Đề tài Xây dựng chế độ dinh dưỡng tại trường mầm non bằng logic mờ kết hợp mạng neural và máy học

4.2 ĐÁNH GIÁ VÀ HƯỚNG PHÁT TRIỂN 4.2.1 Tự đánh giá: Ưu điểm: - Giải quyết trong AI, kết hợp hệ mờ, neural và máy học - Các bữa ăn được chọn sắp xếp đã đảm bảo được về giá thành, không có các món kỵ nhau trong bữa, có độ dùng lại thấp - Chương trình có khả năng sao lưu và khôi phục dữ liệu, nên ta có thể khôi phục lại dữ liệu và sử dụng lại chương trình khi bị hư. - Chương trình đã được chạy xếp lịch cho nhiều tháng và kết quả các bữa ăn thu được vẫn đảm bảo tỉ lệ, thành phần dinh dưỡng trong mỗi bữa. Khuyết điểm: - Thiếu dữ liệu mẫu - Vì thời gian ngắn nên chưa đủ thử nghiệm trên nhiều chỗ khác nhau

pdf101 trang | Chia sẻ: builinh123 | Ngày: 30/07/2018 | Lượt xem: 336 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Đề tài Xây dựng chế độ dinh dưỡng tại trường mầm non bằng logic mờ kết hợp mạng neural và máy học, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
với nhãn = các giá trị thông thường hầu hết của Target_attribute trong Examples. • Ngược lại Begin - A Å thuộc tính từ Attributes mà là tốt nhất* khi phân loại Examples - Thuộc tính quyết định cho RootÅA - For (mỗi giá trị có thể vi của A) - Thêm nhánh dưới Root, tương ứng vi - Với Examplesvi là tập con của Examples mà có giá trị vi ƒ Nếu Examples rỗng : Thì bên dưới nhánh mới thêm vào nốt lá với nhãn = các giá trị thông thường hầu hết của Target_attribute trong Examples ƒ Ngược lại bên dưới nhánh mới thêm vào cây con ID3(Examplesvi, Target_attribute, Attributes – {A}) End • Return Root *Thuộc tính tốt nhất là thuộc tính mà mức độ thông tin cao nhất Ví dụ: Giả sử có kết quả danh sách các bữa ăn sử dụng hay không sử dụng trong môt khoảng thời gian. Bữa Món Mặn Món Canh Tr.Miệng Trạng thái 1 A B C Có chọn 2 A B F Chưa chọn 3 A E F Có chọn 4 A E C Có chọn 5 D B C Chưa chọn 6 D B F Chưa chọn 7 D E C Có chọn 8 D E F Có chọn • R = {“Có chọn” ,”Chưa chọn} • P = tập hợp 8 bữa quan sát được • 4 thuộc tính : Món Canh, Món Mặn, Tr.Miệng Quinlan: Với mỗi thuộc tính dẫn xuất A còn có thể sử dụng để phân hoạch, tính : • VA(j) = ( T(j , r1), T(j , r2) , , T(j , rn) ) • T(j, ri) = (tổng số phần tử trong phân hoạch có giá trị thuộc tính dẫn xuất A là j và có giá trị thuộc tính mục tiêu là ri ) / ( tổng số phần tử trong phân hoạch có giá trị thuộc tính dẫn xuất A là j ) Trong đó r1, r2, , rn là các giá trị của thuộc tính mục tiêu Khoa Tóan – Tin học trường Đại Học Khoa Học Tự Nhiên Tp.HCM 56 Như vậy nếu một thuộc tính A có thể nhận một trong 5 giá trị khác nhau thì nó sẽ có 5 vector đặc trưng. Một vector VA(j ) được gọi là vector đơn vị nếu nó chỉ có duy nhất một thành phần có giá trị 1 và những thành phần khác có giá trị 0. Thuộc tính được chọn để phân hoạch là thuộc tính có nhiều vector đơn vị nhất. Trở lại ví dụ, lúc ban đầu (chưa phân hoạch): VMặn(A) = (T(A,Có Chọn), T(A, Chưa chọn)) Số món mặn A là: 4 Số món mặn A đã chọn là: 3 Số món mặn A chưa chọn là : 1 Do đó : VMặn(A) = (3/4, 1/4) Tương tự: VMặn(D) = (2/4 , 2/4) = (0.5 , 0.5) VCanh(B) = (1/4 , 3/4) VCanh(E) = (4/4 , 0/4) = (1,0) (vector đơn vị) VTr.Miệng(C) = (3/4 , 1/4) VTr.Miệng(F) = (2/4 , 2/4) Như vậy thuộc tính Món Canh có số vector đơn vị nhiều nhất nên sẽ được chọn để phân hoạch. Phân hoạch theo Món Canh (PB) tập dữ liệu còn lại là: Bữa Món Mặn Tr.Miệng Trạng thái 1 A C Có chọn 2 A F Chưa chọn 5 D C Chưa chọn 6 D F Chưa chọn Phân hoạch PB còn chứa những bữa “chưa chọn” và “có chọn”. Tiếp tục phân hoạch tập này. Tính vector đặc trưng tương ứng với các thuộc tính còn lại VMặn(A) = (1/2 , 1/2) = (1 , 1) VMặn(D) = (0/2 , 2/2) = (0 , 1) (vector đơn vị) VTr.Miệng(C) = (1/2 , 1/2) = (1,1) VTr.Miệng (F) = (0/2 , 2/2) = (0, 1) Hai thuộc tính “Món Mặn” và “Tr.Miệng” đều có 1 vector đơn vị. Ta có thể phân hoạch một trong hai thuộc tính. Ta sẽ chọn thuộc tính “Món Mặn” để phân hoạch (PA) Bữa Tr.Miệng Trạng thái 1 C Có chọn 2 F Chưa chọn Khoa Tóan – Tin học trường Đại Học Khoa Học Tự Nhiên Tp.HCM 57 Cây định danh cuối cùng: Biến đổi cây thành luật : - If (Món canh = E) then (Trạng Thái = Có chọn) - If (Món canh = B) and (Món Mặn = D) then (Kết quả = Chưa chọn) - . Từ các luật được thiết lập, ta thấy nếu bữa ăn có Món canh là B, Món Mặn D và Tráng miệng là F thi chắc chắn không được chọn trong khoảng thời gian khảo sát, bộ lọc máy học sẽ xóa những bữa ăn có ba món này trong tổ hợp. 2.3 Khái quát mạng neural 2.3.1 Não và neural sinh học Não là tổ chức vật chất cao cấp, có cấu tạo vô cùng phức tạp, dày đặc các mối liên kết giữa các nơron nhưng xử lý thông tin rất linh hoạt trong một môi trường bất định. Trong bộ não có khoảng 1011 – 1012 neural và mỗi neural có thể liên kết với 1014 neural khác qua các khớp nối. Những kích hoạt hoặc ức chế này được truyền qua trục neural (axon) đến các neural khác. Khoa Tóan – Tin học trường Đại Học Khoa Học Tự Nhiên Tp.HCM 58 Sự khác biệt cơ bản giữa tính toán của não và tính toán theo thuật toán, chương trình với sự trợ giúp của máy tính là: + Quá trình tính toán được tiến hành song song và phân tán trên nhiều neural gần như đồng thời. + Tính toán thực chất là quá trình học, chứ không phải theo sơ đồ định sẵn từ trước. 2.3.2. Mạng neural nhân tạo 2.3.2.1 Neural nhân tạo Một neural nhân tạo phản ánh các tính chất cơ bản của neural sinh học. Đầu vào của neural nhân tạo gồm n tín hiệu xi ( i = 1,2,,n). Đầu ra là tín hiệu y. Trạng thái bên trong của neural được xác định qua bộ tổng các đầu vào có trọng số wi ( i = 1,2,..n). Đầu ra y của neural được xác định qua hàm phi tuyến f nào đó. Như vậy mô hình định lượng của neural nhân tạo như sau: y(t) = f(∑ = n i 1 wixi(t) - θ ) Ở đây net = ∑ = n i 1 wixi(t) = I(t) là tín hiệu tổng hợp đầu vào, wi : các trọng số đặc trưng cho tính liên kết của các khớp θ : ngưỡng kích hoạt neural n : số tín hiệu đầu vào f : hàm kích hoạt Đầu ra : out = y(t) = f(net) Có thể xem neural là một hàm phi tuyến nhiều đầu vào, một đầu ra. Các neural có thể liên kết với nhau tạo thành mạng neural nhân tạo. Synapse kích hoạt Synapse ức chế Dendrite soma Khoa Tóan – Tin học trường Đại Học Khoa Học Tự Nhiên Tp.HCM 59 2.3.2.2 Phương thức làm việc của mạng neural Có thể chia làm hai giai đoạn:[1] + Tự tái tạo lại (reproduction) + Và giai đoạn học (learning phase) Ở một mạng neural có cấu trúc bền vững, có nghĩa là vector hàm trọng lượng đầu vào, khâu tạo đáp ứng và khâu tạo tín hiệu đầu ra đều cố định không bị thay đổi về mặt cấu trúc cũng như tham số, thì mạng có một quá trình truyền đạt xác định chắc chắn, tĩnh hoặc động phụ thuộc vào cấu tạo của các neural trong mạng. Ở đầu vào của mạng xuất hiện thông tin thì tại đầu ra cũng xuất hiện một đáp ứng tương ứng. Đối với mạng neural có quá trình truyền đạt tĩnh, đáp ứng đầu ra xuất hiện ngay sau khi đầu vào nhận được thông tin, còn đối với mạng neural có quá trình truyền đạt động thì phải sau một thời gian quá độ ở đầu ra của mạng neural mới xuất hiện đáp ứng. Xuất phát từ quan điểm mọi đáp ứng của neural đều tiền định tự nhiên, có nghĩa là khi xuất hiện các kích thích ở đầu vào của mạng ở các thời điểm khác nhau, các giá trị như nhau thì đáp ứng ở đầu ra ở các thời điểm tương ứng cũng hoàn toàn giống nhau. Quá trình làm việc như vậy của một mạng neural được gọi là quá trình tái diễn lại (reproduction phase). Khi có thông tin ở đầu vào, mạng lưu giữ thông tin đó và dựa trên các tri thức của mình đưa ra đáp ứng ở đầu ra phù hợp với lượng thông tin thu được từ đầu vào. Mạng neural khi mới hình thành còn chưa có tri thức, tri thức của mạng hình thành dần sau một quá trình học. Mạng neural được dạy bằng cách đưa vào đầu vào những kích thích và mạng hình thành những đáp ứng tương ứng, những đáp ứng phù hợp với từng loại kích thích sẽ được lưu trữ, giai đoạn này được gọi là giai đoạn học của mạng. Khi đã hình thành tri thức, mạng có thể giải quyết các vấn đề cụ thể một cách đúng đắn. Đó có thể là những vấn đề ứng dụng rất khác nhau, được giải quyết chủ yếu dựa trên sự tổ chức hợp nhất giữa các thông tin đầu vào của mạng và đáp ứng đầu ra. Nhiệm vụ tổng quát của một mạng neural là lưu trữ động các thông tin. Dạng thông tin lưu giữ đó chính là quan hệ giữa các thông tin đầu vào của mạng và các đáp ứng đầu ra tương ứng, để khi có một kích thích bất kỳ tác động vào mạng, mạng có khả năng suy diễn và đưa ra một đáp ứng phù hợp. Đó chính là chức năng nhận dạng theo mẫu của mạng neural. Để thực hiện chức năng này, mạng neural đóng vai trò như một bộ phận tổ chức các nhóm thông tin đầu vào và tương ứng với mỗi nhóm là một đáp ứng đầu ra phù hợp. Như vậy một nhóm bao gồm một loại thông tin đầu vào và một đáp ứng ra. Các nhóm có thể được hình thành trong quá trình học và cũng có thể hình thành không trong quá trình học. Khoa Tóan – Tin học trường Đại Học Khoa Học Tự Nhiên Tp.HCM 60 2.3.3 Kết hợp hệ mờ và mạng neural 2.3.3.1 So sánh bộ điều khiển mờ và mạng neural STT Tính chất Mạng neural Bộ điều khiển mờ 1 Thể hiện tri thức (hình thức của tri thức) Thông qua trọng số, được thể hiện ẩn trong mạng Được thể hiện ngay tại luật hợp thành 2 Nguồn của tri thức Từ các mẫu học Từ kinh nghiệm chuyên gia 3 Xử lý thông tin không chắc chắn Định lượng Định tính và đinh lượng 4 Lưu giữ tri thức Trong neural và trọng số của từng đường ghép nối nerual Trong luật hợp thành và hàm thuộc 5 Khả năng cập nhật và nâng cao tri thức Thông qua quá trình học Không có 5 Tính nhạy cảm với các thay đổi của mô hình Thấp Cao Bảng 2-28.So sánh mạng neural và bộ điều khiển mờ Từ mong muốn có được ưu điểm của cả nguyên lý mờ và mạng neural trong một bộ điều khiển, người ta đã ghép chung bộ điều khiển mờ với mạng neural thành bộ điều khiển mờ - neural (và nerual – mờ).