Ứng dụng phương pháp tọa độ vào giải toán sơ cấp

Trong chương trình toán PTTH hiện nay, PPTĐ được xem là phương pháp toán học cơ bản và cân thiết, kết hợp với phương pháp tổng hợp ta giải quyết được các đối tượng trên mặt phẳng và không gian. PPTĐ là công cụ chủ yếu ở chương trình hình học lớp 10 và lớp 12 cho nên việc hướng dẫn học sinh lơp 10 giải bài toán hình học phẳng bằng này là cần thiết. Ngoài việc giúp các em củng cố kiến thức về toạ độ còn giúp các em thấy rõ được ứng dụng to lớn của phương pháp này trong bài toán hình học phẳng và là tiền đề để các em học tốt hơn trong chương trình hình học lớp 12. Thực tế cho thấy nhiều bài toán hình học phẳng giải bằng PPTĐ cho lời giải ngắn gọn, dễ hiểu hơn so với các phương pháp khác. Vậy khi giải bằng PPTĐ học sinh cần biết cách phiên dịch yêu cầu và đề bài của bài toán sang ngôn ngữ toạ độ, sau đó dùng kiến thức toạ độ để giải toán, cuối cùng là chuyển kết quả từ ngôn ngữ toạ độ sang ngôn ngữ hình học. Cần hướng dẫn cho học sinh chọn trục toạ độ Đecac thích hợp. Do trình độ còn hạn chế và thời gian làm bài viết này còn ít nên bài viết này không tránh khỏi sự sơ xuất mong các thầy cô và các bạn thông cảm. Cuối cùng, em xin chân thành cảm ơn thầy Bùi Đức Thọ và các thầy cô trong tổ Toán trường THPT Dương Xá đã tận tình hướng dẫn em để hoàn thành bài viết này và dạy dỗ em trong suốt thời gian thực tập .

doc18 trang | Chia sẻ: tienthan23 | Ngày: 06/12/2015 | Lượt xem: 5477 | Lượt tải: 13download
Bạn đang xem nội dung tài liệu Ứng dụng phương pháp tọa độ vào giải toán sơ cấp, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
MỞ ĐẦU I.Lý do chọn đề tài Bằng thực tiễn toán học, lý luận đã khẳng định kiến thức vectơ, toạ độ là cần thiết và không thể thiếu được trong chương trình toán THPT. Phương pháp toạ độ là phương pháp toán cơ bản ở lớp 10, xong việc ứng dụng của nó thì học sinh chưa nhận thấy hết được. Đến lớp 12 thì phương pháp toạ độ là một công cụ khá hữu hiệu để giải các bài toán hình học. Để giúp các em thấy được tầm quan trọng của phương pháp toạ độ (PPTĐ) – phương pháp chuyển từ việc nghiên cứu hình học Ơclit bằng phương pháp sơ cấp (phương pháp tổng hợp) sang việc nghiên cứu nó bằng công cụ mới đại số và giải tích, tôi chọn đề tài này nhằm hướng dẫn học sinh lớp 10 giải các bài toán hình học phẳng bằng PPTĐ để các em không bị bỡ ngỡ khi giải các bài toán hình học không gian bằng phương pháp này trong chương trình lớp 12. Trong thực tế, một số bài toán hình học phẳng ở lớp 10 sẽ được giải quyết nhanh gọn, dễ hiểu hơn nếu ta sử dụng PPTĐ để giải so với các phương pháp sơ cấp khác. II.Mục đích nghiên cứu Với những lý do như ở trên tôi đã chọn dề tài này nhằm mục đích sau: Làm sáng tỏ cơ sở khoa học của PPTĐ. Đề xuất phương án xây dựng quy trình giải bài toán hình học phẳng bằng PPTĐ. III.Đối tượng, phạm vi nghiên cứu - Đối tượng : Hướng dẫn học sinh lớp 10 giải toán hình học phẳng bằng PPTĐ. - Phạm vi : Hình học lớp 10. IV.Nhiệm vụ nghiên cứu - Nhắc lại các kết quả về PPTĐ. - Xây dựng quy trình giải toán hình học phẳng bằng PPTĐ. - Thực hành. V.Phương pháp nghiên cứu - Nghiên cứu lý luận. - Tổng kết kinh nghiệm. - Thực nghiệm. NỘI DUNG Chương 1 : Kiến thức toạ độ 1.Toạ độ của vectơ và của diểm trên trục - Cho nằm trên trục (O, ) Þ $ a Î R sao cho: . Số a như thế được gọi là toạ độ của vectơ đối với trục (O, ). O I x’ x - Cho điểm M trên trục (O, ) Þ $ số m như thế được gọi là toạ độ của điểm M trên trục (O, ). M x’ O x 2.Hệ trục toạ độ y - Trong mặt phẳng gồm 2 trục ox và oy vuông góc với nhau. Vectơ đơn vị trên trục ox, oy lần lượt là O x ,. Điểm O gọi là gốc trục toạ độ; ox, oy lần lượt là trục hoành, trục tung Hệ trục toạ độ vuông góc như trên còn được gọi là hệ trục toạ độ kí hiệu là Oxy hay (O; , ). 3.Toạ độ của vectơ, của một điểm đối với hệ trục toạ độ - Đối với hệ trục toạ độ (O; , ) nếu thì cặp số (x ;y) được gọi là toạ độ của vectơ , ký hiệu là hay ; x là hoành độ, y là tung độ của vectơ . - Trong mặt phẳng toạ độ Oxy toạ độ của vectơ được gọi là toạ độ của điểm M. 4.Các phép toán Trong mặt phẳng toạ độ Oxy cho 2 vectơ : 5.Phương trình của đường thẳng - Mọi đường thẳng trong mặt phẳng toạ độ đều có dạng ax + by = 0 , . - Đường thẳng d đi qua 2 điểm A( x1 ;y1) và B ( x2 ; y2) thì phương trình của đường thẳng d là : - ( y2 – y1 ) ( x – x1 ) + ( x2 – x1) ( y – y1) = 0. - Cho đường thẳng d cắt ox tại điểm A( a ; 0 ) và cắt oy tại điểm B ( 0 ; b) thì phương trình theo đoạn chắn là : , . 6.Các bài toán cơ bản Trong mặt phẳng toạ độ Oxy cho 2 vectơ : và 2 đường thẳng và lần lượt có phương trình tổng quát sau : a) Bài toán vuông góc b) Bài toán cùng phương Vectơ và vectơ cùng phương Chứng minh : Vectơ và vectơ cùng phương Nếu k = 0 từ (1) do đó (1) Nếu: c) Toạ độ giao điểm của 2 đường thẳng Toạ độ giao điểm của và là nghiệm của hệ phương trình : e) Góc giữa và được tính bằng công thức sau : f) Khoảng cách từ điểm M0( x0 ; y0 ) đến đường thẳng d d ( M0 , d ) = 7.Phương trình đường tròn Đường tròn tâm I ( a ;b ) bán kính R có phương trình là : ( x-a )2 + ( y- b )2 = R2 Đặc biệt tâm I là gốc toạ độ và bán kính R thì phương trình là x2 + y2 = R2 Chương 2 : Xây dựng quy trình giải bài toán hình học bằng phương pháp toạ độ 1.Diễn đạt sự kiện hình học bằng ngôn ngữ vectơ a) Điểm M trùng với điểm N ( với O là điểm bất kỳ ). b) I là trung điểm của đoạn thẳng AB hay I là trung điểm của đoạn thẳng AB ( với O là điểm bất kỳ ). c) G là trọng tâm hay G là trọng tâm ( với O là điểm bất kỳ ). d) Đường thẳng a song song với đường thẳng b ( với vectơ có giá là a, vectơ có giá là b ) e) Ba điểm A, B, C thẳng hàng f) Đường thẳng a vuông góc với đường thẳng b ( với vectơ có giá là a, vectơ có giá là b ) g) Tính độ dài đoạn thẳng AB Sử dụng công thức 2.Diễn đạt ngôn ngữ vectơ bằng ngôn ngữ toạ độ Trong hệ trục toạ độ Oxy a) với M ( x1 ; y1 ) và N ( x2 ; y2 ) b) với A ( x1 ; y1 ) và B ( x2 ; y2 ) c) với A ( x1 ; y1 ) , B ( x2 ; y2 ) và C ( x3 ; y3 ). d) Vectơ và vectơ cùng phương với e) g) Chương 3 : Thực hành phương pháp hướng dẫn học sinh lớp 10 giải toán hình học bằng phương pháp toạ độ I. Một số chú ý trong giảng dạy vấn đề PPTĐ Cần hướng dẫn học sinh ôn tập làm cho học sinh nắm vững kiến thức vectơ đặc biệt là các kiến thức về toạ độ của các phép toán trên các vectơ để làm cơ sở cho việc nghiên cứu toạ độ . Cần cho học sinh thấy rõ sự tương ứng 1 – 1 giữa các tập hợp điểm và tập hợp số. -Trên đường thẳng : mỗi điểm ứng với một số thực xác định. -Trên mặt phẳng : mỗi điểm ứng với một cặp số thực sắp thứ tự. Từ đây dần dần làm nổi bật cho học sinh thấy được rằng mỗi hình trong mặt phẳng là một tập hợp điểm sắp thứ tự theo một quy tắc nào đó, do vậy mỗi hình đó được xác định bởi một hệ rằng buộc nhất định tương ứng nào đó về mối liên hệ giữa các toạ độ của các điểm trên hình đó, thể hiện học sinh phải có các kỹ năng cơ bản sau : + Khi lấy M thuộc hình H thì các toạ độ của M phải thoả mãn hệ rằng buộc về các toạ độ điểm của hình H. + Ngược lại nếu có điểm M có toạ độ thoả mãn hệ rằng buộc về các toạ độ điểm của hình H thì M thuộc hinh H. II. Hướng dẫn học sinh giải toán bằng PPTĐ Với những bài toán hình học phẳng có chứa các quan hệ hình học : thẳng hàng, song song, vuông góc ... hay có chứa các yếu tố khoảng cách, tính góc, nếu ta chọn hệ toạ độ thích hợp thì ta có thể chuyển về bài toán đại số với quan hệ giữa các số và giữa các vectơ, giữa các phép toán. Các bài toán này rất có khả năng tìm ra được lời giải, thậm chí còn rất ngắn gọn. Việc giải bài tập bằng PPTĐ đòi hỏi học sinh phải được luyện tập vận dụng tổng hợp các kiến thức liên quan. Học sinh cần nắm được quy trình : Chọn hệ trục toạ độ thích hợp ( đây là vấn đề mấu chốt của bài toán, nếu chọn thích hợp thì bài toan sẽ được giải quyết nhanh gọn ). Phiên dịch bài toán đã cho sang ngôn ngữ vectơ Chuyển bài toán từ ngôn ngữ vectơ sang ngôn ngữ toạ độ. Dùng các kiến thức toạ độ để giải toán. Phiên dịch kết quả từ ngôn ngữ toạ độ sang ngôn ngữ hình học. III. Một số dạng toán cơ bản Dạng 1 : Bài toán chứng minh 2 đoạn thẳng vuông góc Bài 1 : Cho cân tại A. Gọi M là trung điểm của cạnh AB, G là trọng tâm . Gọi I là tâm đường tròn ngoại tiếp . Chứng minh rằng . Giải : Hướng dẫn : Do cân tại A nên ta chọn hệ toạ độ có trục oy qua A và vuông góc BC, ox qua BC. Từ gt ta đi tìm toạ độ của các điểm I, G, M theo toạ độ của 3 điểm A, B, C Tính toạ độ của vectơ . Sau đó xét . Lời giải : Gọi O là trung điểm cạnh đáy BC Dựng hệ toạ độ Oxy ( như hình vẽ ) - Các điểm A, B, C có toạ độ A( 0 ;h ) , B ( - a ; 0 ), C ( a ; 0 ). ( ở đây giả sử BC = 2a, Oa = h ). Do M là trung điểm của AB nên M M là trọng tâm Vậy toạ độ của điểm G là G Gọi I ( 0 ; y0 ) mà ( 0 ; - h ) Theo giả thiết Hay Vậy điểm I có toạ độ là I Ta có Vậy ( đpcm ). Chú ý : Cách giải trên không phụ thuộc vào góc A là nhọn, vuông hay tù. Nếu giải bằng phương pháp toán học thuần tuý, thì khi vẽ hình thì phải xét 3 trường hợp trên. Đó cũng chính là lợi thế của PPTĐ. Bài 2 : Cho hình vuông ABCD cạnh a, M, N lần lượt là trung điểm của DC và CB. Chứng minh rằng . Giải : Hướng dẫn : Để cho bài toán được đơn giản nhất ta chọn hệ trục toạ độ sao cho D trùng với O, 2 cạnh AD, DC nằm trên 2 truc ox và oy. Tìm toạ độ của M, N Xét Lời giải : - Chọn hệ trục toạ độ Oxy ( như hình vẽ ). - Trong hệ toạ độ nay D( 0 ; 0), A( 0 ; a), C ( a ; 0) và B ( a ; a). Khi đó M N ( Do đó hay ( đpcm ). Bài 3 : Trên cung AB của đường tròn ngoại tiếp hình chữ nhật ABCD ta lấy điểm M khác A và B. Gọi P, Q, R, S là hình chiếu của M trên các đoạn thẳng AD, AB, BC, CD. Chứng minh rằng và giao điểm của chúng nằm trên 1 trong 2 đường chéo của hình chữ nhật ABCD . Giải : Hướng dẫn : Nếu gọi O là tâm hình chữ nhật ABCD thì O cũng là tâm đường tròn ngoại tiếp hình chữ nhật đó. Do đó ta chọn gốc trục toạ độ là O, các trục thì song song với các cạnh của hình chữ nhật. Tìm toạ độ của P, Q, R, S theo toạ độ của A, B, C, D. Viết phương trình của PQ, RS , AC, BD. Lời giải : - Gọi O là tâm của hình chữ nhật ABCD ( tức cũng là tâm của đường tròn ngoại tiếp hình chữ nhật ). - Dựng hệ toạ độ Oxy( như hình vẽ ),( trục ox, oy lần lượt song song với AD, AB ). - Giả sử bán kính đường tròn là R. Phương trình đường tròn : x2 + y2 = R2 - Trong hệ trục toạ độ này giả sử toạ độ các đỉnh ABCD của hình chữ nhật là : A (-a;-b), B (-a;b), C (a;b), D (a;-b) AC2 = 4R2 = 4a2 + 4b2 Suy ra a2 + b2 = R2. Giả sử M (x0; y0) bất kỳ thuộc cung AB nên x02 + y02 = R2 Ta có toạ độ hình chiếu P, Q, R, S là: P (x0;-b), Q (-a;y0), R (x0;b), S (a;y0). Suy ra Nên Vậy . Đường thẳng PQ đi qua P (x0;-b) và có vectơ pháp tuyến Nên có phương trình PQ là : Tương tự phương trình RS là : Gọi I ( xI ; yI ) là giao điểm của PQ và RS thì ta có ( xI ; yI ) là nghiệm của hệ sau : Cộng vế với vế của (1) và (2) ta được bx + ay = 0 Suy ra bxI + ayI = 0 (3) Do điểm B (-a;b), D (a;-b) nên phương trình đương chéo BD có dạng : ( b + b )( x + a ) - ( a + a ) ( y + b ) = 0 Hay ay + bx = 0. Từ đẳng thức (3) chứng tỏ I ( xI ; yI ) BD (đpcm ). Dạng 2 : Bài toán quỹ tích Bài 4 : Cho , M là điểm di động trên cạnh BC. Hạ MN, PQ tương ứng vuông góc và song song với AB ( NAB, QBC ). Gọi P là hình chiếu của Q trên AB, I là tâm của hình chữ nhật MNPQ. Tìm quỹ tích tâm I khi M chạy trên cạnh AB. Giải : Hướng dẫn : Gọi O là chân đường cao hạ từ C xuống AB. Chọn hệ trục toạ độ Oxy sao cho Aox, oy qua BC Tìm toạ độ của N, Q, I theo toạ độ của điểm A, B, C, M Tìm mối liên hệ tung độ và hoành độ của điểm I chú y điều kiện của điểm M Lời giải : - Gọi O là chân đường cao hạ từ C xuống AB - Chọn hệ trục toạ độ Oxy ( như hình vẽ ). Giả sử toạ độ các đỉnh A, B, C là : A ( a;0 ), B ( b;0 ), C ( 0; h ) , h > 0 Phương trình đường thẳng AB theo đoạn chắn : Phương trình đường thẳng BC theo đoạn chắn : . Giả sử MQ có phương trình y = m Toạ độ của điểm Q là nghiệm của hệ phương trình Tương tự ta có : . Toạ độ của điểm P là Gọi I là tâm của hình chữ nhật ABCD. Suy ra I là trung diẻm của MP Khi đó (*) Từ (1) suy ra (2) suy ra m = 2yI . Vì nên (**) Từ (*) và (**) suy ra quỹ tích tâm I của hình chữ nhật MNPQ là đoạn KH, ở đây K, H lần lượt là trung điểm của OC và AB. (đpcm) Chú ý : Mọi lập luận ở đây không phụ thuộc vào hình dáng của Bài 5 : Cho đường tròn ( C ) có đường kính AB không đổi, một điểm M di động trên ( C ). Gọi H là hình chiếu của M trên AB. Tìm quỹ tích trung điểm I của MH. Giải : Hướng dẫn : Để phương trình của đường tròn đơn giản ta chọn hệ trục toạ độ có gốc O trùng với tâm O của đường tròn Trục Ox đi qua AB Tìm toạ độ trung điểm I của MH theo toạ độ điểm M Tìn mối liên hệ giữa tung độ và hoành độ của điểm I Lời giải : - Chọn hệ trục toạ độ Oxy ( như hình vẽ ) - Đặt R = , R là không đổi . Đường tròn ( C ) có phương trình : . Xét điểm M ( x0; y0 ) ( C ) (1) H là hình chiếu của M trên AB H ( x0; 0 ) I là trung điểm của MH Thay vào (1) hay Chứng tỏ quỹ tích I là elip (E) : độ dài trục lớn là 2R, trục bé là R. Dạng 3 : Bài toán đi qua một điểm cố định Điểm M ( x0; y0 ) được gọi là điểm cố định của họ đồ thị đã cho nếu mọi đồ thị của họ đó ứng với mọi giá trị m A đều đi qua M Trong đó giả sử y = f ( m, x ) , m A là tham số Bài 7 : Cho góc vuông Oxy, ABCD là hình chữ nhật có chu vi không đổi, A, C là 2 điểm thay đổi thuộc Ox, Oy. Chứng minh rằng đường d vuông góc kẻ từ B vuông góc với đường chéo AC luôn đi qua 1 điểm cố định. Giải Hướng dẫn : - Bài toán này có dáng dấp của 1 bài toán đại số tìm điểm cố định, vì thế rất thuận tiện khi ta đại số hoá bằng PPTĐ. - Để đơn giản ta chọn ngay hệ trục toạ độ là Oxy trùng với góc Oxy. Lời giải : - Chọn hệ trục toạ độ Oxy ( như hình vẽ ) - Trong hệ trục toạ độ này giả sử A (a; 0), B (a; c), C ( 0; c) Đặt a + c = b = const ( vì chu vi OABC không đổi ). Phương trình đường thẳng AB theo đoạn chắn là : Phương trình đường thẳng d qua B (a; c) và vuông góc với AC có dạng : do a + c = b Giả sử d đi qua điểm cố định M ( x0; y0 ). Khi đó Do b không đổi chứng tỏ d luôn đi qua diểm cố định M ( b; b ). (đpcm ) Dạng 4 : Một số bài toán áp dụng khác Bài 8: Cho vuông tại A, AB = c, AC= b. M nằm trên cạnh BC sao cho góc BAM bằng . Chứng minh rằng . Giải : Hướng dẫn : Để thuận tiện ta chọn hệ trục toạ độ Oxy sao cho 2 cạnh góc vuông của nằm trên 2 trục toạ độ Giả sử M (x; y) Dựa vào điều kiện vectơ và vectơ cùng phương để chứng minh. Lời giải : - Chọn hệ trục toạ độ Oxy ( như hình vẽ ) - Trong hệ toạ độ này A (0; 0), B (b; 0), C (0; c) Giả sử M (x; y) Do đó M (; ). Vì M BC nên vectơ và vectơ cùng phương mà ( - c ) và ( b; - c ) nên .(- c) - ( - c). b = 0 c + b - bc = 0 Hay (đpcm). Bài 9 : Cho có trực tâm H. Trên đoạn HB, HC lấy điểm B1, C1 sao cho góc AB1C và góc AC1B bằng 1 vuông. Chứng minh rằng AB1 = AC1. Giải : Hướng dẫn : Do bài toán cho trực tâm H nên ta chọn hệ trục toạ độ Oxy sao cho H nằm trên Oy, BC nằm trên Ox. Giả sử B1 ( x1; y1) Dựa vào điều kiện vuông góc tính AB1 theo toạ độ điểm A, B, C và B1 Tương tự tính AC1 Lời giải : - Chọn hệ trục toạ độ Oxy ( như hình vẽ ) - Trong hệ toạ độ này A (0; h), B (b; 0), C (c; 0) , ( ở đây h, c > 0, b < 0 ) Ta có = (c; - h). Theo gt Đường cao BH qua B (b; 0) và có vectơ pháp tuyến = (c; - h) nên có phương trình : c ( x- b) - h( y – 0 ) = 0 cx – hy – bc = 0 . Gọi B1 ( x1; y1) do B1 BH cx1 – hy1 – bc = 0 cx1 – hy1 = bc (1) Ta có = ( x1; y1 – h ), = ( x1 – c; y1) Vì hay x1( x1 – c ) + y1( y1 – h ) = 0 (2) Mặt khác : AB12 = x12 + ( y1 – h )2 = x12 + y12 - 2hy1 + h2 = ( x12 + y12 - hy1 - cx1 ) + ( cx1 – hy1 ) + h2 (3) Thay (1),(2) vào (3) ta được AB1 = bc + h2 Tương tự ta có : AC1 = bc + h2 Từ đó suy ra AB1 = AC1 (đpcm). Kết luận Trong chương trình toán PTTH hiện nay, PPTĐ được xem là phương pháp toán học cơ bản và cân thiết, kết hợp với phương pháp tổng hợp ta giải quyết được các đối tượng trên mặt phẳng và không gian. PPTĐ là công cụ chủ yếu ở chương trình hình học lớp 10 và lớp 12 cho nên việc hướng dẫn học sinh lơp 10 giải bài toán hình học phẳng bằng này là cần thiết. Ngoài việc giúp các em củng cố kiến thức về toạ độ còn giúp các em thấy rõ được ứng dụng to lớn của phương pháp này trong bài toán hình học phẳng và là tiền đề để các em học tốt hơn trong chương trình hình học lớp 12. Thực tế cho thấy nhiều bài toán hình học phẳng giải bằng PPTĐ cho lời giải ngắn gọn, dễ hiểu hơn so với các phương pháp khác. Vậy khi giải bằng PPTĐ học sinh cần biết cách phiên dịch yêu cầu và đề bài của bài toán sang ngôn ngữ toạ độ, sau đó dùng kiến thức toạ độ để giải toán, cuối cùng là chuyển kết quả từ ngôn ngữ toạ độ sang ngôn ngữ hình học. Cần hướng dẫn cho học sinh chọn trục toạ độ Đecac thích hợp. Do trình độ còn hạn chế và thời gian làm bài viết này còn ít nên bài viết này không tránh khỏi sự sơ xuất mong các thầy cô và các bạn thông cảm. Cuối cùng, em xin chân thành cảm ơn thầy Bùi Đức Thọ và các thầy cô trong tổ Toán trường THPT Dương Xá đã tận tình hướng dẫn em để hoàn thành bài viết này và dạy dỗ em trong suốt thời gian thực tập .

Các file đính kèm theo tài liệu này:

  • docung_dung_pp_toa_do_vao_giai_toan_so_cap_806.doc