Các phương pháp điện hóa bao gồm các kỹ thuật volt-ampere hòa tan
(SV) được công nhận là một công cụ phân tích định lượng hữu cơ và vô cơ
mạnh bởi vì các ưu điểm của nó bao gồm phân tích nhanh, độ nhạy cao, giá
thành thấp, dễ vận hành và có thể sử dụng phân tích trực tiếp ở môi trường.
Phương pháp volt-ampere hòa anode xung vi phân (Differential pulse anodic
stripping voltammetry, DP-ASV), một trong các phương pháp SV, đã được áp
dụng để xác định lượng vết của kim loại nặng cũng như các chất hữu cơ do độ
nhạy rất cao. Các điện cực than thủy tinh (GCE) được biến tính hóa học bằng
các vật liệu xốp, composite silica xốp, carbon nano ống đã nhận được sự quan
tâm của nhiều nhà khoa học bởi vì nó có được cải thiện đáng kể về độ đáp
ứng, độ chọn lọc cao, giới hạn phát hiện thấp
144 trang |
Chia sẻ: tueminh09 | Ngày: 22/01/2022 | Lượt xem: 899 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Vật liệu trên cơ sở zif-67: tổng hợp và ứng dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ệt Freundlich
qmom
(mg·g–1)
KL
(L·mg–1)
R2 p
KF
(L·g–1)
n R2 p
298
(phi tuyến)
223,700 0,091 0,994 37,950 2,290 0,967
298
(tuyến tính)
238,100 0,079 0,994 0,003 33,210 2,100 0,960 < 0,001
5 10 15 20 25 30 35
60
80
100
120
140
160
180
Q
e
Ce
Gi¸ trÞ thùc nghiÖm
M« h×nh Freundlich
M« h×nh Langmuir
0.04 0.08 0.12 0.16 0.20 0.24
0.006
0.008
0.010
0.012
0.014
0.016
1/
q e
1/Ce
1.5 2.0 2.5 3.0 3.5 4.0
4.2
4.4
4.6
4.8
5.0
5.2
ln
q
e
ln Ce
Hình 3.31. a) Đồ thị mô hình đẳng nhiệt Langmuir và Freundlich ở dạng phi
tuyến; b) Đồ thị mô hình đẳng nhiệt hấp phụ Langmuir ở dạng tuyến tính và
mô hình đẳng nhiệt của hấp phụ MO trên Fe3O4/ZIF-67
(ĐKTN: nồng độ MO ban đầu = 30 mg.L-1; Khối lượng chất hấp phụ =
0,01 ÷ 0,06 g; thể tích dung dịch hấp phụ = 50 mL; thời gian rung = 24 giờ;
nhiệt độ thực nghiệm: nhiệt độ phòng 25o C)
101
Việc phân tích trên cho phép kết luận rằng các dữ liệu hấp phụ đẳng
nhiệt thực nghiệm của thuốc nhuộm MO trên vật liệu Fe3O4/ZIF-67 sử dụng
dạng tuyến tính và phi tuyến cho kết quả không khác nhau nhiều và có sự
tương thích với cả hai mô hình đẳng nhiệt Langmuir và Freundlich. Có nghĩa
rằng hấp phụ đơn lớp và tồn tại bề mặt không đồng nhất trong trên chất hấp
phụ. Bảng 3.10 trình bày kết quả so sánh dung lượng hấp phụ của MO của vật
liệu đang nghiên cứu và các vật liệu đã nghiên cứu trước đây. Kết quả cho thấy
vật liệu Fe3O4/ZIF-67 có khả năng hấp phụ rất cao so với vật liệu đã công bố.
Bảng 3.10. So sánh khả năng hấp phụ MO với một số nghiên cứu trước đây
Số
TT Chất hấp phụ
Dung lượng
hấp phụ
(mg·g–1)
Tham khảo
1 Fe3O4/ZIF-67 223,70 Nghiên cứu này
2 Ống nanocarbon đa tường 50,20 [175]
3 Than hoạt tính mao quản trung bình 291,10 [107]
6 Hypercrosslinked polymer 404,40 [101]
7 Polymer siêu liên kết HJ1 76,92 [68]
8 Calcil hydroxide kép 200 [114]
9 Vỏ cam 20,50 [8]
10 Vỏ chuối 21 [8]
3.3.2.2. Nghiên cứu khả năng hấp phụ congo red (CGR), methylene blue
(MB) và Rhodamine B (RhB)
Vật liệu Fe3O4/ZIF-67 cũng đã được nghiên cứu hấp phụ các phẩm màu
(direct blue 80) [88] và thuốc kháng sinh (ciprofloxacin) [2]. Trong nghiên cứu
này, chúng tôi mở rộng để nghiên cứu khả năng hấp phụ CGR, MB và RhB
cuả Fe3O4/ZIF-67. Kết quả cho thấy giá trị cân bằng thực nghiệm tuân theo
mô hình đẳng nhiệt Langmuir (Bảng 3.11). Dung lượng hấp phụ theo mô hình
Langmuir của CGR, MB và RhB trên Fe3O4/ZIF-67 là 36,2 mg.g-1, 78,1 mg.g-
1 và 151,5 mg.g-1. Một sự so sánh dung lượng hấp phụ của CGR, MB và RhB
trên Fe3O4/ZIF-67 so với những chất hấp phụ được nghiên cứu trước đây
102
được trình bày trên Bảng 3.12. Điều đáng chú ý là Fe3O4/ZIF-67 cho thấy khả
năng hấp phụ rất cao đối với thuốc nhuộm CGR. Dung lượng hấp phụ của
Fe3O4/ZIF-67 đối với CGR cao hơn 2 đến 10 lần dung lượng hấp phụ của các
chất hấp phụ đã được công bố trong các nghiên cứu trước đây như than hoạt
tính diện tích bề mặt cao, những hạt hydrogel chitosan được tẩm với chất bề
mặt không ion hay ion âm và cobalt ferrite, vv Dung lượng hấp phụ đối với
MB và RhB trên Fe3O4/ZIF-67 cũng cao hơn hay tương đương với các chất
hấp phụ khác.
Bảng 3.11. Đẳng nhiệt hấp phụ Langmuir và Freundlich một số phẩm màu
khác của vật liệu Fe3O4/ZIF-67
Phẩm màu hấp phụ
Mô hình Langmuir Mô hình Freundlich
qmom
(mg.g-1)
KL
(L.mg-1)
R2 p
qmom
(mg.g-1)
KF
(L.mg-1)
n R2 p
Congo red 151,500 1,380 0,931 0,010 322,100 77,610 2,290 0,999< 0,010
Rhodamine B 78,130 0,003 0,987 < 0,010 38,050 4,450 1,580 0,989 0,160
Methylene blue 36,230 0,023 0,909 0,021 14,988 1,670 1,550 0,919< 0,010
0 5 10 15 20 25 30
0
50
100
150
200
250
300
q e
(m
g.
g-
1 )
Ce(mg.L
-1)
Congo red
Rhodamine B
Methylene blue
Hình 3.32. Dung lượng hấp phụ một số phẩm màu khác trên Fe3O4/ZIF-67
103
Bảng 3.12. Dung lượng hấp phụ của các chất hấp phụ khác nhau đối với
CGR, MB và RhB tại nhiệt độ phòng
Số
TT
Chất hấp phụ
Phẩm
màu
BET
(m2·g–1)
qe
(mg·g–1)
Tham khảo
1 Fe3O4/ZIF–67 CGR* 1123,9 151,5 Nghiên cứu này
2 Tro bã mía CGR 168 11,8 [103]
3 Than hoạt tính thương mại CGR 390 0,637 [103]
4 Than hoạt tính mao quản trung bình CGR 370 – 679 52 – 189 [99]
5 Tấm nano Ni(OH)2 và NiO CGR 127 – 201 39,7 – 152 [32]
6 Hạt gel chitosan
biến tính bằng cetyl trimethyl
ammonium bromide
CGR – 352 [26]
7 Hạt gel chitosan bến tính bằng than
nano ống
CGR 237,8 450,4 [26]
8 Spinel CoFe2O4 CGR N/A 244,5 [153]
9 Zeolites tự nhiên biến tính bằng
N,N–dimethyl
dehydroabietylamine oxide
CGR N/A 69,49 [96]
10 Fe3O4/ZIF–67 MB** 1123,9 36,2 Nghiên cứu này
11 Al–MCM–41 MB N/A 66,5 [187]
12 Xơ dừa Ấn độ MB 167 5,87 [75]
13 Fe3O4/ZIF-8 MB 1068 20,2 [185]
14 Fe3O4/ZIF-67 RhB*** 1123,9 78,3 Nghiên cứu này
15 Bã cà phê RhB - 5,255 [129]
16 Mn2O3/MCM-41 RhB 793 23,9 [59]
17 Al–MCM–41 RhB 625 91 [187]
*CGR: Congo red; **MB: Methylene blue; ***RhB: Rhodamine B
Tiểu kết 3. Vật liệu composite Fe3O4/ZIF-67 đã được tổng hợp thành
công dưới sự hỗ trợ của sóng siêu âm, có diện tích bề mặt riêng lớn (1123,9
m2.g-1). Phân tích nhiệt động học cho thấy, phản ứng hấp phụ MO tự xảy ra
với ái lực cao. Đồng thời, vật liệu có khả năng hấp phụ cao với các phẩm
nhuộm như Methyl orange, Congo red, Methylene blue và Rhodamine B với
dung lượng hấp phụ lần lượt là 223,7 mg.g-1; 151,5 mg.g-1; 36,2 mg.g-1 và
78,3 mg.g-1.
104
Chương 4
KẾT LUẬN
1. Đã nghiên cứu tổng hợp thành công composite ZIF-67/rGO. Hình
thái của ZIF-67/rGO bao gồm các hạt nano ZIF-67 phân tán cao trên các tấm
rGO, có diện tích bề mặt riêng cao. Điện cực GCE biến tính bằng vật liệu
ZIF-67/rGO có thể sử dụng để phân tích Rhodamine B bằng phương pháp
xung vi phân với phạm vi tuyến tính, từ 0,96 đến 44,07 μg.L-1 và giới hạn
phát hiện thấp là 1,79 μg.L-1. Quy trình phân tích đã được áp dụng để xác định
định lượng hàm lượng RhB trong một số mẫu thực phẩm với tỷ lệ thu hồi 98-
103%. Kết quả phân tích định lượng bằng phương pháp này tương đồng với
phương pháp sắc ký lỏng hiệu năng cao, cho thấy rằng vật liệu này có triển
vọng phát triển phương pháp phát hiện nhanh tại hiện trường phụ gia độc hại
Rhodamine B trong thực phẩm.
2) ZIF-67/g-C3N4 được tổng hợp thành công có sự hỗ trợ của sóng siêu
âm. Vật liệu thu được có diện tích bề mặt riêng lớn và độ ổn định cao ở
khoảng pH 3-11. Đã phát triển phương pháp phân tích điện hóa đồng thời
ACE và URA sử dụng điện cực biến tính bằng ZIF-67/g-C3N4 với cetyl
trimethylammonium bromide đóng vai trò như là chất tách peak. Mối quan hệ
tuyến tính của dòng đỉnh oxy hóa của URA và ACE và nồng độ dao động từ
0,2 μM đến 6,5 μM với giới hạn phát hiện thấp 0,052 μM cho URA và 0,053
μM cho ACE. Phương pháp đề xuất đã được áp dụng để phân tích đồng thời
URA và ACE trong nước tiểu người với kết quả không khác với phân tích
bằng HPLC trên phương diện thống kê.
3) Đã nghiên cứu tổng hợp Fe3O4/ZIF-67 có diện tích bề mặt riêng cao,
có tính siêu thuận từ. Vật liệu tổng hợp được có khả năng hấp phụ cao với
MO, động học MO tuân theo mô hình động học bậc hai. Ngoài ra vật liệu
Fe3O4/ZIF-67 có khả năng hấp phụ cao với nhiều phẩm nhuộm như MB, RhB
và CGR. Quá trình hấp phụ tuân theo mô hình Langmuir.
DANH MỤC CÁC CÔNG TRÌNH CÔNG BỐ
CÓ LIÊN QUAN ĐẾN LUẬN ÁN
I. Bài báo trong nước
1. Huỳnh Trường Ngọ, Lê Thị Hòa, Hồ Văn Minh Hải (2020), Sử dụng điện
cực glassy carbon biến tính với ZIF-67/rGO để xác định Rhodamine B bằng
phương pháp volt-ampere, Tạp chí Khoa học tự nhiên, Đại học Huế, số 1A(130).
2. Bùi Quang Thành, Huỳnh Thị Thanh Phương, Huỳnh Trường Ngọ (2020),
Nghiên cứu động học và cân bằng hấp phụ methyl orange bằng vật liệu lai
Fe3O4/ZIF-67, Tạp chí Khoa học và Công nghệ, Trường Đại học Khoa học, Đại
học Huế, số 2(16).
II. Tạp chí quốc tế (SCIE)
1. Huynh Truong Ngo, Le Thi Hoa, Nguyen Tan Khanh, Tran Thi Bich Hoa, Tran
Thanh Tam Toan, Tran Xuan Mau, Nguyen Hai Phong, Ho Sy Thang and Dinh
Quang Khieu, ZIF-67/g-C3N4-Modified electrode for Simultaneous Voltammetric
Determination of Uric acid and Acetaminophen with Cetyltrimethylammonium
bromide as Discriminating agent, Jornal of Nanomaterials, 2020,
https://doi.org/10.1155/2020/7915878 (SCIE, Q2, IF = 1,9).
2. Huynh Truong Ngo, Vo Thang Nguyen, Tran Đuc Manh, Tran Thanh Tam
Toan, Nguyen Minh Triet, Nguyen Thi Vuong Hoan, Nguyen Thanh Binh, Tran
Vinh Thien and Dinh Quang Khieu, Voltammetric determination of Rhodamine B
using ZIF-67/reduced graphene oxide modified electrode, Jornal of Nanomaterials,
2020, https://doi.org/10.1155/2020/4679061. (SCIE, Q2, IF = 1,9).
TÀI LIỆU THAM KHẢO
[1]. Afrasiabi M., Kianipour S., Babaei A., et al. (2016). A new sensor
based on glassy carbon electrode modified with nanocomposite for
simultaneous determination of acetaminophen, ascorbic acid and uric
acid. Journal of Saudi Chemical Society, Vol.20, pp.S480–S487.
[2]. Alamgholiloo H., Hashemzadeh B., Pesyan N.N., et al. (2021). A
facile strategy for designing core-shell nanocomposite of ZIF-
67/Fe3O4: A novel insight into ciprofloxacin removal from
wastewater. Process Safety and Environmental Protection, Vol.147,
pp.392–404.
[3]. Alarcón-Angeles G., Corona-Avendaño S., Palomar-Pardavé M., et al.
(2008). Selective electrochemical determination of dopamine in the
presence of ascorbic acid using sodium dodecyl sulfate micelles as
masking agent. Electrochimica Acta, Vol.53, Iss.6, pp.3013–3020.
[4]. Alesso M., Bondioli G., Talío M.C., et al. (2012). Micelles mediated
separation fluorimetric methodology for Rhodamine B determination
in condiments, snacks and candies. Food Chemistry, Vol.134, Iss.1,
pp.513–517.
[5]. Andrew Lin K.Y., Lee W. Der (2016). Self-assembled magnetic
graphene supported ZIF-67 as a recoverable and efficient adsorbent for
benzotriazole. Chemical Engineering Journal, Vol.284, pp.1017–1027.
[6]. Anik Ü., Timur S., Dursun Z. (2019). Metal organic frameworks in
electrochemical and optical sensing platforms: a review.
Microchimica Acta, Vol.186, Iss.3, pp.18–24.
[7]. Anirudhan T.S., Radhakrishnan P.G. (2008). Thermodynamics and
kinetics of adsorption of Cu(II) from aqueous solutions onto a new
cation exchanger derived from tamarind fruit shell. Journal of
Chemical Thermodynamics, Vol.40, Iss.4, pp.702–709.
[8]. Annadurai G., Juang R.S., Lee D.J. (2002). Use of cellulose-based
wastes for adsorption of dyes from aqueous solutions. Journal of
Hazardous Materials, Vol.92, Iss.3, pp.263–274.
[9]. Asfaram A., Ghaedi M., Hajati S., et al. (2017). Screening and
optimization of highly effective ultrasound-assisted simultaneous
adsorption of cationic dyes onto Mn-doped Fe3O4-nanoparticle-loaded
activated carbon. Ultrasonics Sonochemistry, Vol.34, pp.1–12.
[10]. Babaei A., Garrett D.J., Downard A.J. (2011). Selective Simultaneous
Determination of Paracetamol and Uric Acid Using a Glassy Carbon
Electrode Modified with Multiwalled Carbon Nanotube/Chitosan
Composite. Electroanalysis, Vol.23, Iss.2, pp.417–423.
[11]. Bagoji A.M., Nandibewoor S.T. (2016). Electrocatalytic redox
behavior of graphene films towards acebutolol hydrochloride
determination in real samples. New Journal of Chemistry, Vol.40,
Iss.4, pp.3763–3772.
[12]. Bai X., Yan S., Wang J., et al. (2014). A simple and efficient strategy
for the synthesis of a chemically tailored g-C3N4 material. Journal of
Materials Chemistry A, Vol.2, Iss.41, pp.17521–17529.
[13]. Barreca D., Massignan C., Daolio S., et al. (2001). Composition and
microstructure of cobalt oxide thin films obtained from a novel cobalt
(II) precursor by chemical vapor deposition. Chemistry of Materials,
Vol.13, Iss.2, pp.588–593.
[14]. Beyer S., Prinz C., Schürmann R., et al. (2016). Ultra-Sonication of
ZIF-67 Crystals Results in ZIF-67 Nano-Flakes. ChemistrySelect,
Vol.1, Iss.18, pp.5905–5908.
[15]. Bharath G., Latha B.S., Alsharaeh E.H., et al. (2017). Enhanced
hydroxyapatite nanorods formation on graphene oxide nanocomposite
as a potential candidate for protein adsorption, pH controlled release
and an effective drug delivery platform for cancer therapy. Analytical
Methods, Vol.9, Iss.2, pp.240–252.
[16]. Bhattacharjee S., Jang M.S., Kwon H.J., et al. (2014). Zeolitic
Imidazolate Frameworks: Synthesis, Functionalization, and
Catalytic/Adsorption Applications. Catalysis Surveys from Asia,
Vol.18, Iss.4, pp.101–127.
[17]. Bojdys M.J. (2009). On new allotropes and nanostructures of carbon
nitrides (Doctoral dissertation, Universität Potsdam, Germany).
[18]. Bojdys M.J., Müller J.O., Antonietti M., et al. (2008). Ionothermal
synthesis of crystalline, condensed, graphitic carbon nitride.
Chemistry - A European Journal, Vol.14, Iss.27, pp.8177–8182.
[19]. Bragg W.L. (1913). The diffraction of short electromagnetic waves by a
crystal: Proceedings of the Cambridge Philosophical Society. pp.43–57.
[20]. Butova V. V, Soldatov M.A., Guda A.A., et al. (2016). Metal-organic
frameworks: structure, properties, methods of synthesis and
characterization. Russian Chemical Reviews, Vol.85, Iss.3, pp.280–307.
[21]. Byrappa K., Adschiri T. (2007). Hydrothermal technology for
nanotechnology. Progress in Crystal Growth and Characterization of
Materials, Vol.53, Iss.2, pp.117–166.
[22]. De Carvalho R.M., Freire R.S., Rath S., et al. (2004). Effects of
EDTA on signal stability during electrochemical detection of
acetaminophen. Journal of Pharmaceutical and Biomedical Analysis,
Vol.34, Iss.5, pp.871–878.
[23]. Casiraghi C., Hartschuh A., Qian H., et al. (2009). Raman Spectroscopy
of Graphene Edges. Nano Lett, Vol.9, Iss.4, pp.1433–1441.
[24]. Castner D.G., Watson P.R., Chan I.Y. (1990). X-ray absorption
spectroscopy, X-ray photoelectron spectroscopy, and analytical
electron microscopy studies of cobalt catalysts. 2. Hydrogen reduction
properties. Journal of Physical Chemistry, Vol.94, Iss.2, pp.819–828.
[25]. Chandra V., Park J., Chun Y., et al. (2010). Water-Dispersible
Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal.
Science of the Total Environment, Vol.4, Iss.7, pp.3979–3986.
[26]. Chatterjee S., Lee D.S., Lee M.W., et al. (2009). Enhanced adsorption
of congo red from aqueous solutions by chitosan hydrogel beads
impregnated with cetyl trimethyl ammonium bromide. Bioresource
Technology, Vol.100, Iss.11, pp.2803–2809.
[27]. Chen B., Yang Z., Zhu Y., et al. (2014). Zeolitic imidazolate
framework materials: Recent progress in synthesis and applications.
Journal of Materials Chemistry A, Vol.2, Iss.40, pp.16811–16831.
[28]. Chen H., Wu X., Zhao R., et al. (2019). Preparation of reduced
graphite oxide loaded with cobalt(II) and nitrogen co-doped carbon
polyhedrons from a metal-organic framework (type ZIF-67), and its
application to electrochemical determination of metronidazole.
Microchimica Acta, Vol.186, Iss.9,.
[29]. Chen J., Zhu X. (2016). Magnetic solid phase extraction using ionic
liquid-coated core-shell magnetic nanoparticles followed by high-
performance liquid chromatography for determination of Rhodamine
B in food samples. Food Chemistry, Vol.200, pp.10–15.
[30]. Chen L., Wang J., Shen X., et al. (2019). ZIF-67@Co-LDH yolk-shell
spheres with micro-/meso-porous structures as vehicles for drug
delivery. Inorganic Chemistry Frontiers, Vol.6, Iss.11, pp.3140–3145.
[31]. Chen Y., Song B., Xiaosheng Tang, et al. (2012). One-step Synthesis of
Hollow Porous Fe3O4 Beads/reduced Graphene Oxide Composite with
Superior Battery Performance. J.Mater.Chem., Vol.22, Iss.34, pp.1–19.
[32]. Cheng B., Le Y., Cai W., et al. (2011). Synthesis of hierarchical
Ni(OH)2 and NiO nanosheets and their adsorption kinetics and
isotherms to Congo red in water. Journal of Hazardous Materials,
Vol.185, Iss.2–3, pp.889–897.
[33]. Cho H.Y., Kim J., Kim S.N., et al. (2013). High yield 1-L scale
synthesis of ZIF-8 via a sonochemical route. Microporous and
Mesoporous Materials, Vol.169, pp.180–184.
[34]. Cui Y., Zhang J., Zhang G., et al. (2011). Synthesis of bulk and
nanoporous carbon nitride polymers from ammonium thiocyanate for
photocatalytic hydrogen evolution. Journal of Materials Chemistry,
Vol.21, Iss.34, pp.13032–13039.
[35]. Deng H., Grunder S., Cordova K.E., et al. (2012). Large-pore
apertures in a series of metal-organic frameworks. Science, Vol.336,
Iss.6084, pp.1018–1023.
[36]. Du X., Wang C., Liu J., et al. (2017). Extensive and selective
adsorption of ZIF-67 towards organic dyes: Performance and
mechanism. Journal of Colloid And Interface Science, Vol.506,
pp.437–441.
[37]. Eddaoudi M., Kim J., Rosi N., et al. (2002). Systematic Design of Pore
Size and Functionality in Isoreticular MOFs and Their Application in
Methane Storage. Science, Vol.295, Iss.5554, pp.469–472.
[38]. Ethiraj J., Palla S., Reinsch H. (2020). Insights into high pressure gas
adsorption properties of ZIF-67: Experimental and theoretical studies.
Microporous and Mesoporous Materials, Vol.294, Iss.3, pp.109867.
[39]. Faustini M., Kim J., Jeong G.Y., et al. (2013). Microfluidic approach
toward continuous and ultrafast synthesis of metal-organic framework
crystals and hetero structures in confined microdroplets. Journal of the
American Chemical Society, Vol.135, Iss.39, pp.14619–14626.
[40]. Feng S.-H., Li G.-H. (2017). Chapter 4 - Hydrothermal and
Solvothermal Syntheses, in: Mod. Inorg. Synth. Chem. Second Ed.,
Elsevier B.V, : pp. 73–104.
[41]. Feng X., Carreon M.A. (2015). Kinetics of transformation on ZIF-67
crystals. Journal of Crystal Growth, Vol.418, pp.158–162.
[42]. Francis L. Martin & Andre E.M. Maclean (1998). Comparison of
paracetamol-induced hepatotoxicity in the rat in vivo with progression
of cell injury in vitro in rat liver slices. Drug and Chemical
Toxicology, Vol.21, Iss.4, pp.477–498.
[43]. Franke C., H.Westerholm, R. N. (1997). Solid-Phase Extraction (SPE)
Of The Flourescence Tracers Uranine And SulphoRhodamine B.
Science, Vol.31, Iss.10, pp.2633–2637.
[44]. Gagliardi L., De Orsi D., Cavazzutti G., et al. (1996). HPLC
determination of Rhodamine B (C.I. 45170) products.
Chromatographia, Vol.43, Iss.1–2, pp.76–78.
[45]. Ganguly A., Sharma S., Papakonstantinou P., et al. (2011). Probing the
Thermal Deoxygenation of Graphene Oxide Using High-Resolution.
The Journal of Physical Chemistry C, Vol.115, pp.17009–17019.
[46]. Gao J., Zhou Y., Li Z., et al. (2012). High-yield synthesis of
millimetre-long, semiconducting carbon nitride nanotubes with
intense photoluminescence emission and reproducible
photoconductivity. Nanoscale, Vol.4, Iss.12, pp.3687–3692.
[47]. Gerber F., Krummen M., Potgeter H., et al. (2004). Practical aspects
of fast reversed-phase high-performance liquid chromatography using
3 μm particle packed columns and monolithic columns in
pharmaceutical development and production working under current
good manufacturing practice. Journal of Chromatography A,
Vol.1036, Iss.2, pp.127–133.
[48]. Gillan E.G. (2000). Synthesis of nitrogen-rich carbon nitride networks
from an energetic molecular azide precursor. Chemistry of Materials,
Vol.12, Iss.12, pp.3906–3912.
[49]. Golestaneh M., Ghoreishi S.M. (2020). Analytical &. Anal. Bioanal.
Electrochem, Vol.12, Iss.1, pp.81–92.
[50]. Graf D., Molitor F., Ensslin K., et al. (2007). Spatially Resolved
Raman Spectroscopy of Single- and Few-Layer Graphene. Nano Lett,
Vol.7, Iss.2, pp.238–242.
[51]. Griffiths P.R., Haseth J.A. d. (2007). Fourier Transform Infrared
Spectrometry, Second Edi, John Wiley and Sons, Inc.
[52]. Gross A.F., Sherman E., Vajo J.J. (2012). Aqueous room temperature
synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks.
Dalton Transactions, Vol.41, Iss.18, pp.5458–5460.
[53]. Guan W., Dai Y., Dong C., et al. (2020). Zeolite imidazolate
framework (ZIF) -based mixed matrix membranes for CO2 separation :
A review. Journal of Applied Polymer Science, Vol.48968, pp.1–13.
[54]. Guan W., Gao X., Ji G., et al. (2017). Fabrication of a magnetic
nanocomposite photocatalysts Fe3O4@ZIF-67 for degradation of dyes
in water under visible light irradiation. Journal of Solid State
Chemistry, Vol.255, Iss.August, pp.150–156.
[55]. Guex L.G., Sacchi B., Peuvot K.F., et al. (2017). Experimental
review: Chemical reduction of graphene oxide (GO) to reduced
graphene oxide (rGO) by aqueous chemistry. Nanoscale, Vol.9,
Iss.27, pp.9562–9571.
[56]. Guo Q., Xie Y., Wang X., et al. (2003). Characterization of well-
crystallized graphitic carbon nitride nanocrystallites via a benzene-
thermal route at low temperatures. Chemical Physics Letters, Vol.380,
Iss.1–2, pp.84–87.
[57]. Guo Q., Xie Y., Wang X., et al. (2004). Synthesis of carbon nitride
nanotubes with the C3N4 stoichiometry via a benzene-thermal process at
low temperatures. Chemical Communications, Vol.4, Iss.1, pp.26–27.
[58]. Guo X., Xing T., Lou Y., et al. (2016). Controlling ZIF-67 crystals
formation through various cobalt sources in aqueous solution. Journal
of Solid State Chemistry, Vol.235, pp.107–112.
[59]. Han B., Zhang F., Feng Z., et al. (2014). A designed Mn2O3/MCM-41
nanoporous composite for methylene blue and rhodamine B removal with
high efficiency. Ceramics International, Vol.40, Iss.6, pp.8093–8101.
[60]. Haque E., Jun J.W., Talapaneni S.N., et al. (2010). Superior
adsorption capacity of mesoporous carbon nitride with basic CN
framework for phenol. Journal of Materials Chemistry, Vol.20, Iss.48,
pp.10801–10803.
[61]. He Q., Liu J., Xia Y., et al. (2019). Rapid and Sensitive Voltammetric
Detection of Rhodamine B in Chili-Containing Foodstuffs Using MnO2
Nanorods/Electro-Reduced Graphene Oxide Composite . Journal of The
Electrochemical Society, Vol.166, Iss.10, pp.B805–B813.
[62]. He Y., Cai J., Li T., et al. (2013). Efficient degradation of RhB over
GdVO4/g-C3N4 composites under visible-light irradiation. Chemical
Engineering Journal, Vol.215–216, pp.721–730.
[63]. Ho Y.S. (2006). Review of second-order models for adsorption
systems. Journal of Hazardous Materials, Vol.136, Iss.3, pp.681–689.
[64]. Hoa D.T.N., Toan T.T.T., Mau T.X., et al. (2020). Voltammetric
determination of Auramine O with ZIF-67/Fe2O3/g-C3N4-modified
electrode. Journal of Materials Science: Materials in Electronics,
Vol.31, Iss.22, pp.19741–19755.
[65]. Horwitz W., Albert R. (1997). The concept of uncertainty as applied
to chemical measurements. Analyst, Vol.122, Iss.6, pp.615–617.
[66]. Hosseinian A., Amjad A., Hosseinzadeh-Khanmiri R., et al. (2017).
Nanocomposite of ZIF-67 metal – organic framework with reduced
graphene oxide nanosheets for high-performance supercapacitor
applications. Journal of Materials Science: Materials in Electronics,.
[67]. Hu Y., Song X., Zheng Q., et al. (2019). Zeolitic imidazolate
framework-67 for shape stabilization and enhanced thermal stability
of paraffin-based phase change materials. RSC Advances, Vol.9,
Iss.18, pp.9962–9967.
[68]. Huang J.H., Huang K.L., Liu S.Q., et al. (2008). Adsorption of
Rhodamine B and methyl orange on a hypercrosslinked polymeric
adsorbent in aqueous solution. Colloids and Surfaces A:
Physicochemical and Engineering Aspects, Vol.330, Iss.1, pp.55–61.
[69]. Hummers W.S., Offeman R.E. (1958). Preparation of Graphitic
Oxide. Journal of the American Chemical Society, Vol.80, Iss.6,
pp.1339–1339.
[70]. J.Bard A., J.Falkner L. (2001). Electrochemical methods,
fundamentals and applications, Wiley New York.
[71]. Jayaramulu K., Masa J., Tomanec O., et al. (2017). Nanoporous
Nitrogen-Doped Graphene Oxide/Nickel Sulfide Composite Sheets
Derived from a Metal-Organic Framework as an Efficient
Electrocatalyst for Hydrogen and Oxygen Evolution. Advanced
Functional Materials, Vol.27, Iss.33, pp.1–10.
[72]. Jodłowski P.J., Jȩdrzejczyk R.J., Rogulska A., et al. (2014).
Spectroscopic characterization of Co3O4 catalyst doped with CeO2 and
PdO for methane catalytic combustion. Spectrochimica Acta - Part A:
Molecular and Biomolecular Spectroscopy, Vol.131, pp.696–701.
[73]. Jürgens B., Irran E., Senker J., et al. (2003). Melem (2,5,8-triamino-
tri-s-triazine), an important intermediate during condensation of
melamine rings to graphitic carbon nitride: Synthesis, structure
determination by x-ray powder diffractometry, solid-state NMR, and
theoretical studies. Journal of the American Chemical Society,
Vol.125, Iss.34, pp.10288–10300.
[74]. Kalmutzki M.J., Hanikel N., Yaghi O.M. (2018). Secondary building
units as the turning point in the development of the reticular chemistry
of MOFs. Science Advances, Vol.4, Iss.10,.
[75]. Kavitha D., Namasivayam C. (2007). Experimental and kinetic studies
on methylene blue adsorption by coir pith carbon. Bioresource
Technology, Vol.98, Iss.1, pp.14–21.
[76]. Khan U., Neill A.O., Lotya M., et al. (2010). High-Concentration
Solvent Exfoliation of Graphene. Small, Vol.6, Iss.7, pp.864–871.
[77]. Kianipour S., Asghari A. (2013). Room temperature ionic
liquid/multiwalled carbon nanotube/chitosan-modified glassy carbon
electrode as a sensor for simultaneous determination of ascorbic acid,
uric acid, acetaminophen, and mefenamic acid. IEEE Sensors Journal,
Vol.13, Iss.7, pp.2690–2698.
[78]. Komatsu T., Nakamura T. (2001). Polycondensation/pyrolysis of tris-
s-triazine derivatives leading to graphite-like carbon nitrides. Journal
of Materials Chemistry, Vol.11, Iss.2, pp.474–478.
[79]. Kouvetakis J., Bandari A., Todd M., et al. (1994). Novel Synthetic Routes
to Carbon-Nitrogen Thin Films. Chem.Matter, Vol.6, pp.811–814.
[80]. Kroke E., Schwarz M., Horath-Bordon E., et al. (2002). Tri-s-triazine
derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4
structures. New Journal of Chemistry, Vol.26, Iss.5, pp.508–512.
[81]. Kumar S.A., Tang C.F., Chen S.M. (2008). Electroanalytical determination
of acetaminophen using nano-TiO2/polymer coated electrode in the
presence of dopamine. Talanta, Vol.76, Iss.5, pp.997–1005.
[82]. Kutluay A., Aslanoglu M. (2014). An electrochemical sensor prepared
by sonochemical one-pot synthesis of multi-walled carbon nanotube-
supported cobalt nanoparticles for the simultaneous determination of
paracetamol and dopamine. Analytica Chimica Acta, Vol.839, pp.59–66.
[83]. Lagergren S (1898). About the theory of so-called adsorption of
soluble substances. K. Sven. Vetenskapsakad. Handl, Vol.24, Iss.4,
pp.1–39.
[84]. Lanchas M., Arcediano S., T. Aguazo Andres, et al. (2014). Two
appealing alternatives for MOFs synthesis: solvent-free oven heating
vs microwave heating. RSC Advances, Vol.4, Iss.104, pp.60409–
60412.
[85]. Laviron E. (1979). General expression of the linear potential sweep
voltammogram in the case of diffusionless electrochemical systems.
Journal of Electroanalytical Chemistry, Vol.101, Iss.1, pp.19–28.
[86]. Li C. (2007). Electrochemical determination of dipyridamole at a
carbon paste electrode using cetyltrimethyl ammonium bromide as
enhancing element. Colloids and Surfaces B: Biointerfaces, Vol.55,
Iss.1, pp.77–83.
[87]. Li H., Li Q., He X., et al. (2018). The magnetic hybrid Cu(I)-
MoF@Fe3O4 with hierarchically engineered micropores for highly
efficient removal of Cr(VI) from aqueous solution. Crystal Growth
and Design, Vol.18, Iss.10, pp.6248–6256.
[88]. Li M., Gao D., Cui S., et al. (2020). Fabrication of Fe3O4/ZIF-67
composite for removal of direct blue 80 from water. Water
Invironment Research, Vol.92, Iss.5, pp.740–748.
[89]. Li Y., Zhou K., He M., et al. (2016). Synthesis of ZIF-8 and ZIF-67
using mixed-base and their dye adsorption. Microporous and
Mesoporous Materials, Vol.234, pp.287–292.
[90]. Lin K.Y.A., Chang H.A. (2015). Zeolitic Imidazole Framework-67
(ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate
for degradation of Rhodamine B in water. Journal of the Taiwan
Institute of Chemical Engineers, Vol.53, pp.40–45.
[91]. Liu A.Y., Cohen M.L. (1989). Prediction of new low compressibility
solids. Science, Vol.245, Iss.4920, pp.841–842.
[92]. Liu J., Li W., Duan L., et al. (2015). A Graphene-like Oxygenated
Carbon Nitride Material for Improved Cycle-Life Lithium/Sulfur
Batteries. Nano Letters, Vol.15, Iss.8, pp.5137–5142.
[93]. Liu L., Zhou Y., Liu S., et al. (2018). The Applications of
Metal−Organic Frameworks in Electrochemical Sensors.
ChemElectroChem, Vol.5, Iss.1, pp.6–19.
[94]. Liu M., Wu J., Hou H. (2019). Metal–Organic Framework (MOF)-
Based Materials as Heterogeneous Catalysts for C−H Bond Activation.
Chemistry - A European Journal, Vol.25, Iss.12, pp.2935–2948.
[95]. Liu Q., Sun N., Gao M., et al. (2018). Magnetic Binary Metal-Organic
Framework As a Novel Affinity Probe for Highly Selective Capture of
Endogenous Phosphopeptides. ACS Sustainable Chemistry and
Engineering, Vol.6, Iss.3, pp.4382–4389.
[96]. Liu S., Ding Y., Li P., et al. (2014). Adsorption of the anionic dye
Congo red from aqueous solution onto natural zeolites modified with
N,N-dimethyl dehydroabietylamine oxide. Chemical Engineering
Journal, Vol.248, pp.135–144.
[97]. Liu S.Q., Sun W.H., Hu F.T. (2012). Graphene nano sheet-fabricated
electrochemical sensor for the determination of dopamine in the
presence of ascorbic acid using cetyltrimethylammonium bromide as
the discriminating agent. Sensors and Actuators, B: Chemical,
Vol.173, pp.497–504.
[98]. Loh K.S., Lee Y.H., Musa A., et al. (2008). Use of Fe3O4
nanoparticles for enhancement of biosensor response to the herbicide
2,4-dichlorophenoxyacetic acid. Sensors, Vol.8, Iss.9, pp.5775–5791.
[99]. Lorenc-Grabowska E., Gryglewicz G. (2007). Adsorption
characteristics of Congo Red on coal-based mesoporous activated
carbon. Dyes and Pigments, Vol.74, Iss.1, pp.34–40.
[100]. Lucchese M.M., Stavale F., Ferreira E.H.M., et al. (2010).
Quantifying ion-induced defects and Raman relaxation length in
graphene. Carbon, Vol.48, Iss.5, pp.1592–1597.
[101]. M. R. Samarghandi, M. Hadi, S. Moayedi F.B.A. (2009). Two-
parameter isotherms of methyl orange sorption by pinecone derived
activated carbon. Iran. J. Environ. Health. Sci. Eng., Vol.6, Iss.4,
pp.285–294.
[102]. Maeda K., Wang X., Nishihara Y., et al. (2009). Photocatalytic
activities of graphitic carbon nitride powder for water reduction and
oxidation under visible light. Journal of Physical Chemistry C,
Vol.113, Iss.12, pp.4940–4947.
[103]. Mall I.D., Srivastava V.C., Agarwal N.K., et al. (2005). Removal of
congo red from aqueous solution by bagasse fly ash and activated
carbon: Kinetic study and equilibrium isotherm analyses.
Chemosphere, Vol.61, Iss.4, pp.492–501.
[104]. Martinez Joaristi A., Juan-Alcañiz J., Serra-Crespo P., et al. (2012).
Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+
metal organic frameworks. Crystal Growth and Design, Vol.12, Iss.7,
pp.3489–3498.
[105]. Meng W., Wen Y., Dai L., et al. (2018). A novel electrochemical
sensor for glucose detection based on Ag@ZIF-67 nanocomposite.
Sensors and Actuators, B: Chemical, Vol.260, pp.852–860.
[106]. Mohamed A.M., Ramadan M., Ahmed N., et al. (2020). Metal–
Organic frameworks encapsulated with vanadium-substituted
heteropoly acid for highly stable asymmetric supercapacitors. Journal
of Energy Storage, Vol.28, Iss.February, pp.101292.
[107]. Mohammadi N., Khani H., Gupta V.K., et al. (2011). Adsorption
process of methyl orange dye onto mesoporous carbon material-
kinetic and thermodynamic studies. Journal of Colloid and Interface
Science, Vol.362, Iss.2, pp.457–462.
[108]. Mohan V.B., Brown R., Jayaraman K., et al. (2015). Characterisation
of reduced graphene oxide: Effects of reduction variables on electrical
conductivity. Materials Science and Engineering B: Solid-State
Materials for Advanced Technology, Vol.193, Iss.C, pp.49–60.
[109]. Morozan A., Jaouen F. (2012). Metal organic frameworks for
electrochemical applications. Energy and Environmental Science,
Vol.5, Iss.11, pp.9269–9290.
[110]. Mottillo C., Lu Y., Pham M.H., et al. (2013). Mineral neogenesis as
an inspiration for mild, solvent-free synthesis of bulk microporous
metal-organic frameworks from metal (Zn, Co) oxides. Green
Chemistry, Vol.15, Iss.8, pp.2121–2131.
[111]. Murray L.J., Dinc M., Long J.R. (2009). Hydrogen storage in metal-
organic frameworks. Chemical Society Reviews, Vol.38, Iss.5,
pp.1294–1314.
[112]. Muschi M., Serre C. (2019). Progress and challenges of graphene
oxide/metal-organic composites. Coordination Chemistry Reviews,
Vol.387, pp.262–272.
[113]. Nguyen T.T.T., Phung C.S., Tran V.T., et al. (2019). Microwave-
assisted synthesis and simultaneous electrochemical determination of
dopamine and paracetamol using ZIF-67-modified electrode. Journal
of Materials Science, Vol.54, Iss.17, pp.11654–11670.
[114]. Ni Z.M., Xia S.J., Wang L.G., et al. (2007). Treatment of methyl
orange by calcined layered double hydroxides in aqueous solution:
Adsorption property and kinetic studies. Journal of Colloid and
Interface Science, Vol.316, Iss.2, pp.284–291.
[115]. Park K.S., Ni Z., Cote A.P., et al. (2006). Exceptional chemical and
thermal stability of zeolitic imidazolate frameworks. Proceedings of
the National Academy of Sciences, Vol.103, Iss.27, pp.10186–10191.
[116]. Park S., Kim S.Y., Oh J., et al. (2016). Production of Metal-Free
Composites Composed of Graphite Oxide and Oxidized Carbon
Nitride Nanodots and Their Enhanced Photocatalytic Performances.
Chemistry - A European Journal, Vol.22, Iss.15, pp.5142–5145.
[117]. Perera I.R., Hettiarachchi C. V., Ranatunga R.J.K.U. (2019). Metal–
Organic Frameworks in Dye-Sensitized Solar Cells, in: Adv. Sol.
Energy Res., Springer Singapore, Singapore, : pp. 175–219.
[118]. Petcharoen K., Sirivat A. (2012). Synthesis and characterization of
magnetite nanoparticles via the chemical co-precipitation method.
Materials Science and Engineering B: Solid-State Materials for
Advanced Technology, Vol.177, Iss.5, pp.421–427.
[119]. Phong N.H., Toan T.T.T., Tinh M.X., et al. (2018). Simultaneous
voltammetric determination of ascorbic acid, paracetamol, and
caffeine using electrochemically reduced graphene-Oxide-Modified
electrode. Journal of Nanomaterials, Vol.2018,.
[120]. Pourreza N., Rastegarzadeh S., Larki A. (2008). Micelle-mediated
cloud point extraction and spectrophotometric determination of
rhodamine B using Triton X-100. Talanta, Vol.77, Iss.2, pp.733–736.
[121]. Qian J., Sun F., Qin L. (2012). Hydrothermal synthesis of zeolitic
imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters,
Vol.82, Iss.55, pp.220–223.
[122]. Qin J., Wang S., Wang X. (2017). Visible-light reduction CO2 with
dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-
catalyst. Applied Catalysis B: Environmental, Vol.209, pp.476–482.
[123]. Rusling J.F. (1991). Controlling Electrochemical Catalysis with
Surfactant Microstructures. Accounts of Chemical Research, Vol.24,
Iss.3, pp.75–81.
[124]. Sánchez-Sánchez M., Getachew N., Díaz K., et al. (2015). Synthesis
of metal-organic frameworks in water at room temperature: Salts as
linker sources. Green Chemistry, Vol.17, Iss.3, pp.1500–1509.
[125]. Sawalha M.F., Peralta-Videa J.R., Romero-González J., et al. (2006).
Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex
canescens) biomass: Thermodynamic and isotherm studies. Journal of
Colloid and Interface Science, Vol.300, Iss.1, pp.100–104.
[126]. Scherb C. (2009). Controlling the Surface Growth of Metal-Organic
Frameworks, Ludwig-Maximilians-University.
[127]. Sehnert J., Baerwinkel K., Senker J. (2007). Ab initio calculation of
solid-state NMR spectra for different triazine and heptazine based
structure proposals of g-C3N4. Journal of Physical Chemistry B,
Vol.111, Iss.36, pp.10671–10680.
[128]. Shandilya M., Rai R., Singh J. (2016). Review: Hydrothermal
technology for smart materials. Advances in Applied Ceramics,
Vol.115, Iss.6, pp.354–376.
[129]. Shen K., Gondal M.A. (2017). Removal of hazardous Rhodamine dye
from water by adsorption onto exhausted coffee ground. Journal of
Saudi Chemical Society, Vol.21, pp.S120–S127.
[130]. Shi L., Liang L., Wang F., et al. (2014). Polycondensation of
guanidine hydrochloride into a graphitic carbon nitride semiconductor
with a large surface area as a visible light photocatalyst. Catalysis
Science and Technology, Vol.4, Iss.9, pp.3235–3243.
[131]. Shi Q., Chen Z., Song Z., et al. (2011). Synthesis of ZIF-8 and ZIF-67 by
Steam-Assisted Conversion and an Investigation of Their Tribological
Behaviors. Angewandte Chemie, Vol.123, Iss.3, pp.698–701.
[132]. Sobon G., Sotor J., Jagiello J., et al. (2012). Graphene Oxide vs.
Reduced Graphene Oxide as saturable absorbers for Er-doped
passively mode-locked fiber laser. Opt. Express, Vol.20, Iss.17,
pp.19463–19473.
[133]. Soleymani J., Hasanzadeh M., Shadjou N., et al. (2016). A new
kinetic-mechanistic approach to elucidate electrooxidation of
doxorubicin hydrochloride in unprocessed human fluids using
magnetic graphene based nanocomposite modified glassy carbon
electrode. Materials Science and Engineering C, Vol.61, pp.638–650.
[134]. Soylak M., Unsal Y.E., Yilmaz E., et al. (2011). Determination of
rhodamine B in soft drink, waste water and lipstick samples after solid
phase extraction. Food and Chemical Toxicology, Vol.49, Iss.8,
pp.1796–1799.
[135]. Srinivas C., Sudharsan M., Reddy G.R.K., et al. (2018). Co/Co-
N@Nanoporous Carbon Derived from ZIF-67: A Highly Sensitive
and Selective Electrochemical Dopamine Sensor. Electroanalysis,
Vol.30, Iss.10, pp.2475–2482.
[136]. Stankovich S., Dikin D.A., Piner R.D., et al. (2007). Synthesis of
graphene-based nanosheets via chemical reduction of exfoliated
graphite oxide. Carbon, Vol.45, Iss.7, pp.1558–1565.
[137]. Sun D., Yang X. (2017). Rapid Determination of Toxic Rhodamine B
in Food Samples Using Exfoliated Graphene-Modified Electrode.
Food Analytical Methods, Vol.10, Iss.6, pp.2046–2052.
[138]. Sun J., Gan T., Li Y., et al. (2014). Rapid and sensitive strategy for
Rhodamine B detection using a novel electrochemical platform based
on core-shell structured Cu@carbon sphere nanohybrid. Journal of
Electroanalytical Chemistry, Vol.724, pp.87–94.
[139]. Sun L., Campbell M.G., Dincă M. (2016). Electrically Conductive
Porous Metal-Organic Frameworks. Angewandte Chemie
International Edition, Vol.55, Iss.11, pp.3566–3579.
[140]. Sun W., Zhai X., Zhao L. (2016). Synthesis of ZIF-8 and ZIF-67
nanocrystals with well-controllable size distribution through reverse
microemulsions. Chemical Engineering Journal, Vol.289, pp.59–64.
[141]. Sundriyal S., Shrivastav V., Kaur H., et al. (2018). High-Performance
Symmetrical Supercapacitor with a Combination of a ZIF-67/rGO
Composite Electrode and a Redox Additive Electrolyte. ACS Omega,
Vol.3, Iss.12, pp.17348–17358.
[142]. Sundriyal S., Shrivastav V., Mishra S., et al. (2020). Enhanced
electrochemical performance of nickel intercalated ZIF-67/rGO
composite electrode for solid-state supercapacitors. International
Journal of Hydrogen Energy, Vol.45, Iss.55, pp.30859–30869.
[143]. Tahir M., Cao C., Mahmood N., et al. (2014). Multifunctional g‑C3N4
Nanofibers A Template-Free Fabrication and Enhanced Optical,
Electrochemical, and Photocatalyst Properties. ACS Appl. Mater.
Interfaces, Vol.6, Iss.2, pp.1258–1265.
[144]. Tan L., Xu J., Zhang X., et al. (2015). Synthesis of g-C3N4/CeO2
nanocomposites with improved catalytic activity on the thermal
decomposition of ammonium perchlorate. Applied Surface Science,
Vol.356, pp.447–453.
[145]. Tang J., Jiang S., Liu Y., et al. (2018). Electrochemical determination
of dopamine and uric acid using a glassy carbon electrode modified
with a composite consisting of a Co(II)-based metalorganic
framework (ZIF-67) and graphene oxide. Microchimica Acta,
Vol.185, Iss.10, pp.1–11.
[146]. Taverniers I., De Loose M., Van Bockstaele E. (2004). Trends in
quality in the analytical laboratory. II. Analytical method validation
and quality assurance. Trends in Analytical Chemistry, Vol.23, Iss.8,
pp.535–552.
[147]. Teter D.M., Hemley R.J. (1996). Low-compressibility carbon nitrides.
Science, Vol.271, Iss.5245, pp.53–55.
[148]. Thomas A., Fischer A., Goettmann F., et al. (2008). Graphitic carbon
nitride materials: Variation of structure and morphology and their use
as metal-free catalysts. Journal of Materials Chemistry, Vol.18,
Iss.41, pp.4893–4908.
[149]. Tian N., Huang H., Zhang Y. (2015). Mixed-calcination synthesis of
CdWO4/g-C3N4 heterojunction with enhanced visible-light-driven
photocatalytic activity. Applied Surface Science, Vol.358, pp.343–349.
[150]. Tian Y., Zhao Y., Chen Z., et al. (2007). Design and Generation of
Extended Zeolitic Metal – Organic Frameworks (ZMOFs): Synthesis
and Crystal Structures of Zinc (II) Imidazolate Polymers with Zeolitic
Topologies. Chem. Eur. J., Vol.13, pp.4146–4154.
[151]. Vittal R., Gomathi H., Kim K.J. (2006). Beneficial role of surfactants
in electrochemistry and in the modification of electrodes. Advances in
Colloid and Interface Science, Vol.119, Iss.1, pp.55–68.
[152]. Wang C., Yang F., Sheng L., et al. (2016). Zinc-substituted ZIF-67
nanocrystals and polycrystalline membranes for propylene/propane
separation. Chemical Communications, Vol.52, Iss.85, pp.12578–12581.
[153]. Wang L., Li J., Wang Y., et al. (2012). Adsorption capability for
Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel
ferrites. Chemical Engineering Journal, Vol.181–182, pp.72–79.
[154]. Wang L., Zhu H., Shi Y., et al. (2018). Novel catalytic micromotor of
porous zeolitic imidazolate framework-67 for precise drug delivery.
Nanoscale, Vol.10, Iss.24, pp.11384–11391.
[155]. Wang X., Maeda K., Thomas A., et al. (2009). A metal-free polymeric
photocatalyst for hydrogen production from water under visible light.
Nature Materials, Vol.8, Iss.1, pp.76–80.
[156]. Wang Y.Y., Ni Z.H., Yu T., et al. (2008). Raman studies of monolayer
graphene: The substrate effect. Journal of Physical Chemistry C,
Vol.112, Iss.29, pp.10637–10640.
[157]. Wehner T., Mandel K., Schneider M., et al. (2016).
Superparamagnetic Luminescent MOF@Fe3O4/SiO2 Composite
Particles for Signal Augmentation by Magnetic Harvesting as
Potential Water Detectors. ACS Applied Materials and Interfaces,
Vol.8, Iss.8, pp.5445–5452.
[158]. Wei W., Chen W., Ivey D.G. (2008). Rock salt-spinel structural
transformation in anodically electrodeposited Mn-Co-O nanocrystals.
Chemistry of Materials, Vol.20, Iss.5, pp.1941–1947.
[159]. Wen J., Xie J., Chen X., et al. (2017). A review on g-C3N4-based
photocatalysts. Applied Surface Science, Vol.391, Iss.March 2019,
pp.72–123.
[160]. Xu J., Wu H.T., Wang X., et al. (2013). A new and environmentally
benign precursor for the synthesis of mesoporous g-C3N4 with tunable
surface area. Physical Chemistry Chemical Physics, Vol.15, Iss.13,
pp.4510 – 4517.
[161]. Xu Q., Jiang C., Cheng B., et al. (2017). Enhanced visible-light
photocatalytic H2-generation activity of carbon/g-C3N4
nanocomposites prepared by two-step thermal treatment. Dalton
Transactions, Vol.46, Iss.32, pp.10611–10619.
[162]. Xu Y., Gao S.P. (2012). Band gap of C3N4 in the GW approximation.
International Journal of Hydrogen Energy, Vol.37, Iss.15, pp.11072–
11080.
[163]. Xue Y., Xiang P., Jiang Y., et al. (2020). Influence of Ca2+ on
phosphate removal from water using a non-core-shell Fe3O4@ZIF-67
composites. Journal of Environmental Chemical Engineering, Vol.8,
Iss.5, pp.104458.
[164]. Xue Y., Zheng S., Xue H., et al. (2019). Metal-organic framework
composites and their electrochemical applications. Journal of
Materials Chemistry A, Vol.7, Iss.13, pp.7301–7327.
[165]. Yaghi 0. M., Li G., Li H. (1995). Selective binding and removal of
guests in a microporous metal-organic framework. Nature, Vol.378,
Iss.6558, pp.703–706.
[166]. Yaghi O.M., Kalmutzki M.J., Diercks C.S. (2019). Introduction to
Reticular Chemistry, Wiley Online Library, .
[167]. Yamamoto D., Maki T., Watanabe S., et al. (2013). Synthesis and
adsorption properties of ZIF-8 nanoparticles using a micromixer.
Chemical Engineering Journal, Vol.227, pp.145–150.
[168]. Yan S.C., Li Z.S., Zou Z.G. (2009). Photodegradation performance of
g-C3N4 fabricated by directly heating melamine. Langmuir, Vol.25,
Iss.17, pp.10397–10401.
[169]. Yan X., Tian L., He M., et al. (2015). Three-Dimensional
Crystalline/Amorphous Co/Co3O4 core/Shell Nanosheets as Efficient
Electrocatalysts for the Hydrogen Evolution Reaction. Nano Letters,
Vol.15, Iss.9, pp.6015–6021.
[170]. Yang L., Huang N., Lu Q., et al. (2016). A quadruplet electrochemical
platform for ultrasensitive and simultaneous detection of ascorbic
acid, dopamine, uric acid and acetaminophen based on a ferrocene
derivative functional Au NPs/carbon dots nanocomposite and
graphene. Analytica Chimica Acta, Vol.903, pp.69–80.
[171]. Yang Q., Xu Q., Jiang H.L. (2017). Metal-organic frameworks meet
metal nanoparticles: Synergistic effect for enhanced catalysis.
Chemical Society Reviews, Vol.46, Iss.15, pp.4774–4808.
[172]. Yang W., Shi X., Li Y., et al. (2019). Manganese-doped cobalt zeolitic
imidazolate framework with highly enhanced performance for
supercapacitor. Journal of Energy Storage, Vol.26, Iss.October, pp.1–7.
[173]. Yang Y., Dong H., Wang Y., et al. (2018). Synthesis of octahedral
like Cu-BTC derivatives derived from MOF calcined under different
atmosphere for application in CO oxidation. Journal of Solid State
Chemistry, Vol.258, Iss.November 2017, pp.582–587.
[174]. Yao J., He M., Wang K., et al. (2013). High-yield synthesis of zeolitic
imidazolate frameworks from stoichiometric metal and ligand
precursor aqueous solutions at room temperature. CrystEngComm,
Vol.15, Iss.18, pp.3601–3606.
[175]. Yao Y., Bing H., Feifei X., et al. (2011). Equilibrium and kinetic
studies of methyl orange adsorption on multiwalled carbon nanotubes.
Chemical Engineering Journal, Vol.170, Iss.1, pp.82–89.
[176]. Yi Y., Sun H., Zhu G., et al. (2015). Sensitive electrochemical
determination of rhodamine B based on cyclodextrin-functionalized
nanogold/hollow carbon nanospheres. Analytical Methods, Vol.7,
Iss.12, pp.4965–4970.
[177]. Yu L., Mao Y., Qu L. (2013). Simple Voltammetric Determination of
Rhodamine B by Using the Glassy Carbon Electrode in Fruit Juice and
Preserved Fruit. Food Analytical Methods, Vol.6, Iss.6, pp.1665–1670.
[178]. Yuan Y., Zhang L., Xing J., et al. (2015). High-yield synthesis and
optical properties of g-C3N4. Nanoscale, Vol.7, Iss.29, pp.12343–12350.
[179]. Zen J.M., Jou J.J., Ilangovan G. (1998). Selective voltammetric
method for uric acid detection using pre-anodized Nation-coated
glassy carbon electrodes. Analyst, Vol.123, Iss.6, pp.1345–1350.
[180]. Zhang H., Zhong J., Zhou G., et al. (2016). Microwave-Assisted
Solvent-Free Synthesis of Zeolitic Imidazolate Framework-67.
Journal of Nanomaterials, Vol.2016,.
[181]. Zhang J., Tan Y., Song W.J. (2020). Zeolitic imidazolate frameworks
for use in electrochemical and optical chemical sensing and
biosensing: a review. Microchimica Acta, Vol.187, Iss.4, pp.1–23.
[182]. Zhang J., Zhang L., Wang W., et al. (2016). Sensitive electrochemical
determination of rhodamine B based on a silica-pillared zirconium
phosphate/nafion composite modified glassy carbon electrode. Journal
of AOAC International, Vol.99, Iss.3, pp.760–765.
[183]. Zhang M., Jia M. (2013). High rate capability and long cycle stability
Fe3O4-graphene nanocomposite as anode material for lithium ion
batteries. Journal of Alloys and Compounds, Vol.551, pp.53–60.
[184]. Zhang X., Li H., Lv X., et al. (2018). Facile Synthesis of Highly
Efficient Amorphous Mn-MIL-100 Catalysts: Formation Mechanism
and Structure Changes during Application in CO Oxidation.
Chemistry - A European Journal, Vol.24, Iss.35, pp.8822–8832.
[185]. Zheng J., Cheng C., Fang W.J., et al. (2014). Surfactant-free synthesis
of a Fe3O4@ZIF-8 core-shell heterostructure for adsorption of
methylene blue. CrystEngComm, Vol.16, Iss.19, pp.3960 – 3964.
[186]. Zheng Y., Jiao Y., Zhu Y., et al. (2014). Hydrogen evolution by a
metal-free electrocatalyst. Nature Communications, Vol.5, pp.1–8.
[187]. Zhou C., Gao Q., Luo W., et al. (2015). Preparation, characterization
and adsorption evaluation of spherical mesoporous Al-MCM-41 from
coal fly ash. Journal of the Taiwan Institute of Chemical Engineers,
Vol.52, pp.147–157.
[188]. Zhou L., Xu Y., Yu W., et al. (2016). Ultrathin two-dimensional
graphitic carbon nitride as a solution-processed cathode interfacial
layer for inverted polymer solar cells. Journal of Materials Chemistry
A, Vol.4, Iss.21, pp.8000–8004.
[189]. Zhu J., Li P.Z., Guo W., et al. (2018). Titanium-based metal–organic
frameworks for photocatalytic applications. Coordination Chemistry
Reviews, Vol.359, pp.80–101.
[190]. Zhu J., Xiao P., Li H., et al. (2014). Graphitic carbon nitride:
Synthesis, properties, and applications in catalysis. ACS Applied
Materials and Interfaces, Vol.6, Iss.19, pp.16449–16465.