Các phương pháp điện hóa bao gồm các kỹ thuật volt-ampere hòa tan
(SV) được công nhận là một công cụ phân tích định lượng hữu cơ và vô cơ
mạnh bởi vì các ưu điểm của nó bao gồm phân tích nhanh, độ nhạy cao, giá
thành thấp, dễ vận hành và có thể sử dụng phân tích trực tiếp ở môi trường.
Phương pháp volt-ampere hòa anode xung vi phân (Differential pulse anodic
stripping voltammetry, DP-ASV), một trong các phương pháp SV, đã được áp
dụng để xác định lượng vết của kim loại nặng cũng như các chất hữu cơ do độ
nhạy rất cao. Các điện cực than thủy tinh (GCE) được biến tính hóa học bằng
các vật liệu xốp, composite silica xốp, carbon nano ống đã nhận được sự quan
tâm của nhiều nhà khoa học bởi vì nó có được cải thiện đáng kể về độ đáp
ứng, độ chọn lọc cao, giới hạn phát hiện thấp
                
              
                                            
                                
            
 
            
                 144 trang
144 trang | 
Chia sẻ: tueminh09 | Lượt xem: 1569 | Lượt tải: 1 
              
            Bạn đang xem trước 20 trang tài liệu Vật liệu trên cơ sở zif-67: tổng hợp và ứng dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ệt Freundlich 
qmom 
(mg·g–1) 
KL 
(L·mg–1) 
R2 p 
KF 
(L·g–1) 
n R2 p 
298 
(phi tuyến) 
223,700 0,091 0,994 37,950 2,290 0,967 
298 
(tuyến tính) 
238,100 0,079 0,994 0,003 33,210 2,100 0,960 < 0,001 
5 10 15 20 25 30 35
60
80
100
120
140
160
180
Q
e
Ce
 Gi¸ trÞ thùc nghiÖm
 M« h×nh Freundlich
 M« h×nh Langmuir
0.04 0.08 0.12 0.16 0.20 0.24
0.006
0.008
0.010
0.012
0.014
0.016
1/
q e
1/Ce
1.5 2.0 2.5 3.0 3.5 4.0
4.2
4.4
4.6
4.8
5.0
5.2
ln
 q
e
ln Ce 
Hình 3.31. a) Đồ thị mô hình đẳng nhiệt Langmuir và Freundlich ở dạng phi 
tuyến; b) Đồ thị mô hình đẳng nhiệt hấp phụ Langmuir ở dạng tuyến tính và 
mô hình đẳng nhiệt của hấp phụ MO trên Fe3O4/ZIF-67 
 (ĐKTN: nồng độ MO ban đầu = 30 mg.L-1; Khối lượng chất hấp phụ = 
0,01 ÷ 0,06 g; thể tích dung dịch hấp phụ = 50 mL; thời gian rung = 24 giờ; 
nhiệt độ thực nghiệm: nhiệt độ phòng 25o C) 
101 
 Việc phân tích trên cho phép kết luận rằng các dữ liệu hấp phụ đẳng 
nhiệt thực nghiệm của thuốc nhuộm MO trên vật liệu Fe3O4/ZIF-67 sử dụng 
dạng tuyến tính và phi tuyến cho kết quả không khác nhau nhiều và có sự 
tương thích với cả hai mô hình đẳng nhiệt Langmuir và Freundlich. Có nghĩa 
rằng hấp phụ đơn lớp và tồn tại bề mặt không đồng nhất trong trên chất hấp 
phụ. Bảng 3.10 trình bày kết quả so sánh dung lượng hấp phụ của MO của vật 
liệu đang nghiên cứu và các vật liệu đã nghiên cứu trước đây. Kết quả cho thấy 
vật liệu Fe3O4/ZIF-67 có khả năng hấp phụ rất cao so với vật liệu đã công bố. 
Bảng 3.10. So sánh khả năng hấp phụ MO với một số nghiên cứu trước đây 
Số 
TT Chất hấp phụ 
Dung lượng 
hấp phụ 
(mg·g–1) 
Tham khảo 
1 Fe3O4/ZIF-67 223,70 Nghiên cứu này 
2 Ống nanocarbon đa tường 50,20 [175] 
3 Than hoạt tính mao quản trung bình 291,10 [107] 
6 Hypercrosslinked polymer 404,40 [101] 
7 Polymer siêu liên kết HJ1 76,92 [68] 
8 Calcil hydroxide kép 200 [114] 
9 Vỏ cam 20,50 [8] 
10 Vỏ chuối 21 [8] 
3.3.2.2. Nghiên cứu khả năng hấp phụ congo red (CGR), methylene blue 
(MB) và Rhodamine B (RhB) 
 Vật liệu Fe3O4/ZIF-67 cũng đã được nghiên cứu hấp phụ các phẩm màu 
(direct blue 80) [88] và thuốc kháng sinh (ciprofloxacin) [2]. Trong nghiên cứu 
này, chúng tôi mở rộng để nghiên cứu khả năng hấp phụ CGR, MB và RhB 
cuả Fe3O4/ZIF-67. Kết quả cho thấy giá trị cân bằng thực nghiệm tuân theo 
mô hình đẳng nhiệt Langmuir (Bảng 3.11). Dung lượng hấp phụ theo mô hình 
Langmuir của CGR, MB và RhB trên Fe3O4/ZIF-67 là 36,2 mg.g-1, 78,1 mg.g-
1 và 151,5 mg.g-1. Một sự so sánh dung lượng hấp phụ của CGR, MB và RhB 
trên Fe3O4/ZIF-67 so với những chất hấp phụ được nghiên cứu trước đây 
102 
được trình bày trên Bảng 3.12. Điều đáng chú ý là Fe3O4/ZIF-67 cho thấy khả 
năng hấp phụ rất cao đối với thuốc nhuộm CGR. Dung lượng hấp phụ của 
Fe3O4/ZIF-67 đối với CGR cao hơn 2 đến 10 lần dung lượng hấp phụ của các 
chất hấp phụ đã được công bố trong các nghiên cứu trước đây như than hoạt 
tính diện tích bề mặt cao, những hạt hydrogel chitosan được tẩm với chất bề 
mặt không ion hay ion âm và cobalt ferrite, vv Dung lượng hấp phụ đối với 
MB và RhB trên Fe3O4/ZIF-67 cũng cao hơn hay tương đương với các chất 
hấp phụ khác. 
Bảng 3.11. Đẳng nhiệt hấp phụ Langmuir và Freundlich một số phẩm màu 
khác của vật liệu Fe3O4/ZIF-67 
Phẩm màu hấp phụ
Mô hình Langmuir Mô hình Freundlich 
qmom 
(mg.g-1) 
KL 
(L.mg-1)
R2 p 
qmom 
(mg.g-1) 
KF 
(L.mg-1)
n R2 p 
Congo red 151,500 1,380 0,931 0,010 322,100 77,610 2,290 0,999< 0,010 
Rhodamine B 78,130 0,003 0,987 < 0,010 38,050 4,450 1,580 0,989 0,160 
Methylene blue 36,230 0,023 0,909 0,021 14,988 1,670 1,550 0,919< 0,010 
0 5 10 15 20 25 30
0
50
100
150
200
250
300
q e
(m
g.
g-
1 )
Ce(mg.L
-1)
 Congo red
 Rhodamine B
 Methylene blue
Hình 3.32. Dung lượng hấp phụ một số phẩm màu khác trên Fe3O4/ZIF-67 
103 
Bảng 3.12. Dung lượng hấp phụ của các chất hấp phụ khác nhau đối với 
CGR, MB và RhB tại nhiệt độ phòng 
Số 
TT 
Chất hấp phụ 
Phẩm 
màu 
BET 
(m2·g–1) 
qe 
(mg·g–1) 
Tham khảo 
1 Fe3O4/ZIF–67 CGR* 1123,9 151,5 Nghiên cứu này 
2 Tro bã mía CGR 168 11,8 [103] 
3 Than hoạt tính thương mại CGR 390 0,637 [103] 
4 Than hoạt tính mao quản trung bình CGR 370 – 679 52 – 189 [99] 
5 Tấm nano Ni(OH)2 và NiO CGR 127 – 201 39,7 – 152 [32] 
6 Hạt gel chitosan 
biến tính bằng cetyl trimethyl 
ammonium bromide 
CGR – 352 [26] 
7 Hạt gel chitosan bến tính bằng than 
nano ống 
CGR 237,8 450,4 [26] 
8 Spinel CoFe2O4 CGR N/A 244,5 [153] 
9 Zeolites tự nhiên biến tính bằng 
N,N–dimethyl 
dehydroabietylamine oxide 
CGR N/A 69,49 [96] 
10 Fe3O4/ZIF–67 MB** 1123,9 36,2 Nghiên cứu này 
11 Al–MCM–41 MB N/A 66,5 [187] 
12 Xơ dừa Ấn độ MB 167 5,87 [75] 
13 Fe3O4/ZIF-8 MB 1068 20,2 [185] 
14 Fe3O4/ZIF-67 RhB*** 1123,9 78,3 Nghiên cứu này 
15 Bã cà phê RhB - 5,255 [129] 
16 Mn2O3/MCM-41 RhB 793 23,9 [59] 
17 Al–MCM–41 RhB 625 91 [187] 
*CGR: Congo red; **MB: Methylene blue; ***RhB: Rhodamine B 
 Tiểu kết 3. Vật liệu composite Fe3O4/ZIF-67 đã được tổng hợp thành 
công dưới sự hỗ trợ của sóng siêu âm, có diện tích bề mặt riêng lớn (1123,9 
m2.g-1). Phân tích nhiệt động học cho thấy, phản ứng hấp phụ MO tự xảy ra 
với ái lực cao. Đồng thời, vật liệu có khả năng hấp phụ cao với các phẩm 
nhuộm như Methyl orange, Congo red, Methylene blue và Rhodamine B với 
dung lượng hấp phụ lần lượt là 223,7 mg.g-1; 151,5 mg.g-1; 36,2 mg.g-1 và 
78,3 mg.g-1. 
104 
Chương 4 
KẾT LUẬN 
 1. Đã nghiên cứu tổng hợp thành công composite ZIF-67/rGO. Hình 
thái của ZIF-67/rGO bao gồm các hạt nano ZIF-67 phân tán cao trên các tấm 
rGO, có diện tích bề mặt riêng cao. Điện cực GCE biến tính bằng vật liệu 
ZIF-67/rGO có thể sử dụng để phân tích Rhodamine B bằng phương pháp 
xung vi phân với phạm vi tuyến tính, từ 0,96 đến 44,07 μg.L-1 và giới hạn 
phát hiện thấp là 1,79 μg.L-1. Quy trình phân tích đã được áp dụng để xác định 
định lượng hàm lượng RhB trong một số mẫu thực phẩm với tỷ lệ thu hồi 98-
103%. Kết quả phân tích định lượng bằng phương pháp này tương đồng với 
phương pháp sắc ký lỏng hiệu năng cao, cho thấy rằng vật liệu này có triển 
vọng phát triển phương pháp phát hiện nhanh tại hiện trường phụ gia độc hại 
Rhodamine B trong thực phẩm. 
2) ZIF-67/g-C3N4 được tổng hợp thành công có sự hỗ trợ của sóng siêu 
âm. Vật liệu thu được có diện tích bề mặt riêng lớn và độ ổn định cao ở 
khoảng pH 3-11. Đã phát triển phương pháp phân tích điện hóa đồng thời 
ACE và URA sử dụng điện cực biến tính bằng ZIF-67/g-C3N4 với cetyl 
trimethylammonium bromide đóng vai trò như là chất tách peak. Mối quan hệ 
tuyến tính của dòng đỉnh oxy hóa của URA và ACE và nồng độ dao động từ 
0,2 μM đến 6,5 μM với giới hạn phát hiện thấp 0,052 μM cho URA và 0,053 
μM cho ACE. Phương pháp đề xuất đã được áp dụng để phân tích đồng thời 
URA và ACE trong nước tiểu người với kết quả không khác với phân tích 
bằng HPLC trên phương diện thống kê. 
3) Đã nghiên cứu tổng hợp Fe3O4/ZIF-67 có diện tích bề mặt riêng cao, 
có tính siêu thuận từ. Vật liệu tổng hợp được có khả năng hấp phụ cao với 
MO, động học MO tuân theo mô hình động học bậc hai. Ngoài ra vật liệu 
Fe3O4/ZIF-67 có khả năng hấp phụ cao với nhiều phẩm nhuộm như MB, RhB 
và CGR. Quá trình hấp phụ tuân theo mô hình Langmuir. 
 DANH MỤC CÁC CÔNG TRÌNH CÔNG BỐ 
CÓ LIÊN QUAN ĐẾN LUẬN ÁN 
I. Bài báo trong nước 
1. Huỳnh Trường Ngọ, Lê Thị Hòa, Hồ Văn Minh Hải (2020), Sử dụng điện 
cực glassy carbon biến tính với ZIF-67/rGO để xác định Rhodamine B bằng 
phương pháp volt-ampere, Tạp chí Khoa học tự nhiên, Đại học Huế, số 1A(130). 
2. Bùi Quang Thành, Huỳnh Thị Thanh Phương, Huỳnh Trường Ngọ (2020), 
Nghiên cứu động học và cân bằng hấp phụ methyl orange bằng vật liệu lai 
Fe3O4/ZIF-67, Tạp chí Khoa học và Công nghệ, Trường Đại học Khoa học, Đại 
học Huế, số 2(16). 
II. Tạp chí quốc tế (SCIE) 
1. Huynh Truong Ngo, Le Thi Hoa, Nguyen Tan Khanh, Tran Thi Bich Hoa, Tran 
Thanh Tam Toan, Tran Xuan Mau, Nguyen Hai Phong, Ho Sy Thang and Dinh 
Quang Khieu, ZIF-67/g-C3N4-Modified electrode for Simultaneous Voltammetric 
Determination of Uric acid and Acetaminophen with Cetyltrimethylammonium 
bromide as Discriminating agent, Jornal of Nanomaterials, 2020, 
https://doi.org/10.1155/2020/7915878 (SCIE, Q2, IF = 1,9). 
2. Huynh Truong Ngo, Vo Thang Nguyen, Tran Đuc Manh, Tran Thanh Tam 
Toan, Nguyen Minh Triet, Nguyen Thi Vuong Hoan, Nguyen Thanh Binh, Tran 
Vinh Thien and Dinh Quang Khieu, Voltammetric determination of Rhodamine B 
using ZIF-67/reduced graphene oxide modified electrode, Jornal of Nanomaterials, 
2020, https://doi.org/10.1155/2020/4679061. (SCIE, Q2, IF = 1,9). 
 TÀI LIỆU THAM KHẢO 
[1]. Afrasiabi M., Kianipour S., Babaei A., et al. (2016). A new sensor 
based on glassy carbon electrode modified with nanocomposite for 
simultaneous determination of acetaminophen, ascorbic acid and uric 
acid. Journal of Saudi Chemical Society, Vol.20, pp.S480–S487. 
[2]. Alamgholiloo H., Hashemzadeh B., Pesyan N.N., et al. (2021). A 
facile strategy for designing core-shell nanocomposite of ZIF-
67/Fe3O4: A novel insight into ciprofloxacin removal from 
wastewater. Process Safety and Environmental Protection, Vol.147, 
pp.392–404. 
[3]. Alarcón-Angeles G., Corona-Avendaño S., Palomar-Pardavé M., et al. 
(2008). Selective electrochemical determination of dopamine in the 
presence of ascorbic acid using sodium dodecyl sulfate micelles as 
masking agent. Electrochimica Acta, Vol.53, Iss.6, pp.3013–3020. 
[4]. Alesso M., Bondioli G., Talío M.C., et al. (2012). Micelles mediated 
separation fluorimetric methodology for Rhodamine B determination 
in condiments, snacks and candies. Food Chemistry, Vol.134, Iss.1, 
pp.513–517. 
[5]. Andrew Lin K.Y., Lee W. Der (2016). Self-assembled magnetic 
graphene supported ZIF-67 as a recoverable and efficient adsorbent for 
benzotriazole. Chemical Engineering Journal, Vol.284, pp.1017–1027. 
[6]. Anik Ü., Timur S., Dursun Z. (2019). Metal organic frameworks in 
electrochemical and optical sensing platforms: a review. 
Microchimica Acta, Vol.186, Iss.3, pp.18–24. 
[7]. Anirudhan T.S., Radhakrishnan P.G. (2008). Thermodynamics and 
kinetics of adsorption of Cu(II) from aqueous solutions onto a new 
cation exchanger derived from tamarind fruit shell. Journal of 
Chemical Thermodynamics, Vol.40, Iss.4, pp.702–709. 
 [8]. Annadurai G., Juang R.S., Lee D.J. (2002). Use of cellulose-based 
wastes for adsorption of dyes from aqueous solutions. Journal of 
Hazardous Materials, Vol.92, Iss.3, pp.263–274. 
[9]. Asfaram A., Ghaedi M., Hajati S., et al. (2017). Screening and 
optimization of highly effective ultrasound-assisted simultaneous 
adsorption of cationic dyes onto Mn-doped Fe3O4-nanoparticle-loaded 
activated carbon. Ultrasonics Sonochemistry, Vol.34, pp.1–12. 
[10]. Babaei A., Garrett D.J., Downard A.J. (2011). Selective Simultaneous 
Determination of Paracetamol and Uric Acid Using a Glassy Carbon 
Electrode Modified with Multiwalled Carbon Nanotube/Chitosan 
Composite. Electroanalysis, Vol.23, Iss.2, pp.417–423. 
[11]. Bagoji A.M., Nandibewoor S.T. (2016). Electrocatalytic redox 
behavior of graphene films towards acebutolol hydrochloride 
determination in real samples. New Journal of Chemistry, Vol.40, 
Iss.4, pp.3763–3772. 
[12]. Bai X., Yan S., Wang J., et al. (2014). A simple and efficient strategy 
for the synthesis of a chemically tailored g-C3N4 material. Journal of 
Materials Chemistry A, Vol.2, Iss.41, pp.17521–17529. 
[13]. Barreca D., Massignan C., Daolio S., et al. (2001). Composition and 
microstructure of cobalt oxide thin films obtained from a novel cobalt 
(II) precursor by chemical vapor deposition. Chemistry of Materials, 
Vol.13, Iss.2, pp.588–593. 
[14]. Beyer S., Prinz C., Schürmann R., et al. (2016). Ultra-Sonication of 
ZIF-67 Crystals Results in ZIF-67 Nano-Flakes. ChemistrySelect, 
Vol.1, Iss.18, pp.5905–5908. 
[15]. Bharath G., Latha B.S., Alsharaeh E.H., et al. (2017). Enhanced 
hydroxyapatite nanorods formation on graphene oxide nanocomposite 
as a potential candidate for protein adsorption, pH controlled release 
 and an effective drug delivery platform for cancer therapy. Analytical 
Methods, Vol.9, Iss.2, pp.240–252. 
[16]. Bhattacharjee S., Jang M.S., Kwon H.J., et al. (2014). Zeolitic 
Imidazolate Frameworks: Synthesis, Functionalization, and 
Catalytic/Adsorption Applications. Catalysis Surveys from Asia, 
Vol.18, Iss.4, pp.101–127. 
[17]. Bojdys M.J. (2009). On new allotropes and nanostructures of carbon 
nitrides (Doctoral dissertation, Universität Potsdam, Germany). 
[18]. Bojdys M.J., Müller J.O., Antonietti M., et al. (2008). Ionothermal 
synthesis of crystalline, condensed, graphitic carbon nitride. 
Chemistry - A European Journal, Vol.14, Iss.27, pp.8177–8182. 
[19]. Bragg W.L. (1913). The diffraction of short electromagnetic waves by a 
crystal: Proceedings of the Cambridge Philosophical Society. pp.43–57. 
[20]. Butova V. V, Soldatov M.A., Guda A.A., et al. (2016). Metal-organic 
frameworks: structure, properties, methods of synthesis and 
characterization. Russian Chemical Reviews, Vol.85, Iss.3, pp.280–307. 
[21]. Byrappa K., Adschiri T. (2007). Hydrothermal technology for 
nanotechnology. Progress in Crystal Growth and Characterization of 
Materials, Vol.53, Iss.2, pp.117–166. 
[22]. De Carvalho R.M., Freire R.S., Rath S., et al. (2004). Effects of 
EDTA on signal stability during electrochemical detection of 
acetaminophen. Journal of Pharmaceutical and Biomedical Analysis, 
Vol.34, Iss.5, pp.871–878. 
[23]. Casiraghi C., Hartschuh A., Qian H., et al. (2009). Raman Spectroscopy 
of Graphene Edges. Nano Lett, Vol.9, Iss.4, pp.1433–1441. 
[24]. Castner D.G., Watson P.R., Chan I.Y. (1990). X-ray absorption 
spectroscopy, X-ray photoelectron spectroscopy, and analytical 
electron microscopy studies of cobalt catalysts. 2. Hydrogen reduction 
 properties. Journal of Physical Chemistry, Vol.94, Iss.2, pp.819–828. 
[25]. Chandra V., Park J., Chun Y., et al. (2010). Water-Dispersible 
Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. 
Science of the Total Environment, Vol.4, Iss.7, pp.3979–3986. 
[26]. Chatterjee S., Lee D.S., Lee M.W., et al. (2009). Enhanced adsorption 
of congo red from aqueous solutions by chitosan hydrogel beads 
impregnated with cetyl trimethyl ammonium bromide. Bioresource 
Technology, Vol.100, Iss.11, pp.2803–2809. 
[27]. Chen B., Yang Z., Zhu Y., et al. (2014). Zeolitic imidazolate 
framework materials: Recent progress in synthesis and applications. 
Journal of Materials Chemistry A, Vol.2, Iss.40, pp.16811–16831. 
[28]. Chen H., Wu X., Zhao R., et al. (2019). Preparation of reduced 
graphite oxide loaded with cobalt(II) and nitrogen co-doped carbon 
polyhedrons from a metal-organic framework (type ZIF-67), and its 
application to electrochemical determination of metronidazole. 
Microchimica Acta, Vol.186, Iss.9,. 
[29]. Chen J., Zhu X. (2016). Magnetic solid phase extraction using ionic 
liquid-coated core-shell magnetic nanoparticles followed by high-
performance liquid chromatography for determination of Rhodamine 
B in food samples. Food Chemistry, Vol.200, pp.10–15. 
[30]. Chen L., Wang J., Shen X., et al. (2019). ZIF-67@Co-LDH yolk-shell 
spheres with micro-/meso-porous structures as vehicles for drug 
delivery. Inorganic Chemistry Frontiers, Vol.6, Iss.11, pp.3140–3145. 
[31]. Chen Y., Song B., Xiaosheng Tang, et al. (2012). One-step Synthesis of 
Hollow Porous Fe3O4 Beads/reduced Graphene Oxide Composite with 
Superior Battery Performance. J.Mater.Chem., Vol.22, Iss.34, pp.1–19. 
[32]. Cheng B., Le Y., Cai W., et al. (2011). Synthesis of hierarchical 
Ni(OH)2 and NiO nanosheets and their adsorption kinetics and 
 isotherms to Congo red in water. Journal of Hazardous Materials, 
Vol.185, Iss.2–3, pp.889–897. 
[33]. Cho H.Y., Kim J., Kim S.N., et al. (2013). High yield 1-L scale 
synthesis of ZIF-8 via a sonochemical route. Microporous and 
Mesoporous Materials, Vol.169, pp.180–184. 
[34]. Cui Y., Zhang J., Zhang G., et al. (2011). Synthesis of bulk and 
nanoporous carbon nitride polymers from ammonium thiocyanate for 
photocatalytic hydrogen evolution. Journal of Materials Chemistry, 
Vol.21, Iss.34, pp.13032–13039. 
[35]. Deng H., Grunder S., Cordova K.E., et al. (2012). Large-pore 
apertures in a series of metal-organic frameworks. Science, Vol.336, 
Iss.6084, pp.1018–1023. 
[36]. Du X., Wang C., Liu J., et al. (2017). Extensive and selective 
adsorption of ZIF-67 towards organic dyes: Performance and 
mechanism. Journal of Colloid And Interface Science, Vol.506, 
pp.437–441. 
[37]. Eddaoudi M., Kim J., Rosi N., et al. (2002). Systematic Design of Pore 
Size and Functionality in Isoreticular MOFs and Their Application in 
Methane Storage. Science, Vol.295, Iss.5554, pp.469–472. 
[38]. Ethiraj J., Palla S., Reinsch H. (2020). Insights into high pressure gas 
adsorption properties of ZIF-67: Experimental and theoretical studies. 
Microporous and Mesoporous Materials, Vol.294, Iss.3, pp.109867. 
[39]. Faustini M., Kim J., Jeong G.Y., et al. (2013). Microfluidic approach 
toward continuous and ultrafast synthesis of metal-organic framework 
crystals and hetero structures in confined microdroplets. Journal of the 
American Chemical Society, Vol.135, Iss.39, pp.14619–14626. 
[40]. Feng S.-H., Li G.-H. (2017). Chapter 4 - Hydrothermal and 
Solvothermal Syntheses, in: Mod. Inorg. Synth. Chem. Second Ed., 
Elsevier B.V, : pp. 73–104. 
 [41]. Feng X., Carreon M.A. (2015). Kinetics of transformation on ZIF-67 
crystals. Journal of Crystal Growth, Vol.418, pp.158–162. 
[42]. Francis L. Martin & Andre E.M. Maclean (1998). Comparison of 
paracetamol-induced hepatotoxicity in the rat in vivo with progression 
of cell injury in vitro in rat liver slices. Drug and Chemical 
Toxicology, Vol.21, Iss.4, pp.477–498. 
[43]. Franke C., H.Westerholm, R. N. (1997). Solid-Phase Extraction (SPE) 
Of The Flourescence Tracers Uranine And SulphoRhodamine B. 
Science, Vol.31, Iss.10, pp.2633–2637. 
[44]. Gagliardi L., De Orsi D., Cavazzutti G., et al. (1996). HPLC 
determination of Rhodamine B (C.I. 45170) products. 
Chromatographia, Vol.43, Iss.1–2, pp.76–78. 
[45]. Ganguly A., Sharma S., Papakonstantinou P., et al. (2011). Probing the 
Thermal Deoxygenation of Graphene Oxide Using High-Resolution. 
The Journal of Physical Chemistry C, Vol.115, pp.17009–17019. 
[46]. Gao J., Zhou Y., Li Z., et al. (2012). High-yield synthesis of 
millimetre-long, semiconducting carbon nitride nanotubes with 
intense photoluminescence emission and reproducible 
photoconductivity. Nanoscale, Vol.4, Iss.12, pp.3687–3692. 
[47]. Gerber F., Krummen M., Potgeter H., et al. (2004). Practical aspects 
of fast reversed-phase high-performance liquid chromatography using 
3 μm particle packed columns and monolithic columns in 
pharmaceutical development and production working under current 
good manufacturing practice. Journal of Chromatography A, 
Vol.1036, Iss.2, pp.127–133. 
[48]. Gillan E.G. (2000). Synthesis of nitrogen-rich carbon nitride networks 
from an energetic molecular azide precursor. Chemistry of Materials, 
Vol.12, Iss.12, pp.3906–3912. 
 [49]. Golestaneh M., Ghoreishi S.M. (2020). Analytical &. Anal. Bioanal. 
Electrochem, Vol.12, Iss.1, pp.81–92. 
[50]. Graf D., Molitor F., Ensslin K., et al. (2007). Spatially Resolved 
Raman Spectroscopy of Single- and Few-Layer Graphene. Nano Lett, 
Vol.7, Iss.2, pp.238–242. 
[51]. Griffiths P.R., Haseth J.A. d. (2007). Fourier Transform Infrared 
Spectrometry, Second Edi, John Wiley and Sons, Inc. 
[52]. Gross A.F., Sherman E., Vajo J.J. (2012). Aqueous room temperature 
synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. 
Dalton Transactions, Vol.41, Iss.18, pp.5458–5460. 
[53]. Guan W., Dai Y., Dong C., et al. (2020). Zeolite imidazolate 
framework (ZIF) -based mixed matrix membranes for CO2 separation : 
A review. Journal of Applied Polymer Science, Vol.48968, pp.1–13. 
[54]. Guan W., Gao X., Ji G., et al. (2017). Fabrication of a magnetic 
nanocomposite photocatalysts Fe3O4@ZIF-67 for degradation of dyes 
in water under visible light irradiation. Journal of Solid State 
Chemistry, Vol.255, Iss.August, pp.150–156. 
[55]. Guex L.G., Sacchi B., Peuvot K.F., et al. (2017). Experimental 
review: Chemical reduction of graphene oxide (GO) to reduced 
graphene oxide (rGO) by aqueous chemistry. Nanoscale, Vol.9, 
Iss.27, pp.9562–9571. 
[56]. Guo Q., Xie Y., Wang X., et al. (2003). Characterization of well-
crystallized graphitic carbon nitride nanocrystallites via a benzene-
thermal route at low temperatures. Chemical Physics Letters, Vol.380, 
Iss.1–2, pp.84–87. 
[57]. Guo Q., Xie Y., Wang X., et al. (2004). Synthesis of carbon nitride 
nanotubes with the C3N4 stoichiometry via a benzene-thermal process at 
low temperatures. Chemical Communications, Vol.4, Iss.1, pp.26–27. 
 [58]. Guo X., Xing T., Lou Y., et al. (2016). Controlling ZIF-67 crystals 
formation through various cobalt sources in aqueous solution. Journal 
of Solid State Chemistry, Vol.235, pp.107–112. 
[59]. Han B., Zhang F., Feng Z., et al. (2014). A designed Mn2O3/MCM-41 
nanoporous composite for methylene blue and rhodamine B removal with 
high efficiency. Ceramics International, Vol.40, Iss.6, pp.8093–8101. 
[60]. Haque E., Jun J.W., Talapaneni S.N., et al. (2010). Superior 
adsorption capacity of mesoporous carbon nitride with basic CN 
framework for phenol. Journal of Materials Chemistry, Vol.20, Iss.48, 
pp.10801–10803. 
[61]. He Q., Liu J., Xia Y., et al. (2019). Rapid and Sensitive Voltammetric 
Detection of Rhodamine B in Chili-Containing Foodstuffs Using MnO2 
Nanorods/Electro-Reduced Graphene Oxide Composite . Journal of The 
Electrochemical Society, Vol.166, Iss.10, pp.B805–B813. 
[62]. He Y., Cai J., Li T., et al. (2013). Efficient degradation of RhB over 
GdVO4/g-C3N4 composites under visible-light irradiation. Chemical 
Engineering Journal, Vol.215–216, pp.721–730. 
[63]. Ho Y.S. (2006). Review of second-order models for adsorption 
systems. Journal of Hazardous Materials, Vol.136, Iss.3, pp.681–689. 
[64]. Hoa D.T.N., Toan T.T.T., Mau T.X., et al. (2020). Voltammetric 
determination of Auramine O with ZIF-67/Fe2O3/g-C3N4-modified 
electrode. Journal of Materials Science: Materials in Electronics, 
Vol.31, Iss.22, pp.19741–19755. 
[65]. Horwitz W., Albert R. (1997). The concept of uncertainty as applied 
to chemical measurements. Analyst, Vol.122, Iss.6, pp.615–617. 
[66]. Hosseinian A., Amjad A., Hosseinzadeh-Khanmiri R., et al. (2017). 
Nanocomposite of ZIF-67 metal – organic framework with reduced 
graphene oxide nanosheets for high-performance supercapacitor 
applications. Journal of Materials Science: Materials in Electronics,. 
 [67]. Hu Y., Song X., Zheng Q., et al. (2019). Zeolitic imidazolate 
framework-67 for shape stabilization and enhanced thermal stability 
of paraffin-based phase change materials. RSC Advances, Vol.9, 
Iss.18, pp.9962–9967. 
[68]. Huang J.H., Huang K.L., Liu S.Q., et al. (2008). Adsorption of 
Rhodamine B and methyl orange on a hypercrosslinked polymeric 
adsorbent in aqueous solution. Colloids and Surfaces A: 
Physicochemical and Engineering Aspects, Vol.330, Iss.1, pp.55–61. 
[69]. Hummers W.S., Offeman R.E. (1958). Preparation of Graphitic 
Oxide. Journal of the American Chemical Society, Vol.80, Iss.6, 
pp.1339–1339. 
[70]. J.Bard A., J.Falkner L. (2001). Electrochemical methods, 
fundamentals and applications, Wiley New York. 
[71]. Jayaramulu K., Masa J., Tomanec O., et al. (2017). Nanoporous 
Nitrogen-Doped Graphene Oxide/Nickel Sulfide Composite Sheets 
Derived from a Metal-Organic Framework as an Efficient 
Electrocatalyst for Hydrogen and Oxygen Evolution. Advanced 
Functional Materials, Vol.27, Iss.33, pp.1–10. 
[72]. Jodłowski P.J., Jȩdrzejczyk R.J., Rogulska A., et al. (2014). 
Spectroscopic characterization of Co3O4 catalyst doped with CeO2 and 
PdO for methane catalytic combustion. Spectrochimica Acta - Part A: 
Molecular and Biomolecular Spectroscopy, Vol.131, pp.696–701. 
[73]. Jürgens B., Irran E., Senker J., et al. (2003). Melem (2,5,8-triamino-
tri-s-triazine), an important intermediate during condensation of 
melamine rings to graphitic carbon nitride: Synthesis, structure 
determination by x-ray powder diffractometry, solid-state NMR, and 
theoretical studies. Journal of the American Chemical Society, 
Vol.125, Iss.34, pp.10288–10300. 
 [74]. Kalmutzki M.J., Hanikel N., Yaghi O.M. (2018). Secondary building 
units as the turning point in the development of the reticular chemistry 
of MOFs. Science Advances, Vol.4, Iss.10,. 
[75]. Kavitha D., Namasivayam C. (2007). Experimental and kinetic studies 
on methylene blue adsorption by coir pith carbon. Bioresource 
Technology, Vol.98, Iss.1, pp.14–21. 
[76]. Khan U., Neill A.O., Lotya M., et al. (2010). High-Concentration 
Solvent Exfoliation of Graphene. Small, Vol.6, Iss.7, pp.864–871. 
[77]. Kianipour S., Asghari A. (2013). Room temperature ionic 
liquid/multiwalled carbon nanotube/chitosan-modified glassy carbon 
electrode as a sensor for simultaneous determination of ascorbic acid, 
uric acid, acetaminophen, and mefenamic acid. IEEE Sensors Journal, 
Vol.13, Iss.7, pp.2690–2698. 
[78]. Komatsu T., Nakamura T. (2001). Polycondensation/pyrolysis of tris-
s-triazine derivatives leading to graphite-like carbon nitrides. Journal 
of Materials Chemistry, Vol.11, Iss.2, pp.474–478. 
[79]. Kouvetakis J., Bandari A., Todd M., et al. (1994). Novel Synthetic Routes 
to Carbon-Nitrogen Thin Films. Chem.Matter, Vol.6, pp.811–814. 
[80]. Kroke E., Schwarz M., Horath-Bordon E., et al. (2002). Tri-s-triazine 
derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 
structures. New Journal of Chemistry, Vol.26, Iss.5, pp.508–512. 
[81]. Kumar S.A., Tang C.F., Chen S.M. (2008). Electroanalytical determination 
of acetaminophen using nano-TiO2/polymer coated electrode in the 
presence of dopamine. Talanta, Vol.76, Iss.5, pp.997–1005. 
[82]. Kutluay A., Aslanoglu M. (2014). An electrochemical sensor prepared 
by sonochemical one-pot synthesis of multi-walled carbon nanotube-
supported cobalt nanoparticles for the simultaneous determination of 
paracetamol and dopamine. Analytica Chimica Acta, Vol.839, pp.59–66. 
 [83]. Lagergren S (1898). About the theory of so-called adsorption of 
soluble substances. K. Sven. Vetenskapsakad. Handl, Vol.24, Iss.4, 
pp.1–39. 
[84]. Lanchas M., Arcediano S., T. Aguazo Andres, et al. (2014). Two 
appealing alternatives for MOFs synthesis: solvent-free oven heating 
vs microwave heating. RSC Advances, Vol.4, Iss.104, pp.60409–
60412. 
[85]. Laviron E. (1979). General expression of the linear potential sweep 
voltammogram in the case of diffusionless electrochemical systems. 
Journal of Electroanalytical Chemistry, Vol.101, Iss.1, pp.19–28. 
[86]. Li C. (2007). Electrochemical determination of dipyridamole at a 
carbon paste electrode using cetyltrimethyl ammonium bromide as 
enhancing element. Colloids and Surfaces B: Biointerfaces, Vol.55, 
Iss.1, pp.77–83. 
[87]. Li H., Li Q., He X., et al. (2018). The magnetic hybrid Cu(I)-
MoF@Fe3O4 with hierarchically engineered micropores for highly 
efficient removal of Cr(VI) from aqueous solution. Crystal Growth 
and Design, Vol.18, Iss.10, pp.6248–6256. 
[88]. Li M., Gao D., Cui S., et al. (2020). Fabrication of Fe3O4/ZIF-67 
composite for removal of direct blue 80 from water. Water 
Invironment Research, Vol.92, Iss.5, pp.740–748. 
[89]. Li Y., Zhou K., He M., et al. (2016). Synthesis of ZIF-8 and ZIF-67 
using mixed-base and their dye adsorption. Microporous and 
Mesoporous Materials, Vol.234, pp.287–292. 
[90]. Lin K.Y.A., Chang H.A. (2015). Zeolitic Imidazole Framework-67 
(ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate 
for degradation of Rhodamine B in water. Journal of the Taiwan 
Institute of Chemical Engineers, Vol.53, pp.40–45. 
 [91]. Liu A.Y., Cohen M.L. (1989). Prediction of new low compressibility 
solids. Science, Vol.245, Iss.4920, pp.841–842. 
[92]. Liu J., Li W., Duan L., et al. (2015). A Graphene-like Oxygenated 
Carbon Nitride Material for Improved Cycle-Life Lithium/Sulfur 
Batteries. Nano Letters, Vol.15, Iss.8, pp.5137–5142. 
[93]. Liu L., Zhou Y., Liu S., et al. (2018). The Applications of 
Metal−Organic Frameworks in Electrochemical Sensors. 
ChemElectroChem, Vol.5, Iss.1, pp.6–19. 
[94]. Liu M., Wu J., Hou H. (2019). Metal–Organic Framework (MOF)-
Based Materials as Heterogeneous Catalysts for C−H Bond Activation. 
Chemistry - A European Journal, Vol.25, Iss.12, pp.2935–2948. 
[95]. Liu Q., Sun N., Gao M., et al. (2018). Magnetic Binary Metal-Organic 
Framework As a Novel Affinity Probe for Highly Selective Capture of 
Endogenous Phosphopeptides. ACS Sustainable Chemistry and 
Engineering, Vol.6, Iss.3, pp.4382–4389. 
[96]. Liu S., Ding Y., Li P., et al. (2014). Adsorption of the anionic dye 
Congo red from aqueous solution onto natural zeolites modified with 
N,N-dimethyl dehydroabietylamine oxide. Chemical Engineering 
Journal, Vol.248, pp.135–144. 
[97]. Liu S.Q., Sun W.H., Hu F.T. (2012). Graphene nano sheet-fabricated 
electrochemical sensor for the determination of dopamine in the 
presence of ascorbic acid using cetyltrimethylammonium bromide as 
the discriminating agent. Sensors and Actuators, B: Chemical, 
Vol.173, pp.497–504. 
[98]. Loh K.S., Lee Y.H., Musa A., et al. (2008). Use of Fe3O4 
nanoparticles for enhancement of biosensor response to the herbicide 
2,4-dichlorophenoxyacetic acid. Sensors, Vol.8, Iss.9, pp.5775–5791. 
[99]. Lorenc-Grabowska E., Gryglewicz G. (2007). Adsorption 
 characteristics of Congo Red on coal-based mesoporous activated 
carbon. Dyes and Pigments, Vol.74, Iss.1, pp.34–40. 
[100]. Lucchese M.M., Stavale F., Ferreira E.H.M., et al. (2010). 
Quantifying ion-induced defects and Raman relaxation length in 
graphene. Carbon, Vol.48, Iss.5, pp.1592–1597. 
[101]. M. R. Samarghandi, M. Hadi, S. Moayedi F.B.A. (2009). Two-
parameter isotherms of methyl orange sorption by pinecone derived 
activated carbon. Iran. J. Environ. Health. Sci. Eng., Vol.6, Iss.4, 
pp.285–294. 
[102]. Maeda K., Wang X., Nishihara Y., et al. (2009). Photocatalytic 
activities of graphitic carbon nitride powder for water reduction and 
oxidation under visible light. Journal of Physical Chemistry C, 
Vol.113, Iss.12, pp.4940–4947. 
[103]. Mall I.D., Srivastava V.C., Agarwal N.K., et al. (2005). Removal of 
congo red from aqueous solution by bagasse fly ash and activated 
carbon: Kinetic study and equilibrium isotherm analyses. 
Chemosphere, Vol.61, Iss.4, pp.492–501. 
[104]. Martinez Joaristi A., Juan-Alcañiz J., Serra-Crespo P., et al. (2012). 
Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ 
metal organic frameworks. Crystal Growth and Design, Vol.12, Iss.7, 
pp.3489–3498. 
[105]. Meng W., Wen Y., Dai L., et al. (2018). A novel electrochemical 
sensor for glucose detection based on Ag@ZIF-67 nanocomposite. 
Sensors and Actuators, B: Chemical, Vol.260, pp.852–860. 
[106]. Mohamed A.M., Ramadan M., Ahmed N., et al. (2020). Metal–
Organic frameworks encapsulated with vanadium-substituted 
heteropoly acid for highly stable asymmetric supercapacitors. Journal 
of Energy Storage, Vol.28, Iss.February, pp.101292. 
[107]. Mohammadi N., Khani H., Gupta V.K., et al. (2011). Adsorption 
 process of methyl orange dye onto mesoporous carbon material-
kinetic and thermodynamic studies. Journal of Colloid and Interface 
Science, Vol.362, Iss.2, pp.457–462. 
[108]. Mohan V.B., Brown R., Jayaraman K., et al. (2015). Characterisation 
of reduced graphene oxide: Effects of reduction variables on electrical 
conductivity. Materials Science and Engineering B: Solid-State 
Materials for Advanced Technology, Vol.193, Iss.C, pp.49–60. 
[109]. Morozan A., Jaouen F. (2012). Metal organic frameworks for 
electrochemical applications. Energy and Environmental Science, 
Vol.5, Iss.11, pp.9269–9290. 
[110]. Mottillo C., Lu Y., Pham M.H., et al. (2013). Mineral neogenesis as 
an inspiration for mild, solvent-free synthesis of bulk microporous 
metal-organic frameworks from metal (Zn, Co) oxides. Green 
Chemistry, Vol.15, Iss.8, pp.2121–2131. 
[111]. Murray L.J., Dinc M., Long J.R. (2009). Hydrogen storage in metal-
organic frameworks. Chemical Society Reviews, Vol.38, Iss.5, 
pp.1294–1314. 
[112]. Muschi M., Serre C. (2019). Progress and challenges of graphene 
oxide/metal-organic composites. Coordination Chemistry Reviews, 
Vol.387, pp.262–272. 
[113]. Nguyen T.T.T., Phung C.S., Tran V.T., et al. (2019). Microwave-
assisted synthesis and simultaneous electrochemical determination of 
dopamine and paracetamol using ZIF-67-modified electrode. Journal 
of Materials Science, Vol.54, Iss.17, pp.11654–11670. 
[114]. Ni Z.M., Xia S.J., Wang L.G., et al. (2007). Treatment of methyl 
orange by calcined layered double hydroxides in aqueous solution: 
Adsorption property and kinetic studies. Journal of Colloid and 
Interface Science, Vol.316, Iss.2, pp.284–291. 
[115]. Park K.S., Ni Z., Cote A.P., et al. (2006). Exceptional chemical and 
 thermal stability of zeolitic imidazolate frameworks. Proceedings of 
the National Academy of Sciences, Vol.103, Iss.27, pp.10186–10191. 
[116]. Park S., Kim S.Y., Oh J., et al. (2016). Production of Metal-Free 
Composites Composed of Graphite Oxide and Oxidized Carbon 
Nitride Nanodots and Their Enhanced Photocatalytic Performances. 
Chemistry - A European Journal, Vol.22, Iss.15, pp.5142–5145. 
[117]. Perera I.R., Hettiarachchi C. V., Ranatunga R.J.K.U. (2019). Metal–
Organic Frameworks in Dye-Sensitized Solar Cells, in: Adv. Sol. 
Energy Res., Springer Singapore, Singapore, : pp. 175–219. 
[118]. Petcharoen K., Sirivat A. (2012). Synthesis and characterization of 
magnetite nanoparticles via the chemical co-precipitation method. 
Materials Science and Engineering B: Solid-State Materials for 
Advanced Technology, Vol.177, Iss.5, pp.421–427. 
[119]. Phong N.H., Toan T.T.T., Tinh M.X., et al. (2018). Simultaneous 
voltammetric determination of ascorbic acid, paracetamol, and 
caffeine using electrochemically reduced graphene-Oxide-Modified 
electrode. Journal of Nanomaterials, Vol.2018,. 
[120]. Pourreza N., Rastegarzadeh S., Larki A. (2008). Micelle-mediated 
cloud point extraction and spectrophotometric determination of 
rhodamine B using Triton X-100. Talanta, Vol.77, Iss.2, pp.733–736. 
[121]. Qian J., Sun F., Qin L. (2012). Hydrothermal synthesis of zeolitic 
imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters, 
Vol.82, Iss.55, pp.220–223. 
[122]. Qin J., Wang S., Wang X. (2017). Visible-light reduction CO2 with 
dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-
catalyst. Applied Catalysis B: Environmental, Vol.209, pp.476–482. 
[123]. Rusling J.F. (1991). Controlling Electrochemical Catalysis with 
Surfactant Microstructures. Accounts of Chemical Research, Vol.24, 
 Iss.3, pp.75–81. 
[124]. Sánchez-Sánchez M., Getachew N., Díaz K., et al. (2015). Synthesis 
of metal-organic frameworks in water at room temperature: Salts as 
linker sources. Green Chemistry, Vol.17, Iss.3, pp.1500–1509. 
[125]. Sawalha M.F., Peralta-Videa J.R., Romero-González J., et al. (2006). 
Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex 
canescens) biomass: Thermodynamic and isotherm studies. Journal of 
Colloid and Interface Science, Vol.300, Iss.1, pp.100–104. 
[126]. Scherb C. (2009). Controlling the Surface Growth of Metal-Organic 
Frameworks, Ludwig-Maximilians-University. 
[127]. Sehnert J., Baerwinkel K., Senker J. (2007). Ab initio calculation of 
solid-state NMR spectra for different triazine and heptazine based 
structure proposals of g-C3N4. Journal of Physical Chemistry B, 
Vol.111, Iss.36, pp.10671–10680. 
[128]. Shandilya M., Rai R., Singh J. (2016). Review: Hydrothermal 
technology for smart materials. Advances in Applied Ceramics, 
Vol.115, Iss.6, pp.354–376. 
[129]. Shen K., Gondal M.A. (2017). Removal of hazardous Rhodamine dye 
from water by adsorption onto exhausted coffee ground. Journal of 
Saudi Chemical Society, Vol.21, pp.S120–S127. 
[130]. Shi L., Liang L., Wang F., et al. (2014). Polycondensation of 
guanidine hydrochloride into a graphitic carbon nitride semiconductor 
with a large surface area as a visible light photocatalyst. Catalysis 
Science and Technology, Vol.4, Iss.9, pp.3235–3243. 
[131]. Shi Q., Chen Z., Song Z., et al. (2011). Synthesis of ZIF-8 and ZIF-67 by 
Steam-Assisted Conversion and an Investigation of Their Tribological 
Behaviors. Angewandte Chemie, Vol.123, Iss.3, pp.698–701. 
[132]. Sobon G., Sotor J., Jagiello J., et al. (2012). Graphene Oxide vs. 
 Reduced Graphene Oxide as saturable absorbers for Er-doped 
passively mode-locked fiber laser. Opt. Express, Vol.20, Iss.17, 
pp.19463–19473. 
[133]. Soleymani J., Hasanzadeh M., Shadjou N., et al. (2016). A new 
kinetic-mechanistic approach to elucidate electrooxidation of 
doxorubicin hydrochloride in unprocessed human fluids using 
magnetic graphene based nanocomposite modified glassy carbon 
electrode. Materials Science and Engineering C, Vol.61, pp.638–650. 
[134]. Soylak M., Unsal Y.E., Yilmaz E., et al. (2011). Determination of 
rhodamine B in soft drink, waste water and lipstick samples after solid 
phase extraction. Food and Chemical Toxicology, Vol.49, Iss.8, 
pp.1796–1799. 
[135]. Srinivas C., Sudharsan M., Reddy G.R.K., et al. (2018). Co/Co-
N@Nanoporous Carbon Derived from ZIF-67: A Highly Sensitive 
and Selective Electrochemical Dopamine Sensor. Electroanalysis, 
Vol.30, Iss.10, pp.2475–2482. 
[136]. Stankovich S., Dikin D.A., Piner R.D., et al. (2007). Synthesis of 
graphene-based nanosheets via chemical reduction of exfoliated 
graphite oxide. Carbon, Vol.45, Iss.7, pp.1558–1565. 
[137]. Sun D., Yang X. (2017). Rapid Determination of Toxic Rhodamine B 
in Food Samples Using Exfoliated Graphene-Modified Electrode. 
Food Analytical Methods, Vol.10, Iss.6, pp.2046–2052. 
[138]. Sun J., Gan T., Li Y., et al. (2014). Rapid and sensitive strategy for 
Rhodamine B detection using a novel electrochemical platform based 
on core-shell structured Cu@carbon sphere nanohybrid. Journal of 
Electroanalytical Chemistry, Vol.724, pp.87–94. 
[139]. Sun L., Campbell M.G., Dincă M. (2016). Electrically Conductive 
Porous Metal-Organic Frameworks. Angewandte Chemie 
 International Edition, Vol.55, Iss.11, pp.3566–3579. 
[140]. Sun W., Zhai X., Zhao L. (2016). Synthesis of ZIF-8 and ZIF-67 
nanocrystals with well-controllable size distribution through reverse 
microemulsions. Chemical Engineering Journal, Vol.289, pp.59–64. 
[141]. Sundriyal S., Shrivastav V., Kaur H., et al. (2018). High-Performance 
Symmetrical Supercapacitor with a Combination of a ZIF-67/rGO 
Composite Electrode and a Redox Additive Electrolyte. ACS Omega, 
Vol.3, Iss.12, pp.17348–17358. 
[142]. Sundriyal S., Shrivastav V., Mishra S., et al. (2020). Enhanced 
electrochemical performance of nickel intercalated ZIF-67/rGO 
composite electrode for solid-state supercapacitors. International 
Journal of Hydrogen Energy, Vol.45, Iss.55, pp.30859–30869. 
[143]. Tahir M., Cao C., Mahmood N., et al. (2014). Multifunctional g‑C3N4 
Nanofibers A Template-Free Fabrication and Enhanced Optical, 
Electrochemical, and Photocatalyst Properties. ACS Appl. Mater. 
Interfaces, Vol.6, Iss.2, pp.1258–1265. 
[144]. Tan L., Xu J., Zhang X., et al. (2015). Synthesis of g-C3N4/CeO2 
nanocomposites with improved catalytic activity on the thermal 
decomposition of ammonium perchlorate. Applied Surface Science, 
Vol.356, pp.447–453. 
[145]. Tang J., Jiang S., Liu Y., et al. (2018). Electrochemical determination 
of dopamine and uric acid using a glassy carbon electrode modified 
with a composite consisting of a Co(II)-based metalorganic 
framework (ZIF-67) and graphene oxide. Microchimica Acta, 
Vol.185, Iss.10, pp.1–11. 
[146]. Taverniers I., De Loose M., Van Bockstaele E. (2004). Trends in 
quality in the analytical laboratory. II. Analytical method validation 
and quality assurance. Trends in Analytical Chemistry, Vol.23, Iss.8, 
 pp.535–552. 
[147]. Teter D.M., Hemley R.J. (1996). Low-compressibility carbon nitrides. 
Science, Vol.271, Iss.5245, pp.53–55. 
[148]. Thomas A., Fischer A., Goettmann F., et al. (2008). Graphitic carbon 
nitride materials: Variation of structure and morphology and their use 
as metal-free catalysts. Journal of Materials Chemistry, Vol.18, 
Iss.41, pp.4893–4908. 
[149]. Tian N., Huang H., Zhang Y. (2015). Mixed-calcination synthesis of 
CdWO4/g-C3N4 heterojunction with enhanced visible-light-driven 
photocatalytic activity. Applied Surface Science, Vol.358, pp.343–349. 
[150]. Tian Y., Zhao Y., Chen Z., et al. (2007). Design and Generation of 
Extended Zeolitic Metal – Organic Frameworks (ZMOFs): Synthesis 
and Crystal Structures of Zinc (II) Imidazolate Polymers with Zeolitic 
Topologies. Chem. Eur. J., Vol.13, pp.4146–4154. 
[151]. Vittal R., Gomathi H., Kim K.J. (2006). Beneficial role of surfactants 
in electrochemistry and in the modification of electrodes. Advances in 
Colloid and Interface Science, Vol.119, Iss.1, pp.55–68. 
[152]. Wang C., Yang F., Sheng L., et al. (2016). Zinc-substituted ZIF-67 
nanocrystals and polycrystalline membranes for propylene/propane 
separation. Chemical Communications, Vol.52, Iss.85, pp.12578–12581. 
[153]. Wang L., Li J., Wang Y., et al. (2012). Adsorption capability for 
Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel 
ferrites. Chemical Engineering Journal, Vol.181–182, pp.72–79. 
[154]. Wang L., Zhu H., Shi Y., et al. (2018). Novel catalytic micromotor of 
porous zeolitic imidazolate framework-67 for precise drug delivery. 
Nanoscale, Vol.10, Iss.24, pp.11384–11391. 
[155]. Wang X., Maeda K., Thomas A., et al. (2009). A metal-free polymeric 
photocatalyst for hydrogen production from water under visible light. 
 Nature Materials, Vol.8, Iss.1, pp.76–80. 
[156]. Wang Y.Y., Ni Z.H., Yu T., et al. (2008). Raman studies of monolayer 
graphene: The substrate effect. Journal of Physical Chemistry C, 
Vol.112, Iss.29, pp.10637–10640. 
[157]. Wehner T., Mandel K., Schneider M., et al. (2016). 
Superparamagnetic Luminescent MOF@Fe3O4/SiO2 Composite 
Particles for Signal Augmentation by Magnetic Harvesting as 
Potential Water Detectors. ACS Applied Materials and Interfaces, 
Vol.8, Iss.8, pp.5445–5452. 
[158]. Wei W., Chen W., Ivey D.G. (2008). Rock salt-spinel structural 
transformation in anodically electrodeposited Mn-Co-O nanocrystals. 
Chemistry of Materials, Vol.20, Iss.5, pp.1941–1947. 
[159]. Wen J., Xie J., Chen X., et al. (2017). A review on g-C3N4-based 
photocatalysts. Applied Surface Science, Vol.391, Iss.March 2019, 
pp.72–123. 
[160]. Xu J., Wu H.T., Wang X., et al. (2013). A new and environmentally 
benign precursor for the synthesis of mesoporous g-C3N4 with tunable 
surface area. Physical Chemistry Chemical Physics, Vol.15, Iss.13, 
pp.4510 – 4517. 
[161]. Xu Q., Jiang C., Cheng B., et al. (2017). Enhanced visible-light 
photocatalytic H2-generation activity of carbon/g-C3N4 
nanocomposites prepared by two-step thermal treatment. Dalton 
Transactions, Vol.46, Iss.32, pp.10611–10619. 
[162]. Xu Y., Gao S.P. (2012). Band gap of C3N4 in the GW approximation. 
International Journal of Hydrogen Energy, Vol.37, Iss.15, pp.11072–
11080. 
[163]. Xue Y., Xiang P., Jiang Y., et al. (2020). Influence of Ca2+ on 
phosphate removal from water using a non-core-shell Fe3O4@ZIF-67 
 composites. Journal of Environmental Chemical Engineering, Vol.8, 
Iss.5, pp.104458. 
[164]. Xue Y., Zheng S., Xue H., et al. (2019). Metal-organic framework 
composites and their electrochemical applications. Journal of 
Materials Chemistry A, Vol.7, Iss.13, pp.7301–7327. 
[165]. Yaghi 0. M., Li G., Li H. (1995). Selective binding and removal of 
guests in a microporous metal-organic framework. Nature, Vol.378, 
Iss.6558, pp.703–706. 
[166]. Yaghi O.M., Kalmutzki M.J., Diercks C.S. (2019). Introduction to 
Reticular Chemistry, Wiley Online Library, . 
[167]. Yamamoto D., Maki T., Watanabe S., et al. (2013). Synthesis and 
adsorption properties of ZIF-8 nanoparticles using a micromixer. 
Chemical Engineering Journal, Vol.227, pp.145–150. 
[168]. Yan S.C., Li Z.S., Zou Z.G. (2009). Photodegradation performance of 
g-C3N4 fabricated by directly heating melamine. Langmuir, Vol.25, 
Iss.17, pp.10397–10401. 
[169]. Yan X., Tian L., He M., et al. (2015). Three-Dimensional 
Crystalline/Amorphous Co/Co3O4 core/Shell Nanosheets as Efficient 
Electrocatalysts for the Hydrogen Evolution Reaction. Nano Letters, 
Vol.15, Iss.9, pp.6015–6021. 
[170]. Yang L., Huang N., Lu Q., et al. (2016). A quadruplet electrochemical 
platform for ultrasensitive and simultaneous detection of ascorbic 
acid, dopamine, uric acid and acetaminophen based on a ferrocene 
derivative functional Au NPs/carbon dots nanocomposite and 
graphene. Analytica Chimica Acta, Vol.903, pp.69–80. 
[171]. Yang Q., Xu Q., Jiang H.L. (2017). Metal-organic frameworks meet 
metal nanoparticles: Synergistic effect for enhanced catalysis. 
Chemical Society Reviews, Vol.46, Iss.15, pp.4774–4808. 
 [172]. Yang W., Shi X., Li Y., et al. (2019). Manganese-doped cobalt zeolitic 
imidazolate framework with highly enhanced performance for 
supercapacitor. Journal of Energy Storage, Vol.26, Iss.October, pp.1–7. 
[173]. Yang Y., Dong H., Wang Y., et al. (2018). Synthesis of octahedral 
like Cu-BTC derivatives derived from MOF calcined under different 
atmosphere for application in CO oxidation. Journal of Solid State 
Chemistry, Vol.258, Iss.November 2017, pp.582–587. 
[174]. Yao J., He M., Wang K., et al. (2013). High-yield synthesis of zeolitic 
imidazolate frameworks from stoichiometric metal and ligand 
precursor aqueous solutions at room temperature. CrystEngComm, 
Vol.15, Iss.18, pp.3601–3606. 
[175]. Yao Y., Bing H., Feifei X., et al. (2011). Equilibrium and kinetic 
studies of methyl orange adsorption on multiwalled carbon nanotubes. 
Chemical Engineering Journal, Vol.170, Iss.1, pp.82–89. 
[176]. Yi Y., Sun H., Zhu G., et al. (2015). Sensitive electrochemical 
determination of rhodamine B based on cyclodextrin-functionalized 
nanogold/hollow carbon nanospheres. Analytical Methods, Vol.7, 
Iss.12, pp.4965–4970. 
[177]. Yu L., Mao Y., Qu L. (2013). Simple Voltammetric Determination of 
Rhodamine B by Using the Glassy Carbon Electrode in Fruit Juice and 
Preserved Fruit. Food Analytical Methods, Vol.6, Iss.6, pp.1665–1670. 
[178]. Yuan Y., Zhang L., Xing J., et al. (2015). High-yield synthesis and 
optical properties of g-C3N4. Nanoscale, Vol.7, Iss.29, pp.12343–12350. 
[179]. Zen J.M., Jou J.J., Ilangovan G. (1998). Selective voltammetric 
method for uric acid detection using pre-anodized Nation-coated 
glassy carbon electrodes. Analyst, Vol.123, Iss.6, pp.1345–1350. 
[180]. Zhang H., Zhong J., Zhou G., et al. (2016). Microwave-Assisted 
Solvent-Free Synthesis of Zeolitic Imidazolate Framework-67. 
 Journal of Nanomaterials, Vol.2016,. 
[181]. Zhang J., Tan Y., Song W.J. (2020). Zeolitic imidazolate frameworks 
for use in electrochemical and optical chemical sensing and 
biosensing: a review. Microchimica Acta, Vol.187, Iss.4, pp.1–23. 
[182]. Zhang J., Zhang L., Wang W., et al. (2016). Sensitive electrochemical 
determination of rhodamine B based on a silica-pillared zirconium 
phosphate/nafion composite modified glassy carbon electrode. Journal 
of AOAC International, Vol.99, Iss.3, pp.760–765. 
[183]. Zhang M., Jia M. (2013). High rate capability and long cycle stability 
Fe3O4-graphene nanocomposite as anode material for lithium ion 
batteries. Journal of Alloys and Compounds, Vol.551, pp.53–60. 
[184]. Zhang X., Li H., Lv X., et al. (2018). Facile Synthesis of Highly 
Efficient Amorphous Mn-MIL-100 Catalysts: Formation Mechanism 
and Structure Changes during Application in CO Oxidation. 
Chemistry - A European Journal, Vol.24, Iss.35, pp.8822–8832. 
[185]. Zheng J., Cheng C., Fang W.J., et al. (2014). Surfactant-free synthesis 
of a Fe3O4@ZIF-8 core-shell heterostructure for adsorption of 
methylene blue. CrystEngComm, Vol.16, Iss.19, pp.3960 – 3964. 
[186]. Zheng Y., Jiao Y., Zhu Y., et al. (2014). Hydrogen evolution by a 
metal-free electrocatalyst. Nature Communications, Vol.5, pp.1–8. 
[187]. Zhou C., Gao Q., Luo W., et al. (2015). Preparation, characterization 
and adsorption evaluation of spherical mesoporous Al-MCM-41 from 
coal fly ash. Journal of the Taiwan Institute of Chemical Engineers, 
Vol.52, pp.147–157. 
[188]. Zhou L., Xu Y., Yu W., et al. (2016). Ultrathin two-dimensional 
graphitic carbon nitride as a solution-processed cathode interfacial 
layer for inverted polymer solar cells. Journal of Materials Chemistry 
A, Vol.4, Iss.21, pp.8000–8004. 
 [189]. Zhu J., Li P.Z., Guo W., et al. (2018). Titanium-based metal–organic 
frameworks for photocatalytic applications. Coordination Chemistry 
Reviews, Vol.359, pp.80–101. 
[190]. Zhu J., Xiao P., Li H., et al. (2014). Graphitic carbon nitride: 
Synthesis, properties, and applications in catalysis. ACS Applied 
Materials and Interfaces, Vol.6, Iss.19, pp.16449–16465.