Vật liệu trên cơ sở zif-67: tổng hợp và ứng dụng

Các phương pháp điện hóa bao gồm các kỹ thuật volt-ampere hòa tan (SV) được công nhận là một công cụ phân tích định lượng hữu cơ và vô cơ mạnh bởi vì các ưu điểm của nó bao gồm phân tích nhanh, độ nhạy cao, giá thành thấp, dễ vận hành và có thể sử dụng phân tích trực tiếp ở môi trường. Phương pháp volt-ampere hòa anode xung vi phân (Differential pulse anodic stripping voltammetry, DP-ASV), một trong các phương pháp SV, đã được áp dụng để xác định lượng vết của kim loại nặng cũng như các chất hữu cơ do độ nhạy rất cao. Các điện cực than thủy tinh (GCE) được biến tính hóa học bằng các vật liệu xốp, composite silica xốp, carbon nano ống đã nhận được sự quan tâm của nhiều nhà khoa học bởi vì nó có được cải thiện đáng kể về độ đáp ứng, độ chọn lọc cao, giới hạn phát hiện thấp

pdf144 trang | Chia sẻ: tueminh09 | Ngày: 22/01/2022 | Lượt xem: 973 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Vật liệu trên cơ sở zif-67: tổng hợp và ứng dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ệt Freundlich qmom (mg·g–1) KL (L·mg–1) R2 p KF (L·g–1) n R2 p 298 (phi tuyến) 223,700 0,091 0,994 37,950 2,290 0,967 298 (tuyến tính) 238,100 0,079 0,994 0,003 33,210 2,100 0,960 < 0,001 5 10 15 20 25 30 35 60 80 100 120 140 160 180 Q e Ce Gi¸ trÞ thùc nghiÖm M« h×nh Freundlich M« h×nh Langmuir 0.04 0.08 0.12 0.16 0.20 0.24 0.006 0.008 0.010 0.012 0.014 0.016 1/ q e 1/Ce 1.5 2.0 2.5 3.0 3.5 4.0 4.2 4.4 4.6 4.8 5.0 5.2 ln q e ln Ce Hình 3.31. a) Đồ thị mô hình đẳng nhiệt Langmuir và Freundlich ở dạng phi tuyến; b) Đồ thị mô hình đẳng nhiệt hấp phụ Langmuir ở dạng tuyến tính và mô hình đẳng nhiệt của hấp phụ MO trên Fe3O4/ZIF-67 (ĐKTN: nồng độ MO ban đầu = 30 mg.L-1; Khối lượng chất hấp phụ = 0,01 ÷ 0,06 g; thể tích dung dịch hấp phụ = 50 mL; thời gian rung = 24 giờ; nhiệt độ thực nghiệm: nhiệt độ phòng 25o C) 101 Việc phân tích trên cho phép kết luận rằng các dữ liệu hấp phụ đẳng nhiệt thực nghiệm của thuốc nhuộm MO trên vật liệu Fe3O4/ZIF-67 sử dụng dạng tuyến tính và phi tuyến cho kết quả không khác nhau nhiều và có sự tương thích với cả hai mô hình đẳng nhiệt Langmuir và Freundlich. Có nghĩa rằng hấp phụ đơn lớp và tồn tại bề mặt không đồng nhất trong trên chất hấp phụ. Bảng 3.10 trình bày kết quả so sánh dung lượng hấp phụ của MO của vật liệu đang nghiên cứu và các vật liệu đã nghiên cứu trước đây. Kết quả cho thấy vật liệu Fe3O4/ZIF-67 có khả năng hấp phụ rất cao so với vật liệu đã công bố. Bảng 3.10. So sánh khả năng hấp phụ MO với một số nghiên cứu trước đây Số TT Chất hấp phụ Dung lượng hấp phụ (mg·g–1) Tham khảo 1 Fe3O4/ZIF-67 223,70 Nghiên cứu này 2 Ống nanocarbon đa tường 50,20 [175] 3 Than hoạt tính mao quản trung bình 291,10 [107] 6 Hypercrosslinked polymer 404,40 [101] 7 Polymer siêu liên kết HJ1 76,92 [68] 8 Calcil hydroxide kép 200 [114] 9 Vỏ cam 20,50 [8] 10 Vỏ chuối 21 [8] 3.3.2.2. Nghiên cứu khả năng hấp phụ congo red (CGR), methylene blue (MB) và Rhodamine B (RhB) Vật liệu Fe3O4/ZIF-67 cũng đã được nghiên cứu hấp phụ các phẩm màu (direct blue 80) [88] và thuốc kháng sinh (ciprofloxacin) [2]. Trong nghiên cứu này, chúng tôi mở rộng để nghiên cứu khả năng hấp phụ CGR, MB và RhB cuả Fe3O4/ZIF-67. Kết quả cho thấy giá trị cân bằng thực nghiệm tuân theo mô hình đẳng nhiệt Langmuir (Bảng 3.11). Dung lượng hấp phụ theo mô hình Langmuir của CGR, MB và RhB trên Fe3O4/ZIF-67 là 36,2 mg.g-1, 78,1 mg.g- 1 và 151,5 mg.g-1. Một sự so sánh dung lượng hấp phụ của CGR, MB và RhB trên Fe3O4/ZIF-67 so với những chất hấp phụ được nghiên cứu trước đây 102 được trình bày trên Bảng 3.12. Điều đáng chú ý là Fe3O4/ZIF-67 cho thấy khả năng hấp phụ rất cao đối với thuốc nhuộm CGR. Dung lượng hấp phụ của Fe3O4/ZIF-67 đối với CGR cao hơn 2 đến 10 lần dung lượng hấp phụ của các chất hấp phụ đã được công bố trong các nghiên cứu trước đây như than hoạt tính diện tích bề mặt cao, những hạt hydrogel chitosan được tẩm với chất bề mặt không ion hay ion âm và cobalt ferrite, vv Dung lượng hấp phụ đối với MB và RhB trên Fe3O4/ZIF-67 cũng cao hơn hay tương đương với các chất hấp phụ khác. Bảng 3.11. Đẳng nhiệt hấp phụ Langmuir và Freundlich một số phẩm màu khác của vật liệu Fe3O4/ZIF-67 Phẩm màu hấp phụ Mô hình Langmuir Mô hình Freundlich qmom (mg.g-1) KL (L.mg-1) R2 p qmom (mg.g-1) KF (L.mg-1) n R2 p Congo red 151,500 1,380 0,931 0,010 322,100 77,610 2,290 0,999< 0,010 Rhodamine B 78,130 0,003 0,987 < 0,010 38,050 4,450 1,580 0,989 0,160 Methylene blue 36,230 0,023 0,909 0,021 14,988 1,670 1,550 0,919< 0,010 0 5 10 15 20 25 30 0 50 100 150 200 250 300 q e (m g. g- 1 ) Ce(mg.L -1) Congo red Rhodamine B Methylene blue Hình 3.32. Dung lượng hấp phụ một số phẩm màu khác trên Fe3O4/ZIF-67 103 Bảng 3.12. Dung lượng hấp phụ của các chất hấp phụ khác nhau đối với CGR, MB và RhB tại nhiệt độ phòng Số TT Chất hấp phụ Phẩm màu BET (m2·g–1) qe (mg·g–1) Tham khảo 1 Fe3O4/ZIF–67 CGR* 1123,9 151,5 Nghiên cứu này 2 Tro bã mía CGR 168 11,8 [103] 3 Than hoạt tính thương mại CGR 390 0,637 [103] 4 Than hoạt tính mao quản trung bình CGR 370 – 679 52 – 189 [99] 5 Tấm nano Ni(OH)2 và NiO CGR 127 – 201 39,7 – 152 [32] 6 Hạt gel chitosan biến tính bằng cetyl trimethyl ammonium bromide CGR – 352 [26] 7 Hạt gel chitosan bến tính bằng than nano ống CGR 237,8 450,4 [26] 8 Spinel CoFe2O4 CGR N/A 244,5 [153] 9 Zeolites tự nhiên biến tính bằng N,N–dimethyl dehydroabietylamine oxide CGR N/A 69,49 [96] 10 Fe3O4/ZIF–67 MB** 1123,9 36,2 Nghiên cứu này 11 Al–MCM–41 MB N/A 66,5 [187] 12 Xơ dừa Ấn độ MB 167 5,87 [75] 13 Fe3O4/ZIF-8 MB 1068 20,2 [185] 14 Fe3O4/ZIF-67 RhB*** 1123,9 78,3 Nghiên cứu này 15 Bã cà phê RhB - 5,255 [129] 16 Mn2O3/MCM-41 RhB 793 23,9 [59] 17 Al–MCM–41 RhB 625 91 [187] *CGR: Congo red; **MB: Methylene blue; ***RhB: Rhodamine B Tiểu kết 3. Vật liệu composite Fe3O4/ZIF-67 đã được tổng hợp thành công dưới sự hỗ trợ của sóng siêu âm, có diện tích bề mặt riêng lớn (1123,9 m2.g-1). Phân tích nhiệt động học cho thấy, phản ứng hấp phụ MO tự xảy ra với ái lực cao. Đồng thời, vật liệu có khả năng hấp phụ cao với các phẩm nhuộm như Methyl orange, Congo red, Methylene blue và Rhodamine B với dung lượng hấp phụ lần lượt là 223,7 mg.g-1; 151,5 mg.g-1; 36,2 mg.g-1 và 78,3 mg.g-1. 104 Chương 4 KẾT LUẬN 1. Đã nghiên cứu tổng hợp thành công composite ZIF-67/rGO. Hình thái của ZIF-67/rGO bao gồm các hạt nano ZIF-67 phân tán cao trên các tấm rGO, có diện tích bề mặt riêng cao. Điện cực GCE biến tính bằng vật liệu ZIF-67/rGO có thể sử dụng để phân tích Rhodamine B bằng phương pháp xung vi phân với phạm vi tuyến tính, từ 0,96 đến 44,07 μg.L-1 và giới hạn phát hiện thấp là 1,79 μg.L-1. Quy trình phân tích đã được áp dụng để xác định định lượng hàm lượng RhB trong một số mẫu thực phẩm với tỷ lệ thu hồi 98- 103%. Kết quả phân tích định lượng bằng phương pháp này tương đồng với phương pháp sắc ký lỏng hiệu năng cao, cho thấy rằng vật liệu này có triển vọng phát triển phương pháp phát hiện nhanh tại hiện trường phụ gia độc hại Rhodamine B trong thực phẩm. 2) ZIF-67/g-C3N4 được tổng hợp thành công có sự hỗ trợ của sóng siêu âm. Vật liệu thu được có diện tích bề mặt riêng lớn và độ ổn định cao ở khoảng pH 3-11. Đã phát triển phương pháp phân tích điện hóa đồng thời ACE và URA sử dụng điện cực biến tính bằng ZIF-67/g-C3N4 với cetyl trimethylammonium bromide đóng vai trò như là chất tách peak. Mối quan hệ tuyến tính của dòng đỉnh oxy hóa của URA và ACE và nồng độ dao động từ 0,2 μM đến 6,5 μM với giới hạn phát hiện thấp 0,052 μM cho URA và 0,053 μM cho ACE. Phương pháp đề xuất đã được áp dụng để phân tích đồng thời URA và ACE trong nước tiểu người với kết quả không khác với phân tích bằng HPLC trên phương diện thống kê. 3) Đã nghiên cứu tổng hợp Fe3O4/ZIF-67 có diện tích bề mặt riêng cao, có tính siêu thuận từ. Vật liệu tổng hợp được có khả năng hấp phụ cao với MO, động học MO tuân theo mô hình động học bậc hai. Ngoài ra vật liệu Fe3O4/ZIF-67 có khả năng hấp phụ cao với nhiều phẩm nhuộm như MB, RhB và CGR. Quá trình hấp phụ tuân theo mô hình Langmuir. DANH MỤC CÁC CÔNG TRÌNH CÔNG BỐ CÓ LIÊN QUAN ĐẾN LUẬN ÁN I. Bài báo trong nước 1. Huỳnh Trường Ngọ, Lê Thị Hòa, Hồ Văn Minh Hải (2020), Sử dụng điện cực glassy carbon biến tính với ZIF-67/rGO để xác định Rhodamine B bằng phương pháp volt-ampere, Tạp chí Khoa học tự nhiên, Đại học Huế, số 1A(130). 2. Bùi Quang Thành, Huỳnh Thị Thanh Phương, Huỳnh Trường Ngọ (2020), Nghiên cứu động học và cân bằng hấp phụ methyl orange bằng vật liệu lai Fe3O4/ZIF-67, Tạp chí Khoa học và Công nghệ, Trường Đại học Khoa học, Đại học Huế, số 2(16). II. Tạp chí quốc tế (SCIE) 1. Huynh Truong Ngo, Le Thi Hoa, Nguyen Tan Khanh, Tran Thi Bich Hoa, Tran Thanh Tam Toan, Tran Xuan Mau, Nguyen Hai Phong, Ho Sy Thang and Dinh Quang Khieu, ZIF-67/g-C3N4-Modified electrode for Simultaneous Voltammetric Determination of Uric acid and Acetaminophen with Cetyltrimethylammonium bromide as Discriminating agent, Jornal of Nanomaterials, 2020, https://doi.org/10.1155/2020/7915878 (SCIE, Q2, IF = 1,9). 2. Huynh Truong Ngo, Vo Thang Nguyen, Tran Đuc Manh, Tran Thanh Tam Toan, Nguyen Minh Triet, Nguyen Thi Vuong Hoan, Nguyen Thanh Binh, Tran Vinh Thien and Dinh Quang Khieu, Voltammetric determination of Rhodamine B using ZIF-67/reduced graphene oxide modified electrode, Jornal of Nanomaterials, 2020, https://doi.org/10.1155/2020/4679061. (SCIE, Q2, IF = 1,9). TÀI LIỆU THAM KHẢO [1]. Afrasiabi M., Kianipour S., Babaei A., et al. (2016). A new sensor based on glassy carbon electrode modified with nanocomposite for simultaneous determination of acetaminophen, ascorbic acid and uric acid. Journal of Saudi Chemical Society, Vol.20, pp.S480–S487. [2]. Alamgholiloo H., Hashemzadeh B., Pesyan N.N., et al. (2021). A facile strategy for designing core-shell nanocomposite of ZIF- 67/Fe3O4: A novel insight into ciprofloxacin removal from wastewater. Process Safety and Environmental Protection, Vol.147, pp.392–404. [3]. Alarcón-Angeles G., Corona-Avendaño S., Palomar-Pardavé M., et al. (2008). Selective electrochemical determination of dopamine in the presence of ascorbic acid using sodium dodecyl sulfate micelles as masking agent. Electrochimica Acta, Vol.53, Iss.6, pp.3013–3020. [4]. Alesso M., Bondioli G., Talío M.C., et al. (2012). Micelles mediated separation fluorimetric methodology for Rhodamine B determination in condiments, snacks and candies. Food Chemistry, Vol.134, Iss.1, pp.513–517. [5]. Andrew Lin K.Y., Lee W. Der (2016). Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole. Chemical Engineering Journal, Vol.284, pp.1017–1027. [6]. Anik Ü., Timur S., Dursun Z. (2019). Metal organic frameworks in electrochemical and optical sensing platforms: a review. Microchimica Acta, Vol.186, Iss.3, pp.18–24. [7]. Anirudhan T.S., Radhakrishnan P.G. (2008). Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell. Journal of Chemical Thermodynamics, Vol.40, Iss.4, pp.702–709. [8]. Annadurai G., Juang R.S., Lee D.J. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials, Vol.92, Iss.3, pp.263–274. [9]. Asfaram A., Ghaedi M., Hajati S., et al. (2017). Screening and optimization of highly effective ultrasound-assisted simultaneous adsorption of cationic dyes onto Mn-doped Fe3O4-nanoparticle-loaded activated carbon. Ultrasonics Sonochemistry, Vol.34, pp.1–12. [10]. Babaei A., Garrett D.J., Downard A.J. (2011). Selective Simultaneous Determination of Paracetamol and Uric Acid Using a Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotube/Chitosan Composite. Electroanalysis, Vol.23, Iss.2, pp.417–423. [11]. Bagoji A.M., Nandibewoor S.T. (2016). Electrocatalytic redox behavior of graphene films towards acebutolol hydrochloride determination in real samples. New Journal of Chemistry, Vol.40, Iss.4, pp.3763–3772. [12]. Bai X., Yan S., Wang J., et al. (2014). A simple and efficient strategy for the synthesis of a chemically tailored g-C3N4 material. Journal of Materials Chemistry A, Vol.2, Iss.41, pp.17521–17529. [13]. Barreca D., Massignan C., Daolio S., et al. (2001). Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition. Chemistry of Materials, Vol.13, Iss.2, pp.588–593. [14]. Beyer S., Prinz C., Schürmann R., et al. (2016). Ultra-Sonication of ZIF-67 Crystals Results in ZIF-67 Nano-Flakes. ChemistrySelect, Vol.1, Iss.18, pp.5905–5908. [15]. Bharath G., Latha B.S., Alsharaeh E.H., et al. (2017). Enhanced hydroxyapatite nanorods formation on graphene oxide nanocomposite as a potential candidate for protein adsorption, pH controlled release and an effective drug delivery platform for cancer therapy. Analytical Methods, Vol.9, Iss.2, pp.240–252. [16]. Bhattacharjee S., Jang M.S., Kwon H.J., et al. (2014). Zeolitic Imidazolate Frameworks: Synthesis, Functionalization, and Catalytic/Adsorption Applications. Catalysis Surveys from Asia, Vol.18, Iss.4, pp.101–127. [17]. Bojdys M.J. (2009). On new allotropes and nanostructures of carbon nitrides (Doctoral dissertation, Universität Potsdam, Germany). [18]. Bojdys M.J., Müller J.O., Antonietti M., et al. (2008). Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chemistry - A European Journal, Vol.14, Iss.27, pp.8177–8182. [19]. Bragg W.L. (1913). The diffraction of short electromagnetic waves by a crystal: Proceedings of the Cambridge Philosophical Society. pp.43–57. [20]. Butova V. V, Soldatov M.A., Guda A.A., et al. (2016). Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russian Chemical Reviews, Vol.85, Iss.3, pp.280–307. [21]. Byrappa K., Adschiri T. (2007). Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials, Vol.53, Iss.2, pp.117–166. [22]. De Carvalho R.M., Freire R.S., Rath S., et al. (2004). Effects of EDTA on signal stability during electrochemical detection of acetaminophen. Journal of Pharmaceutical and Biomedical Analysis, Vol.34, Iss.5, pp.871–878. [23]. Casiraghi C., Hartschuh A., Qian H., et al. (2009). Raman Spectroscopy of Graphene Edges. Nano Lett, Vol.9, Iss.4, pp.1433–1441. [24]. Castner D.G., Watson P.R., Chan I.Y. (1990). X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and analytical electron microscopy studies of cobalt catalysts. 2. Hydrogen reduction properties. Journal of Physical Chemistry, Vol.94, Iss.2, pp.819–828. [25]. Chandra V., Park J., Chun Y., et al. (2010). Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. Science of the Total Environment, Vol.4, Iss.7, pp.3979–3986. [26]. Chatterjee S., Lee D.S., Lee M.W., et al. (2009). Enhanced adsorption of congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide. Bioresource Technology, Vol.100, Iss.11, pp.2803–2809. [27]. Chen B., Yang Z., Zhu Y., et al. (2014). Zeolitic imidazolate framework materials: Recent progress in synthesis and applications. Journal of Materials Chemistry A, Vol.2, Iss.40, pp.16811–16831. [28]. Chen H., Wu X., Zhao R., et al. (2019). Preparation of reduced graphite oxide loaded with cobalt(II) and nitrogen co-doped carbon polyhedrons from a metal-organic framework (type ZIF-67), and its application to electrochemical determination of metronidazole. Microchimica Acta, Vol.186, Iss.9,. [29]. Chen J., Zhu X. (2016). Magnetic solid phase extraction using ionic liquid-coated core-shell magnetic nanoparticles followed by high- performance liquid chromatography for determination of Rhodamine B in food samples. Food Chemistry, Vol.200, pp.10–15. [30]. Chen L., Wang J., Shen X., et al. (2019). ZIF-67@Co-LDH yolk-shell spheres with micro-/meso-porous structures as vehicles for drug delivery. Inorganic Chemistry Frontiers, Vol.6, Iss.11, pp.3140–3145. [31]. Chen Y., Song B., Xiaosheng Tang, et al. (2012). One-step Synthesis of Hollow Porous Fe3O4 Beads/reduced Graphene Oxide Composite with Superior Battery Performance. J.Mater.Chem., Vol.22, Iss.34, pp.1–19. [32]. Cheng B., Le Y., Cai W., et al. (2011). Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water. Journal of Hazardous Materials, Vol.185, Iss.2–3, pp.889–897. [33]. Cho H.Y., Kim J., Kim S.N., et al. (2013). High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous and Mesoporous Materials, Vol.169, pp.180–184. [34]. Cui Y., Zhang J., Zhang G., et al. (2011). Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. Journal of Materials Chemistry, Vol.21, Iss.34, pp.13032–13039. [35]. Deng H., Grunder S., Cordova K.E., et al. (2012). Large-pore apertures in a series of metal-organic frameworks. Science, Vol.336, Iss.6084, pp.1018–1023. [36]. Du X., Wang C., Liu J., et al. (2017). Extensive and selective adsorption of ZIF-67 towards organic dyes: Performance and mechanism. Journal of Colloid And Interface Science, Vol.506, pp.437–441. [37]. Eddaoudi M., Kim J., Rosi N., et al. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, Vol.295, Iss.5554, pp.469–472. [38]. Ethiraj J., Palla S., Reinsch H. (2020). Insights into high pressure gas adsorption properties of ZIF-67: Experimental and theoretical studies. Microporous and Mesoporous Materials, Vol.294, Iss.3, pp.109867. [39]. Faustini M., Kim J., Jeong G.Y., et al. (2013). Microfluidic approach toward continuous and ultrafast synthesis of metal-organic framework crystals and hetero structures in confined microdroplets. Journal of the American Chemical Society, Vol.135, Iss.39, pp.14619–14626. [40]. Feng S.-H., Li G.-H. (2017). Chapter 4 - Hydrothermal and Solvothermal Syntheses, in: Mod. Inorg. Synth. Chem. Second Ed., Elsevier B.V, : pp. 73–104. [41]. Feng X., Carreon M.A. (2015). Kinetics of transformation on ZIF-67 crystals. Journal of Crystal Growth, Vol.418, pp.158–162. [42]. Francis L. Martin & Andre E.M. Maclean (1998). Comparison of paracetamol-induced hepatotoxicity in the rat in vivo with progression of cell injury in vitro in rat liver slices. Drug and Chemical Toxicology, Vol.21, Iss.4, pp.477–498. [43]. Franke C., H.Westerholm, R. N. (1997). Solid-Phase Extraction (SPE) Of The Flourescence Tracers Uranine And SulphoRhodamine B. Science, Vol.31, Iss.10, pp.2633–2637. [44]. Gagliardi L., De Orsi D., Cavazzutti G., et al. (1996). HPLC determination of Rhodamine B (C.I. 45170) products. Chromatographia, Vol.43, Iss.1–2, pp.76–78. [45]. Ganguly A., Sharma S., Papakonstantinou P., et al. (2011). Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution. The Journal of Physical Chemistry C, Vol.115, pp.17009–17019. [46]. Gao J., Zhou Y., Li Z., et al. (2012). High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity. Nanoscale, Vol.4, Iss.12, pp.3687–3692. [47]. Gerber F., Krummen M., Potgeter H., et al. (2004). Practical aspects of fast reversed-phase high-performance liquid chromatography using 3 μm particle packed columns and monolithic columns in pharmaceutical development and production working under current good manufacturing practice. Journal of Chromatography A, Vol.1036, Iss.2, pp.127–133. [48]. Gillan E.G. (2000). Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chemistry of Materials, Vol.12, Iss.12, pp.3906–3912. [49]. Golestaneh M., Ghoreishi S.M. (2020). Analytical &. Anal. Bioanal. Electrochem, Vol.12, Iss.1, pp.81–92. [50]. Graf D., Molitor F., Ensslin K., et al. (2007). Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene. Nano Lett, Vol.7, Iss.2, pp.238–242. [51]. Griffiths P.R., Haseth J.A. d. (2007). Fourier Transform Infrared Spectrometry, Second Edi, John Wiley and Sons, Inc. [52]. Gross A.F., Sherman E., Vajo J.J. (2012). Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Transactions, Vol.41, Iss.18, pp.5458–5460. [53]. Guan W., Dai Y., Dong C., et al. (2020). Zeolite imidazolate framework (ZIF) -based mixed matrix membranes for CO2 separation : A review. Journal of Applied Polymer Science, Vol.48968, pp.1–13. [54]. Guan W., Gao X., Ji G., et al. (2017). Fabrication of a magnetic nanocomposite photocatalysts Fe3O4@ZIF-67 for degradation of dyes in water under visible light irradiation. Journal of Solid State Chemistry, Vol.255, Iss.August, pp.150–156. [55]. Guex L.G., Sacchi B., Peuvot K.F., et al. (2017). Experimental review: Chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale, Vol.9, Iss.27, pp.9562–9571. [56]. Guo Q., Xie Y., Wang X., et al. (2003). Characterization of well- crystallized graphitic carbon nitride nanocrystallites via a benzene- thermal route at low temperatures. Chemical Physics Letters, Vol.380, Iss.1–2, pp.84–87. [57]. Guo Q., Xie Y., Wang X., et al. (2004). Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures. Chemical Communications, Vol.4, Iss.1, pp.26–27. [58]. Guo X., Xing T., Lou Y., et al. (2016). Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. Journal of Solid State Chemistry, Vol.235, pp.107–112. [59]. Han B., Zhang F., Feng Z., et al. (2014). A designed Mn2O3/MCM-41 nanoporous composite for methylene blue and rhodamine B removal with high efficiency. Ceramics International, Vol.40, Iss.6, pp.8093–8101. [60]. Haque E., Jun J.W., Talapaneni S.N., et al. (2010). Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol. Journal of Materials Chemistry, Vol.20, Iss.48, pp.10801–10803. [61]. He Q., Liu J., Xia Y., et al. (2019). Rapid and Sensitive Voltammetric Detection of Rhodamine B in Chili-Containing Foodstuffs Using MnO2 Nanorods/Electro-Reduced Graphene Oxide Composite . Journal of The Electrochemical Society, Vol.166, Iss.10, pp.B805–B813. [62]. He Y., Cai J., Li T., et al. (2013). Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible-light irradiation. Chemical Engineering Journal, Vol.215–216, pp.721–730. [63]. Ho Y.S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, Vol.136, Iss.3, pp.681–689. [64]. Hoa D.T.N., Toan T.T.T., Mau T.X., et al. (2020). Voltammetric determination of Auramine O with ZIF-67/Fe2O3/g-C3N4-modified electrode. Journal of Materials Science: Materials in Electronics, Vol.31, Iss.22, pp.19741–19755. [65]. Horwitz W., Albert R. (1997). The concept of uncertainty as applied to chemical measurements. Analyst, Vol.122, Iss.6, pp.615–617. [66]. Hosseinian A., Amjad A., Hosseinzadeh-Khanmiri R., et al. (2017). Nanocomposite of ZIF-67 metal – organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications. Journal of Materials Science: Materials in Electronics,. [67]. Hu Y., Song X., Zheng Q., et al. (2019). Zeolitic imidazolate framework-67 for shape stabilization and enhanced thermal stability of paraffin-based phase change materials. RSC Advances, Vol.9, Iss.18, pp.9962–9967. [68]. Huang J.H., Huang K.L., Liu S.Q., et al. (2008). Adsorption of Rhodamine B and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.330, Iss.1, pp.55–61. [69]. Hummers W.S., Offeman R.E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, Vol.80, Iss.6, pp.1339–1339. [70]. J.Bard A., J.Falkner L. (2001). Electrochemical methods, fundamentals and applications, Wiley New York. [71]. Jayaramulu K., Masa J., Tomanec O., et al. (2017). Nanoporous Nitrogen-Doped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a Metal-Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution. Advanced Functional Materials, Vol.27, Iss.33, pp.1–10. [72]. Jodłowski P.J., Jȩdrzejczyk R.J., Rogulska A., et al. (2014). Spectroscopic characterization of Co3O4 catalyst doped with CeO2 and PdO for methane catalytic combustion. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, Vol.131, pp.696–701. [73]. Jürgens B., Irran E., Senker J., et al. (2003). Melem (2,5,8-triamino- tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by x-ray powder diffractometry, solid-state NMR, and theoretical studies. Journal of the American Chemical Society, Vol.125, Iss.34, pp.10288–10300. [74]. Kalmutzki M.J., Hanikel N., Yaghi O.M. (2018). Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Science Advances, Vol.4, Iss.10,. [75]. Kavitha D., Namasivayam C. (2007). Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresource Technology, Vol.98, Iss.1, pp.14–21. [76]. Khan U., Neill A.O., Lotya M., et al. (2010). High-Concentration Solvent Exfoliation of Graphene. Small, Vol.6, Iss.7, pp.864–871. [77]. Kianipour S., Asghari A. (2013). Room temperature ionic liquid/multiwalled carbon nanotube/chitosan-modified glassy carbon electrode as a sensor for simultaneous determination of ascorbic acid, uric acid, acetaminophen, and mefenamic acid. IEEE Sensors Journal, Vol.13, Iss.7, pp.2690–2698. [78]. Komatsu T., Nakamura T. (2001). Polycondensation/pyrolysis of tris- s-triazine derivatives leading to graphite-like carbon nitrides. Journal of Materials Chemistry, Vol.11, Iss.2, pp.474–478. [79]. Kouvetakis J., Bandari A., Todd M., et al. (1994). Novel Synthetic Routes to Carbon-Nitrogen Thin Films. Chem.Matter, Vol.6, pp.811–814. [80]. Kroke E., Schwarz M., Horath-Bordon E., et al. (2002). Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New Journal of Chemistry, Vol.26, Iss.5, pp.508–512. [81]. Kumar S.A., Tang C.F., Chen S.M. (2008). Electroanalytical determination of acetaminophen using nano-TiO2/polymer coated electrode in the presence of dopamine. Talanta, Vol.76, Iss.5, pp.997–1005. [82]. Kutluay A., Aslanoglu M. (2014). An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube- supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine. Analytica Chimica Acta, Vol.839, pp.59–66. [83]. Lagergren S (1898). About the theory of so-called adsorption of soluble substances. K. Sven. Vetenskapsakad. Handl, Vol.24, Iss.4, pp.1–39. [84]. Lanchas M., Arcediano S., T. Aguazo Andres, et al. (2014). Two appealing alternatives for MOFs synthesis: solvent-free oven heating vs microwave heating. RSC Advances, Vol.4, Iss.104, pp.60409– 60412. [85]. Laviron E. (1979). General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry, Vol.101, Iss.1, pp.19–28. [86]. Li C. (2007). Electrochemical determination of dipyridamole at a carbon paste electrode using cetyltrimethyl ammonium bromide as enhancing element. Colloids and Surfaces B: Biointerfaces, Vol.55, Iss.1, pp.77–83. [87]. Li H., Li Q., He X., et al. (2018). The magnetic hybrid Cu(I)- MoF@Fe3O4 with hierarchically engineered micropores for highly efficient removal of Cr(VI) from aqueous solution. Crystal Growth and Design, Vol.18, Iss.10, pp.6248–6256. [88]. Li M., Gao D., Cui S., et al. (2020). Fabrication of Fe3O4/ZIF-67 composite for removal of direct blue 80 from water. Water Invironment Research, Vol.92, Iss.5, pp.740–748. [89]. Li Y., Zhou K., He M., et al. (2016). Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption. Microporous and Mesoporous Materials, Vol.234, pp.287–292. [90]. Lin K.Y.A., Chang H.A. (2015). Zeolitic Imidazole Framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water. Journal of the Taiwan Institute of Chemical Engineers, Vol.53, pp.40–45. [91]. Liu A.Y., Cohen M.L. (1989). Prediction of new low compressibility solids. Science, Vol.245, Iss.4920, pp.841–842. [92]. Liu J., Li W., Duan L., et al. (2015). A Graphene-like Oxygenated Carbon Nitride Material for Improved Cycle-Life Lithium/Sulfur Batteries. Nano Letters, Vol.15, Iss.8, pp.5137–5142. [93]. Liu L., Zhou Y., Liu S., et al. (2018). The Applications of Metal−Organic Frameworks in Electrochemical Sensors. ChemElectroChem, Vol.5, Iss.1, pp.6–19. [94]. Liu M., Wu J., Hou H. (2019). Metal–Organic Framework (MOF)- Based Materials as Heterogeneous Catalysts for C−H Bond Activation. Chemistry - A European Journal, Vol.25, Iss.12, pp.2935–2948. [95]. Liu Q., Sun N., Gao M., et al. (2018). Magnetic Binary Metal-Organic Framework As a Novel Affinity Probe for Highly Selective Capture of Endogenous Phosphopeptides. ACS Sustainable Chemistry and Engineering, Vol.6, Iss.3, pp.4382–4389. [96]. Liu S., Ding Y., Li P., et al. (2014). Adsorption of the anionic dye Congo red from aqueous solution onto natural zeolites modified with N,N-dimethyl dehydroabietylamine oxide. Chemical Engineering Journal, Vol.248, pp.135–144. [97]. Liu S.Q., Sun W.H., Hu F.T. (2012). Graphene nano sheet-fabricated electrochemical sensor for the determination of dopamine in the presence of ascorbic acid using cetyltrimethylammonium bromide as the discriminating agent. Sensors and Actuators, B: Chemical, Vol.173, pp.497–504. [98]. Loh K.S., Lee Y.H., Musa A., et al. (2008). Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2,4-dichlorophenoxyacetic acid. Sensors, Vol.8, Iss.9, pp.5775–5791. [99]. Lorenc-Grabowska E., Gryglewicz G. (2007). Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes and Pigments, Vol.74, Iss.1, pp.34–40. [100]. Lucchese M.M., Stavale F., Ferreira E.H.M., et al. (2010). Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon, Vol.48, Iss.5, pp.1592–1597. [101]. M. R. Samarghandi, M. Hadi, S. Moayedi F.B.A. (2009). Two- parameter isotherms of methyl orange sorption by pinecone derived activated carbon. Iran. J. Environ. Health. Sci. Eng., Vol.6, Iss.4, pp.285–294. [102]. Maeda K., Wang X., Nishihara Y., et al. (2009). Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. Journal of Physical Chemistry C, Vol.113, Iss.12, pp.4940–4947. [103]. Mall I.D., Srivastava V.C., Agarwal N.K., et al. (2005). Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses. Chemosphere, Vol.61, Iss.4, pp.492–501. [104]. Martinez Joaristi A., Juan-Alcañiz J., Serra-Crespo P., et al. (2012). Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Crystal Growth and Design, Vol.12, Iss.7, pp.3489–3498. [105]. Meng W., Wen Y., Dai L., et al. (2018). A novel electrochemical sensor for glucose detection based on Ag@ZIF-67 nanocomposite. Sensors and Actuators, B: Chemical, Vol.260, pp.852–860. [106]. Mohamed A.M., Ramadan M., Ahmed N., et al. (2020). Metal– Organic frameworks encapsulated with vanadium-substituted heteropoly acid for highly stable asymmetric supercapacitors. Journal of Energy Storage, Vol.28, Iss.February, pp.101292. [107]. Mohammadi N., Khani H., Gupta V.K., et al. (2011). Adsorption process of methyl orange dye onto mesoporous carbon material- kinetic and thermodynamic studies. Journal of Colloid and Interface Science, Vol.362, Iss.2, pp.457–462. [108]. Mohan V.B., Brown R., Jayaraman K., et al. (2015). Characterisation of reduced graphene oxide: Effects of reduction variables on electrical conductivity. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, Vol.193, Iss.C, pp.49–60. [109]. Morozan A., Jaouen F. (2012). Metal organic frameworks for electrochemical applications. Energy and Environmental Science, Vol.5, Iss.11, pp.9269–9290. [110]. Mottillo C., Lu Y., Pham M.H., et al. (2013). Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal-organic frameworks from metal (Zn, Co) oxides. Green Chemistry, Vol.15, Iss.8, pp.2121–2131. [111]. Murray L.J., Dinc M., Long J.R. (2009). Hydrogen storage in metal- organic frameworks. Chemical Society Reviews, Vol.38, Iss.5, pp.1294–1314. [112]. Muschi M., Serre C. (2019). Progress and challenges of graphene oxide/metal-organic composites. Coordination Chemistry Reviews, Vol.387, pp.262–272. [113]. Nguyen T.T.T., Phung C.S., Tran V.T., et al. (2019). Microwave- assisted synthesis and simultaneous electrochemical determination of dopamine and paracetamol using ZIF-67-modified electrode. Journal of Materials Science, Vol.54, Iss.17, pp.11654–11670. [114]. Ni Z.M., Xia S.J., Wang L.G., et al. (2007). Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: Adsorption property and kinetic studies. Journal of Colloid and Interface Science, Vol.316, Iss.2, pp.284–291. [115]. Park K.S., Ni Z., Cote A.P., et al. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, Vol.103, Iss.27, pp.10186–10191. [116]. Park S., Kim S.Y., Oh J., et al. (2016). Production of Metal-Free Composites Composed of Graphite Oxide and Oxidized Carbon Nitride Nanodots and Their Enhanced Photocatalytic Performances. Chemistry - A European Journal, Vol.22, Iss.15, pp.5142–5145. [117]. Perera I.R., Hettiarachchi C. V., Ranatunga R.J.K.U. (2019). Metal– Organic Frameworks in Dye-Sensitized Solar Cells, in: Adv. Sol. Energy Res., Springer Singapore, Singapore, : pp. 175–219. [118]. Petcharoen K., Sirivat A. (2012). Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, Vol.177, Iss.5, pp.421–427. [119]. Phong N.H., Toan T.T.T., Tinh M.X., et al. (2018). Simultaneous voltammetric determination of ascorbic acid, paracetamol, and caffeine using electrochemically reduced graphene-Oxide-Modified electrode. Journal of Nanomaterials, Vol.2018,. [120]. Pourreza N., Rastegarzadeh S., Larki A. (2008). Micelle-mediated cloud point extraction and spectrophotometric determination of rhodamine B using Triton X-100. Talanta, Vol.77, Iss.2, pp.733–736. [121]. Qian J., Sun F., Qin L. (2012). Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters, Vol.82, Iss.55, pp.220–223. [122]. Qin J., Wang S., Wang X. (2017). Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co- catalyst. Applied Catalysis B: Environmental, Vol.209, pp.476–482. [123]. Rusling J.F. (1991). Controlling Electrochemical Catalysis with Surfactant Microstructures. Accounts of Chemical Research, Vol.24, Iss.3, pp.75–81. [124]. Sánchez-Sánchez M., Getachew N., Díaz K., et al. (2015). Synthesis of metal-organic frameworks in water at room temperature: Salts as linker sources. Green Chemistry, Vol.17, Iss.3, pp.1500–1509. [125]. Sawalha M.F., Peralta-Videa J.R., Romero-González J., et al. (2006). Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: Thermodynamic and isotherm studies. Journal of Colloid and Interface Science, Vol.300, Iss.1, pp.100–104. [126]. Scherb C. (2009). Controlling the Surface Growth of Metal-Organic Frameworks, Ludwig-Maximilians-University. [127]. Sehnert J., Baerwinkel K., Senker J. (2007). Ab initio calculation of solid-state NMR spectra for different triazine and heptazine based structure proposals of g-C3N4. Journal of Physical Chemistry B, Vol.111, Iss.36, pp.10671–10680. [128]. Shandilya M., Rai R., Singh J. (2016). Review: Hydrothermal technology for smart materials. Advances in Applied Ceramics, Vol.115, Iss.6, pp.354–376. [129]. Shen K., Gondal M.A. (2017). Removal of hazardous Rhodamine dye from water by adsorption onto exhausted coffee ground. Journal of Saudi Chemical Society, Vol.21, pp.S120–S127. [130]. Shi L., Liang L., Wang F., et al. (2014). Polycondensation of guanidine hydrochloride into a graphitic carbon nitride semiconductor with a large surface area as a visible light photocatalyst. Catalysis Science and Technology, Vol.4, Iss.9, pp.3235–3243. [131]. Shi Q., Chen Z., Song Z., et al. (2011). Synthesis of ZIF-8 and ZIF-67 by Steam-Assisted Conversion and an Investigation of Their Tribological Behaviors. Angewandte Chemie, Vol.123, Iss.3, pp.698–701. [132]. Sobon G., Sotor J., Jagiello J., et al. (2012). Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt. Express, Vol.20, Iss.17, pp.19463–19473. [133]. Soleymani J., Hasanzadeh M., Shadjou N., et al. (2016). A new kinetic-mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. Materials Science and Engineering C, Vol.61, pp.638–650. [134]. Soylak M., Unsal Y.E., Yilmaz E., et al. (2011). Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food and Chemical Toxicology, Vol.49, Iss.8, pp.1796–1799. [135]. Srinivas C., Sudharsan M., Reddy G.R.K., et al. (2018). Co/Co- N@Nanoporous Carbon Derived from ZIF-67: A Highly Sensitive and Selective Electrochemical Dopamine Sensor. Electroanalysis, Vol.30, Iss.10, pp.2475–2482. [136]. Stankovich S., Dikin D.A., Piner R.D., et al. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, Vol.45, Iss.7, pp.1558–1565. [137]. Sun D., Yang X. (2017). Rapid Determination of Toxic Rhodamine B in Food Samples Using Exfoliated Graphene-Modified Electrode. Food Analytical Methods, Vol.10, Iss.6, pp.2046–2052. [138]. Sun J., Gan T., Li Y., et al. (2014). Rapid and sensitive strategy for Rhodamine B detection using a novel electrochemical platform based on core-shell structured Cu@carbon sphere nanohybrid. Journal of Electroanalytical Chemistry, Vol.724, pp.87–94. [139]. Sun L., Campbell M.G., Dincă M. (2016). Electrically Conductive Porous Metal-Organic Frameworks. Angewandte Chemie International Edition, Vol.55, Iss.11, pp.3566–3579. [140]. Sun W., Zhai X., Zhao L. (2016). Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions. Chemical Engineering Journal, Vol.289, pp.59–64. [141]. Sundriyal S., Shrivastav V., Kaur H., et al. (2018). High-Performance Symmetrical Supercapacitor with a Combination of a ZIF-67/rGO Composite Electrode and a Redox Additive Electrolyte. ACS Omega, Vol.3, Iss.12, pp.17348–17358. [142]. Sundriyal S., Shrivastav V., Mishra S., et al. (2020). Enhanced electrochemical performance of nickel intercalated ZIF-67/rGO composite electrode for solid-state supercapacitors. International Journal of Hydrogen Energy, Vol.45, Iss.55, pp.30859–30869. [143]. Tahir M., Cao C., Mahmood N., et al. (2014). Multifunctional g‑C3N4 Nanofibers A Template-Free Fabrication and Enhanced Optical, Electrochemical, and Photocatalyst Properties. ACS Appl. Mater. Interfaces, Vol.6, Iss.2, pp.1258–1265. [144]. Tan L., Xu J., Zhang X., et al. (2015). Synthesis of g-C3N4/CeO2 nanocomposites with improved catalytic activity on the thermal decomposition of ammonium perchlorate. Applied Surface Science, Vol.356, pp.447–453. [145]. Tang J., Jiang S., Liu Y., et al. (2018). Electrochemical determination of dopamine and uric acid using a glassy carbon electrode modified with a composite consisting of a Co(II)-based metalorganic framework (ZIF-67) and graphene oxide. Microchimica Acta, Vol.185, Iss.10, pp.1–11. [146]. Taverniers I., De Loose M., Van Bockstaele E. (2004). Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends in Analytical Chemistry, Vol.23, Iss.8, pp.535–552. [147]. Teter D.M., Hemley R.J. (1996). Low-compressibility carbon nitrides. Science, Vol.271, Iss.5245, pp.53–55. [148]. Thomas A., Fischer A., Goettmann F., et al. (2008). Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, Vol.18, Iss.41, pp.4893–4908. [149]. Tian N., Huang H., Zhang Y. (2015). Mixed-calcination synthesis of CdWO4/g-C3N4 heterojunction with enhanced visible-light-driven photocatalytic activity. Applied Surface Science, Vol.358, pp.343–349. [150]. Tian Y., Zhao Y., Chen Z., et al. (2007). Design and Generation of Extended Zeolitic Metal – Organic Frameworks (ZMOFs): Synthesis and Crystal Structures of Zinc (II) Imidazolate Polymers with Zeolitic Topologies. Chem. Eur. J., Vol.13, pp.4146–4154. [151]. Vittal R., Gomathi H., Kim K.J. (2006). Beneficial role of surfactants in electrochemistry and in the modification of electrodes. Advances in Colloid and Interface Science, Vol.119, Iss.1, pp.55–68. [152]. Wang C., Yang F., Sheng L., et al. (2016). Zinc-substituted ZIF-67 nanocrystals and polycrystalline membranes for propylene/propane separation. Chemical Communications, Vol.52, Iss.85, pp.12578–12581. [153]. Wang L., Li J., Wang Y., et al. (2012). Adsorption capability for Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel ferrites. Chemical Engineering Journal, Vol.181–182, pp.72–79. [154]. Wang L., Zhu H., Shi Y., et al. (2018). Novel catalytic micromotor of porous zeolitic imidazolate framework-67 for precise drug delivery. Nanoscale, Vol.10, Iss.24, pp.11384–11391. [155]. Wang X., Maeda K., Thomas A., et al. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, Vol.8, Iss.1, pp.76–80. [156]. Wang Y.Y., Ni Z.H., Yu T., et al. (2008). Raman studies of monolayer graphene: The substrate effect. Journal of Physical Chemistry C, Vol.112, Iss.29, pp.10637–10640. [157]. Wehner T., Mandel K., Schneider M., et al. (2016). Superparamagnetic Luminescent MOF@Fe3O4/SiO2 Composite Particles for Signal Augmentation by Magnetic Harvesting as Potential Water Detectors. ACS Applied Materials and Interfaces, Vol.8, Iss.8, pp.5445–5452. [158]. Wei W., Chen W., Ivey D.G. (2008). Rock salt-spinel structural transformation in anodically electrodeposited Mn-Co-O nanocrystals. Chemistry of Materials, Vol.20, Iss.5, pp.1941–1947. [159]. Wen J., Xie J., Chen X., et al. (2017). A review on g-C3N4-based photocatalysts. Applied Surface Science, Vol.391, Iss.March 2019, pp.72–123. [160]. Xu J., Wu H.T., Wang X., et al. (2013). A new and environmentally benign precursor for the synthesis of mesoporous g-C3N4 with tunable surface area. Physical Chemistry Chemical Physics, Vol.15, Iss.13, pp.4510 – 4517. [161]. Xu Q., Jiang C., Cheng B., et al. (2017). Enhanced visible-light photocatalytic H2-generation activity of carbon/g-C3N4 nanocomposites prepared by two-step thermal treatment. Dalton Transactions, Vol.46, Iss.32, pp.10611–10619. [162]. Xu Y., Gao S.P. (2012). Band gap of C3N4 in the GW approximation. International Journal of Hydrogen Energy, Vol.37, Iss.15, pp.11072– 11080. [163]. Xue Y., Xiang P., Jiang Y., et al. (2020). Influence of Ca2+ on phosphate removal from water using a non-core-shell Fe3O4@ZIF-67 composites. Journal of Environmental Chemical Engineering, Vol.8, Iss.5, pp.104458. [164]. Xue Y., Zheng S., Xue H., et al. (2019). Metal-organic framework composites and their electrochemical applications. Journal of Materials Chemistry A, Vol.7, Iss.13, pp.7301–7327. [165]. Yaghi 0. M., Li G., Li H. (1995). Selective binding and removal of guests in a microporous metal-organic framework. Nature, Vol.378, Iss.6558, pp.703–706. [166]. Yaghi O.M., Kalmutzki M.J., Diercks C.S. (2019). Introduction to Reticular Chemistry, Wiley Online Library, . [167]. Yamamoto D., Maki T., Watanabe S., et al. (2013). Synthesis and adsorption properties of ZIF-8 nanoparticles using a micromixer. Chemical Engineering Journal, Vol.227, pp.145–150. [168]. Yan S.C., Li Z.S., Zou Z.G. (2009). Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir, Vol.25, Iss.17, pp.10397–10401. [169]. Yan X., Tian L., He M., et al. (2015). Three-Dimensional Crystalline/Amorphous Co/Co3O4 core/Shell Nanosheets as Efficient Electrocatalysts for the Hydrogen Evolution Reaction. Nano Letters, Vol.15, Iss.9, pp.6015–6021. [170]. Yang L., Huang N., Lu Q., et al. (2016). A quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a ferrocene derivative functional Au NPs/carbon dots nanocomposite and graphene. Analytica Chimica Acta, Vol.903, pp.69–80. [171]. Yang Q., Xu Q., Jiang H.L. (2017). Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chemical Society Reviews, Vol.46, Iss.15, pp.4774–4808. [172]. Yang W., Shi X., Li Y., et al. (2019). Manganese-doped cobalt zeolitic imidazolate framework with highly enhanced performance for supercapacitor. Journal of Energy Storage, Vol.26, Iss.October, pp.1–7. [173]. Yang Y., Dong H., Wang Y., et al. (2018). Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation. Journal of Solid State Chemistry, Vol.258, Iss.November 2017, pp.582–587. [174]. Yao J., He M., Wang K., et al. (2013). High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. CrystEngComm, Vol.15, Iss.18, pp.3601–3606. [175]. Yao Y., Bing H., Feifei X., et al. (2011). Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chemical Engineering Journal, Vol.170, Iss.1, pp.82–89. [176]. Yi Y., Sun H., Zhu G., et al. (2015). Sensitive electrochemical determination of rhodamine B based on cyclodextrin-functionalized nanogold/hollow carbon nanospheres. Analytical Methods, Vol.7, Iss.12, pp.4965–4970. [177]. Yu L., Mao Y., Qu L. (2013). Simple Voltammetric Determination of Rhodamine B by Using the Glassy Carbon Electrode in Fruit Juice and Preserved Fruit. Food Analytical Methods, Vol.6, Iss.6, pp.1665–1670. [178]. Yuan Y., Zhang L., Xing J., et al. (2015). High-yield synthesis and optical properties of g-C3N4. Nanoscale, Vol.7, Iss.29, pp.12343–12350. [179]. Zen J.M., Jou J.J., Ilangovan G. (1998). Selective voltammetric method for uric acid detection using pre-anodized Nation-coated glassy carbon electrodes. Analyst, Vol.123, Iss.6, pp.1345–1350. [180]. Zhang H., Zhong J., Zhou G., et al. (2016). Microwave-Assisted Solvent-Free Synthesis of Zeolitic Imidazolate Framework-67. Journal of Nanomaterials, Vol.2016,. [181]. Zhang J., Tan Y., Song W.J. (2020). Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review. Microchimica Acta, Vol.187, Iss.4, pp.1–23. [182]. Zhang J., Zhang L., Wang W., et al. (2016). Sensitive electrochemical determination of rhodamine B based on a silica-pillared zirconium phosphate/nafion composite modified glassy carbon electrode. Journal of AOAC International, Vol.99, Iss.3, pp.760–765. [183]. Zhang M., Jia M. (2013). High rate capability and long cycle stability Fe3O4-graphene nanocomposite as anode material for lithium ion batteries. Journal of Alloys and Compounds, Vol.551, pp.53–60. [184]. Zhang X., Li H., Lv X., et al. (2018). Facile Synthesis of Highly Efficient Amorphous Mn-MIL-100 Catalysts: Formation Mechanism and Structure Changes during Application in CO Oxidation. Chemistry - A European Journal, Vol.24, Iss.35, pp.8822–8832. [185]. Zheng J., Cheng C., Fang W.J., et al. (2014). Surfactant-free synthesis of a Fe3O4@ZIF-8 core-shell heterostructure for adsorption of methylene blue. CrystEngComm, Vol.16, Iss.19, pp.3960 – 3964. [186]. Zheng Y., Jiao Y., Zhu Y., et al. (2014). Hydrogen evolution by a metal-free electrocatalyst. Nature Communications, Vol.5, pp.1–8. [187]. Zhou C., Gao Q., Luo W., et al. (2015). Preparation, characterization and adsorption evaluation of spherical mesoporous Al-MCM-41 from coal fly ash. Journal of the Taiwan Institute of Chemical Engineers, Vol.52, pp.147–157. [188]. Zhou L., Xu Y., Yu W., et al. (2016). Ultrathin two-dimensional graphitic carbon nitride as a solution-processed cathode interfacial layer for inverted polymer solar cells. Journal of Materials Chemistry A, Vol.4, Iss.21, pp.8000–8004. [189]. Zhu J., Li P.Z., Guo W., et al. (2018). Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, Vol.359, pp.80–101. [190]. Zhu J., Xiao P., Li H., et al. (2014). Graphitic carbon nitride: Synthesis, properties, and applications in catalysis. ACS Applied Materials and Interfaces, Vol.6, Iss.19, pp.16449–16465.

Các file đính kèm theo tài liệu này:

  • pdfvat_lieu_tren_co_so_zif_67_tong_hop_va_ung_dung.pdf
  • pdf2-1.TOM TAT - TIENG VIET.pdf
  • pdf2-2-TOM TAT - TIENG ANH.pdf
  • pdf3-1-TRICH YEU TIENG VIET.pdf
  • pdf3-2-TRICH YEU TIENG ANH.pdf
  • pdf4-1-DONG GOP MOI TIENG VIET.pdf
  • pdf4-2-DONG GOP MOI TIENG ANH.pdf
Luận văn liên quan