Thermal analysis of diatomite functionalized by MPTMS at
dried conditions show that the DSC and TG curves were similar for
all samples. The exothermic peak, together with no any ignition loss
at around 300°C should be attributed to the crystallization of
amorphous silica to quartz. The result also agrees with the fact that
the crystallization of quartz was detected at 300°C by XRD analysis.
However, even for sample 300D-700D which was calcinated at
300°C for 3hours before functionalization, this peak is also observed.
This can be explained by a reconstruction to form amorphous silica
during silane treatment. The exothermic peaks and ignition losses at
around 520°C should be assigned to the decomposition and oxidation
of MPTMS incorporated into diatomite. The hydrolysis of MPTMS
into silanols occurs in water
                
              
                                            
                                
            
 
            
                 52 trang
52 trang | 
Chia sẻ: tueminh09 | Lượt xem: 847 | Lượt tải: 0 
              
            Bạn đang xem trước 20 trang tài liệu Tóm tắt Luận án Nghiên cứu biến tính diatomit phú yên ứng dụng trong hấp phụ và xúc tác, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
rên bề mặt diatomit xuất hiện 
nhiều lỗ xốp và có thể thấy những “vầng” sáng (light inclusion) phủ 
lên bề mặt mao quản diatomit. 
Hình 3.7. Ảnh SEM của diatomit tự nhiên (a) và Fe-Mn/D63 (b) 
3.3.2. Nghiên cứu phản ứng oxy hoá phenol dùng xúc tác Fe-Mn/D 
trong hệ CWHO 
3.3.2.1. Phản ứng oxy hóa phenol trong hệ CWHO dùng chất xúc tác 
diatomit tự nhiên và các diatomit biến tính 
Sự đóng góp hoạt tính xúc tác của các ion kim loại hòa tan từ 
xúc tác rắn trên toàn bộ hoạt tính xúc tác rắn là một vấn đề quan 
trọng trong việc ứng dụng xúc tác dị thể trong pha lỏng. Thí nghiệm 
đánh giá sự hòa tan của xúc tác khẳng định rằng vật liệu Fe-Mn/D63 
là xúc tác dị thể trong phản ứng phân hủy phenol. 
0 20 40 60 80 100 120 140 160 180 200
0
20
40
60
80
100
§
é
 c
h
u
y
Ó
n
 h
ã
a
 P
N
 (
%
)
Thêi gian (phót)
 Diatomit TN
 Fe/D
 Fe-Mn/D
 Mn/D
(a)
0 50 100 150 200 250
0.0
0.1
0.2
N
å
n
g
 ®
é
 H
P
(m
o
l/
L
)
Thêi gian (phót)
 Diatomit TN
 Fe/D
 Fe-Mn/D
 Mn/D
(b)
Hình 3.8. Độ chuyển hóa phenol (a) và sự phân hủy HP (b) trên các xúc 
tác khác nhau. 
(b) (a) 
16 
0 50 100 150 200 250
0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035
N
å
n
g
 ®
é
 C
T
(m
o
l/
L
)
Thêi gian (phót)
 Diatomite tù nhiªn
 Fe-D
 Fe-Mn/D63
(a)
0 50 100 150 200 250
0.0000
0.0004
0.0008
0.0012
0.0016
N
å
n
g
 ®
é
 H
Q
 (
m
o
l/
L
)
Thêi gian (phót)
 Diatomite tù nhiªn
 Fe/D
 Fe-Mn/D63
 (b)
Hình 3.9. Sự tạo thành và phân hủy CT (a) và HQ (b) trên các chất xúc 
tác khác nhau. 
Hình 3.8a trình bày sự biến đổi nồng độ phenol theo thời gian 
trên diatomit tự nhiên và diatomit biến tính. Sự chuyển hóa của tác 
chất H2O2 và các chất trung gian chủ yếu catechol và hydroquinon 
lần lƣợt đƣợc trình bày trên hình 3.8b và hình 3.9. 
3.3.2.2. Động học phân hủy phenol trên xúc tác Fe-Mn/D63 
Sắc đồ HPLC, cho thấy rằng phản ứng oxi hóa PN trên xúc tác 
Fe-Mn/D63 chủ yếu tạo ra hai sản phẩm chính là CT và HQ, hai sản 
phẩm này tiếp tục bị oxi hóa hoàn toàn tạo ra CO2 và nƣớc nhƣ minh 
họa trong sơ đồ 3.1. 
Sơ đồ 3.1. Sơ đồ phản ứng oxi hóa PN bằng HP trên xúc tác 
Fe-Mn/D63 
Mô hình tổng quát động học xúc tác phản ứng lƣỡng tâm, 
lƣỡng phân tử trình bày trên sơ đồ 3.2. Theo đó, chất xúc tác tồn hai 
17 
tâm xúc tác S1 và S2 độc lập. Tác chất A và B hấp phụ độc lập trên 
từng tâm và tạo ra dạng hấp phụ hoạt tính, các dạng hấp phụ hoạt 
tính này phản ứng với nhau tạo ra sản phẩm. 
A
A
B
B
S1 S2
Sơ đồ 3.2. Mô hình phản ứng lưỡng tâm lưỡng phân tử 
Kết quả so sánh cặp đôi các giá trị hệ số cân bằng ở các nồng 
độ khác nhau đƣợc trình bày ở bảng 3.10. 
Bảng 3.10. So sánh cặp đôi của các giá trị hệ số cân bằng K ở các 
nồng độ khác nhau 
Cặp so sánh t df Giá trị p 
K-200 - K-500 -1.061 7 0,324 
K-200 - K-1000 -1,136 7 0,294 
K-500 - K-1000 1,308 7 0,232 
Bảng 3.11. Giá trị hằng số tốc độ (k(5)) được tính trên hai mô hình 
với ba dãy số liệu PN 200, 500 và 1000 mg/L 
k-200 k-500 k-1000 
kPN 5809 1097 119,0 
kHQ 5795 1079 113,88 
kCT 5767 1081 113,98 
kHQ* 1448000 273500 19280 
kCT* 735845 76600 4790 
Hằng số tốc độ đƣợc tính ở các nồng độ khác nhau đƣợc trình 
bày ở bảng 3.11. Kết quả cho thấy giá trị hằng số tốc độ của sự biến 
18 
đổi PN, CT, và HQ giảm dần theo sự tăng của nồng độ. Tốc độ 
chuyển hóa PN xấp xỉ với tốc độ tạo ra HQ và CT và tốc độ phân 
hủy phân hủy HQ nhanh hơn CT. 
3.4. NGHIÊN CỨU HẤP PHỤ ASEN TRÊN VẬT LIỆU Fe-
Mn/D65 
3.4.1. So sánh khả năng hấp phụ As(III) của một số vật liệu 
Kết quả cho thấy, vật liệu biến tính Fe-Mn/D có khả năng hấp 
phụ cao hơn các vật liệu khác. Khả năng hấp phụ tăng dần theo 
chiều diatomit tự nhiên, Fe/D, Mn/D và các vật liệu Fe-Mn/D. pH 
ảnh hƣởng không đáng kể đến khả năng hấp phụ As(III) (chỉ dao 
động từ 60-65% hấp phụ As(III)). Tuy nhiên, xu hƣớng cho thấy, khi 
pH tổng hợp vật liệu càng tăng, khả năng hấp phụ As(III) càng có xu 
hƣớng giảm. Khi tăng dần tỷ lệ mol Fe/Mn thì khả năng hấp phụ 
tăng, nhƣng sau đó giảm. Sự hấp phụ cao nằm trong khoảng tỷ lệ 
Fe/Mn ban đầu từ 4:1-6:1 và đạt cao nhất ở tỷ lệ 5:1. 
3.4.2. Khảo sát quá trình hấp phụ asen của vật liệu Fe-Mn/D65 
3.4.2.1. Sự hấp phụ/oxyhóa As(III) thành As(V) trên vật liệu Fe-
Mn/D65 
Kết quả ở bảng 3.26 cho thấy bề mặt Fe-Mn/D65 sau khi hấp 
phụ As(III) tạo ra hai dạng As(V) và As(III) với tỷ lệ tƣơng đƣơng 
nhau, trong khi đó, thành phần của các trạng thái của oxy hóa của 
Fe2p3/2 và Mn2p3/2 thay đổi so với ban đầu. 
3.4.2.2. Ảnh hưởng của pH đến khả năng hấp phụ As(III) và As(V) 
của vật liệu Fe-Mn/D65 
Hình 3.10 cho thấy rằng độ chuyển hóa hấp phụ As(III) tăng, 
ngƣợc lại độ chuyển hóa hấp phụ As(V) giảm đáng kể khi pH tăng. 
19 
Hình 3.10. Ảnh hưởng của pH đến khả năng hấp phụ As(V) và As(III) 
3.4.3. Đẳng nhiệt hấp phụ 
Kết quả nghiên cứu đẳng nhiệt cho thấy mô hình Freundlich 
biến đổi có hệ số xác định R2 cao, mô hình này mô tả tốt kết quả thực 
nghiệm. 
3.4.4. Ảnh hƣởng của lực ion 
3.4.4.1. Ảnh hưởng của lực ion NaCl 
Hình 3.11. Ảnh hưởng của lực ion NaCl đến hấp phụ asen 
Hình 3.11 trình bày ảnh hƣởng của lực ion NaCl đến khả 
năng hấp phụ asen. Lực ion NaCl ít ảnh hƣởng đến chuyển hóa hấp 
phụ, thực tế có sự tăng nhẹ độ chuyển hóa hấp phụ As(III) từ 32% 
đến 40% và độ chuyển hóa hấp phụ As(V) tăng từ 80% đến 83,8% 
khi nồng độ NaCl tăng từ 0 đến 100 mg/L. Điều này cho thấy ion Cl- 
ít cạnh trạnh với các anion của asen. 
0
20
40
60
80
1.56 2.9 4.99 6 8.3 10.4%
 H
ấp
 p
h
ụ
 A
s(
II
I)
pH 
0
20
40
60
80
1
.8
3
.1
4
.1
5
.4
6
.6
7
.5
1
0
.1
1
1
.0%
 H
ấp
 p
h
ụ
 A
s(
V
) 
pH 
76
78
80
82
84
86
0 10 20 40 60 80 100%
 H
ấp
 p
h
ụ
 A
s(
V
) 
Nồng độ NaCl (mg/L) 
0
20
40
60
0 10 20 40 60 80 100%
H
ấp
 p
h
ụ
 A
s(
II
I)
Nồng độ NaCl (mg/L) 
20 
3.4.4.2. Ảnh hưởng của lực ion Na2CO3 
Khác với NaCl, lực ion Na2CO3 ảnh hƣởng nhiều đến độ chuyển 
hóa hấp phụ asen. Độ chuyển hóa hấp phụ As(III) tăng từ 31% đến 
71% nhƣng độ chuyển hóa hấp phụ As(V) lại giảm từ 80% đến 42% 
khi hàm lƣợng CO3
2-
 tăng từ 0 đến 100 mg/L nhƣ trình bày ở hình 
3.12. 
Hình 3.13. Ảnh hưởng của lực ion Na2CO3 đến quá trình hấp phụ asen 
3.4.4.3. Ảnh hưởng của lực ion Na3PO4 
Lực ion Na3PO4 ảnh hƣởng đáng kể đến khả năng hấp phụ 
As(V) nhƣ trong trƣờng hợp CO3
2-
 (hình 3.14). Độ chuyển hóa hấp 
phụ giảm từ 91% đến 45% khi nồng độ ion phosphat tăng từ 0 đến 
100 mg/L. Tuy nhiên lực ion Na3PO4 ít ảnh hƣởng đến khả năng hấp 
phụ As(III), độ chuyển hóa hấp phụ chỉ tăng từ 30% đến 39% khi 
hàm lƣợng phosphat tăng từ 0 đến 100 mg/L. 
Hình 3.14. Ảnh hưởng của lực ion Na3PO4 đến quá trình hấp phụ asen 
0
10
20
30
40
50
0 10 20 40 60 80 100
%
 H
ấp
 p
h
ụ
 A
s(
II
I)
Nồng độ Na3PO4
 (mg/L) 
0
20
40
60
80
0 10 20 40 60 80 100
%
 H
ấp
 p
h
ụ
 A
s(
II
I)
Nồng độ Na2CO3
 (mg/L) 
0
50
100
0 10 20 40 60 80 100 %
 h
ấp
 p
h
ụ
 A
s(
V
) 
Nồng độ Na2CO3
 (mg/L) 
0
20
40
60
80
100
0 10 20 40 60 80 100%
 H
ấp
 p
h
ụ
A
s(
V
) 
Nồng độ Na3PO4
 (mg/L) 
21 
3.4.4.4. Ảnh hƣởng của ion CaCl2, MgCl2 
Ảnh hƣởng lực ion của các muối CaCl2 và MgCl2 đƣợc trình 
bày ở hình 3.15 và hình 3.16. Lực ion các muối này ít ảnh hƣởng đến 
khả năng hấp phụ asen. 
Hình 3.15. Ảnh hưởng của lực ion CaCl2 đến quá trình hấp phụ asen 
Hình 3.16. Ảnh hưởng của lực ion MgCl2 đến quá trình hấp phụ asen 
Từ kết quả trên cho thấy vật liệu Fe-Mn/D65 có khả năng hấp 
phụ cao As(III) và As(V), đặc biệt khả năng hấp phụ/oxy hóa chuyển 
hóa As(III) có độc tính cao thành As(V) có độc tính thấp hơn, làm 
cho vật liệu này có nhiều tiềm năng ứng dụng trong công nghệ xử lý 
nƣớc. 
87
88
89
90
91
92
93
0 10 20 40 60 80 100
%
 H
ấp
 p
h
ụ
 A
s 
(V
) 
Nồng độ CaCl2 (mg/L) 
63
64
65
66
67
68
69
70
0 10 20 40 60 80 100
%
H
ấp
 p
h
ụ
 A
s 
(I
II
) 
Nồng độ CaCl2 (mg/L) 
62
64
66
68
70
72
0 10 20 40 60 80 100%
 H
ấp
 p
h
ụ
 A
s(
II
I)
Nồng độ MgCl2 (mg/L) 
82
84
86
88
90
92
94
0 10 20 40 60 80 100%
 H
ấp
 p
h
ụ
 A
s(
V
) 
Nồng độ MgCl2 (mg/L)
22 
KẾT LUẬN 
1. Diatomit Phú Yên tự nhiên có thành phần hóa học chủ yếu 
là silic, nhôm và một lƣợng khá lớn tạp chất sắt. Diatomit tự nhiên có 
cấu trúc vô định hình với diện tích bề mặt riêng lớn và dễ bị chuyển 
thành tinh thể quart. Với tính chất xốp cao, diatomit tự nhiên có thể 
ứng dụng vào lĩnh vực hấp phụ và xúc tác. Diatomit có khả năng hấp 
phụ cao phẩm nhuộm cation, cụ thể với phẩm nhuộm AB dung lƣợng 
trung bình qm = 602 mg/g, có tiềm năng sử dụng ở qui mô công 
nghiệp. Quá trình khuếch tán phẩm nhuộm AB vào diatomit là quá 
trình phức tạp với bƣớc quyết định tốc độ hấp phụ là giai đoạn 
khuếch tán màng (hấp phụ hóa học). 
2. Trong hệ hấp phụ phẩm nhuộm AB trên diatomit, các tham 
số phƣơng trình Langmuir và Freundlich thay đổi khi thay đổi nồng 
độ chất ban đầu thay đổi. Điều này bản chất của xốp của vật liệu giới 
hạn sự khuếch tán và kích thƣớc lớn của chất bị hấp phụ nên hệ chỉ 
đạt đến trạng thái gần cân bằng. Các hệ số này trở thành các hệ số 
thực nghiệm và mất ý nghĩa hoá lý nhƣ khi ban đầu thiết lập nên nó. 
3. Diatomit xử lý nhiệt trong khoảng 100-300 0C là thuận lợi 
cho biến tính diatomit. Thời gian hydrat hóa diatomit ảnh hƣởng đến 
đáng kể đến việc gắn kết MPTMS lên diatomit. Lƣợng MPTMS kết 
gắn lớn nhất khi hydrat hóa trong 3 giờ. Vật liệu MPTMS-diatomit 
có khả năng biến tính trên điện cực GCE để xác định đồng thời 
Cd(II) và Pb(II) bằng phƣơng pháp von-ampe hòa tan anot với kỹ 
thuật xung vi phân (DP-ASV). Các dòng đỉnh hòa tan tƣơng quan 
tuyến tính với nồng độ Cd(II) trong khoảng 20-300 ppb (i (μA) = -
23 
0,0202 + 0,0036 C (ppb), R
2
 = 0,9997) và nồng độ Pb(II) trong 
khoảng 20-150 ppb (i (μA) = -0,1179 + 0,0069 C (ppb), R2 = 0,994. 
Giới hạn phát hiện với Cd(II) và Pb(II) lần lƣợt là 15,9 ppb và 6,9 
ppb. Theo sự hiểu biết của chúng tôi đây là kết quả lần đầu tiên đƣợc 
công bố về sử dụng vật liệu MPTMS-diatomit để biến tính điện cực 
xác định đồng thời Cd(II) và Pb(II) bằng phƣơng pháp DP-ASV. 
4. Lƣỡng oxit sắt và mangan có thể đƣợc phân tán đồng nhất 
lên bề mặt diatomit bằng phản ứng oxy hóa khử giữa KMnO4 và 
FeSO4 trong môi trƣờng pH = 3-8. Lớp lƣỡng oxit sắt mangan tồn tại 
trạng thái đa hóa trị (Mn(III), Mn(VI), Fe(III) và Fe(II)) và có tỉ lệ 
xấp xỉ Mn:Fe xấp xỉ 1:10 bất kể pH, hay tỉ lệ mol Mn:Fe khác nhau. 
Fe-Mn/D63 có hoạt tính xúc tác oxy hóa hoàn toàn phenol và các 
chất trung gian chính (catechol và hydroquinon). Xúc tác điều chế 
đƣợc có thể hoạt động trong môi trƣờng pH từ 4,7-7. Hoạt tính oxy 
hóa phenol là do tính cộng lực xúc tác của oxit sắt và mangan phân 
tán điều trên bề mặt diatomit. Vật liệu diatomit biến tính bằng lƣỡng 
oxit sắt và mangan là một xúc tác tiềm năng cho việc xử lý phenol và 
các chất hữu cơ nói chung trong hệ CWHO. Đây cũng là điểm mới 
của luận án. 
5. Vật liệu diatomit đƣợc biến tính bằng lƣỡng oxit sắt và 
mangan (Fe-Mn/D65) có khả năng hấp phụ cao As(III) và As(V) 
trong dung dịch nƣớc. Quá trình hấp phụ As(III) xảy ra sự oxy hóa 
As(III) thành As(V) do Mn(IV). Khả năng hấp phụ asen tuân theo cả 
hai cơ chế tạo phức cầu nội và cầu ngoại giữa các anion và các nhóm 
hydroxyl (Mn-OH, Fe-OH). Khả năng hấp phụ As(III) tăng khi pH 
dung dịch tăng, ngƣợc lại khả năng hấp phụ As(V) lại giảm khi pH 
24 
dung dịch tăng. Lực ion NaCl, Na2CO3, Na3PO4 ảnh hƣởng đáng kể 
đến khả năng hấp phụ asen, khi lực ion tăng khả năng hấp phụ 
As(III) tăng nhƣng khả năng hấp phụ As(V) lại giảm. Lực ion CaCl2, 
MgCl2 hầu nhƣ ảnh hƣởng không đáng kể đến khả năng hấp phụ 
asen. 
1 
DANH MỤC CÁC CÔNG TRÌNH LIÊN QUAN ĐẾN LUẬN ÁN 
1. Bui Hai Dang Son, Vo Quang Mai, Dang Xuan Du, Le Cong Nhan, Tran Thai Hoa, 
Dinh Quang Khieu (2013), “Freundlich and Langmuir adsorption isotherms for removal 
astrazon black AFDL dye onto Phu Yen diatomite from aqueous solution”, Vietnam 
Journal of chemistry, Vol. 59(2AB), 296-301. 
2. Bui Hai Dang Son, Vo Quang Mai, Dang Xuan Du, Le Cong Nhan, Tran Thai Hoa, 
Dinh Quang Khieu (2013), “A kinetic study on astrazon black AFDL dye adsorption 
onto Phu Yen diatomite”, Vietnam Journal of chemistry, Vol. 51(3AB), pp. 1-5. 
3. Bùi Hải Đăng Sơn, Võ Quang Mai, Đặng Xuân Dự, Lê Công Nhân, Trần Thái Hòa, 
Đinh Quang Khiếu (2013), “Nghiên cứu tổng hợp mercaptopropyl-diatomite”, Tạp chí 
Xúc tác và Hấp phụ, số 2, tr. 136-141. 
4. Bui Hai Dang Son, Vo Quang Mai, Dang Xuan Du, Le Cong Nhan, Phan Thi Chi, 
Dinh Quang Khieu (2014), “Mn-Fe binary oxide incorporated into diatomite: an 
efficient catalyst for phenol oxidation reaction”, Journal of Science and Technology, 
52(5B), pp. 490-495. 
5. Bùi Hải Đăng Sơn, Võ Quang Mai, Đặng Xuân Dự, Lê Công Nhân, Đinh Quang 
Khiếu (2015), “Hấp phụ cadimi trong dung dịch bằng mercaptopropyl/diatomit”, Tạp 
chí Hóa học, số 53(3E12), tr. 238-241. 
6. Bùi Hải Đăng Sơn, Nguyễn Thị Ngọc Trinh, Nguyễn Đăng Ngọc, Đinh Quang Khiếu 
(2015), “So sánh đặc trƣng hóa lý của hai loại diatomic Phú Yên và diatomit Merck”, 
Tạp chí Xúc tác và Hấp phụ, Số 4(4A), tr. 115-119. 
7. Bui Hai Dang Son,Vo Quang Mai, Phan Thi Chi, Nguyen Thi Ngoc Trinh, Dang Xuan Du, 
Le Cong Nhan, Dinh Quang Khieu (2014), “Study on synthesis of Mn-Fe @ diatomite”, 
Journal of Catalysis and Adsorption, 3, pp. 127-133. 
8. Bùi Hải Đăng Sơn, Mai Xuân Tịnh, Trần Thanh Minh, Nguyễn Đăng Ngọc (2016), 
“Nghiên cứu khả năng hấp phụ As(III) và As(V) bằng vật liệu diatomite biến tính 
lƣỡng oxit sắt-mangan”, Tạp chí Đại Học Huế, Số 3, tr.117-124. 
9. Bui Hai Dang Son, Vo Quang Mai, Dang Xuan Du, Nguyen Hai Phong, Dinh Quang 
Khieu (2016), “A Study on Astrazon Black AFDL Dye Adsorption onto Vietnamese 
Diatomite”, Journal of Chemistry, pp. 1-11, dx.doi.org/10.1155/2016/8685437. (I.F. = 
0.996, ISSN = 2090-9071). 
10. Bui Hai Dang Son, Vo Quang Mai, Dang Xuan Du, Nguyen Hai Phong, Nguyen Duc 
Cuong, Dinh Quang Khieu (2016), “Catalytic wet peroxide oxidation of phenol 
solution over Fe-Mn binary oxides diatomit composite”, Journal of Porous 
Material,pp.1-11,DOI 10.1007/s10934-016-0296-7. (I.F. = 1.4, ISSN: 1380-2224). 
11. Dinh Quang Khieu, Bui Hai Dang Son, Vo Thi Thanh Chau, Pham Dinh Du, Nguyen 
Hai Phong, Nguyen Thi Diem Chau (2017), “3-mercaptopropyltrimethoxysilane 
modified diatomite: preparation and application for voltammetric determination of lead 
(II) and cadmium (II)” Journal of Chemistry, pp. 1-10 (I.F. = 0.996, ISSN: 2090-9071) 
2 
MINISTRY OF EDUCATION AND TRAINING 
 HUE UNIVERSITY 
COLLEGE OF SCIENCE 
PhD candidate: BUI HAI DANG SON 
Dissertation title: PHU YEN DIATOMITE: 
MODIFICATION AND ITS APPLICATION TO 
CATALYST AND ADSORPTION 
Major: Theoretical Chemistry and Physical 
Chemistry 
Code: 62.44.01.19 
PhD DISSERTATION ABSTRACT 
Hue, 2017 
3 
INTRODUCTION 
1. Research motivation 
Activated carbon is the most employed adsorbent for toxic 
species removal from aqueous solution because of well-developed 
pore structures and a high internal surface area that leads to its 
excellent adsorption properties. However, the high cost of activated 
carbon and recycle ability sometimes restrict its applicability for dye 
removal. Therefore, in recent years, a considerable number of studies 
have investigated into low cost and efficient alternative materials 
such as clay, diatomite, zeolite. Catalytic Wet Air Oxidation 
(CWAO) is an efficient and promising oxidative pollution removal 
process that has been proved successful in the research on 
wastewater treatment. However, the CWAO usually requires rather 
critical conditions including high pressure and temperature, and the 
implementation of this technology is not cost-effective. The process 
of catalytic wet peroxide oxidation (CWPO) has provided an 
alternative for the treatment of wastewater with high-poisonous 
organic compounds. 
 Heavy metals (Hg(II), Pb(II), Cd(II), Cu(II), Co(II), Ni(II), 
Zn(II) etc.), which are commonly found in wastewaters discharged 
from chemical manufacturing, mining, extractive metallurgy, nuclear 
and other industries, cause danger to humans and aquatic animals 
and plants and therefore must be controlled urgently. The detection 
of heavy metal ions in water samples has received much attention 
over the past few years. Anodic stripping voltammetry (ASV) is a 
useful electrochemical method for detecting trace metals because of 
its wide linear dynamic range and low detection limit which 
results from a pre-concentration step performed directly in the 
4 
voltammetric cell. Several porous materials have been utilized as 
electrode modifiers with the aim of pre-concentrating the analyte at 
the electrode surface via a selective reaction due to special function 
groups grafted to electrode surface. 
Diatomite has received considerable attention for its unique 
combination of physical and chemical properties including large 
porosity, fine particle size, and chemical inertness. With the aim of 
improving catalyst and adsorption activities of diatomite, the 
modification of diatomite by active ground was needed. The 
diatomite in combination with surface coated functional groups 
offers a potential materials for adsorption and modifying electrodes 
to determine the dye. To the best of our knowledge, the use of a 3-
mercaptopropyl trimethoxysilane (MPTMS) grafted diatomite for 
modifying electrode in connection to the electrochemical analysis of 
Pb (II) and Cd (II) has not yet been reported. Although diatomite 
modified by manganese oxide, iron oxide or binary manganese and 
iron oxide has been extensively studied as adsorbent of 
arsenide/arsenate from aqueous solution, little research has been 
done into the use of Fe-Mn binary oxides diatomite as an oxidation 
catalyst. 
2. The aims and contents of dissertation 
2.1. The aims 
The aim of this study was modification of Phu Yen diatomite 
by organic or inorganic group to obtain modified diatomite with high 
activity of catalyst and adsorption. 
2.2. Content 
2.1. Physical chemistry characterization of Phu yen diatomite and its 
application to dye removal. 
5 
2.3. Synthesis of Fe-Mn binary oxides coating on diatomite and 
Catalytic wet peroxide oxidation of phenol solution 
2.3. 3-mercaptopropyltrimethoxysilane modified diatomite: 
preparation and application for voltammetric determination of 
Lead(II) and Cadmium(II) 
 3. New contributions 
 A study on physical chemistry properties of Phu yen diatomite 
and its modification by Fe-Mn binary oxides, mercaptopropyl silane 
as well as their application to dye and toxic metal removal or phenol 
oxidation were studied systematically for very first time in Vietnam. 
 The Vietnamese diatomite, which is composed of amorphous 
silica, has high porosity and surface area. It was studied as an 
adsorbent for the removal of Astrazon Black AFDL dye (AB) from 
aqueous solution. Experimental isothermal data were fitted well to 
both Langmuir and Freundlich model. However, parameters of these 
equations were effected remarkably on the initial AB concentrations. 
Both value of qmom and qm increases with the increasing initial AB 
concentration. Piecewise linear regression as a statistical method for 
the analysis of experimental adsorption data by the Webber’s 
intraparticle-diffusion models provide the time periods for each 
diffusion. 
Mn-Fe binary oxides has been homogeneously incorporated 
into diatomite by redox reaction of KMnO4 and FeSO4. The redox 
products consist of multiple oxidation state oxides (Mn(III), Mn(VI), 
Fe(III) and Fe(II)). For the first time, the Fe-Mn binary oxides was 
tested as catalysts for CWPO of phenol. The catalyst demonstrated 
well in the aqueous medium the wide range of pH 4.7-7. The high 
catalytic activity for phenol oxidation is due to catalytically 
6 
synergized properties of iron and manganese oxide highly dispersed 
on pores of diatomite. Fe-Mn binary oxides modified diatomite 
materials are promising catalysts for complete oxidation of phenol 
with hydrogen peroxide in aqueous solutions. 
Electrochemical sensors of mercaptopropyl-diatomite 
modified glassy carbon electrode (GC/mecarptopropyl-diatomite) 
has been developed for the determination of Pb(II) and Cd(II) for the 
first time in Vietnam. 
The contents of the dissertation consist of 131 pages, 31 tables, 59 
figures, 207 references. The layout of the thesis is as follows: 
Introduction: 2 pages 
Chapter 1. Literature review: 27 pages 
Chapter 2. Objectives, content, research methods and experimental 
methods: 25 pages 
Chapter 3. Results and Discussion: 78 pages 
Chapter 4. Conclusions: 2 pages 
CHAPTER 1. LITERATURE REVIEW 
Dyes are a kind of organic compounds with a complex 
aromatic molecular structures that can cause bright and firm color to 
other materials. These molecules lead to high chemical oxygen 
demand, and they exhibit low biodegradability. Many treatment 
systems have been proposed for the removal of synthetic dyes from 
aqueous solution. Methods based on adsorption, biological 
treatments, coagulation, electrochemical techniques, membrane 
processes, and oxidation/ozonation, photochemical oxidation are 
known to be effective for the removal of this type of dyes from 
polluted water. Adsorption is considered to be competitive and 
economically cost effective and efficient process for removal of dyes 
7 
and heavy metals. Therefore, in recent years, a considerable number 
of studies have investigated into low cost and efficient alternative 
materials such as clay, diatomite, zeolite. In the present study, the 
adsorption of AB dye onto Vietnam diatomite has demonstrated. 
Catalytic Wet Air Oxidation (CWAO) is an efficient and 
promising oxidative pollution removal process that has been proved 
successful in the research on wastewater treatment. However, the 
CWAO usually requires rather critical conditions including high 
pressure and temperature, and the implementation of this technology 
is not cost-effective. The process of catalytic wet peroxide oxidation 
(CWPO) has provided an alternative for the treatment of wastewater 
with high-poisonous organic compounds. In the study, the 
incorporation of manganese and iron oxides into a diatomite to form 
Fe-Mn binary oxides diatomite was studied. Fe-Mn binary oxides 
diatomite as a Fenton-like catalyst was tested for CWPO of phenol. 
Anodic stripping voltammetry (ASV) is a useful 
electrochemical method for detecting trace metals because of its 
wide linear dynamic range and low detection limit which results 
from a pre-concentration step performed directly in the voltammetric 
cell. In this study, the preparation of MPTMS modified diatomite 
was demonstrated. The effects of thermal treatment of diatomite and 
the humidity of diatomite on MPTMS functionalization and the 
possible proposed mechanisms of MPTMS grafting diatomite surface 
were discussed. The MPTMS-diatomite was used to modify 
electrode for simultaneous determination of Pb(II) and Cd(II) in 
aqueous solution by differential pulse anodic stripping voltammetry 
method (DP-ASV) was also studied. 
8 
CHAPTER 2. AIMS, CONTENTS AND EXPERIMENTAL 
METHODS 
2.1.AIMS 
The aim of this study was modification of Phu Yen diatomite 
by organic or inorganic group to obtain modified diatomite with high 
activity of catalyst and adsorption. 
2.2 . CONTENTS 
2.1. Physical chemistry characterization of Phu yen diatomite and its 
application to dye removal. 
2.2.3-mercaptopropyltrimethoxysilane modified diatomite: 
preparation and application for voltammetric determination of Lead 
(II) and Cadmium (II) 
2.3. Synthesis of Fe-Mn binary oxides diatomite and Catalytic wet 
peroxide oxidation of phenol solution 
2.3. RESEARCH METHODS 
2.3.1. Physical and chemistry methods 
- X-ray diffraction method (XRD), Scanning Electron Microscopy 
(SEM), Transmission electron microscopy (TEM),Energy dispersive 
X-ray (EDX ), Nitrogen adsorption/desorption isotherms, Diffuse 
reflectance ultraviolet visible Spectroscopy (UV - Vis), High 
performance liquid chromatography (HPLC), Methods of analysis 
hydroperoxide, Methods of statistical analysis 
CHAPTER 3. RESULTS AND DISCUSSION 
3.1. Physical chemistry characterization of Phu yen diatomite 
and its application to dye removal 
Table 1. Chemical composition of diatomite analyzed by EDS 
Oxide Al2O3 SiO2 TiO2 Fe2O3 Others 
%, wt 20.72 68.35 0.92 9.21 0.80 
9 
Figure 1. FTIR spectrum (a) and nitrogen adsorption/desorption 
isotherms (b) of diatomite. 
The sample of diatomite was mainly formed by centric type 
frustules which were characterized by notable pores as discs or as 
cylindrical shapes indicating that there is a good possibility for dyes 
to be adsorbed into these pores. The chemical analysis by EDS 
(Table 1) showed that silica represents the major composition (68 % 
wt) and metallic oxides contribute to the rest. 
FTIR analyses were performed in the range 400 - 4000 cm
-1
 as 
shown in Figure 1. The bands at 3695, 3622 and 2858 are attributed 
to the free silanol group (Si–O–H) and the band at 1639 cm-1 
corresponds to H–O–H bending vibration of water. The bands at 
1153 and 1022 are assigned to the siloxane (–Si–O–Si–) group 
stretching and the 914 cm
-1
 band represents Si–O stretching of 
silanol group. The absorption peaks around 528 and 443 cm
-1
 are 
attributed to the Si–O–Si bending vibration. 
Figure 1b shows the nitrogen adsorption/desorption isotherm 
of diatomite. The diatomite with BET surface area around 51 m
2 
g
-1
and pore volume of 0.0952cm³ g
-1
 is rather higher than those of 
reported diatomite. The present diatomite, which is composed of 
500 1000 1500 2000 2500 3000 3500 4000
0
20
40
60
80
100
T
ra
n
sm
is
si
o
n
 (
%
)
Wavelength (cm-1)
3695
3622
2858
1639
11531022
914
798
690
528
443
3421
(a)
0.0 0.2 0.4 0.6 0.8 1.0
10
20
30
40
50
60
70
V
o
lu
m
e
 (
c
m
3
g
-1
)
p/p
0
 (relative pressure)
 Adsorption
 Desorption
(b)
(a) 
10 
amorphous silica, has properties such as high porosity and high 
surface area indicating a potential absorbent for adsorption. 
Table 2. The isotherm parameters of Langmuir and Freundlich 
models at various concentrations from 400 -1400 mg L
-1
C 
(mg L-1) 
Langmuir model Freundlich model 
qmom KL R
2 RL p 1/n Kf qm R
2 p 
400 357.1 0.0244 0.955 0.0930 0.000 0.429 34.2607 447.3 0.975 0.000 
500 416.7 0.0123 0.947 0.1402 0.001 0.480 24.2060 476.5 0.987 0.000 
600 526.3 0.0098 0.957 0.1450 0.000 0.478 27.1669 578.8 0.978 0.000 
800 625.0 0.0046 0.968 0.2132 0.000 0.499 20.5672 579.0 0.991 0.000 
900 666.7 0.0033 0.975 0.2507 0.000 0.494 19.4608 560.1 0.977 0.000 
1200 625.0 0.0020 0.986 0.3431 0.000 0.541 22.7250 539.3 0.961 0.001 
1400 625.0 0.0021 0.946 0.2528 0.001 0.379 30.7288 477.5 0.931 0.002 
As can be seen in Table 2 both models have the very close to 
coefficients of determination (R
2
) and favorable characteristic 
parameters (i.e. RL for Langmuir isotherm and 1/n for Freundlich 
isotherm). These results confirmed that the equilibrium data of AB 
adsorption onto the diatomite could be well fitted by the two 
adsorption isotherm models. The high correlation to both Langmuir 
and Freundlich isotherms implies a monolayer adsorption and the 
existence of heterogeneous surface in the adsorbents, respectively. 
For Langmuir model, the KL was known as equilibrium 
constant which should be constant at specified temperature. The qmon 
is the maximum monolayer adsorption capacity which is thought to 
be specified for each absorbent. However, the data show that the KL 
and qmon are not constant at specified temperature but tend to increase 
as the initial concentration increases. In similar manner, the 
parameters of Freundlich model were also varied monotonically with 
the increase in initial concentration in the range of 400-900 mg L
-1
. 
11 
In the range of initial concentration from 400-900 mg L
-1
, the qmon 
and qm are as a function of initial concentration. Pair sample t-test 
were conducted to compare the difference of qm and qmom. Since p-
value is larger than 0.05 significant level the difference between the 
average value of qm (M = 518.0 ± 13.2 mg g
-1
) and the average value 
of qmom (M = 528 ± 62 mg g
-1
) is not statistically significant (t(4) = - 
0.269, p = 0.801). It means the value calculated from both isotherm 
models is statistically similar. The data of maximum adsorption 
capacity shows that diatomite possesses very high capacity of dye 
adsorption compared to other minerals as adsorbents. 
The large and positive value of H0 indicates that adsorption is 
endothermic process and chemical sorption by nature. The positive 
value of S0 indicates the increasing randomness at the solid–liquid 
interface during the adsorption of AB molecules on the diatomite 
.The negative values of Gibbs free energy
for AB adsorption on 
diatomite, Go, the more negative at higher temperature, which 
implies that the spontaneity increases with the increase in the 
temperature. As the Gibbs free energy change is negative 
accompanied by the positive standard entropy change, the adsorption 
reaction is spontaneous with high affinity. Based on the values of 
ΔH, the suggest that the AB adsorption using diatomite probably 
involved a chemical mechanism. 
In the present paper, the diffusion kinetics was studied by 
using Webber’s model. Because the plots of this model often have a 
multi-linear nature, and in general, the graphical method is employed 
to analyze the data in which the linear segments are determined 
visually. These results strongly suggests that the AB adsorption on 
diatomite are controlled by film diffusion or chemical reaction 
12 
control the adsorption rate (e.g., surface adsorption and liquid film 
diffusion) instead of intraparticle diffusion 
 In order to determine the rate-limiting step, kinetic models 
such as pseudo first-order, and pseudo second-order equation were 
employed to evaluate the experimental data. The R
2
 could be used to 
compare pseudo first-order and pseudo second-order models for the 
goodness of fit because both models have the same parameters and 
experimental points. For initial concentration from 200 to 400 the 
experimental points of the pseudo-second-order kinetic model 
reflected high correlation coefficients (R
2 
= 0.804 - 0.999) and qe,cal 
values agreed with the value qe,exp indicating that the adsorption may 
be governed by a pseudo-second-order mechanism. This suggests 
that the rate-limiting step is a chemical adsorption which might be 
involved the formation of covalent bonds between AB molecules and 
diatomite through enabled sharing or exchange of electrons. A 
chemisorption mechanism only allows for a monolayer adsorption, 
which is in good agreement with Langmuir model that describes 
well the equilibrium adsorption data. The pseudo-second order 
kinetic rate coefficient decreases from 0.040 to 0.009 mg g
-1
 min
-1
when the initial AB concentration increase from 150 to 600 mg L-1. 
This behavior was observed by various authors. This could be 
attributed to the fact that increasing the dye concentration might 
reduce the diffusion of dye molecules in the boundary layer and 
enhance the diffusion in the solid. 
3.2. Synthesis of Fe-Mn binary oxides diatomite and catalytic wet 
peroxide oxidation of phenol solution 
 (a) 
13 
Figure 2. TEM observation (a) and PXRD (b) of FM-diatomite 
prepared at pH 6. 
TEM observations of FM-diatomite prepared at pH shows that 
many pores around several nanometers can be seen on the surface of 
diatomite suggesting that a porous structure still remains; even the 
surface of diatomite was covered by Mn-Fe binary oxides; PXRD 
patterns of FM-diatomite were also similar to those of raw diatomite 
suggesting that Fe-Mn-binary oxides in nanoscales particles were 
dispersed highly on diatomite surfaces. 
 For XPS spectra the bending energies of 723 and 709 eV 
corresponding to Fe
3+
 and Fe
2+
 and those of 648 and 640 eV for Mn
3+ 
and Mn
4+
 were observed. pH value seems to affect significant 
oxidation state. The Fe
2+
 was oxidized partly to Fe
3+
 while the 
majority of Mn
6+
 was reduced to Mn
3+
 and a minority to Mn
4+
. 
10 20 30 40 50 60 70
20
40
60
80
100
120
In
te
n
s
it
y
 (
c
p
s
)
2 theta (degree)
(b)
14 
Figure 3. XPS Fe2p3/2 and Mn2p3/2 core level of FM-diatomite. 
pH 6 
pH 6 
pH 4 p
pH 4 
pH 
9 
pH 9 
pH 7 p
H 
pH 9 
pH 7 
15 
The reaction occurred rather deeply at pH = 6 in which around 91 % 
Fe
2+
 was converted into Fe
3+
. 
The molar ratio of Mn to Fe around 0.1 (a range of 0.09-0.14) 
for FM-diatomite compared with an initial molar ratio of 0.3 seems 
to be unchangeable despite pH change . 
Table 4. The elemental compositions of Fe-Mn/D 
Catalyst Al (%) 
Si 
(%) 
Ti 
(%) 
Mn 
(%) 
Fe 
(%) 
Molar ratio 
Mn:Fe 
Fe-Mn/D61 11.38 77.83 0,57 0.70 7.58 0.09 ± 0.034 
Fe-Mn/D63 10.48 76.36 0.39 1.31 9.36 0,14 ± 0.019 
Fe-Mn/D65 9.33 75.41 0.37 0.95 12.38 0,08 ± 0.04 
The obtained FM-diatomite as Fenton-like catalyst was tested 
for CWPO of phenol. FM-diatomite prepared at an initial pH of 6 
exhibited the highest catalytic activity for total phenol oxidation in 
comparison with others. The total degradation of phenol and other 
main intermediates (catechol and hydroquinone) was obtained under 
50 minutes. The combination of both iron oxide and manganese 
oxide into diatomite has a drastic impact on catalytic performance. 
Total conversion of phenol and dihydroxyl benzene were obtained 
after only 50 minutes of reaction time. 
The present Fe-Mn binary oxides modified diatomite performs 
a promising catalytic activity for total phenol oxidation in mild 
conditions. 
3.3. 3-mercaptopropyltrimethoxysilane modified diatomite: 
preparation and application for voltammetric determination of 
Lead (II) and Cadmium (II) 
Figure 1 shows XRD patterns of diatomite calcinated at 100 
°C, 300 °C, 500 °C and 700 °C. The raw diatomite (dried at 100 °C) 
consisted of mainly amorphous structure. At 300 °C, the 
16 
characterized peak of quartz was observed indicating that the silica in 
amorphous form was crystallized to form quartz crystallites. The 
diffraction intensity of quartz phase increases with an increase in 
calcinated temperature. 
Thermal analysis of diatomite functionalized by MPTMS at 
dried conditions show that the DSC and TG curves were similar for 
all samples. The exothermic peak, together with no any ignition loss 
at around 300°C should be attributed to the crystallization of 
amorphous silica to quartz. The result also agrees with the fact that 
the crystallization of quartz was detected at 300°C by XRD analysis. 
However, even for sample 300D-700D which was calcinated at 
300°C for 3hours before functionalization, this peak is also observed. 
This can be explained by a reconstruction to form amorphous silica 
during silane treatment. The exothermic peaks and ignition losses at 
around 520°C should be assigned to the decomposition and oxidation 
of MPTMS incorporated into diatomite. The hydrolysis of MPTMS 
into silanols occurs in water. The silane incorporated into diatomite 
is due to the condensation of silanols of diatomite and silane. In this 
work, it is suggested that the silane is strongly bonded to diatomite 
surface as silane is not removed by washing chloroform, dispersed in 
water, or heated at 100 °C. Then the amount of MPTMS 
incorporated into diatomite is proportional to the amount of ignition 
loss in range 100 °C to 700 
o
C calculated by TG. Therefore, the 
ignition loss (100-700 
o
C) was assumed as MPTMS loading to 
diatomite. The amount of MPTMS seems to increase slightly from 
5.6% to 6.3% for D100 and D300 and decrease remarkably with a 
17 
further increase in thermal treatment temperature (see Table 2). 
 TG-DSC diagrams of functionalized diatomite under humid 
conditions show that the curves were similar to all samples. The 
thermal behaviors were also similar to the case of samples under 
dried conditions except for ignition loss together exothermic peaks at 
around 300°C observed for most cases. From Table 2, the amount of 
MPTMS incorporated into diatomite seems to be higher in the 
samples in dried conditions and the diatomite thermal treated at 100 
°C -300 °C is most favorable for MPTMS functionalization. 
Table 2. The amount of MPTES incorporated into diatomite 
estimated by TG 
Dried condition Humid condition 
100D 300D 500D 700D 100H 300H 500H 700H 
Ignition loss at 
ca. 100°C (%) 
5.67 0.00 0.00 0.00 3.71 2.45 0 0.00 
Ignition loss at 
ca. 300°C 
(%) 
0.00 0.00 0.00 0.00 0.00 2.02 1.31 0.80 
Ignition loss at 
ca.520°C (%) 
5.44 3.76 2.55 1.82 6.99 5.69 1.70 0.97 
Total ignition 
loss >100°C 
(%) 
5.44 3.76 2.55 1.82 6.99 7.71 3.01 1.77 
There are two types of silanols, isolated and H-bonded silanols 
on diatomite surface . At room temperature, both types of silanols are 
H-bonded with water. With an increase in temperature, dehydration 
occurs. At first, the desorption of water and the exposure of more and 
more isolated silanols were favorable for the silanols of silane 
adsorbing onto diatomite surfaces. This accounts for the fact that the 
high amount of MPTMS was incorporated into diatomite cacinated 
in the range of 100 - 300°C. The calcinated diatomite exposed to 
water-saturated medium could create more silanols, which 
18 
consequently adsorb MPTMS more strongly than the diatomite under 
dried conditions. As the temperature increases to more than 300°C, 
the silanols begin to condense to form siloxane bridges that are not 
favorable for coupling reactions. In the case of hydrated diatomite, 
two decompositions of silane incorporated into diatomite are 
observed at around 320°C and 520
o
C in TG- DSC curves instead of 
only 520°C in the case of the dried diatomite. Based on the results 
reported by Johansson et al. about adsorption of silane coupling 
agents onto kaolin surfaces, we suggest two possible mechanisms by 
which MPTMS react with diatomite surface. The first proposed 
mechanism involves four steps: 
(1) MPTMS was converted to the reactive silanol formed by 
hydrolysis 
SH-(CH2)3Si(OCH3)3 + 3H2O  SH-(CH2)3Si(OH)3 + 
3HOCH3 
(2) Condensation of the organosilan to oligomers 
(3) Formation of hydrogen bonds between the oligomers and the OH 
groups on the diatomite surface 
Si
OH
HO
SH
Si
OH
SH
O OH
n
n + 1 SH-(CH2)3Si(OH)3 + n H2O
19 
(4) Finally, a covalent linkage is formed under drying 
The second proposed mechanism involves only two steps: 
(1) MPTMS is converted to the reactive silanol form by hydrolysis 
(R: CH2-CH2-CH2-SH; X: OCH3) 
SH-(CH2)3Si(OCH3)3 + 3H2O  SH-
(CH2)3Si(OH)3 + 3HOCH3 
 (2) The silanol groups react directly with hydroxyl groups on the 
diatomte surface 
It is assumed that silane incorporated in diatomite by the first 
mechanism is more stable than one by the second mechanism. It 
means that it will be decomposed at higher temperature with the 
silane incorporated by the latter. For silane treatment with dried 
diatomite, the only ignition loss and exothermic peak at around 
520°C could be assigned to the decomposition of silane grafting 
through the first mechanism. When diatomite is hydrated before 
silane treatment, the incorporation of MPTMS might occur through 
both mechanisms. Then, ignition loss and exothermic peak at around 
300°C in TG-DSC for 100-700H might be assigned to decomposition 
of silanes in which MPTMS is grafted through the second 
20 
mechanism. 
3.2. Voltammetric characteristics of Cd(II) and Pb(II) on 
MPTMS-diatomite/GCE and limit of detection (LOD) 
 The thiol group binds Cd(II) and Pb(II) to surface complexes 
because of its high affinity to metal ions. The metals were 
accumulated in electrode due to reduction reaction, and then 
dissolved in solution through oxidation reaction. The electrochemical 
reaction occurred as follows: 
 Complex step 
 Accumulation step 
 Stripping step 
Electrochemical process of Pb(II) and Cd(II) on electrodes modified 
by MPTMS-diatomite was illustrated by Figure 4. 
Figure 4. Proposed representation of preconcentration and stripping 
mechanism of Cd(II) and Pb(II) on MPTMS-diatomite/GCE. 
21 
Figure 5 shows the DP-ASV of Cd(II) and Pb(II) with 
different concentrations. An obvious anodic peak at around -0.82 
and at -0.61 V. These observations can be attributed to the 
oxidation species of Cd(II) and Pb(II), respectively that have 
been deposited into the surface of MPTMS-diatomite/GCE 
during reduction processes. The intensity of anodic peak 
increased with an increase in Cd(II) and Pb(II) concentration 
from 20 to 300 ppb. A calibration plot of the anodic current 
response versus Cd(II) concentration and Pb(II) are presented in 
the insets of Figure 5. The results show that the current peak 
response was linear to the Cd(II) concentration with a R
2
 of 
0.999 in the range of 20-300 ppb and the Pb(II) concentration 
with R
2
 of 0.994 in the range of 20-150 ppb. The limit of 
detection (LOD) was calculated on the basis of (3.3 Sa/b) criteria 
(Sa represents the standard deviation of the intercept while b 
represents the slope of the calibration curve defined for the LOD 
concentration range (20-300 ppb)). The LOD for Cd(II)
 and 
Pb(II) calculated was 15.9 ppb and 6.9 ppb, respectively. 
A comparison of MPTMS-diatomite-GCE developed 
with other GCEs modified with other nanoparticles for 
simultaneous determination of Pb(II) and Cd(II) shows that the 
GCE modified with MPTMS-diatomite developed in the present 
work shows good LOD compared with other similar 
materials/GCE reported previously in the literature. This 
indicates that MPTMS-diatomite is a potential material for 
electrode modifiers. 
22 
Figure 5. The DP-ASV voltammograms of Cd(II) and Pb(II): 
Conditions: the concentrations in the range of 20 to 300 ppb of the 
Cd(II) and Pb(II); other conditions: 0.1 M ABS (pH 4.5); Eacc = –1.2 
V; tacc = 60 s; pulse amplitude (E) = 50 mV; pulse time = 40 ms; 
potential step = 6 mV; v = 20 mV s
–1
;  = 2000 rpm. (inset (left): a 
plot of stripping peak current with concentration of Cd(II); inset 
(right): a plot of stripping peak current with concentration of Pb(II)). 
CONCLUSION 
1.The Vietnamese diatomite, which is composed of amorphous 
silica, has high porosity and surface area. It was studied as an 
adsorbent for the removal of AB dye from aqueous solution. Solution 
pH has a significant influence in the adsorption of AB, where the 
capacity of the adsorbents increases with increasing pH from 4.0 to 
11.0. Experimental isothermal data were fitted well to both Langmuir 
and Freundlich model in the large range of 400-1400 mg L
-1
. The 
U(V)
-0.4-0.5-0.6-0.7-0.8-0.9-1
j(
u
A
)
3.6
3.4
3.2
3
2.8
2.6
2.4
2.2
2
0 100 200 300 400
0.0
0.4
0.8
1.2
I
P
,C
d
 (
A
)
CCd(II), ppb
0 40 80 120 160
0.0
0.3
0.6
0.9
1.2
I
P
, 
P
b
, 
(
A
)
CPb(II), (ppb)
23 
maximum adsorption capacity, qm = 518.0 ± 13.2 mg g
-1
, calculated 
from Freundlich equation and qmom = 528 ± 62 mg.g
-1
 calculated 
from Langmuir equation are statistically similar. However, 
parameters of these equations were effected remarkably on the initial 
AB concentrations. Both value of qmom and qm increases with the 
increasing initial AB concentration. The free energy of AB 
adsorption on diatomite is more negative at higher temperature, 
which demonstrates that the spontaneity increases with the rise of 
temperature. Piecewise linear regression as a statistical method for 
the analysis of experimental adsorption data by the Webber’s 
intraparticle-diffusion models provide the time periods for each 
diffusion and results show that the AB adsorption onto diatomite was 
film diffusion controlled. The rate-limiting step is effected on the 
initial AB concentration. The adsorption processes obey the pseudo-
second-order process in the range of 150-400 mg L
-1
 and the pseudo-
first order one in range of 400-900 mg L
-1
. 
2. Mn-Fe binary oxides have been homogeneously incorporated into 
diatomite by means of redox reaction of KMnO4 and FeSO4. The 
redox products consist of multiple oxidation state oxides (Mn
3+
, 
Mn
4+
, Fe
3+ 
and Fe
2+
. The binary oxides dispersed highly into the 
diatomite surface, forming a Mn-Fe oxides thin layer covering the 
diatomite surface. Oxide thin layer possesses approximate 1:10 
molar ratio of Mn/Fe in composition regardless of the samples 
prepared in different pH media. The Fe-Mn binary oxides were 
tested as catalysts for CWPO of phenol. The catalyst demonstrated 
well in the aqueous medium with a wide range of pHs 4.7-7. The 
phenol (1000 mg L
-1
) and intermediates of dihydroxyl benzene were 
degraded completely after 50 minutes. The high catalytic activity for 
24 
phenol oxidation is due to catalytically synergized properties of iron 
and manganese oxide highly dispersed on pores of diatomite. Fe-Mn 
binary oxides modified diatomite materials are promising catalysts 
for complete oxidation of phenol with hydrogen peroxide in aqueous 
solutions. 
3. The effects of functionalization conditions on the loading of 
MPTMS in diatomite were investigated. Diatomite from Phu Yen 
consists of mainly amorphous structure. The crystallization to form 
quartz occurs at more than 300°C. The diatomite with thermal 
treatment in the range of 100-300°C is favorable for 
functionalization. The humidity of diatomite also affects the 
functionalization level significantly. The MPTMS loading around 
9.8% peaked as diatomite was hydrated for 3hours. We have 
demonstrated that MPTMS-diatomite is useful to prepare chemically 
modified glassy carbon electrodes. The electrode modified by 
MPTMS-diatomite exhibited potential for the use of the 
simultaneous determination of cadmium and lead by DP-ASV. The 
stripping peak currents of the two metal ions had linear relationships 
with the concentrations in the range of 20 to 300 ppb (i (µA) = ‒
0.0202 + 0.0036 C (ppb), R
2
 = 0.9997) for Cd(II) and 20 to 150 ppb 
(i (µA) = ‒0.1179 + 0.0069 C (ppb), R2 = 0.9943) for Pb(II). The 
LOD for Cd(II) and Pb(II) calculated was 15.9 ppb and 6.9 ppb. 
25 
List of articles related to dissertation 
1. Bui Hai Dang Son, Vo Quang Mai, Dang Xuan Du, Le Cong Nhan, Tran Thai 
Hoa, Dinh Quang Khieu (2013), “Freundlich and Langmuir adsorption isotherms 
for removal astrazon black AFDL dye onto Phu Yen diatomite from aqueous 
solution”, Vietnam Journal of chemistry, Vol. 59(2AB), 296-301. 
2. Bui Hai Dang Son, Vo Quang Mai, Dang Xuan Du, Le Cong Nhan, Tran Thai 
Hoa, Dinh Quang Khieu (2013), “A kinetic study on astrazon black AFDL dye 
adsorption onto Phu Yen diatomite”, Vietnam Journal of chemistry, Vol. 51(3AB), 
pp. 1-5. 
3. Bui Hai Dang Son, Vo Quang Mai, Dang Xuan Du, Le Cong Nhan, Tran Thai 
Hoa, Dinh Quang Khieu (2013), “Study on synthesis of mercaptopropyl-
functionalized diatomite”, Journal of Catalysis and Adsorption, vol 2, pp. 136-141. 
4. Bui Hai Dang Son, Vo Quang Mai, Dang Xuan Du, Le Cong Nhan, Phan Thi Chi, 
Dinh Quang Khieu (2014), “Mn-Fe binary oxide incorporated into diatomite: an 
efficient catalyst for phenol oxidation reaction”, Journal of Science and Technology, 
52(5B), pp. 490-495. 
5. Bui Hai Dang Son, Vo Quang Mai, Dang Xuan Du, Le Cong Nhan, Dinh Quang 
Khieu (2015), “Study on the cadimium adsorption over 3-
mercaptopropymethosilane modified diatomite from aqueous solution”, Vietnam 
Journal of chemistry, vol 53(3E12), pp. 238-241. 
6. Bui Hai Dang Son, Nguyen Thi Ngoc Trinh, Nguyen Dang Ngọc, Dinh Quang 
Khieu (2015), “A comparison of physicochemical properties of Phu Yen diatomite 
and Merck diatomite”, Journal of Catalysis and Adsorption, vol 4(4A), pp. 115-119. 
7. Bui Hai Dang Son,Vo Quang Mai, Phan Thi Chi, Nguyen Thi Ngoc Trinh, Dang Xuan 
Du, Le Cong Nhan, Dinh Quang Khieu (2014), “Study on synthesis of Mn-Fe @ 
diatomite”, Journal of Catalysis and Adsorption, 3, pp. 127-133. 
8. Bui Hai Đang Son, Mai Xuan Tinh, Tran Thanh Minh, Nguyen Dang Ngoc (2016), 
“Arsenite and arsenate adsorption by Fe-Mn binary oxides modified diatomite”, Hue 
University Journal of Science, vol 3, pp.117-124. 
9. Bui Hai Dang Son, Vo Quang Mai, Dang Xuan Du, Nguyen Hai Phong, Dinh 
Quang Khieu (2016), “A Study on Astrazon Black AFDL Dye Adsorption onto 
Vietnamese Diatomite”, Journal of Chemistry, pp. 1-11; 
dx.doi.org/10.1155/2016/8685437. (I.F. = 0.996, ISSN = 2090-9071). 
10. Bui Hai Dang Son, Vo Quang Mai, Dang Xuan Du, Nguyen Hai Phong, Nguyen 
Duc Cuong, Dinh Quang Khieu (2016), “Catalytic wet peroxide oxidation of phenol 
solution over Fe-Mn binary oxides diatomit composite”, Journal of Porous 
Material,pp.1-11;doi 10.1007/s10934-016-0296-7. (I.F. = 1.4, ISSN: 1380-2224). 
11. Bui Hai Dang Son, Dinh Quang Khieu, Vo Thi Thanh Chau, Pham Dinh Du, 
Nguyen Hai Phong, Nguyen Thi Diem Chau (2017), “3-
mercaptopropyltrimethoxysilane modified diatomite: preparation and application 
for voltammetric determination of lead (II) and cadmium (II)” Journal of 
Chemistry; pp.1-10, doi.org/10.1155/2017/9560293. (I.F. = 0.996, ISSN = 2090-
9071). 
26 
            Các file đính kèm theo tài liệu này:
 tom_tat_luan_an_nghien_cuu_bien_tinh_diatomit_phu_yen_ung_du.pdf tom_tat_luan_an_nghien_cuu_bien_tinh_diatomit_phu_yen_ung_du.pdf