Đã lựa chọn phương pháp chẩn đoán trên cơ sở mô hình để xây dựng mô hình chẩn đoán phát hiện lỗi hệ thống có ĐKĐT trên xe ô tô nói chung và cụ thể là hệ thống VSC trên xe Toyota Camry. Đã ứng dụng hệ suy diễn mờ T-S để mô tả hệ thống VSC trên ô tô, trong đó đã sử dụng các hàm biểu diễn quan hệ vật lý giữa các yếu tố trong hệ thống, giảm bớt khối lượng thống kê dữ liệu so với phương pháp sử dụng hệ suy diễn mờ Mamdani. 2. Xây dựng mô hình chẩn đoán phát hiện trạng thái làm việc có lỗi của hệ thống VSC trên xe Toyota Camry, bao gồm các thành phần: bộ thu thập dữ liệu thông tin chẩn đoán từ các cảm biến góc quay vành lái, tốc độ ô tô, gia tốc ngang, tốc độ góc quay thân xe; hệ suy diễn mờ mô tả hệ thống VSC được chẩn đoán; bộ quan sát trạng thái UIO được lập trình để đánh giá lượng sai lệch làm căn cứ để phát hiện trạng thái làm việc có lỗi của hệ thống VSC trên xe Toyota Camry. 3. Kết quả các thí nghiệm về đánh giá TTKT của hệ thống VSC xe Toyota Camry (được trình bày ở mục 4.3) đã chứng tỏ mô hình chẩn đoán TTKT hệ thống VSC do NCS nghiên cứu và đề xuất làm việc tốt, hiệu quả. 4. Đã thiết kế, chế tạo được bộ thu thập dữ liệu của các cảm biến góc quay vành lái, tốc độ ô tô, gia tốc ngang, tốc độ góc quay thân xe gửi về ECU thông qua đầu nối chẩn đoán DLC3 và đưa trực tiếp vào chương trình chẩn đoán lỗi được cài đặt trên máy tính.
27 trang |
Chia sẻ: tueminh09 | Ngày: 27/01/2022 | Lượt xem: 628 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Tóm tắt Luận án Xây dựng mô hình chẩn đoán trạng thái kỹ thuật hệ thống VSC trên ô tô, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
c.
Hệ thống động học tuyến tính được mô tả dưới dạng không gian trạng thái:
x t Ax t Bu t
y t Cx t
( ) ( ) ( )
( ) ( )
= +
=
Ở đây x là biến trạng thái, với các cấu trúc và tham số A, B, C của mô hình hệ
thống là đã biết, (trong công thức (1.9), thành phần D được bỏ qua nhằm phân tích cấu
trúc chung của bộ quan sát mà không làm ảnh hưởng đến tính tổng quát chung). Cấu
trúc bộ quan sát trạng thái trên Hình 1.16 trên cơ sở các biến vào, biến ra đo được có
dạng:
ˆ ˆ ˆ( )x Ax L y Cx Bu= + − +
Trong đó xˆ ∈Rn là véc tơ trạng thái được ước lượng, L∈R là hệ số của bộ
quan sát (observer gain). Kết hợp 2 phương trình (1.9 và 1.10) tính được sai số ước
lượng ˆe x x= − và thu được phương trình vi phân của sai số e:
( )e A LC e= −
Theo lý thuyết ma trận [49,
25] nếu tất cả các giá trị riêng của ma
trận [A-LC] là xác định thì sai số e sẽ
tiệm cận tới 0 và x→ xˆ . Như vậy, việc
tính toán thiết kế bộ quan sát đưa về
việc xác định hệ số L. Có nhiều
phương pháp xác định L, thường sử
dụng là phương pháp đổi cực (pole
placement) hoặc phương pháp LQR
(Linear Quadratic Regulator) [25].
Hình 1.17 trình bày sơ đồ ghép nối song song giữa bộ quan sát với hệ thống
thực.Nếu mô hình mô tả hệ thống là chính xác, giá trị tính toán của biến xˆ sẽ bằng giá
-5-
trị của biến trạng thái trong hệ thống thực. Tuy nhiên, do mô hình có sai khác so với hệ
thống thực nên hiệu (x- xˆ ) sẽ khác 0 và do đó trị số ŷ tính toán từ bộ quan sát sẽ khác
với giá trị y đo được ở đầu ra của hệ thống. Ký hiệu e là sai số giữa y và ŷ: e = y- ŷ.
Bằng cách điều chỉnh (tính toán) trị số của hệ số L của bộ quan sát có thể làm cực tiểu
giá trị của sai số e. Khi đó bộ quan sát sẽ trở thành mô hình biểu diễn tốt nhất hệ thống
thực. Khi đó, lượng sai lệch tính toán r được tính theo công thức: ˆ= −r y y
Bộ quan sát trạng thái là công cụ toán học được ứng dụng nhằm xấp xỉ tốt nhất
giá trị đầu ra từ bộ quan sát với giá trị đầu ra đo được từ hệ thống thực. Bộ quan sát
được thiết kế để mô tả hệ thống thực trong trường hợp có xét đến ảnh hưởng các nhiễu
cũng như các thông tin đầu vào bị thiếu. Tuy nhiên, điều kiện cần để có thể thiết kế bộ
quan sát là tính tuyến tính của hệ thống được mô tả. Trong khi đó, nói chung các hệ
thống có ĐKĐT trên ô tô là các hệ thống phi tuyến. Để giải quyết vấn đề này, trong
luận án, NCS đã sử dụng mô hình T-S để mô tả hệ thống thực nhờ đó hoàn toàn có thể
sử dụng công cụ bộ quan sát cho mỗi mô hình tuyến tính địa phương (mô hình con)
trong hệ suy diễn T-S chung.
1.3. Hệ thống VSC trên ô tô
- Nhiệm vụ của hệ thống VSC và các tên gọi của hệ thống
Hệ thống VSC (Vehicle Stability Control) làm nhiệm vụ giữ ổn định quỹ đạo
cho xe ô tô khi đi trên mặt đường nghiêng ngang, đường vòng. Khi xe chuyển động
trên đường vòng, do tác dụng của lực ly tâm tạo các lực ngang tác dụng lên xe. Ảnh
hưởng các lực ngang càng lớn khi tốc độ xe đi trên đường vòng lớn, mặt đường
nghiêng hoặc bán kính cong quá nhỏDưới tác dụng của lực ngang, các bánh xe cầu
trước, cầu sau bị biến dạng ngang và trượt ngang cục bộ làm sai lệch quỹ đạo chuyển
động trên đường vòng của xe. Trường hợp các bánh xe cầu sau bị trượt ngang nhiều
hơn bánh xe trước dẫn đến hiện tượng quay vòng thừa, trường hợp ngược lại, xe bị
quay vòng thiếu. Hệ thống VSC tự động tác động các lực phanh phù hợp ở mỗi bánh
xe (bên trong và bên ngoài đường vòng, bánh xe trước và bánh xe sau) để tạo mô men
ổn định duy trì quỹ đạo chuyển động đúng của xe đồng thời tự động điều chỉnh chế độ
tải động cơ (giảm ga) cho phù hợp với tình trạng phanh và tốc độ ô tô.
- Đặc điểm chẩn đoán phát hiện lỗi trong hệ thống VSC
Hệ thống VSC là hệ thống có ĐKĐT, các lỗi xảy ra có thể có nguyên nhân từ
phần ĐKĐT như lỗi các cảm biến, mạch truyền dẫn tín hiệu, các cơ cấu chấp hành
van điện từ...cũng có thể do các nguyên nhân từ các phần cơ khí như áp suất lốp không
đều, lỗi trong hệ thống treo trước, sau...Đặc biệt trạng thái lỗi của hệ thống còn liên
quan đến quan hệ giữa các thông số vận tốc xe, góc quay bánh xe dẫn hướng với các
thông số gia tốc ngang, tốc độ góc quay thân xe. Mối liên hệ này là phi tuyến. Từ các
phân tích trên cho thấy việc chẩn đoán TTKT, phát hiện lỗi trong hệ thống VSC không
thể thực hiện bằng các phương pháp chẩn đoán hệ thống cơ khí thông thường.
Việc xây dựng mô hình chẩn đoán lỗi cho hệ thống VSC sẽ cung cấp cho ta
phương pháp chung để chẩn đoán TTKT, phát hiện lỗi trong các hệ thống có ĐKĐT
khác trên ô tô.
1.4. Một số công trình nghiên cứu trong lĩnh vực chẩn đoán
* Một số công trình ở nước ngoài nghiên cứu chẩn đoán bằng logic mờ
- Các nghiên cứu của J. Gertler [19], R. J. Patton, P. M. Frank, R. N. Clark [39]
đã đặt nền móng, trình bày các khái niệm cơ bản của lý thuyết chẩn đoán kỹ thuật
-6-
(phân loại các lỗi, khái niệm lượng sai lệch - Residual).
- Các nghiên cứu của Ding SX. [12], Isermann R. [16,17,18] đã nghiên cứu
phân tích các phương pháp phát hiện và chẩn đoán lỗi cho các hệ thống có điều khiển
điện tử. Phương pháp chẩn đoán lỗi trên cơ sở mô hình toán học được nghiên cứu cùng
các phương pháp ước lượng tham số và xây dựng các bộ quan sát để phát hiện lỗi cho
trường hợp hệ thống tuyến tính.
Về ứng dụng lý thuyết mờ trong điều khiển và chẩn đoán TTKT ô tô: Các tác
giả D. Ichalal, Benoit M. Isemann [16] công bố công trình nghiên cứu về sử dụng mô
hình TS để chẩn đoán lỗi các cảm biến. Trong các nghiên cứu này đã đưa ra phương
pháp xây dựng mô hình toán học biểu diễn các lỗi của cảm biến và cơ cấu chấp hành
trong HT có ĐKĐT; Các công trình nghiên cứu chẩn đoán lỗi các hệ thống ĐKĐT
trên động cơ bằng các mô hình khác nhau: mô hình Mamdani, hệ suy diễn kết hợp
mạng nơ ron. ; Các tác giả Zahedi E., Gahraveis A.A. trong công trình [51] công bố
các kết quả ứng dụng mô hình chẩn đoán mờ TS để chẩn đoán lỗi hệ thống phanh
ABS. Trong đó tác giả chưa xét được ảnh hưởng của điều kiện chuyển động, các nhiễu
từ mặt đường ảnh hưởng đến quá trình phanh.
Về chẩn đoán lỗi trong hộp số tự động: các tác giả M.Shahab, M. Moavenian
dùng hệ suy diễn T-S xây dựng trên các dữ liệu thống kê; các tácgiả Mo Lian Guang,
Xie Zheng nghiên cứu chẩn doán lỗi hộp số tự động bằng mô hình mạng nơ ron.
* Các công trình nghiên cứu ứng dụng lý thuyết mờ ở Việt Nam
Sử dụng hệ thống logic mờ để giải quyết các bài toán điều khiển, dự báo và
chẩn đoán trong lĩnh vực y tế, thủy lợi, truyền tải điện [1, 8]. Các công trình nghiên
cứu ứng dụng logic mờ Mamdani trong chẩn đoán TTKT động cơ, hệ thống phanh ô
tô, hệ thống treo. Trong lĩnh vực nông lâm nghiệp, tác giả Phạm Văn Lang và cộng sự
đã "Nghiên cứu phương pháp tập mờ đánh giá chất lượng thiết kế - chế tạo nhà lưới
trồng rau, hoa, cây giống" bằng mô hình suy diễn mờ Mamdani; tác giả Đào Chí
Cường trong công trình "Nghiên cứu xây dựng CSDL cho hệ thống chẩn đoán động cơ
diesel dùng trong nông nghiệp, nông thôn Việt Nam" (Luận án TSKT 2011) đã sử
dụng mờ Mamdani để chẩn đoán lỗi phát hiện hư hỏng cho động cơ; tác giả Lê Hùng
Lân và cộng sự nghiên cứu "Tổng hợp điều khiển thích nghi cho hệ thống chống bó
cứng bánh xe ô tô khi phanh trên cơ sở hệ suy diễn" (Tạp chí KH GTVT số 21, trang
72-80). Một số đề tài nghiên cứu chẩn đoán hư hỏng trong hệ thống phanh khí nén trên
ô tô tải dùng logic mờ Mamdani đã được ứng dụng trong công tác sửa chữa trong
nước...Trong khi đó, trên các ô tô hiện đại, theo các thông tin giới thiệu của các hãng
sản xuất, rất nhiều hệ thống như phanh ABS, hệ thống treo điện tử, hệ thống phun
xăng và đánh lửa trên động cơ, điều khiển hộp số tự động đều sử dụng bộ điều khiển
mờ (Fuzzy controller) [10,11]. Trong các hệ thống đó, ngoài chức năng điều khiển còn
tích hợp cả chức năng tự chẩn đoán TTKT và phát hiện hư hỏng.
1.5. Lựa chọn đề tài và mục tiêu nghiên cứu của luận án
Từ các phân tích trên, xuất phát từ nhu cầu xây dựng phương pháp luận cho
chẩn đoán TTKT các hệ thống có ĐKĐT trên ô tô hiện đại làm cơ sở ứng dụng, khai
thác, thiết kế các hệ thống chẩn đoán các hệ thống của ô tô trong nước, NCS đã chọn
đề tài nghiên cứu của luận văn là:
“Xây dựng mô hình chẩn đoán trạng thái kỹ thuật hệ thống VSCtrên ô tô”
Các mục tiêu nghiên cứu cụ thể của luận án gồm có:
1. Nghiên cứu phương pháp chẩn đoán TTKT phát hiện trạng thái làm việc có
-7-
lỗi của các hệ thống có ĐKĐT trên ô tô.
2. Nghiên cứu cơ sở lý thuyết của việc chẩn đoán phát hiện trạng thái lỗi của
các hệ thống có ĐKĐT trên ô tô bằng hệ suy diễn mờ Takagi-Sugeno, bao gồm việc
thiết kế bộ quan sát mờ đối với hệ thống được chẩn đoán và phát hiện trạng thái làm
việc có lỗi của hệ thống thông qua lượng sai lệch giữa trị số đầu ra của bộ quan sát với
trị số đầu ra đo từ hệ thống thực.
3. Xây dựng mô hình chẩn đoán trạng thái làm việc có lỗi của hệ thống VSC
xe Toyota Camry trên cơ sở hệ suy diễn mờ Takagi-Sugeno.
4. Thử nghiệm đánh giá hiệu quả của hệ thống chẩn đoán mờ. Thiết kế chế
tạo bộ thu thập dữ liệu từ ECU trên ô tô để phục vụ cho chẩn đoán phát hiện lỗi hệ
thống VSC trên xe Toyota Camry.
1.6. Kết luận chương 1
Từ các kết quả nghiên cứu và phân tích trong Chương 1, có thể rút ra một số
kết luận sau:
- Đối với các hệ thống có ĐKĐT, NCS định hướng sử dụng phương pháp
chẩn đoán trên cơ sở mô hình. Phương pháp chẩn đoán này hiệu quả và tiết kiệm vì
các lý do:
+ Sử dụng các thông số chẩn đoán trực tiếp trạng thái làm việc của hệ thống
vì vậy đánh giá TTKT hệ thống chính xác, hiệu quả.
+ Để đo đạc các thông số chẩn đoán, không cần bố trí lắp đặt các thiết bi, cảm
biến đo lường mới mà có thể sử dụng ngay tín hiệu ra của các cảm biến trong mạch
ĐKĐT của hệ thống nên vừa tiết kiệm chi phí, thời gian thao tác chẩn đoán.
- NCS chọn phương pháp sử dụng mờ Takagi Sugeno để mô tả hệ thống.
Phương pháp này đã kết hợp được ưu điểm của mô hình toán học (sử dụng các hàm
biểu diễn quan hệ vật lý giữa các yếu tố trong hệ thống, giảm bớt khối lượng thống kê
dữ liệu) với các ưu điểm của mờ T-S (mô tả hệ phi tuyến bằng tập hợp các mô hình
tuyến tính địa phương).
- Quá trình chẩn đoán TTKT gồm hai giai đoạn: phát hiện trạng thái làm việc
có lỗi của hệ thống và xác định vị trí, nguyên nhân gây ra lỗi để khắc phục. Với khuôn
khổ luận án, NCS tập trung nghiên cứu vào phương pháp phát hiện trạng thái làm việc
có lỗi và xây dựng mô hình phát hiện lỗi của hệ thống VSC trên xe Toyota Camry.
- Trên các ô tô hiện đại, khi tiến hành chẩn đoán TTKT, việc đầu tiên phải
làm là chẩn đoán phần ĐKĐT. Mô hình chẩn đoán phát hiện lỗi mà NCS nghiên cứu
được sử dụng trong công việc này. Tuy nhiên, mô hình chẩn đoán phát hiện lỗi này
không có ý nghĩa hoàn toàn thay thế cho các phần chẩn đoán cơ khí thông thường mà
có ý nghĩa bổ sung, hỗ trợ thêm cho công tác chẩn đoán các hệ thống trên ô tô nói
chung.
CHƯƠNG 2: CƠ SỞ LÝ THUYẾT ĐỂ XÂY DỰNG CHẨN ĐOÁN PHÁT
HIỆN LỐI BẰNG HỆ SUY DIỄN MỜ TAKAGI-SUGENO
Lý thuyết mờ nhằm kết hợp hai loại thông tin (các tín hiệu từ các cảm biến và
các kiến thức chuyên môn về hệ thống) vào trong thiết kế, điều khiển hệ thống kỹ
thuật. Nghiên cứu ứng dụng hệ suy diễn mờ để xây dựng mô hình chẩn đoán lỗi là một
trong số mục tiêu chính của luận án, vì vậy cần phải tìm hiểu các đặc điểm, phương
pháp xây dựng và cơ chế vận hành của hệ suy diễn mờ đặc biệt là hệ mờ Takagi-
Sugeno được dùng để xây dựng mô hình chẩn đoán các hệ thống có ĐKĐT trên ô tô
2.1. Hệ suy diễn mờ
-8-
Hình 2.1 trình bày sơ đồ khối hệ suy diễn mờ bao gồm bốn khối chức năng: khối mờ
hóa đầu vào, khối cơ sở tri thức, khối suy diễn logic và khối giải mờ đầu ra.
Khối mờ hóa đầu vào làm nhiệm vụ
chuyển đổi các tín hiệu vào của hệ thống
thực từ miền vật lý (miền giá trị rõ) sang
miền ngôn ngữ (miền giá trị mờ); khối tri
thức bao gồm hai phần, một là các dữ liệu
thu thập về các thông số trạng thái, môi
trường làm việc của hệ thống, hai là các kiến
thức chuyên môn về hệ thống (các quan hệ
vật lý toán học, cấu trúc, kinh nghiệm chuyên
gia); khối cơ chế suy diễn (IE) là phần lõi của FIS, tại đây thực hiện các tính toán và
lập luận xử lý các tín hiệu đầu vào trên cơ sở các tri thức về hệ thống và đưa ra kết quả
hoặc quyết định cuối cùng (dưới dạng kết quả mờ); khối giải mờ đầu ra làm nhiệm vụ
chuyển đổi các tín hiệu ra từ IE (có giá trị mờ) sang miền giá trị rõ.
2.2. Hệ suy diễn mờ T-S
Trong quá trình ứng dụng các
hệ suy diễn mờ vào trong lĩnh vực điều
khiển các hệ thống kỹ thuật công
nghiệp, tác giả Takagi và Sugeno
(1975) đề xuất cấu trúc luật mờ cơ sở
có dạng đầu ra không phải là biến mờ
mà thay bằng hàm số bậc nhất của các
biến đầu vào. Đặc điểm của hệ thống
suy diễn này là kết quả đầu ra của các
luật cơ sở có giá trị rõ dưới dạng hàm số của các biến đầu vào và đầu ra. Ví dụ với hai
biến mờ đầu vào x và y; biến mờ đầu ra z với hai luật cơ sở có dạng tổng quát là:
Luật ℜ i: ( ), = = =i i iIF x A và y B THEN z f x y (2.5)
Trong đó: Ai và Bi là các tập mờ trong mệnh đề điều kiện; f(x,y) là hàm của
các biến vào x và y. Kết quả đầu ra là hàm rõ z = px + qy + r với p, q, r là các hằng số
xác định. Khi f là hằng, mô hình FIS T-S gọi là mô hình bậc 0; trị số của biến z ở đầu
ra của mô hình được tính trên cơ sở phương pháp giải mờ điểm trọng tâm:
1 1 2 2
1 2
+
=
+
w z w z
z
w w
Trong đó wi là các trọng số, được xác định:
1 1
2 2
1
2
min( ( ). ( ))
min( ( ). ( ))
µ µ
µ µ
=
=
A B
A B
w x y
w x y
Ưu điểm cơ bản của hệ suy diễn mờ T-S là ở chỗ: kết quả đầu ra của mỗi luật
là hàm bậc nhất nên mô hình T-S thực chất là tổ hợp của các mô hình tuyến tính địa
phương. Với tính chất đó, ứng dụng của mô hình T-S vào lĩnh vực có sử dụng các kỹ
thuật tuyến tính như nhận dạng, mô tả các hệ thống kỹ thuật phức tạp với mục đích
điều khiển và chẩn đoán lỗi, điều khiển hệ thống kỹ thuật (ví dụ điều khiển PID, bộ
quan sát trạng thái, tính ước lượng tham số) là rất thuận lợi.
2.3. Xây dựng hệ suy diễn mờ T-S để mô tả hệ thống kỹ thuật
-9-
Để xây dựng hệ suy diễn T-S, trong trường hợp này thì việc biểu diễn hệ thống
bằng không gian trạng thái là hợp lý do có các ưu điểm: (1) Phương trình biểu diễn là
bậc nhất, phù hợp với cấu trúc đầu ra của luật mờ T-S; (2) việc lựa chọn các biến vào,
biến ra, biến trạng thái phù hợp với khả năng đo được (quan sát được) của các biến
trong các mô hình chẩn đoán.
Một hệ thống động lực tổng quát biểu diễn trong không gian trạng thái có dạng:
x(t) Ax(t) Bu(t)
y(t) Cx(t) Du(t)
= +
= +
Trong đó, x(t) ∈Rn là véc tơ các biến trạng thái; u(t) ∈ Rm là véc tơ các biến vào;
y(t)∈Rm là véc tơ các biến đầu ra, A∈Rn×n, B, D∈Rnxm và C∈Rmxn là ma trận các hệ số.
Nguyên lý chung để xây dựng hệ suy diễn T-S là phân chia hệ thống thực thành
tập hợp các mô hình tuyến tính địa phương bằng cách chọn biến mờ cơ sở (tên biến và
khoảng biến thiên của biến) và các hàm liên thuộc tương ứng với mỗi biến mờ cơ sở;
sau đó tiến hành xây dựng tập các luật mờ T-S để mô tả mỗi mô hình địa phương.
Luật mờ cơ sở thứ i có dạng:
1 1: ( ) ... ( ) ( ) ( ) ( )θ θℜ = +i i i i iIF z t is M and and z t is M THEN x t A x t B u t
Trong đó: zj(t) là các biến mờ cơ sở, Mij là các tập mờ với i = 1,.., p; j = 1,.., θ ;
x(t), u(t) lần lượt là véc tơ của các biến quan sát và véc tơ các biến vào; Ai và Bi là ma
trận các hệ số của mô hình thứ i. Biến mờ cơ sở zj(t) có thể là hàm của các biến trạng
thái đo được, các nhiễu ngoài hoặc là biến thời gian.
Ứng với mỗi cặp giá trị [x(t),u(t),z(t)], giá trị rõ ở kết quả đầu ra của hệ suy diễn
được tính toán thông qua việc giải mờ đầu ra bằng phương pháp điểm trọng tâm:
[ ]
1
1
1
( ) ( ( )) ( ) ( )
( ( ))( ( )) , ( ( )) ( ( ))
( ( ))
p
i i i
i
i
i i ijp
j
i
i
x t z t A x t B u t
h z tz t h z t M z t
h z t
θ
µ
µ
=
=
=
= +
= =
∑
∏
∑
Viết lại phương trình (2.10) dưới dạng:
1 1
1
uk
i ij i j ik i k
j k
x ( t ) f (z (t))x ( t ) g (z (t))u ( t )? for i ,...,n
θ
= =
= + =∑ ∑
Trong đó, n và ku tương ứng là số lượng biến trạng thái và biến đầu vào; xi(t),
uk(t) là các biến trạng thái và biến đầu vào; fij(z(t)) và gik(z(t)) là các hàm của z(t), với
z(t) = [zj(t)...zθ(t)] là các biến mờ cơ sở.
Đặt các ký hiệu:
{ } { }
{ } { }
1 2
1 2
ij ij ij ijz(t) z(t)
ik ik ik ikz(t) z(t)
a max f (z(t)) , a min f (z(t))
b max g (z(t)) , b min g (z(t))
≡ ≡
≡ ≡
Tiếp tục biến đổi để viết lại (2.15) dưới dạng ma trận:
1 1
1
2 2
1 1 1 1
2
1 1
u
a a b b
(i, j) (i, j) (i,k) (i,k)a b
(i, j) (i,k)
a a b
(i, j) (i, j) (i,k)a
(i, j) (i,k
kn n
A B
i ij ikijl ijl ikl ikl
i j i kl l
n
ijl ijl ikl
i j l l
x ( t ) h (z(t))a U x( t ) v (z(t))b U u( t )
h (z(t))A x( t ) v (z(t))
θ
θ
= =
=
= = = =
= =
= +
= +
∑∑∑ ∑∑∑
∑∑∑
1
2
1 1
u
l
(i,k)b
)
kn
ikl
i k
B u( t )
== =
∑∑∑
-10-
Với:
0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0
aa (i, j)(i, j)
ijlijl
aA
=
;
0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0
bb (i,k)(i,k)
iklikl
bB
=
Các phương trình 2.18 đến 2.20 để xây dựng các mô hình tuyến tính địa phương
thành phần của hệ mờ T-S mô tả hệ thống được chẩn đoán.
Hệ phương trình trạng thái (2.13) mô tả hệ thống trong trường hợp biết các thông
số cấu trúc, các biến đầu vào, ra của hệ thống là đo được đầy đủ. Tuy nhiên, trong
thực tế, các biến đầu vào của hệ thống thực có nhiều trường hợp không đo được hoặc
đo không chính xác. Để giảm bớt sai lệch do thiếu thông tin của các biến đầu vào,
trong phương trình (2.13) cần được bổ sung thành phần đại diện cho các đại lượng đầu
vào không đo được:
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
= + +
= + +
u u
u u
x t Ax t Bu t E d t
y t Cx t Du t F d t
Với du(t) là hàm biến đổi theo thời gian bổ sung cho lượng biến đầu vào không
đo được và Eu là ma trận phân phối. Như vậy, trong thành phần của hàm du(t) cần chú
ý đến các thành phần đầu vào không đo được, các nhiễu và sai số cho phép lớn nhất
của các tín hiệu đầu vào.
2.4. Xây dựng bộ quan sát
Với mục đích làm cho sai lệch giữa các trị số
đo ở đầu ra của hệ thống thực và trị số tính toán từ đầu
ra của mô hình mô tả hệ thống là bằng không (hoặc
không vượt quá giá trị ngưỡng Jth) trong trường hợp
hệ thống không lỗi, NCS đã sử dụng công cụ bộ quan
sát UIO trên cơ sở tham khảo phương pháp thiết kế bộ
quan sát UIO cho hệ thống tuyến tính.
Với mô hình đầu vào không rõ (2.21), cấu
trúc của bộ quan sát UIO có dạng:
( ) ( ) ( ) ( )
ˆ( ) ( ) ( )
z t Fz t TBu t Ky t
x t z t Hy t
= + +
= +
Trong đó xˆ ∈Rn×1 là véc tơ trạng thái của bộ quan sát UIO, T, K, H là các ma
trận của UIO với kích thước Rn×n.
Ký hiệu e là véc tơ sai số giữa biến trạng thái của hệ thống và biến ra của bộ
quan sát: ˆ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
e t x t x t x t z t Hy t
x t z t HCx t I HC x t z t
= − = − −
= − − = − −
(2.26)
Lấy đạo hàm của phương trình 2.26:
1 1
2 1
( ) ( ) ( ) [ ( )] ( )
[ ( )] ( )
[ ]B ( ) ( ) ( )u u
e t A HCA K C e t F A HCA K C z t
K A HCA K C y t
T I HC u t H CI E d t
= − − + − − −
+ − − −
+ − + + −
Từ phương trình 2.27 cho thấy, nếu các điều kiện sau được thỏa mãn:
-11-
1
2
0 ( )= −
= −
= − −
=
uHC I E
T I HC
F A HCA K C
K FH
(2.28)
Thì phương trình vi phân của sai số sẽ có dạng:
( ) . ( )e t F e t=
Nếu chọn ma trận F có dạng ma trận Hurwitz
(các giá trị riêng của ma trận F là ổn định [49]) thì
phương trình sai số sẽ tiệm cận tới 0 và biến xˆ của bộ
quan sát sẽ có giá trị bằng biến trạng thái x của hệ
thống thực. Trị số biến đầu ra của bộ quan sát sẽ tiệm
cận tới giá trị biến ra đo được của hệ thống thực.
Trong phương trình sai số (2.27) ta thấy
không có mặt của thành phần đầu vào không rõ
Eudu(t). Như vậy, trong trường hợp này, sử dụng công
cụ bộ quan sát đã được loại bỏ được ảnh hưởng của
yếu tố đầu vào không rõ.
Thuật toán để xác định các hệ số của bộ quan
sát trình bày trên Hình 2.12.
Các hệ số A, B, C, Eu, D, của phương trình
không gian trạng thái (2.24) là các thông số đầu vào
của chương trình tính (Bước 1).
Bước 2 nhằm kiểm tra tính phù hợp về hạng của
các ma trận phân phối Eu và ma trận tích C*Eu. Nếu
kết quả là không phù hợp, bộ quan sát UIO không thể
xây dựng được. Trong MatLab, sử dụng lệnh “rank“ để tính hạng của ma trận.
Bước 3 là thủ tục tính các ma trận hệ số H, T và ma trận A* theo các công thức:
( ) ( )
1
1
− =
= −
=
T T
u u u uH E CE CE CE
T I HC
A TA
Bước 4 là thủ tục kiểm tra tính quan sát được của cặp C, A*. Nếu cặp này
không đảm bảo "tính quan sát được", Bộ quan sát UIO sẽ không thể xây dựng được.
Trong MatLab, sử dụng lệnh “obsv“ [7, 49].
Bước 5, 6, 7 là các thủ tục tính hệ số K1, K2 và K = K1+K2.
Xây dựng bộ quan sát mờ T-S
Hệ phương trình không gian trạng thái của hệ thống trong trường hợp có các
yếu tố đầu vào không rõ được biểu diễn bằng công thức (2.24). Tương ứng, hệ suy
diễn T-S mô tả hệ thống có dạng tập hợp của p luật. Mỗi luật thứ i có dạng như sau:
Luật ℜ i:
1 1 θ θ
= + +
= + +
i i
i i u ,i u
i i u ,i u
IF z is M and...and z is M THEN
x(t) A x(t) B u(t) E d (t)
y(t) C x(t) D u( t ) F d ( t )
(2.31)
Các ma trận Ai, Bi, Ci, Eu,i Fu,i với các kích thước phù hợp. Tương ứng với
mỗi luật Ri, ta có một mô hình tuyến tính địa phương. Do đó ta có thể xây dựng bộ
-12-
quan sát UIO cho mỗi mô hình tuyến tính địa phương này. Như vậy bộ quan sát mờ
UIO cũng là một hệ suy diễn T-S được biểu diễn dưới dạng tập của p luật mờ T-S.
2.5. Tính toán giá trị ngưỡng
Lượng sai lệch ˆ( ) ( ) ( )= −r t y t y t là một véc tơ chứa các phần tử tương ứng là
lượng sai lệch của các thông số thành phần của các biến đầu ra ˆ( )y t của bộ quan sát và
đầu ra của hệ thống thực. Để phát hiện trạng thái lỗi của cần phải tiến hành so sánh trị
số của lượng sai lệch với giá trị ngưỡng Jth.
0
ˆ( ) th
th
hoÆc (r J ) th× hÖ thèng kh«ng lçi
r >0 hoÆc (r >J ) th× hÖ thèng cã lçi
= ≤
= −
r
r y y t (2.34)
Trường hợp hệ thống không có lỗi: d th d tr t r t J , ( )2, 2,( ) ( )τ τ≤ ≤
Với giá trị ngưỡng Jth,d(t) tính theo công thức: th d t d t L dJ r t2, ( ) ( ) 2,sup ( ) τ∈=
Trong đó "sup" là ký hiệu toán học với ý nghĩa là cận trên đúng (suprenum)
của dãy số thực. Cuối cùng giá trị ngưỡng được tính theo công thức:
th th d tJ J , ( )=
Như vây, giá trị ngưỡng được tính riêng
cho từng thông số chẩn đoán, xác định trong
trường hợp hệ thống không có lỗi và chứa các
thành phần sai số cho phép của thông số chẩn
đoán (bao gồm sai số tĩnh và sai số động), các
đặc trưng của tín hiệu đầu vào không đo được
(tính theo phương pháp xác suất thống kê chuẩn L2.
2.6. Sử dụng bộ quan sát mờ T-S để phát hiện trạng thái
làm việc có lỗi của hệ thống
Sau khi đã xác định được các thông số cấu trúc, bộ
quan sát mờ (2.32) sẽ được sử dụng để chẩn đoán phát hiện
trạng thái lỗi cho hệ thống như sơ đồ Hình 2.13.
Đầu ra y của hệ thống thực cũng như đầu ra yˆ của bộ
quan sát là các véc tơ mà thành phần của nó là các trị số
tương ứng của các thông số chẩn đoán đo được từ hệ thống
thực và các thông số tính toán từ bộ quan sát. Vì vậy, kết quả
so sánh giữa r và Jth không những đánh giá được hệ thống
làm việc bình thường hay đang làm việc với trạng thái có lỗi
mà còn khoanh vùng được lỗi đó liên quan đến thông số chẩn
đoán nào. Đây là một ưu điểm quan trọng với mục đích chẩn
đoán TTKT hệ thống.
Từ các kết quả nghiên cứu trên, NCS đề xuất xây
dựng hệ suy diễn T-S để chẩn đoán phát hiện trạng thái lỗi
các hệ thống có ĐKĐT theo sơ đồ trên Hình 2.14.
2.7. Kết luận chương 2
- Trong chương này, NCS đã nghiên cứu cơ sở lý thuyết việc ứng dụng hệ suy
diễn mờ T-S để xây dựng mô hình lý thuyết mô tả hệ thống cần chẩn đoán trong
trường hợp hệ thống không có lỗi. Hệ suy diễn mờ mô tả hệ thống là tập các luật dạng
IF...THEN (biểu thức 2.14). Các biểu thức (2.15, 2.16) trình bày cách tính toán để giải
-13-
mờ đầu ra của hệ.
- Để loại bỏ ảnh hưởng của các nhiễu và các thành phần đầu vào không đo được
đầy đủ, NCS đã xây dựng bộ quan sát mờ của hệ thống. Tính toán các thông số cấu
trúc của bộ quan sát được trình bày ở các biểu thức (2.28 và 2.30). Bộ quan sát sẽ là
mô hình lý thuyết mô tả hệ thống (khi không có lỗi) trong sơ đồ ứng dụng để chẩn
đoán phát hiện lỗi (Hình 2.13).
- NCS đã nghiên cứu cách xác định trị số ngưỡng làm cơ sở để đánh giá, phân
biệt trạng thái làm việc bình thường và trạng thái làm việc có lỗi của hệ thống. Các
công thức tính toán giá trị ngưỡng được trình bày ở (2.34, 2.39).
- Mô hình chẩn đoán phát hiện lỗi cho một hệ thống có ĐKĐT trên ô tô bao
gồm các thành phần: hệ suy diễn mờ, bộ quan sát mờ UIO và véc tơ các giá trị ngưỡng
của các tín hiệu đầu ra của hệ thống cần chẩn đoán. Cách nối ghép mô hình chẩn đoán
với hệ thống cần chẩn đoán được trình bày trên Hình 2.13.
Trên cơ sở các kết quả nghiên cứu lý thuyết ở chương này NCS sẽ tiến hành
xây dựng mô hình chẩn đoán phát hiện lỗi cho hệ thống VSC trên xe Toyota Camry.
CHƯƠNG 3. XÂY DỰNG MÔ HÌNH CHẨN ĐOÁN PHÁT HIỆN
TRẠNG THÁI LÀM VIỆC CÓ LỖI CỦA HỆ THỐNG VSC TRÊN XE
TOYOTA CAMRY
3.1. Hệ thống VSC trên xe Toyota Camry
Hệ thống VSC (Vehicle
Stability Control) làm nhiệm vụ
giữ ổn định cho xe ô tô khi đi
trên mặt đường nghiêng ngang,
đường vòng. Khi xe chuyển động
trên đường vòng, do tác dụng của
lực ly tâm tạo các lực ngang tác
dụng lên xe. Ảnh hưởng các lực
ngang càng lớn khi tốc độ xe đi
trên đường vòng lớn, mặt đường
nghiêng hoặc bán kính cong quá
nhỏ. Trường hợp các bánh xe cầu sau bị trượt ngang nhiều hơn bánh xe trước dẫn đến
hiện tượng quay vòng thừa, trường hợp ngược lại, xe bị quay vòng thiếu. Hệ thống
VSC tự động tác động các lực phanh phù hợp ở mỗi bánh xe (bên trong và bên ngoài
đường vòng, bánh xe trước và bánh xe sau) để tạo mô men ổn định duy trì quỹ đạo
chuyển động đúng của xe đồng thời tự động điều chỉnh chế độ tải động cơ cho phù hợp
với tình trạng phanh và tốc độ ô tô.
3.2. Hệ phương trình trạng thái mô tả động lực học bên của xe
Mô hình 3-DOF được sử dụng rộng rãi trong các thiết kế điều khiển trực
tuyến chuyển động dọc và ổn định bên của xe. Theo các số liệu nghiên cứu [12,43],
mô hình này đáp ứng được điều kiện chuyển động của ô tô trên đường vòng mặt
đường bằng phẳng có hệ số bám cao với gia tốc bên tới 0,4g. Các giả thiết sử dụng cho
mô hình gồm có:
- Ô tô có trục đối xứng dọc;
- Ô tô chuyển động ổn định trên đường vòng (𝑣𝑣�̇�𝑥 ≈ 0), không có trượt dọc;
- Sử dụng mô hình lốp tuyến tính:
-14-
yF Cαα= − (3.1)
Hình 3.5 là sơ đồ biểu diễn mô hình 3-DOF của
xe trong mặt phẳng ngang.
Từ các quan hệ vật lý, hệ phương trình vi phân
mô tả động lực học bên có dạng:
( ) ( ) ( )
( ) ( )
1 1. . .
1 1. . . . .
y x f y r y
x x
z f y r y
x x
m v v C v a C v b
v v
I a C v a b C v b
v v
ψ δ ψ ψ
ψ δ ψ ψ
+ = − + + − −
= − + − − −
(3.13)
Phương trình không gian trạng thái có bổ sung
thành phần không đo được của biến vào:
2
2 2
1
* ( )
.
0 1
f r r f f
x x x
u u
ff r f r
zz z x
f r r f
y
x
C C bC aC C
mv mv mv
E d t
aCaC bC a C b C
II I v
C C bC aC
a
m mv
+ −
− − = + + − + − −
+ −
− =
ββ
δ
ψψ
ψ
* ( )
0
f
u u
C
F d tm
+ +
β
δ
ψ
(3.16)
Trong đó: x(t) là véc tơ các biến quan sát và
y(t) đầu ra đo được của mô hình; d(t) là ma trận hàm
thời gian của các yếu tố đầu vào, ra không đo được.
[ ]( ) β ψ= Tx t ; ( ) Tyy t a ψ = ; * .vl li=δ δ
3.3. Xây dựng hệ suy diễn mờ mô tả động lực học bên
Hệ suy diễn mờ T-S mô tả hệ thống được
được trình bày dưới dạng các luật:Luật ℜi:
( )
( ) ( ) (t) ( )
( ) ( ) (t) ( )
i i
i i i i u
i i i i u
If z t is MF
x t A x t B E d t
Then
y t C x t D F d t
= + +
= + +
δ
δ
(3.19)
Các kết quả tính toán các hệ số:
1 2 3
-51.8400 5.0031 -25.9200 0.5008 -17.2800 -0.3330
; ; ;
29.5660 -82.7201 29.5660 -41.3600 29.5660 -27.5734
A A A = = =
4 5 6
-12.9600 -0.6248 -10.3680 -0.7599 -8.6400 -0.8332
; ;
29.5660 -20.6800 29.5660 -16.5440 29.5660 -13.7867
A A A = = =
5 6
-10.3680 -0.7599 -8.6400 -0.8332
;
29.5660 -16.5440 29.5660 -13.7867
A A = =
1 2
21.6000 10.8000
;
57.8298 57.8298
B B = =
3 4
7.2000 5.4000
;
57.8298 57.8298
B B = =
5 64.3200 3.6000; ;57.8298 57.8298B B
= =
1 2 3
-144.0000 16.6752 -144.0000 8.3376 -144.0000 5.5584
; ;
0 1 0 1 0 1
C C C = = =
4 5 6
-144.0000 4.1688 -144.0000 3.3350 -144.0000 2.7792
; ;
0 1 0 1 0 1
C C C = = =
-15-
=
=i iF D
60
0
1 2
21.6000 10.8000
E ; ;
57.8298 57.8298
= =
E
3 4 5 6
7.2000 5.4000 4.3200 3.6000
; ; ; ;
57.8298 57.8298 57.8298 57.8298
= = = =
E E E E
3.4 Thiết kế bộ quan sát mờ
Bộ quan sát mờ UIO của mô hình được biểu diễn dưới dạng 6 luật cơ sở tương
ứng như xây dựng hệ suy diễn mô tả hệ thống. Bộ quan sát mờ thứ i (i=1,..,6) được
biểu diễn dưới dạng luật như sau:
Luật ℜ i:
( )
( ) ( ) ( ) ( )
ˆ ( ) ( ) ( )
ˆ ˆ( ) ( )
= + +
= +
=
i i
i i i i i i
i i i
i i i
If z t is MF Then
z t F z t T B u t K y t
x t z t H y t
y t C x t
(3.25)
Cấu trúc bộ quan sát mờ thứ i được mô phỏng trong chương trình Matlab
Simulink ( Phụ lục 1).
3.5. Tính giá trị ngưỡng
Lượng sai lệch r(t) được so sánh với các giá trị ngưỡng tương ứng để đưa ra
kết luận về hệ thống có lỗi hay không có lỗi. Giá trị ngưỡng được tính cho từng thông
số chẩn đoán trong trường hợp hệ thống không có lỗi. Giá trị ngưỡng được tính theo
công thức th th d tJ J , ( )=
Trong mô hình chẩn đoán này, lượng sai lệch r(t) là véc tơ gồm 2 thành phần:
sai lệch của trị số gia tốc ngang ay và sai lệch của trị số tốc độ góc quay thân xe ψ.
Giá trị ngưỡng sẽ được tính riêng cho từng thông số, cụ thể là:
- Giá trị ngưỡng đối với gia tốc ngang ay: 20.25 /yathJ m s= ±
- Giá trị ngưỡng đối với tốc độ góc quay thân xe ψ: 0.04 /thJ rad sψ = ±
3.6 Các trường hợp mô phỏng và phân tích các kết quả
Các trường hợp chạy mô phỏng trên máy
tính bao gồm:
Trường hợp 1: Kiểm tra, đánh giá mức độ
phù hợp giữa kết quả tính toán đầu ra của hệ thống
suy diễn mờ so với kết quả tính toán đầu ra của hệ
thống thực khi không lỗi (gọi tắt là hệ thống lấy
mẫu).
Trường hợp 2: Chạy chương trình tính các
ma trận hệ số của các bộ quan sát mờ địa phương
và đánh giá mức độ phù hợp giữa kết quả đầu ra
của hệ thống lấy mẫu khi không lỗi với đầu ra của bộ quan sát sau khi được thiết kế.
Trường hợp 3: Sử dụng bộ số liệu thu thập qua thí nghiệm trên xe để chẩn đoán
TTKT cho hệ thống VSC trong các trường hợp hệ thống không có lỗi và có lỗi.
Hình 3.10 trình bày quy luật đánh lái 1 sử dụng chạy mô phỏng. Các Hình
3.11,.., 3.16 trình bày các kết quả tính toán trị số gia tốc ngang, tốc độ góc quay thân
xe của hệ suy diễn mô tả hệ thống so sánh với các trị số tính toán từ hệ thống thực với
vận tốc quay vòng ổn định 20km/h.
-16-
Hình 3.11: Gia tốc ngang tính toàn
từ hệ thống lấy mẫu
Hình 3.12: Tốc độ góc quay thân xe
tính toàn từ hệ hệ thống lấy mẫu
Hình 3.15: Lượng sai lệch gia tốc
ngang giữa hệ suy diễn mờ và hệ thống
lấy mẫu
Hình 3.13: Gia tốc ngang tính toàn
từ hệ suy diễn mờ
Hình 3.14: Tốc độ góc quay tính
toàn từ hệ suy diễn mờ
Hình 3.16: Lượng sai lệch tốc độ góc
quay thân xe giữa hệ suy diễn mờ và hệ
thống lấy mẫu
Các Hình 3.17,.., 3.22 trình bày các kết quả tính trị số gia tốc ngang, tốc độ
góc quay thân xe của hệ suy diễn mờ so sánh với các trị số thu được từ hệ thống lấy
mẫu với vận tốc ổn định 35km/h, qui luật đánh lái 1.
Hình 3.17: Gia tốc ngang của hệ
thống lấy mẫu
Hình 3.18: Tốc độ góc quay thân xe
của hệ thống lấy mẫu
Hình 3.21: Lượng sai lệch gia tốc
ngang giữa hệ suy diễn mờ và hệ
thống lấy mẫu
Hình 3.19: Gia tốc ngang tính toàn
từ hệ suy diễn mờ
Hình 3.20: Tốc độ góc quay tính toàn
từ hệ suy diễn mờ
Hình 2.22: Lượng sai lệch tốc độ góc
quay thân xe giữa hệ suy diễn mờ và
hệ thống lấy mẫu
Nhận xét: Từ các đồ thị biểu diễn trên cho thấy:
0 5 10 15 20 25 30 35 40
0
0.5
1
1.5
2
2.5
3
Thêi gian (s)
G
ia
t
è
c
n
g
a
n
g
a
y
(
m
/s
2
)
0 5 10 15 20 25 30 35 40
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Thêi gian (s)
T
è
c
®
é
g
ã
c
q
u
a
y
t
h
©
n
x
e
r
1
(
ra
d
/s
)
0 5 10 15 20 25 30 35 40
0
0.01
0.02
0.03
0.04
0.05
0.06
Thêi gian (s)
L
î
n
g
s
a
i
lÖ
c
h
g
ia
t
è
c
n
g
a
n
g
a
Y
Y
(
m
/s
2
)
0 5 10 15 20 25 30 35 40
0
0.5
1
1.5
2
2.5
3
Thêi gian (s)
G
ia
t
è
c
n
g
a
n
g
a
Y
Y
(
m
/s
2
)
0 5 10 15 20 25 30 35 40
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Thêi gian (s)
T
è
c
®
é
g
ã
c
q
u
a
y
t
h
©
n
x
e
r
1
Y
Y
(
ra
d
/s
)
0 5 10 15 20 25 30 35 40
0
1
2
3
4
5
6
Thêi gian (s)
G
ia
t
è
c
a
y
(
m
/s
2
)
0 5 10 15 20 25 30 35 40
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Thêi gian (s)
T
è
c
®
é
g
ã
c
q
u
a
y
t
h
©
n
x
e
r
1
(
ra
d
/s
)
0 5 10 15 20 25 30 35 40
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Thêi gian (s)
L
î
n
g
s
a
i l
Ö
ch
g
ia
tè
c
(m
/s
2
)
0 5 10 15 20 25 30 35 40
0
1
2
3
4
5
6
Thêi gian (s)
G
ia
t
è
c
a
Y
Y
(
m
/s
2
)
0 5 10 15 20 25 30 35 40
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Thêi gian (s)
T
è
c
®
é
g
ã
c
q
u
a
y
t
h
©
n
x
e
r
1
a
Y
Y
(
ra
d
/s
)
0 5 10 15 20 25 30 35 40
0
0.005
0.01
0.015
0.02
0.025
Thêi gian (s)
L
î
n
g
s
a
i l
Ö
ch
tè
c
®
é
g
ã
c
q
u
a
y
th
©
n
x
e
(
ra
d
/s
)
-17-
+ Ứng với vận tốc 20km/h thì lượng sai lệch gia tốc ngang giữa hệ suy diễn
mờ và hệ thống lấy mẫu lớn nhất xấp xỉ là 0.055m/s2, trong khi đó ở tốc độ 35km/h thì
sai lệch lớn nhất xấp xỉ là 0.065m/s2. Điều này chứng tỏ lượng sai lệch ở tốc độ cao
tăng hơn ở tốc độ thấp.
+ Ứng với vận tốc 20km/h lượng sai lệch tốc độ góc quay thân xe giữa hệ suy
diễn mờ và hệ thống lấy mẫu lớn nhất xấp xỉ là 1.9×10-2rad/s, trong khi đó ở tốc độ
35km/h thì sai lệch lớn nhất xấp xỉ là 2.3×10-2rad/s, chứng tỏ lượng sai lệch ở tốc độ
cao có xu hướng tăng.
+ Xu hướng sai lệch tăng khi tốc độ chuyển động của xe tăng, điều này có thể
được giải thích bởi tính phi tuyến của mô hình toán học theo thông số vận tốc v.
Các Hình 3.23,.., 3.26 trình bày các kết quả tính trị số gia tốc ngang, tốc độ
góc quay thân xe ở đầu ra bộ quan sát so sánh với các trị số tính toán từ hệ thống thực
ở tốc độ quay vòng ổn định 20km/h.
Hình 3.23: Gia tốc ngang tính toán từ bộ
quan sát
Hình 3.24: Tốc độ góc quay thân xe tính toán
từ bộ quan sát
Hình 3.25: Lượng sai lệch gia tốc ngang giữa
bộ quan sát và hệ thống lấy mẫu
Hình 3.26 Lượng sai lệch tốc độ góc quay
thân xe giữa bộ quan sát và hệ thống lấy mẫu
Nhận xét: các trị số đầu ra của bộ quan sát khảo sát với đầu ra hệ thống lấy
mẫu là rất sát (sai số cỡ 10-3), cụ thể là:
+ Ứng với vận tốc 20km/h thì lượng sai lệch trị số gia tốc ngang giữa bộ quan sát và
hệ thống lấy mẫu lớn nhất xấp xỉ là 4.2×10-3m/s2, ở tốc độ 35km/h thì sai lệch lớn nhất
xấp xỉ là 8.8×10-3m/s2 và ở tốc độ 45km/h thì sai lệch lớn nhất xấp xỉ là 7.5×10-2m/s2;
+ Ứng với vận tốc 20km/h lượng sai lệch tốc độ góc quay thân xe giữa bộ quan sát
và hệ thống lấy mẫu lớn nhất xấp xỉ là 3.4×10-3rad/s, ở tốc độ 35km/h thì sai lệch lớn
nhất xấp xỉ là 1.4×10-2rad/s và ở tốc độ 45km/h thì sai lệch lớn nhất xấp xỉ là 4.6×10-2rad/s;
Như vậy, khi xây dựng hệ suy diễn mờ để khảo sát động lực học của hệ thống
có xét đến sự ảnh hưởng của yếu tố không rõ ở đầu vào thì việc sử dụng bộ quan sát là
cần thiết.
0 5 10 15 20 25 30 35 40
0
0.5
1
1.5
2
2.5
3
Thêi gian (s)
G
ia
t
è
c
n
g
a
n
g
a
y
d
o
t
(m
/s
2
)
-18-
Các kết quả mô phỏng ở phần 3.5 cho thấy bộ quan sát với các thông số được
tính toán thiết kế luôn bám sát hệ thống lấy mẫu. Chạy chương trình máy tính trong
phần này nhằm mô tả cách sử dụng chương trình phần mềm Bộ quan sát trong việc
chẩn đoán TTKT hệ thống VSC thực tế.
Để đánh giá TTKT hệ thống VSC cần các dữ liệu đo thực tế trên xe: tốc độ xe,
góc quay vành lái, trị số gia tốc ngang và trị số tốc độ góc quay thân xe. Các Hình
3.36, 3.37 là các số liệu đo được trong thí nghiệm trên xe có hệ thống VSC hoạt động
bình thường, không lỗi (xem Chương 4, phần kết quả thí nghiệm) tương ứng với các trị
số góc quay vành lái, gia tốc ngang và tốc độ góc quay thân xe. Vận tốc xe khi quay
vòng là 20km/h.
3.7 Kết luận chương 3
- Trên cơ sở các kết quả nghiên cứu lý thuyết ở chương 2 về ứng dụng hệ suy
diễn mờ T-S để mô tả hệ thống trong chẩn đoán TTKT, trong chương này, NCS đã tiến
hành xây dựng mô hình chẩn đoán TTKT cho hệ thống VSC có ĐKĐT trên xe Toyota
Camry. Các thông số sử dụng để chẩn đoán TTKT của hệ thống VSC bao gồm: góc
quay vành lái, tốc độ ô tô, gia tốc ngang của xe, tốc độ góc quay thân xe.
- NCS đã xây dựng hệ suy diễn mờ T-S để mô tả hệ thống VSC (trong trường
hợp hệ thống không có lỗi) với các yếu tố đầu vào không đo được (các nhiễu, các sai
số của cảm biến đầu vào); thiết kế bộ quan sát mờ UIO để hiệu chỉnh và loại bỏ ảnh
hưởng các nhiễu đến sai lệch giữa đầu ra của mô hình tính toán và đầu ra đo từ hệ
thống thực; Tính toán xác định giá trị ngưỡng sai lệch của các thông số chẩn đoán ở
đầu ra tương ứng là gia tốc ngang và tốc độ góc quay thân xe.
- Các kết quả chạy chương trình mô phỏng cho thấy, sai lệch giữa kết quả tính
toán đầu ra của Bộ quan sát so với các trị số tương ứng từ hệ thống mẫu (hệ thống thực
có ảnh hưởng của nhiễu nhưng không có lỗi) là nhỏ hơn 7 lần so với các sai lệch tương
ứng tính từ hệ suy diễn mờ với hệ thống mẫu. Điều này chứng tỏ Bộ quan sát mô tả hệ
thống thực (trong trường hợp các thông số đầu vào bị nhiễu hoặc đo không đầy đủ) là
-19-
tốt hơn so với dùng hệ suy diễn mờ thông thường.
CHƯƠNG 4. NGHIÊN CỨU THỰC NGHIỆM
4.1. Mục đích nghiên cứu, đối tượng và thông số thực nghiệm
* Mục đích: Các thực nghiệm nhằm mục đích đánh giá khả năng ứng dụng và hiệu
quả của mô hình do NCS nghiên cứu để chẩn đoán phát hiện lỗi trong hệ thống VSC
xe Toyota Camry.
* Đối tượng thực nghiệm
Hệ thống VSC trên xe Toyota Camry 2.4, sản xuất năm 2009 tại Việt Nam (trên
xe cụ thể là xe phục vụ giảng dạy và NCKH của Trường Cao đẳng nghề Kỹ thuật
Công nghệ Đông Anh - Bộ Lao động, Thương binh và Xã hội).
* Thông số đo trong thực nghiệm
Bảng 4-1 là các thông số đo trong quá trình
thực nghiệm được lấy ra từ ECU của hệ thống điều
khiển điện tử trên ô tô. Để chủ động đo các thông
số chẩn đoán trong thí nghiệm cũng như trong công
tác sửa chữa thực tế, NCS đã nghiên cứu chế tạo
Bộ thu thập dữ liệu, đây là thiết bị kết nối giữa
ECU của ô tô với máy tính cá nhân nhằm thu thập
thông tin từ các cảm biến gửi về ECU của xe. Thiết bị này đã giúp truy cập tức thời
các số liệu trong thí nghiệm cũng như lưu trữ các số liệu này vào máy tính, nhập dữ
liệu vào chương trình xử lý của bộ quan sát đã thiết kế để tiến hành chẩn đoán phát
hiện lỗi của hệ thống VSC trên xe thí nghiệm.
4.2. Chế tạo bộ thu thập dữ liệu
* Cơ sở thiết kế, chế tạo bộ thu thập dữ liệu
Bộ thu thập dữ liệu là thiết bị điện tử được thiết kế theo chuẩn OBD2. Đây là hệ
thống chuẩn của SAE quy định về giao tiếp thông tin giữa người, thiết bị ngoại vi với
hệ thống điều khiển điện tử (thông qua ECU) trên ô tô.
* Thiết kế các mạch của thiết bị
Về nguyên tắc, muốn giao tiếp với ECU của một xe cụ thể cần có thiết bị kết
nối với ECU qua đầu nối chuẩn DLC3 và bộ xử lý của thiết bị phải tương thích với
giao thức truyền tin mà hãng sản xuất xe đã sử dụng.
Các module chính của bộ kết nối gồm có:
- Module chuyển đổi các chuẩn giao tiếp.
- Module chuyển đổi giao tiếp UART-USB để chuyển đổi giao tiếp từ cổng
COM của máy tính PC sang máy tính Laptop.
-20-
* Kiểm tra sự làm việc của bộ thu thập dữ liệu
Để kiểm tra khả năng làm
việc và độ chính xác của các số liệu
mà Bộ thu thập dữ liệu được thiết
kế chế tạo, NCS đã tiến hành thí
nghiệm kiểm tra đối chứng các dữ
liệu kết quả thu được từ mạch đo
dùng cảm biến MPU 6050 và kết
quả mà Bộ thu thập dữ liệu nhận
được từ ECU của xe Camry. Sơ đồ
nối ghép hệ thống đo như trên Hình
4.10.
Để phục vụ việc thu thập dữ liệu đối
chứng từ 2 nguồn dữ liệu (Thiết bị thu thập
dữ liệu từ cảm biến trên xe và Mạch cảm
biến MPU 6050), NCS đã thiết kế chương
trình máy tính trên cơ sở phần mềm
LabView (Phụ lục 4) để thu thập và lưu trữ
các kết quả thí nghiệm. Giao diện màn hình
thu thập dữ liệu trong thí nghiệm kiểm
chứng giữa mạch đo dùng cảm biến MPU
6050 và bộ kết nối ELM327 được thể hiện
trên Hình 4.11.
Các đồ thị trên các Hình 4.12-4.15 trình bày
so sánh đối chiếu các trị số nhận được từ Bộ thu thập dữ liệu và từ cảm biến MPU.
-21-
4.3. Thí nghiệm phát hiện lỗi trong hệ thống VSC xe Camry
* Mục đích thí nghiệm
Các thí nghiệm được thực hiện nhằm:
- Kiểm tra khả năng sử dụng hệ thống chẩn đoán bao gồm Bộ thu thập dữ liệu
từ ECU, phần mềm hệ suy diễn mờ, bộ quan sát (mà NCS đã nghiên cứu thiết kế, chế
tạo) và các giá trị ngưỡng tính toán để chẩn đoán phát hiện lỗi trong hệ thống VSC của
xe Toyota Camry.
- Đánh giá ảnh hưởng các yếu tố mặt đường, độ cứng vững hệ dẫn động lái đến
các thông số liên quan đến sự làm việc của hệ thống VSC như gây lệch hướng của
bánh xe dẫn hướng, gây biến động của gia tốc ngang và tốc độ góc quay thân xe trong
khi xe chuyển động ổn định trên đường thẳng, mặt đường bằng phẳng.
* Điều kiện thí nghiệm: xe không tải và chuyển động với vận tốc ổn định.
* Các thông số đo và trang thiết bị đo, quan sát trong thí nghiệm
Trong thí nghiệm, thiết bị Carman Scan VG+ (Hình 4.18) được sử dụng để
thực hiện các nhiệm vụ: Kiểm tra hiệu chỉnh theo quy trình hướng dẫn của hãng xe về
đặt vị trí 0 của cảm biến góc quay vành lái, cảm biến gia tốc ngang và cảm biến tốc độ
góc quay thân xe; xóa các mã lỗi sau khi thực hiện thí nghiệm đánh lỗi các cảm biến.
Để kết nối giữa Carman VG với ECU của xe, sử dụng đầu nối tiêu chuẩn
DLC3 16 chân (Hình 4.21). Vị trí của đầu nối DLC3 cũng được chuẩn hóa (Hình 4.22).
* Sơ đồ lắp đặt bộ thu thập dữ liệu với ECU và máy tính trong thí nghiệm
Kết nối Bộ thu thập dữ liệu, thông tin của các cảm biến tốc độ ô tô, gia tốc
ngang, tốc độ góc quay thân xe và góc quay vành lái từ ECU của ô tô với máy tính
được thể hiện trên Hình 4.23. Giao diện chương trình điều khiển được trình bày trên
-22-
hình 4.24.
* Phân tích kết quả các thí nghiệm chẩn đoán phát hiện lỗi hệ thống VSC
Thí nghiệm 1 (Trường hợp hệ thống VSC hoạt động bình thường, không có lỗi)
- Các đồ thị trên Hình 4.25...4.27 là kết quả đo các thông số góc quay vành lái,
gia tốc ngang, tốc độ góc quay thân xe trong thí nghiệm với điều kiện hệ thống VSC
hoạt động bình thường (không có lỗi).
So sánh lượng sai lệch r với giá trị ngưỡng của các cảm biến tốc độ góc quay
thân xe và gia tốc ngang.(Hình 4.28 và 4.29).
Thí nghiệm 2 (Trường hợp xuất hiện lỗi trong hệ thống VSC)
Các hình 4.30..4.33 trình bày đồ thị tín hiệu nhận được từ cảm biến gia tốc
ngang và tốc độ góc quay thân xe cũng như thời điểm xuất hiện lỗi trong thí nghiệm có
xuất hiện lỗi trong hệ thống VSC.
-23-
Thí nghiệm 3 (Thí nghiệm trong chuyển động thẳng)
Kết quả thí nghiệm phát hiện sự lệch hướng của xe
khi giữ nguyên vành lái theo hướng chuyển động thẳng.
Độ lệch hướng chuyển động của xe qua 3 lần đo.
Các trị số dao động của cảm biến gia tốc ngang,
góc quay vành lái và tốc độ góc quay thân xe.
Từ các đồ thị trên cho thấy, khi xe chuyển động thẳng, tín hiệu các cảm biến
vẫn có thể có trị số khác không. Với cảm biến gia tốc ngang, giá trị max của nhiễu đạt
tới 0.27m/s2; với cảm biến đo tốc độ góc quay thân xe, tín hiệu nhiễu max có giá trị
0.8o/s; với cảm biến góc quay vành lái, trị số tương ứng là 4.8o.
Các số liệu thí nghiệm cho thấy các yếu tố ngẫu nhiên không đo được từ mặt
đường, cấu trúc hệ thống, sai lệch thông số kỹ thuật (ví dụ áp suất lốp không đúng quy
định, lốp mòn) sẽ làm ảnh hưởng đến sai lệch giữa mô hình và hệ thống thực. Việc
sử dụng công cụ bộ quan sát UIO cho mô hình chẩn đoán là cần thiết.
4.5. Nhận xét và kết luận chương 4
Các nội dung và kết quả nghiên cứu trong chương 4 liên quan đến các thực
nghiệm mà NCS đã tiến hành nhằm đánh giá hiệu quả làm việc của mô hình chẩn đoán
phát hiện lỗi trong hệ thống VSC của xe Toyota Camry.
- NCS đã thiết kế chế tạo được Bộ thu thập dữ liệu của các cảm biến góc quay
vành lái, tốc độ ô tô, gia tốc ngang và tốc độ góc quay thân xe gửi về ECU. Các dữ
liệu này là các thông số đầu vào của chương trình tính toán đánh giá trạng thái kỹ
-24-
thuật, phát hiện lỗi trong hệ thống VSC của Toyota Camry. Bộ thu thập dữ liệu đã
được kiểm chứng qua thí nghiệm và chứng tỏ sự hoạt động chính xác, tin cậy.
- Các kết quả thí nghiệm 1 và 2 đánh giá tính năng làm việc của hệ thống chẩn
đoán lỗi (bao gồm Bộ thu thập dữ liệu, chương trình máy tinh L2.xlsx) cho thấy hệ
thống chẩn đoán đã chẩn đoán được trạng thái kỹ thuật của hệ thống VSC xe Toyota,
phát hiện các trạng thái làm việc có lỗi của hệ thống thông qua bộ các thông số chẩn
đoán là góc quay vành lái, tốc độ ô tô, gia tốc ngang và tốc độ góc quay thân xe
- Các kết quả thí nghiệm 3 cho thấy ảnh hưởng của các yếu tố ngẫu nhiên mặt
đường, ảnh hưởng của độ cứng vững trong dẫn động lái, các thông số cấu trúc của cơ
cấu truyền động bánh xe dẫn hướng . đến quỹ đạo chuyển động mong muốn của xe
khi chuyển động thẳng cũng như quay vòng. Các thông số này là các thông số đầu vào,
không đo được và là nguyên nhân gây ra tính không chính xác của mô hình lý thuyết
khi mô tả hệ thống thực.
KẾT LUẬN CHUNG VÀ CÁC KIẾN NGHỊ
1. Kết luận chung
1. Đã lựa chọn phương pháp chẩn đoán trên cơ sở mô hình để xây dựng mô
hình chẩn đoán phát hiện lỗi hệ thống có ĐKĐT trên xe ô tô nói chung và cụ thể là hệ
thống VSC trên xe Toyota Camry. Đã ứng dụng hệ suy diễn mờ T-S để mô tả hệ thống
VSC trên ô tô, trong đó đã sử dụng các hàm biểu diễn quan hệ vật lý giữa các yếu tố
trong hệ thống, giảm bớt khối lượng thống kê dữ liệu so với phương pháp sử dụng hệ
suy diễn mờ Mamdani.
2. Xây dựng mô hình chẩn đoán phát hiện trạng thái làm việc có lỗi của hệ
thống VSC trên xe Toyota Camry, bao gồm các thành phần: bộ thu thập dữ liệu thông
tin chẩn đoán từ các cảm biến góc quay vành lái, tốc độ ô tô, gia tốc ngang, tốc độ góc
quay thân xe; hệ suy diễn mờ mô tả hệ thống VSC được chẩn đoán; bộ quan sát trạng
thái UIO được lập trình để đánh giá lượng sai lệch làm căn cứ để phát hiện trạng thái
làm việc có lỗi của hệ thống VSC trên xe Toyota Camry.
3. Kết quả các thí nghiệm về đánh giá TTKT của hệ thống VSC xe Toyota
Camry (được trình bày ở mục 4.3) đã chứng tỏ mô hình chẩn đoán TTKT hệ thống
VSC do NCS nghiên cứu và đề xuất làm việc tốt, hiệu quả.
4. Đã thiết kế, chế tạo được bộ thu thập dữ liệu của các cảm biến góc quay
vành lái, tốc độ ô tô, gia tốc ngang, tốc độ góc quay thân xe gửi về ECU thông qua đầu
nối chẩn đoán DLC3 và đưa trực tiếp vào chương trình chẩn đoán lỗi được cài đặt trên
máy tính.
5. Các kết quả nghiên cứu phương pháp chẩn đoán cũng như thiết kế mô hình
chẩn đoán phát hiện lỗi hệ thống VSC trên xe ô tô có thể làm cơ sở cho tính toán thiết
kế chế tạo các hệ thống chẩn đoán đối với các xe được sản xuất trong nước.
2. Kiến nghị
1. Phát triển ứng dụng mờ T-S cùng bộ quan sát mờ UIO để chẩn đoán các
hệ thống có ĐKĐT trên ô tô như hệ thống phanh, lái trợ lực điện, hộp số tự động, các
hệ thống by-wire.
2. Phương pháp luận về chẩn đoán lỗi các hệ thống có ĐKĐT trên ô tô được
trình bày trong luận án có thể sử dụng làm cơ sở cho thiết kế chế tạo các thiết bị, hệ
thống chẩn đoán lỗi (phần cứng và phần mềm) các hệ thống có ĐKĐT trên ô tô.
-25-
DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN
1. Phạm Hữu Nam, Nguyễn Thanh Tùng, Nguyễn Trọng Minh, Trần Quang Hà
(2011). Hệ thống tự chẩn đoán lỗi trên động cơ phun xăng điện tử EFI, Tạp chí Giao
thông vận tải, số tháng 4 năm 2011,trang 35, 36, 37 và 38.
2. Phạm Hữu Nam, Chu Mạnh Hùng, Trần Quang Hà (2011). Ứng dụng mạng
Nơ ron để chẩn đoán trạng thái kỹ thuật động cơ, Tạp chí Giao thông vận tải, số tháng
12 năm 2011, trang 40, 41 và 42.
3. Trần Quang Hà (2013). Ứng dụng mạng Nơ ron mờ trong chẩn đoán lỗi hộp
số tự động, Tạp chí Giao thông vận tải, số tháng 6 năm 2013, trang 16, 17 và 71.
4. Trần Quang Hà, Phạm Hữu Nam (2013). Sử dụng phương trình tương đương
trong chẩn đoán lỗi các hệ thống trên ô tô, Tạp chí Giao thông vận tải, số tháng 8 năm
2013, trang 27, 28 và 29.
5. Tran Quang Ha, Pham Huu Nam, Pham Van Thoan (2015). Application of
Takazi-Sugeno fuzzy system for automotive fault detection and isolation, The
International conference on automotive technology for Vietnam Hosted by Vietnamese
Society of Automotive Engineers. Hanoi, October 9-11,2015.
Các file đính kèm theo tài liệu này:
- tom_tat_luan_an_xay_dung_mo_hinh_chan_doan_trang_thai_ky_thu.pdf