ĐẶC TÍNH CỦA CẶN LẮNG VÀ CÁC PHƯƠNG PHÁP XỬ LÝ
5.1.1. Thành phần
- Màng VSV.
- Rác nghiền nhỏ: lượng rác được nghiền nhỏ hoặc xử lý với cặn hoặc trở lại song chắn rác.
- Các loại cặn ở bể tiếp xúc, cặn này không xử lý chung mà đem ra sân phơi bùn, nén cặn, .
- Các chất hữu cơ cặn chiếm 60-80% chất hữu cơ tổng cộng.
- Thành phần hoá học của cặn trong nước thải
Loại cặn Chất ko tro N P2O5 K2O Chất béo HC E.coli
1. Cặn tươi 72-90 2-3 0.6-1.7 0.2 14-17 20-30 107-108
2. Bùn hoạt tính 65-75 3.4 2.3 0.4 2.6 4-7 4.106-3.107
3. Màng vi sinh 65-75 5.5 3.1 - 6 - -
5.1.2. Phương pháp xử lý
- Xử lý cặn hiệu quả nhất bàng phương pháp lên men kỵ khí với sự tham gia của VSV kỵ khí.
- Quá trình sinh hoá kỵ khí cặn hữu cơ rất phức tạp:
+ Các chất hữu cơ (C) acid béo + Biogas (CO2, CH4, H2)
+ Các chất hữu cơ (N) NH3, N2
+ Chất hữu cơ (S) H2S
- Sau khi lên men, tính chất cặn thay đổi và V thay đổi (không tan chất tan + khí)
- Quá trình lên men kỵ khí gồm 2 giai đoạn
+ Giai đoạn lên men acid.
+ Giai đoạn lên men kiềm.
ã Giai đoạn 1: Lên men Acid (lên men H). Dưới tác dụng của men VSV, các chất hữu cơ của
cặn:
+ Đầu tiên: Phân huỷ s/p đơn giản
- Protid peptid và aa
- Chất béo glicerine, a.béo
- (H, C) đường đơn giản
+ Sau đó: Chuyển hoá các chất trên thành s/p cuối cùng của giai đoạn 1 (chủ yếu là các acid
hữu cơ: a.butylic, a.propionic, a.acetic). pH < 7 lên men aicd
- VSV ở giai đoạn 1 là : nấm, VK butyric, propionic Thể tích cặn không giảm, có mùi
hôi
ã Giai đoạn 2: Lên men kiềm (lên men metan)
+ Chuyển hoá các s/p của giai đoạn 1 thành CH4, CO2, H2.
+ VSV tham gia: VK tạo CH4.
Methano bacterium
Methanococus
Methanosarica
+ Các phản ứng
Với các A.Béo ΔH2 (trừ CH3COOH) và rượu (trừ metylic):
11 trang |
Chia sẻ: lvcdongnoi | Lượt xem: 2806 | Lượt tải: 4
Bạn đang xem nội dung tài liệu Xử lý và sử dụng cặn nước thải, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Bài giảng Kỹ thuật xử lý nước thải – Thạc sỹ Lâm Vĩnh Sơn
Trang 157
men
men
Chương 5: XỬ LÝ VÀ SỬ DỤNG CẶN NƯỚC THẢI
5.1. ĐẶC TÍNH CỦA CẶN LẮNG VÀ CÁC PHƯƠNG PHÁP XỬ LÝ
5.1.1. Thành phần
- Màng VSV.
- Rác nghiền nhỏ: lượng rác được nghiền nhỏ hoặc xử lý với cặn hoặc trở lại song chắn rác.
- Các loại cặn ở bể tiếp xúc, cặn này không xử lý chung mà đem ra sân phơi bùn, nén cặn, ….
- Các chất hữu cơ cặn chiếm 60-80% chất hữu cơ tổng cộng.
- Thành phần hoá học của cặn trong nước thải
Loại cặn Chất ko tro N P2O5 K2O Chất béo HC E.coli
1. Cặn tươi 72-90 2-3 0.6-1.7 0.2 14-17 20-30 107-108
2. Bùn hoạt tính 65-75 3.4 2.3 0.4 2.6 4-7 4.106-3.107
3. Màng vi sinh 65-75 5.5 3.1 - 6 - -
5.1.2. Phương pháp xử lý
- Xử lý cặn hiệu quả nhất bàng phương pháp lên men kỵ khí với sự tham gia của VSV kỵ khí.
- Quá trình sinh hoá kỵ khí cặn hữu cơ rất phức tạp:
+ Các chất hữu cơ (C)Æ acid béo + Biogas (CO2, CH4, H2)
+ Các chất hữu cơ (N) Æ NH3, N2
+ Chất hữu cơ (S) Æ H2S
- Sau khi lên men, tính chất cặn thay đổi và V thay đổi (không tan Æ chất tan + khí)
- Quá trình lên men kỵ khí gồm 2 giai đoạn
+ Giai đoạn lên men acid.
+ Giai đoạn lên men kiềm.
• Giai đoạn 1: Lên men Acid (lên men H). Dưới tác dụng của men VSV, các chất hữu cơ của
cặn:
+ Đầu tiên: Phân huỷ Æ s/p đơn giản
- Protid Æ peptid và aa
- Chất béo Æ glicerine, a.béo
- (H, C) Æ đường đơn giản
+ Sau đó: Chuyển hoá các chất trên thành s/p cuối cùng của giai đoạn 1 (chủ yếu là các acid
hữu cơ: a.butylic, a.propionic, a.acetic). Æ pH < 7 Æ lên men aicd
- VSV ở giai đoạn 1 là : nấm, VK butyric, propionic Æ Thể tích cặn không giảm, có mùi
hôi
• Giai đoạn 2: Lên men kiềm (lên men metan)
+ Chuyển hoá các s/p của giai đoạn 1 thành CH4, CO2, H2.
+ VSV tham gia: VK tạo CH4.
Methano bacterium
Methanococus
Methanosarica
+ Các phản ứng
Với các A.Béo ΔH2 (trừ CH3COOH) và rượu (trừ metylic):
4ΔH2 + CO2 4Δ + CH4 + 2H2O
Với H2 (từ giai đoạn 1)
H2 + CO2 CH4 + 2H2O + Q
Bài giảng Kỹ thuật xử lý nước thải – Thạc sỹ Lâm Vĩnh Sơn
Trang 158
men
Với CH3COOH
CH3COO CH4 + CO2 + Q
CH3COOH CH4 + CO2 + 2H2O + Q
5.1.3. Các công trình xử lý cặn
- Bể tự hoại
- Bể lắng 2 vỏ
- Bể metan
- Một số công trình rác cặn :Ép dây đai , Sân phơi, Bể nén bùn,….
5.2. CÁC CÔNG TRÌNH XỬ LÝ
5.2.1. Bể Mêtan
- Đây là công trình xử lý cặn hiệu quả nhất.
- Thời gian lên men ngắn: 6-20 ngày, thể tích ngăn bùn nhỏ
- Các loại cặn dẫn đến bể
+ Cặn tươi từ bể lắng 1
+ Bùn hoạt tính dư trên màng VS
+ Rác đã nghiền
- Cặn được hâm nóng và xáo trộn tạo điều kiện tối ưu cho quá trình lên men.
- Khi bể làm việc bình thường:
+ pH = 7-7,5
+ Hàm lượng a.béo: 3-8 mg/l
+ Độ kiềm: 60-70 mgđ/l
+ Nitơ của muối amino: 600-800 mg/l
- Cường độ quá trình lên men phụ thuộc vào nhiệt độ, lượng cặn, mức độ xáo trộn.
5.2.1.1. Cấu tạo
c Dẫn cặn vào
d Thiết bị hâm nóng cặn
e Dẫn hơi nóng
f Máy trộn
g Khí đốt
5.2.1.2. Tính toán
1/ Xác định lượng cặn dẫn đến Metan
a) Lượng cặn tươi từ bể lắng 1
Wc =
Co.Q.E.K
(100 - Pc).1000.1000.Yc (m
3/ng)
Với:
+ Co: hàm lượng chất lơ lửng Æ BL1
+ E: hiệu suất lắng %
+ K: hệ số tính đến khả năng tăng lượng cặn do có cỡ hạt lơ lửng (K = 1,1-1,2)
+ Pc: độ ẩm cặn tươi (%)
+ Yc: trọng lượng thể tích của cặn tươi
b) Lượng bùn hoạt tính dư
1 2
5
3
4
Bài giảng Kỹ thuật xử lý nước thải – Thạc sỹ Lâm Vĩnh Sơn
Trang 159
Wb =
[Co(100 - E)α - 100b]Q
(100 - Pb)106Yb (m
3/ng.đ)
Với:
+ α: hệ số tính đến khả năng tăng trưởng không điều hoà của bùn hoạt tính trong quá trình xử
lý sinh học (α = 1,15-1,25)
+ b: hàm lượng bùn hoạt tính trôi theo nước ra khỏi bể lắng 2
+ Pb: đo ẩm bùn hoạt tính sau khi nén
+ Yb: trọng lượng thể tích của bùn hoạt tính
c) Lượng rác đã nghiền ở song chắn
Wr = W1.
100 - P1
100 - P2 (m
3/ng.đ)
Với:
+ W1: lương rác trong ngày đêm với độ ẩm ban đầu P1
+ P1, P2: độ ẩm rác trước và sau khi nghiền
d) Lượng cặn tổng cộng Æ metan:
W = Wc + Wb + Wr
e) Độ ẩm TB của hỗn hợp cặn Æ bể
P = 100 (
W
RBC KkK ++−1 (%)
Với:
+ Ck: lượng chất khô trong cặn tươi với độ ẩm Pc
Ck =
Wc (100 - Pc)
100
+ Bk: lượng chất khô trong bùn hoạt tính dư ứng với độ ẩm Pb
Bk =
Wb (100 - Pb)
100
+ Rk: lượng chất khô trong rác sau khi đã nghiền với độ ẩm P2
Rk =
Wr (100 - P2)
100
2/ Dung tích bể metan theo công thức
Wm =
W.100
d (m
3)
Với:
+ d: lưu lượng cặn trong ngày đêm dẫn vào bể metan phụ thuộc độ ẩm cặn (lấy theo bảng)
d (dộ ẩm cặn %) Chế độ lên men 93 94 95 96 97
Am 33oC 7 8 9 10 11
Nóng 53oC 14 16 18 20 22
3/ Lượng khí đốt: Trong quá trình xử lý sinh học kỵ khí ở Metan có sinh ra 1 lượng khí đốt chủ yếu là
CH4 và một ít CO2.
y = a - nd100
Với:
+ y: lượng khí đốt tu được (m3/kg) chất không tro
+ a: khả năng lên men lớn nhất của chất không tro trong hỗn hợp cặm dẫn đến Metan %.
a = (0,92B + 0,62H + 0,34P)100
Với:
- B: lượng chất béo
- H: hàm lượng (H, C)
- P: hàm lượng protein
Bài giảng Kỹ thuật xử lý nước thải – Thạc sỹ Lâm Vĩnh Sơn
Trang 160
OÁNG THOAÙT PHAÂN D300
OÁNG THOÂNG HÔI D150
NGAÊN LAÉNG 1
NGAÊN LAÉNG 2
BEÅ PHAÂN HUÛY
OÁNG DAÃN NÖÔÙC THAÛI RA
NAÉP THAÊM
OÁNG DAÃN NÖÔÙC THAÛI RA
LOÅ 300X300
LOÅ 300X300
20
030
0
11
80
0
30
020
0
59
00
45
30
57
0
80
0
12
40
0
225
275
3500 300 3500
300
200
7300500 500
800
80
0
60
0
59
00
7900
200
300
2800 300 3500
300
200
6600 500500
ÑOÀ AÙN TOÁT NGHIEÄP
CHI TI?T HAÀM TÖÏ HOAÏI II
NGHIEÂN CÖÙU MOÂ HÌNH BUØN HOAÏT TÍNH PHUÏC VUÏ
THIEÁT KEÁ HEÄ THOÁNG XÖÛ LYÙ NÖÔÙC THAÛI TOØA NHAØ
SAIGON CASTLE
200
300
5750 300 5750
300
200
11800 500500
20
0 30
0
29
00
10
020
0
35
00
17
00
20
0
20
0 30
0
29
00
10
020
0
35
00
BEÅ PHAÂN HUÛY NGAÊN LAÉNG 1
NGAÊN LAÉNG 2 NGAÊN LAÉNG 1
MAËT CAÉT A-A
MAËT CAÉT B-B
MAËT BAÈNG
59
00
OÁNG THOÂNG HÔI D150
CHI TIEÁT HAÀM TÖÏ HOAÏI II
Trong TH không xác định được B, H, P
a =
53 (Co + Ro) + 41Bo
Co + Ro + Bo
Với: - Co, Ro, Bo: Tương ứng là lượng chất không tro của cặn tươi, rác và bùn hoạt tính dư
và được xác định:
• Co = Ck (100 - Ac)(100 - Tc)104
Với:
+ Ck: lượng chất khô trong cặn tươi (T/ng.đ)
+ Ac: độ ẩm cặn tươi
+ Tc: tỷ lệ độ tro trong cặn
• Ro = Rk (100 - Ar)(100 - Tr)104
• Bo = Bk (100 - Ab)(100 - Tb)104
+ n: hệ số phụ thuộc độ ẩm cặn và chế độ lên men (theo bảng)
Giá trị n theo độ ẩm Chế độ lên men 93 94 95 96 97
Am 33oC 1.05 0.98 0.72 0.56 0.4
Nóng 53oC 0.435 0.385 0.31 0.24 0.17
5/ Lượng khí đốt tổng cộng được xác định theo công thức
K = y (Co + Ro + Bo).1000
5.2.1.2. Hầm tự hoại
Là công trình xử lý sinh học bước đầu của hệ thống xử lý nước thải, trong đó các tác nhân gây
ô nhiễm được phân hủy bởi các vi sinh vật dưới điều kiện kỵ khí. Sự chuyển hóa sinh học xảy
ra theo các hướng sau: Chuyển hoá các chất hữu cơ thành khí sinh học và các sản phẩm hữu cơ
đơn giản hơn
- Giảm một phần N, P do vi sinh vật sử dụng để xây dựng tế bào
Bài giảng Kỹ thuật xử lý nước thải – Thạc sỹ Lâm Vĩnh Sơn
Trang 161
Ví dụ áp dụng : Tính hầm tự hoại cho công trình XLNT của tòa nhà Saigon Castle
Công trình SAIGON CASTLE là một tổ hợp gồm 8 khối nhà gồm 16 lốc chung cư. Do đó lưu lượng nước thải sinh hoạt của
mỗi lốc là:
552 : 16 =34,5 m3/ngđ
Đặt khối A1 và khối A2 chung 1 bể tự hoại; khối C1 và khối C2 chung 1 bể tự hoại.
Các khối B1, B2, B3, B4 mỗi khối đặt một bể tự hoại.Do đó ta có tổng cộng 6 bể với lưu lượng từng bể như sau:
- Bể 1 ( của khối A1 và khốiA2 ): 34,5 x 2 = 69 m3/ngđ
- Bể 2 ( của khối C1 và khốiC2 ): 34,5 x 2 = 69 m3/ngđ
- Bể 3,4,5,6 ( của các khối B1, B2, B3, B4 ): 34,5 x 3 = 103,5 m3/ngđ
Theo tiêu chuẩn thiết kế (TCXD – 51 – 84), lưu lượng nước thải sinh hoạt 69 m3/ngđ và 103,5 m3/ngđ, chọn bể tự hoại ba
ngăn để xử lý sơ bộ nước thải sinh hoạt.
1. Thể tích tính toán chung của 1 bể tự hoại: lấy không nhỏ hơn lưu lượng nước thải trung bình trong 1 ÷ 2 ngày đêm (
Điều 7.32 – TCXD – 51 -84), chọn 2 ngày đêm để tính toán, khi đó:
W1 = W2 = 1Q x 2 ngày = 69 x 2 = 138 m3
W3 = W4 = W5 = W6 = 2Q x 2 ngày = 103,5 x 2 = 207 m3
Trong đó:
+ Q1, Q2: lưu lượng nước thải từ các nhà vệ sinh theo ngày trung bình của 1 bể
Q1 = 69 m3/ng.đ, Q2 = 103,5m3/ng.đ
+ W1, W2, W3, W4, W5 , W6 : Thể tích bể 1, bể 2, bể 3, bể 4, bể 5, bể 6
2. Thể tích ngăn thứ nhất bằng ½ thể tích tổng cộng :
- Thể tích ngăn 1 của bể 1 và bể 2
Wa = 0,5 x 138 = 69 m3
- Thể tích ngăn 1 của bể 3, bể 4, bể 5, bể 6
W’a = 0,5 x 207 = 103,5 m3
3. Thể tích ngăn thứ hai bằng thể tích ngăn thứ ba và bằng ¼ thể tích tổng cộng:
- Thể tích ngăn 2 và ngăn 3 của bể 1 và bể 2
Wb = Wc = 0,25 x 138 = 34,5 m3
- Thể tích ngăn 2 và ngăn 3 của bể 3, bể 4, bể 5 và bể 6
W’b = W’c = 0,25 x 207 = 51,75 m3
4. Chiều sâu công tác ở các ngăn của bể tự hoại:
- Bể 1 và bể 2
Lấy chiều sâu công tác bằng 2m. Khi đó diện tích các ngăn của bể tự hoại là:
F1 =F2 = H
W1 =
2
138
= 69 m2
- Bể 3, bể 4, bể 5 và bể 6
Lấy chiều sâu công tác bằng 2,5m. Khi đó diện tích các ngăn của bể tự hoại là:
F3 =F4 = F5 = F6 = H
W3 =
5,2
207
= 82,8 m2
Chọn kích thước H x B x L của các ngăn như sau:
- Bể 1 và bể 2
Bài giảng Kỹ thuật xử lý nước thải – Thạc sỹ Lâm Vĩnh Sơn
Trang 162
Ngăn thứ I: H1 x B1 x L1 = 2 x 3 x 11,7
Ngăn thứ II và thứ III: H2,3 x B2,3 x L2,3 = 2 x 3 x 5,75
- Bể 3, bể 4, bể 5 và bể 6
Ngăn thứ I: H1 x B1 x L1 = 2,5 x 3,5x 11,8
Ngăn thứ II và thứ III: H2,3 x B2,3 x L2,3 = 2,5 x 3,5 x 5,9
Hàm lượng chất bẩn sau khi qua bể tự hoại giảm và tính như sau:
Hàm lượng chất lơ lửng giảm 45%, tức là chất lơ lửng còn lại trong nước thải:
220 x (100% – 45%) =121 mg/l
Hàm lượng BOD5 giảm: 20 ÷ 40 %, tức là hàm lượng BOD5 còn lại trong nước thải:
340 x (100% – 40%) =204 mg/l.
5.2.1.3. Bể nén bùn
- Bể nén bùn có nhiệm vụ làm giảm độ ẩm của bùn
- Bể nén bùn thường thiết kế dạng tròn đứng.
- Lượng cặn bao gồm
+ Cặn xử lý sinh học (dư)
+ Cặn ban đầu (SS)
+ Cặn keo ttụ phèn
• TÍNH TOÁN
1/ Lượng cặn
P = PSH + PSS + PAl(OH)3
2/ Lưu lượng bùn dẫn vào bể
q =
P
24C (m
3/h)
Với:
+ P: Hàm lượng cặn (g).
+ C: Nồng độ bùn ở độ ẩm ω%
(C = ωCo) (g/m3)
3/ Diện tích bể nén bùn đứng
F1 =
q
L
q: m3/ng.đ
L: Tải trọng bể nén bùn 24-30m3/m2ng.đ
4/ Diện tích ống trung tâm
F2 =
q.103
V2.3600.t
Với:
+ V2: Tốc độ chuyển động của bùn trong ống trung tâm (28-30mm/s).
+ t: thời gian vận hành (h).
5/ Diện tích tổng cộng
F = F1 + F2
6/ Đường kính của bể
D =
4F
π
7/ Đường kính ống trung tâm
d =
4F2
π
8/ Đường kính ống lọc trung tâm
d2 = 1,35d
9/ Đường kính tấm chắn
Bài giảng Kỹ thuật xử lý nước thải – Thạc sỹ Lâm Vĩnh Sơn
Trang 163
dc= 1,3d2
10/ Chiều cao phần lắng của bể nén bùn
h1 = V1.t. 3600
Với :
+ V1 =0,0001 m/s.
+ t: thời gian lắng.
11/ Chiều cao phần nón với góc nghiêng α, đường kính đáy (0,2-0,4m) – dđ
Æ h2 = D - dđ 2cotgα
12/ Chiều cao từ đáy ống loa đến tấm chắn: h3 = 0,25-0,3m
13/ Chiều cao lớp nước trung hoà: 0,3m
Æ Chiều cao lớp bùn đã nén
Hb =h2 - h3 – hTH
Ví dụ áp dụng: Tính Bể Nén Bùn cho công trình xư lý nước thải Dệt nhuộm công suất 1500m3/ngay.đem.
Làm giảm độ ẩm của bùn từ 99.4% xuống 96-97%. Bùn và ván nổi từ bể lắng được bơm vào bể nén bùn.
Lượng bùn sinh ra từ :
Lượng cặn từ bể sinh học.
Hàm lượng cặn đầu vào .
Hàm lượng kết tủa hyđrôxyt nhôm sinh ra khi keo tụ bằng phèn nhôm.
Lượng cặn từ bể sinh học: 107.68 kg/ngày đêm.
Lượng cặn lơ lửng đầu vào trong một ngày 2.176 (kg/m3) x 1500 (m3/ngày đêm) = 3264 (kg/ngày đêm).
Tính lượng Al (OH)3 sinh ra khi thủy phân phèn Al2(SO4)3.18H2O.
Dùng phèn hàm lượng 150 mg/l với độ tinh khiết 90%. Đối với phèn nguyên chất 100% thì lượng phèn là 135
mg/l.
Al2(SO4)3.18H2O.→ 2 Al (OH)3
666 156g
135mg x = 31.62 (mg/l).
Lượng Al (OH)3 dùng trong một ngày là 0.03162 x 1500 = 47.43 (kg/ngày đêm).
Vậy tổng lượng cặn là : 107.68 + 3264 + 47.43 = 3419 (kg).
Hàm lượng cặn trong 1m3 nước thải: P = 2.28 (kg/m3).
Lưu lượng bùn dẫn vào bể
)./(4.488)/(35.20
700024
15002280
24
33 ngaymhm
x
x
Cx
QxPq ====
Trong đó:
P: Hàm lượng bùn 2.28 (kg/m3).
Q: Lưu lượng nước thải.
24: Thời gian vận hành.
C: nồng độ bùn ở độ ẩm 70%.C = 7000 g/m3.
Diện tích bể nén bùn đứng :
)(78.18
26
4.488 2
1 mL
qF ===
h3
hTH
Hb
h2
Bài giảng Kỹ thuật xử lý nước thải – Thạc sỹ Lâm Vĩnh Sơn
Trang 164
Trong đó :
L: Tải lượng bể nén bùn 24-30 m3 /m2. ngày đêm.
Diện tích ống trung tâm:
)(202.0
28
6.5 2
2
2 mV
qF ===
Trong đó:
V2: Tôc độ chuyển động của bùn trong ống trung tâm bằng 28mm/s.
Diện tích tổng cộng bể nén bùn đứng.
F = F1 + F2 = 18,78 + 0.202 = 18.982 m2..
Đường kính của bể nén bùn đứng:
)(9.4
14.3
982.1844 mx
F
D === π . Chọn D = 5m.
Đường kính ống trung tâm:
)(5.0
14.3
202.044 2 mxFd === π
Đường kính phần lọc của ống trung tâm:
dL = 1.35 x d = 0.675 (m).
Đường kính tấm chắn:
dc = 1.3 x dL =0.8775.
Chiều cao phần lắng của bể nén bùn:
h1 = V1 x t x 3600 = 0.0001 x 8 x 3600 = 2.9 m.
Chiều cao phần nón với góc nghiêng 450 , đường kính bể là 5.0 m và đường kính đáy là 0.4 m thì h2 = 2.3 m.
Chiều cao lớp bùn đã nén :
Hb = h2 – h3 – hTH.
Trong đó
h2 : khoảng cách từ đáy ống loe đến tấm chắn 0.25 – 0.3 m. Chọn 0.3 m.
hTH: chiều cao lớp nước trung hòa:2.3m.
Vậy
Hb = 2.3 – 0.3 – 0.3 = 1.7 m.
Chiều cao bể nén bùn :
Hxd = h1 + h2 + 0.25 = 2.9 + 2.3 + 0.25 = 5.45 m.
Bài giảng Kỹ thuật xử lý nước thải – Thạc sỹ Lâm Vĩnh Sơn
Trang 165
22200
1000
20
02
00
10
20
0
98
00
9400
9000
30
00
30
00
32
00
20
0
Ø200
300300
1000
20
0
Ø20
0
3000
80
0
300
10
0
Tyû leä 1:45
Ngaøy veõ
Nhoùm
GVHD LAÂM VÓNH SÔN
Baûn veõ
soá 2
SAÂN PHÔI BUØN
Tröôøng ÑHDL Kyõ thuaät
Coâng ngheä
Khoa Moâi tröôøng
SÔ ÑOÀ MAËT CAÉT SAÂN PHÔI BUØN
3
4
1
2
3
4
5
6
7
5
6
7
8
8
1
2
OÁng tieâu
nöôùc buøn
O Áng daãn buøn
Loái xuoáng saân phôi buøn
Ñöô øng ñi
Lôùp soûi
Lôùp caùt
Lôùp buøn
Khoaù xaû buøn
AA
B
B
Maët caét A-A Maët caét B-B
5.2.1.4. Sân phơi bùn
Sân phơi bùn là công trình sử dụng nhiệt mặt trời nhằm mục đích giảm khối lượng của hỗn hợp bùn
cặn bằng cách gạn một phần hay phần lớn lượng nuớc có trong hỗn hợp để giảm kích thước thiết bị xử
lý và giảm trọng lượng phải vận chuyển đến nơi tiếp nhận.
500
5000
290
2300
250
Bài giảng Kỹ thuật xử lý nước thải – Thạc sỹ Lâm Vĩnh Sơn
Trang 166
Để rõ hơn ta làm bài tập áp dụng sau đây:
Ví dụ áp dụng: Tính toán sân phơi bùn cho công trình xử lý nước thải với các thong số đã cho.
Lượng bùn hình thành bao gồm: lượng bùn tươi từ bể lắng I và bùn họat tính dư từ bể lắng 2
a) Lượng bùn từ bể lắng I
Hiệu quả xử lý cặn lơ lửng đạt 94,23%, lượng bùn tươi sinh ra mỗi ngày là:
Mtươi = 1000gSS/m3 * 94,23% * 300 m3/ngày = 282690 (g/m3) = 282,69 (kg/ngày)
Lưu lượng bùn tươi cần xử lý:
( ) ( )ngaymngayl
PS
M
Q tuoi /369,5/5369
05,0053,1
69,282 3==⋅=⋅=
Trong đó:
S: tỷ trọng cặn tươi, S = 1,053 kg/l. (bảng 13-1-Trịnh Xuân Lai)
P: nồng độ cặn, P = 5% =0,05 (độ ẩm 95%) (bảng 13-5)
b) Lượng bùn từ bể lắng II
Ơ bể Aerotank, lượng bùn dư cần xử lý mỗi ngày là 40,62 kg/ngày
Lưu lượng bùn cần xử lý
( ) ( )ngaymngayl
PS
MQ /041,4/4041
01,0005,1
62,40 3==⋅=⋅=
Trong đó:
S = 1,005 (bảng 13-1-Trịnh Xuân Lai)
P: nồng độ cặn, P = 1% =0,01 (bảng 13-5)
Thể tích bùn đưa vào sân phơi mỗi ngày
Vb = 5,369 + 4,041 = 9,41 (m3)
Chỉ tiêu thiết kế: đạt nồng độ cặn 25% (độ ẩm 75%)
Chọn chiều dày bùn 25% là 10 cm, sau 4 tuần (28 ngày) 1m2 sân phơi được lượng cặn:
g = V . S . P = 0,1 x 1,4 x 0,25 = 0,035 (tấn) = 35 (kg/28 ngày)
Trong đó:
V = 1m2 x 0,1 = 0,1 m3.
S: tỷ trọng bùn khô, S = 1,4 (bảng 13-1); P = 0,25.
Lượng bùn cần phơi trong 28 ngày
G = 28 x (282,69 + 40,62) = 9052,68(kg)
Diện tích sân phơi
( )2250
35
68,9052 m
g
GF ===
Diện tích các công trình phụ của sân phơi (đường bao, hố thu nước, trạm bơm, …) lấy bằng 20 % diện tích sân phơi
bùn. Tổng diện tích sân phơi:
Ftổng = 1,2 x 250 =300 (m2)
Ta bố trí 5 ô. Diện tích 1 ô:
( )250
5
250 mf ==
Mỗi ô có kích thước: 8 x 6,25 (m). Bùn được phơi và thu gom theo chu kỳ 28 ngày (1 tháng) 1 lần.
Bài giảng Kỹ thuật xử lý nước thải – Thạc sỹ Lâm Vĩnh Sơn
Trang 167
Thông số thiết kế sân phơi bùn
Thông số Giá trị
Hình dạng Chữ nhật
Dài 8m
Rộng 6,25 m
Chiều cao tổng cộng 1,04m
Chiều cao lớp cát 25 cm
Chiều cao lớp sỏi 30cm
Dàn ống thu nước:
Đường kính
Độ dốc
100 mm
1%
Chiều cao bảo vệ 30 cm
Chiều cao dung dịch bùn = Vb/f = 9,41/50 = 19 cm
Hệ thống ống bơm hút bùn
Chi tiết một ngăn phơi
Các file đính kèm theo tài liệu này:
- Xử lý và sử dụng cặn nước thải.pdf