác nhau, nên nghiên cứu sinh sử dụng các test thống kê đánh giá và so
sánh thêm các chỉ số này. Sử dụng test thống kê t-Student cho 3 cặp chuỗi:
sai số tổng, các trường hợp FP, các trường hợp FN, ta test 3 giả thuyết H0 :
“Trung bình của sai số (tổng hoặc FP hoặc FN) khi không sử dụng phương
pháp lọc wavelet > Trung bình của sai số (tổng hoặc FP hoặc FN) khi có sử
dụng phương pháp lọc”. Các kết quả test với các số liệu từ bảng 4.7 như sau:
0( : 0,11%AllH p Sai sè tæng khi kh«ng läc Sai sè tæng khi cã läc)
0( : 3,65%FPH p Sai sè FP khi kh«ng läc Sai sè FP khi cã läc)
0( : 1,75%FNH p Sai sè FN khi kh«ng läc Sai sè FN khi cã läc)
Ta có thể thấy, cả 3 trường hợp đều có 5%p nên với độ đảm bảo 95%,
ta có thể khẳng định được là việc sử dụng giải pháp lọc bằng wavelet đã giúp
cải thiện được độ chính xác của nhận dạng.
- 23 -
KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN
Luận án đã nghiên cứu và tìm hiểu chức năng của hệ tim mạch - hô hấp các
ảnh hưởng chính của nhịp thở trong tín hiệu ECG, ba ảnh hưởng chính của
nhịp thở trong tín hiệu ECG là: rối loạn nhịp tim, điều chế biên độ tín hiệu
ECG và trôi dạt đường cơ sở; phân tích, đánh giá một số giải pháp sử dụng
phương pháp loại bỏ ảnh hưởng của nhịp thở trong tín hiệu ECG. Từ đó khảo
sát và đề xuất lựa chọn họ wavelet và bậc phù hợp để loại bỏ ảnh hưởng của
nhịp thở trong tín hiệu ECG. Trường hợp có tín hiệu nhịp thở được đo đồng
thời với tín hiệu ECG, luận án đề xuất sử dụng 2 đặc tính là biên độ tức thời
của nhịp thở để hỗ trợ phát hiện các biến thiên bệnh lý trong tín hiệu ECG.
Các bộ mẫu tín hiệu được đưa vào mô hình nhận dạng sử dụng mạng nơrôn
TSK để kiểm chứng hiệu quả của các giải pháp đề xuất.
Các đóng góp mới của luận án có thể kể tới là:
Đã khảo sát, so sánh, đánh giá chất lượng và đề xuất sử dụng wavelet
Coiflets bậc 4 để phân tích thành phần phù hợp tương ứng với thành phần
tần số do nhịp thở gây ra trong tín hiệu ECG, làm cơ sở để loại bỏ thành
phần này khi nhận dạng tín hiệu ECG,
Nghiên cứu và đề xuất phương pháp bổ sung thêm 2 đặc tính từ thông tin
nhịp thở để cải thiện độ chính xác trong quá trình nhận dạng,
Giải pháp đề xuất trong luận án góp phần hỗ trợ bác sĩ tuyến cơ sở trong
việc chẩn đoán, khám và điều trị các bệnh về tim.
Về mặt thực nghiệm để kiểm chứng các đề xuất trên, luận án đã thực hiện
được các kết quả sau:
Xây dựng 10 thử nghiệm (2 thử nghiệm với 7 loại nhịp và 8 thử nghiệm
với 3 loại nhịp) để thử nghiệm cho các trường hợp:
Nhận dạng tín hiệu ECG khi không loại bỏ ảnh hưởng của nhịp thở và
khi có loại bỏ ảnh hưởng này.
Nhận dạng tín hiệu ECG khi không có thông tin về nhịp thở tức thời và
khi có thông tin này.
Xây dựng 4 kịch bản nhận dạng (dùng chung mô hình mạng TSK) để thử
nghiệm kiểm chứng chứng tỏ rằng sau khi loại bỏ ảnh hưởng của nhịp thở
trong tín hiệu ECG hoặc khi sử dụng thêm các thông tin từ nhịp thở thì có
thể cải thiện được chất lượng nhận dạng tín hiệu ECG.
Kiểm chứng chất lượng nhận dạng với các mẫu nhịp từ cơ sở dữ liệu
MIT-BIH cho thấy: Việc loại bỏ ảnh hưởng của nhịp thở bằng họ wavelet
Coiflet bậc 4 giúp cải thiện chất lượng nhận dạng
- 24 -
Kiểm chứng kết quả nhận dạng với các mẫu nhịp từ cơ sở dữ liệu
MGH/MF cho thấy:
Việc loại bỏ ảnh hưởng của nhịp thở bằng họ wavelet Coiflet bậc 4 giúp
cải thiện chất lượng nhận dạng
Việc sử dụng thông tin trực tuyến về nhịp thở cũng giúp cải thiện chất
lượng nhận dạng
Sử dụng đồng thời việc loại bỏ ảnh hưởng của nhịp thở bằng họ wavelet
Coiflet bậc 4 và thông tin về nhịp thở tức thời sẽ cho kết quả tốt nhất
trong các trường hợp đã thử nghiệm
Các thử nghiệm theo dạng MGH/20-20 cho kết quả nhận dạng tốt nhất.
Các thử nghiệm dạng MGH/19-1 và các thử nghiệm theo dạng
MGH/15-5 cho thấy việc xây dựng mô hình nhận dạng tín hiệu ECG
cho các bệnh nhân mới vẫn cần phải có sự cập nhật mẫu của các bệnh
nhân này. Nếu chỉ sử dụng các mẫu của các bệnh nhân khác thì việc
nhận dạng tín hiệu của bệnh nhân mới sẽ không đạt hiệu quả cao và nếu
số bệnh nhân mới càng cao thì sai số sẽ càng lớn.
Nghiên cứu và đề xuất giải pháp thu thập tín hiệu nhịp thở bằng cảm biến
gia tốc MMA8451Q. Kết quả thực nghiệm trên cơ sở đếm số nhịp thở thu
được từ cảm biến gia tốc so với số nhịp thở thực tế ở trạng thái thở chậm,
thở thường chính xác 100% và thở nhanh đạt độ chính xác trên 98,35%
Với các kết quả như trên, giải pháp đề xuất trong luận án có thể góp phần
hỗ trợ bác sĩ tuyến cơ sở trong việc chẩn đoán, khám và điều trị các bệnh về
tim. Tiếp theo sau, các ý tưởng và giải pháp đã đề xuất trong luận án có thể
được tiếp tục bổ sung và phát triển theo một số định hướng như sau:
Tiếp tục khảo sát các phương pháp lọc (ví dụ như các phương pháp lọc
thích nghi, lọc mù,) để so sánh và lựa chọn giải pháp nâng cao hơn nữa
chất lượng tiền xử lý tín hiệu,
Khảo sát khả năng ứng dụng các mô hình nhận dạng khác để so sánh chất
lượng nhận dạng tín hiệu ECG,
Thử nghiệm nhận dạng với các cơ sở dữ liệu với các mẫu bệnh khác,
Thử nghiệm các giải pháp đo nhịp thở tức thời và triển khai trên các thiết
bị phần cứng đo song song tín hiệu ECG và tín hiệu nhịp thở để kiểm
nghiệm các giải pháp nhận dạng.
Thử nghiệm trên các bệnh nhân thực tế để tiếp tục kiểm chứng chất
lượng.
DANH MỤC
CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN
1. Trần Hoài Linh, Nguyễn Bá Biền, Phạm Văn Nam,
Nguyễn Đức Thảo (2011), “Sử dụng công nghệ FPAA và
PSoC trong thiết kế mạch thu thập và xử lý tín hiệu điện
tim”, Tuyển tập báo cáo (CD) của Hội nghị toàn quốc về
Điều khiển và Tự động hoá (VCCA).
2. Trần Hoài Linh, Nguyễn Đức Thảo, Phạm Văn Nam
(2013), “Ứng dụng hàm Hermite và cây quyết định trong
lựa chọn các đặc tính của tín hiệu điện tim phục vụ cho bài
toán nhận dạng”, Tuyển tập báo cáo (CD) của Hội nghị
toàn quốc về Điều khiển và Tự động hoá (VCCA).
3. Nguyễn Đức Thảo, Trần Hoài Linh, Phạm Văn Nam
(2014), “Sử dụng cảm biến gia tốc thu thập tín hiệu nhịp
thở,” Tuyển tập báo cáo (CD) Hội nghị toàn quốc về Cơ
điện tử (VCM).
4. Nguyễn Đức Thảo, Dương Hòa An, Trần Hoài Linh
(2015), “Thiết kế thiết bị thu thập nhịp thở và thuật toán
loại trừ ảnh hưởng tới nhịp tim”, Tạp chí Khoa học và
Công nghệ Đại học Thái Nguyên, Tập 132, số 02, Trang:
87-93.
5. Hoai Linh Tran, Van Nam Pham, Duc Thao Nguyen
(2015), "A hardware implementation of intelligent ECG
classifier", COMPEL: The International Journal for
Computation and Mathematics in Electrical and Electronic
Engineering, vol. 34, Iss: 3, pp. 905 – 919.
6. Nguyễn Đức Thảo, Trần Hoài Linh (2015), “Nâng cao
chất lượng nhận dạng tín hiệu điện tim dựa trên giải pháp
loại bỏ ảnh hưởng từ nhịp thở của người bệnh”, Tạp chí
Khoa học và Công nghệ Đại học Thái Nguyên Tập 140, số
10, Trang: 119-125.
Các file đính kèm theo tài liệu này:
- tom_tat_luan_an_5359.pdf