Để hoàn thiện sơ đồphân rã của một hạt nhân cần phải biết được tất cảcác
kiểu phân rã của hạt nhân từtrạng thái kích thích vềtrạng tháicơbản. Điều
đó đạt được bằng các kiểu ghi đo bức xạkhác nhau nhưtrùng phùng beta-28
gamma, trùng phùng gamma-gamma, đo đối trùng giảmphông, Ngoài ra,
các dải năng lượng ghi nhận và hiệu suất ghi được sửdụng trong từng cấu
hình đo cũng là vấn đề được lưu ý và kết hợp. Nhưvậy, không thểcó một
phương pháp thực nghiệmnào có thểcung cấp đầy đủthông tin vềkiểu phân
rã hay thông tin vềtất cảcác trạng thái kích thích của hạt nhân.
39 trang |
Chia sẻ: lvcdongnoi | Lượt xem: 2128 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Chuyên đề Một số vấn đề về mật độ mức hạt nhân, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ân có thể xác định bằng cách
đo các sản phẩm phân rã (p,a ß-, ß+) cùng với bức xạ điện từ hoặc chỉ bức xạ
điện từ (các tia gamma) của các trạng thái kích thích. Trong hầu hết các hạt
nhân, phát gamma là kiểu phân rã phổ biến, thời gian sống của các trạng thái
này thường vào cỡ 10-9s.
Bức xạ gamma là sóng điện từ do đó sự phát bức xạ
gamma sẽ làm thay đổi phân bố điện tích dẫn đến thay
đổi moment điện và sự thay đổi dòng điện làm thay đổi
moment từ. Khi một tia gamma phát ra sẽ làm thay đổi
các đặc trưng như năng lượng kích thích, moment góc
(angular momentum) Lħ.
Khi L=1 ta có bức xạ lưỡng cực E1, M1, L=2 ta có bức xạ tứ cực E2, M2. Độ
chẵn lẻ được xác định là (-1)L với bức xạ điện và (-1)L+1 với bức xạ từ. Bậc đa
cực tuân theo quy tắc chọn lựa sau:
|Ji-Jf|≤L≤|Ji+Jf| (1)
Các dịch chuyển 0→0 là dịch chuyển cấm, trong thực tế chỉ có các dịch
chuyển có bậc đa cực thấp nhất là có khả năng xảy ra.
Dưới đây là một số minh hoạ cụ thể về các đặc trưng của bức xạ gamma trong
quá trình phân rã của hạt nhân kích thích:
4
Hình 1. Minh hoạ cụ thể về các đặc trưng của bức xạ gamma trong quá trình
phân rã của hạt nhân ở trạng thái kích thích.
Để tạo ra hạt nhân ở trạng thái kích thích ta có thể sử dụng các phản ứng bắt
bức xạ (p,γ) hoặc (n,γ). Các nơtron có thể là nơtron nhiệt, nơtron cộng hưởng
hoặc ở một năng lượng xác định nào đó.
- Các dịch chuyển gamma sơ cấp và thứ cấp xuất hiện gần như đồng thời nếu
như không có sự khác nhau về cường độ.
- Jπ của trạng thái bắt nơtron nhiệt là Jπ(hạt nhân bia) ± ½+ (bắt các nơtron
sóng s).
- Trường hợp bắt nơtron nhiệt, tia gamma sơ cấp phát ra thường có độ đa cực
là E1, M1, E2 hoặc M1+E2.
Để đo các tia gamma phát ra ta có thể sử dụng các detectơ bán dẫn siêu tinh
khiết có độ phân giải cao ghép nối với các khối điện tử chức năng để tạo
thành các hệ phổ kế gamma một hoặc nhiều đetectơ hoạt động theo các
nguyên tắc như phân tích biên độ nhiều kênh, đối trùng giảm phông, phổ kế
compton, trùng phùng gamma-gamma,…
5
Một trong những nhược điểm của các phương pháp đo giảm phông này là
không có khả năng xác định trực tiếp thứ bậc của các dịch chuyển và tính
không đơn trị khi sử dụng quy tắc Ritz để xây dựng các sơ đồ phân rã có năng
lượng kích thích cao hơn 2 MeV.
II. Sơ đồ mức thực nghiệm theo phương pháp cộng biên độ các xung
trùng phùng
Nguyên tắc tổ hợp Ritz là phương pháp hay được sử dụng để xây dựng các sơ
đồ phân rã từ năng lượng và cường độ của các chuyển dời gamma xác định
được trong phản ứng (n,γ). Phương pháp này cho phép xây dựng được các sơ
đồ phân rã tin cậy đến năng lượng kích thích từ 1.5÷2.0 MeV. Để xây dựng sơ
đồ mức cho các vùng năng lượng cao hơn và đảm bảo tính độc lập trong
nghiên cứu xây dựng sơ đồ mức, phương pháp cộng biên độ các xung trùng
phùng được sử dụng để giải quyết vấn đề này. Thuật toán xác định các chuyển
dời sơ cấp và thứ cấp của phương pháp như sau: Nếu ít nhất 2 trong các phổ
nối tầng khác nhau (tương ứng với các đỉnh tổng khác nhau) có cùng chung
một chuyển dời thì đó sẽ là chuyển dời sơ cấp. Như vậy, mức trung gian sẽ có
năng lượng kích thích bằng hiệu số giữa năng lượng của mức xuất phát và
năng lượng chuyển dời sơ cấp.
Dịch chuyển sơ cấp về một mức trung gian có thể làm tăng mật độ mức, và
tạo ra một hoặc nhiều chuyển dời thứ cấp về các mức cuối của hạt nhân. Do
đó, trong phân bố cường độ nối tầng về các mức cuối, nối tầng sơ cấp và nối
tầng thứ cấp tạo thành một cặp đỉnh. Chuyển dời sơ cấp có năng lượng giống
nhau trong trong các phổ khác nhau. Các chuyển dời sơ cấp có năng lượng
khác nhau tạo thành các nối tầng về các mức cuối khác nhau. Do đó vấn đề
xây dựng sơ đồ phân rã được đơn giản thành tìm kiếm nhóm các đỉnh trong số
các chuyển dời nối tầng về các mức cuối khác nhau mà giá trị kỳ vọng toán
6
học của chúng khác nhau giữa các vị trí của các đỉnh i và j bất kỳ là gần bằng
không.
Trong thực tế, khi phương pháp tương đồng cực đại được sử dụng, cần thiết
sử dụng phương pháp phân bố nhiều chiều như một hàm tương đồng cực đại
để mô tả xác suất phân bố kết hợp với một độ lệch ngẫu nhiên của vị trí đỉnh
thực nghiệm từ giá trị kỳ vọng toán học của chúng.
Chúng ta xác định sự khác nhau về vị trí đỉnh thứ k và l trong phổ phân bố
cường độ nối tầng được đánh số i và j tương ứng
Rijkl=Eik-Ejl, (2)
Trong đó E là vị trí đỉnh có thể được biểu diễn dưới dạng năng lượng hoặc
kênh. Nếu gọi phương sai σ2 của các giá trị thực nghiệm E với các giá trị kỳ
vọng toán học của chúng và ξ là một giá trị ngẫu nhiên, biểu thức trên có
thể viết lại như sau:
Rijkl=σikξik - σjkξjl +q (3)
Tham số q là giá trị khác nhau chưa biết giữa và . Với các đỉnh
ứng với chuyển dời thật sẽ có kỳ vọng toán học bằng 0.
Hàm tương đồng cực đại với các biến trên sẽ có dạng đặc trưng sau:
2/11 )(det)..(
2
1exp. −− ⎥⎦
⎤⎢⎣
⎡−= BRconstL BRT (4)
Trong đó R là véc tơ cột, T chỉ sự chuyển vị. Các giá trị của các phần tử ma
trận B được xác định từ giá trị kỳ vọng của các phần tử của ma trận R.RT dưới
dạng các giá trị σ2 với các chỉ số tương ứng với số phổ và số đỉnh.
Giá trị cực tiểu của q là điều kiện cần để thu được giá trị tốt nhất nhưng không
phải là điều kiện đủ để xếp hết N đỉnh trong M phổ có các năng lượng dịch
chuyển giống nhau. Từ phân tích biểu thức RTB-1.R chọn lựa các giá trị đơn
7
trị. Trong trường hợp các đỉnh phân tích thu được thuộc về các các dịch
chuyển gamma giống nhau và giá trị σ2 là không thay đổi, giá trị của phân bố
có thể được mô tả bằng phân bố χ2 với N-1 bậc tự do.
Trong thực tế, N đỉnh là trùng phùng quan tâm nếu thoả điều kiện sau:
σ2≤q ; (5)
2
1
1
−
− < NT RBR χ (6)
Trong đó là sai số trung bình trong xác định năng lượng dịch chuyển
trong phân rã gamma nối tầng bậc hai và là giá trị tương ứng của phân bố
với mức 99% của diện tích.
2
1−Nχ
Điều kiện trên được kiểm tra độc lập với điều kiện thứ nhất và thứ hai của
dịch chuyển. Với các dịch chuyển sơ cấp chúng ta chọn dịch chuyển có giá trị
q cực tiểu. Nếu các giá trị với hai lượng tử nối tầng là thoả mãn điều kiện (5)
chúng ta chọn chuyển dời có N cực đại làm chuyển dời sơ cấp.
Hàm tương đồng cực đại và điều kiện (5) đảm bảo thu được sự phù hợp và
đơn trị của các năng lượng thu được trong xây dựng sơ đồ phân rã. Khả năng
bổ sung thêm các mức vào sơ đồ phân rã tăng khi các mức thực của sơ đồ
được phân tích.
Sơ đồ phân rã thu được từ thực nghiệm có thể đã bị biến dạng do chúng ta
thêm các năng lượng dịch chuyển nối tầng E1 và E2 một cách ngẫu nhiên, giá
trị phương sai của phân bố σξ có phương sai σ2 và trung vị:
i
i
ii
ii
EE
EE
σξ
σξ
−
+
>=<
>=<
22
11 (7)
8
Tương quan này liên hệ trực tiếp đến sự thật đó là khi phương pháp cải thiện
độ phân giải được sử dụng, sai số trong xác định năng lượng của các chuyển
dời nối tầng là hoàn toàn không liên quan.
Với các nối tầng không xếp được vào sơ đồ phân rã theo nguyên tắc trên
(chẳng hạn như sự tăng các nối tầng sơ cấp do phân rã của các mức trung gian
chỉ có một dịch chuyển đơn lẻ). Chúng được xếp vào sơ đồ phân rã theo giả
thuyết rằng các dịch chuyển cứng là các dịch chuyển sơ cấp vì xác suất phát
gamma trung bình tỉ lệ với (với các chuyển dời E3γE 1 và M1) hoặc (với dịch
chuyển E
5
γE
2). Sự sắp xếp thêm này dựa vào thực tế là hầu hết các dịch chuyển
xếp được vào sơ đồ phân rã đều thoả mãn điều kiện này.
Do phông compton bị loại trừ gần như hoàn toàn nên khả năng phát hiện các
chuyển dời yếu lớn hơn so với các phương pháp truyền thống. Điều này cho
phép tìm ra các trạng thái kích thích mới và do vậy, sơ đồ mức kích thích thực
nghiệm sẽ đầy đủ hơn và việc đánh giá lý thuyết cấu trúc hạt nhân về phân bố
các mức kích thích sẽ tốt hơn.
III. Khả năng xây dựng hoàn chỉnh sơ đồ phân rã từ phản ứng (n,γ)
Để hoàn thiện sơ đồ phân rã gamma của hạt nhân ở trạng thái kích thích, cần
sử dụng thêm các thông tin khi đo bằng hệ phổ kế triệt compton để xác định
thêm các dịch chuyển trực tiếp từ trạng thái kích thích ban đầu về trạng thái
cơ bản hoặc tạo các trạng thái đồng phân sống dài (không phân rã nối tầng)
mà phương pháp trùng phùng gamma-gamma không ghi nhận được.
Hiệu quả của việc kết hợp thông tin phổ học từ phản ứng (n,γ) đo bằng hai
phương pháp là rất lớn. Tất nhiên, chọn lựa các sự kiện nối tầng bậc hai, bậc
ba,... trong số lớn các chuyển dời thu nhận với các detectơ bán dẫn sẽ tạo nên
khả năng tìm ra tất cả các dịch chuyển gamma và vai trò độc lập của chúng
trong phân rã gamma (bắt đầu ở một ngưỡng nhất định).
9
Xây dựng các sơ đồ phân rã bằng việc kết hợp thông tin từ hai kiểu đo làm
tăng khả năng xác định đơn trị đặc trưng của mức cuối của nối tầng. Đây là
đặc trưng quan trọng trong trường hợp phân rã của các hạt nhân biến dạng với
mật độ trạng thái kích thích được nghiên cứu cao. Ở đó, phần lớn các chuyển
dời gamma bội chưa xác định được năng lượng sẽ được xác định và xếp
chúng vào sơ đồ phân rã một cách đơn trị.
Các phân tích liên hợp hầu như phát hiện ra các mức bội với khoảng cách
giữa các mức rất hẹp (từ ∆E~1÷3 keV) ở các năng lượng kích thích khác
nhau, cũng giống như phân bố cường độ sơ cấp của chúng.
Tổng Σjγ của cường độ các chuyển dời thứ cấp trong phân rã của các trạng
thái năng lượng trung gian có thể được xác định đơn trị. Nếu phổ của các
detectơ đơn được sử dụng để xác định cường độ iγ của các dịch chuyển γ từ
trạng thái hợp phần về các mức trung gian và từ các trạng thái trung gian về
các trạng thái cuối, với hai lượng tử gamma nối tầng biểu thức tỉ số giữa
cường độ nối tầng iγγ và cường độ của chuyển dời sơ cấp, thường được chuẩn
tuyệt đối theo số phân rã:
iγγ/iγ=(iγjγ/Σjγ)/iγ=jγ/Σjγ (8)
Hầu như có thể xác định đơn trị Σjγ cường độ của các chuyển dời không quan
sát được trong các phản ứng (n,2γ) về các mức nối tầng cuối nằm cao. Đại
lượng này có thể được so sánh đánh giá trên các mẫu thống kê khác nhau.
Tổng Σjγ thu được là bằng tổng của các cường độ iγ của các nối tầng gamma
bậc hai, ba,... tương ứng với trạng thái kích thích dịch chuyển.
III. Đánh giá phân bố mật độ mức kích thích ρ và hàm lực photon k của
các dịch chuyển nối tầng
10
Hàm lực photon và mật độ mức ρ xác định độ rộng bức
xạ toàn phần của trạng thái hợp phần Γ
)/( 3/23 λγλ DAEk i ××Γ=
λ và cường độ bức xạ nối tầng Iγγ thu
được dưới dạng sau:
ii mλλλ ×Γ=Γ , (9)
∑∑∑ Γ
Γ
Γ
Γ=Γ
Γ
Γ
Γ=
f ifif
if
i
ii
i
i
if
f i
i
m
n
m
I
,, λ
λ
λλ
λ
λ λ
λ
γγ (10)
Γλi là độ rộng riêng phần của dịch chuyển gamma có năng lượng Eγ, A là khối
lượng hạt nhân và D là khoảng cách giữa các mức phân rã λ. Các giá trị của
độ rộng gamma toàn phần và riêng phần được tính cho trạng thái hợp phần λ
và mức trung gian i của nối tầng tương ứng; m là tổng số mức kích thích và n
là số mức kích thích trong khoảng năng lượng xác định cường độ nối tầng
trung bình.
Tất cả các tính toán đã được tiến hành với một giá trị ∆E. Khoảng lấy tổng
trên các mức cuối f của nối tầng f đã được xác định bằng khả năng thực
nghiệm. Khoảng của spin lấy tổng trên các mức trung gian i được xác định
gần đúng bằng quy luật chọn lựa lưỡng cực; tổng của mức phân rã λ là cần
trong trường hợp các kênh spin hai kích thích khi bắt nơtron nhiệt.
Các phương trình (9) và (10) không cho phép xác định k và ρ độc lập tường
minh. Ví dụ, độ lệch của ρ từ các giá trị thực là hiển nhiên có thể bù trừ được
với độ lệch của hàm lực với biên độ tương ứng. Mối tương quan này tăng một
cách có ý nghĩa cả hai khoảng của các giá trị chấp nhận với mật độ mức của
các giá trị chẵn, lẻ và hàm lực của các dịch chuyển M1 và E1. Các đại lượng
này xác định độ rộng toàn phần và cường độ của các nối tầng. Tuy nhiên, theo
phân tích của một số tác giả khi sử dụng tất cả các số liệu thực nghiệm cho
thấy tổng mật độ của các mức có độ chẵn lẻ khác nhau hoặc của hàm lực của
11
các dịch chuyển điện từ thu được không vượt quá 40÷50% với tất cả các năng
lượng kích thích thu được của hạt nhân nghiên cứu.
IV. Sai số hệ thống trong việc xác định các tham số
Sai số hệ thống trong xác định mật độ mức chủ yếu phụ thuộc vào xác định
chính xác năng lượng của các cặp đỉnh trong phổ nối tầng dẫn đến sự sai khác
trong xây dựng sơ đồ mức khi xác định các chuyển dời sơ cấp với các độ
chính xác khác nhau. Thực tế cho thấy khi xây dựng sơ đồ phân rã với các sai
số từ 1÷2 keV tức nằm trong khả năng phân giải của hệ phổ kế sự sai khác
trong giá trị mật độ mức không vượt quá 5%.
Sai số mắc phải chủ yếu vẫn do xác định các chuyển dời có cường độ bé.
Trong thực nghiệm nghiên cứu phân rã nối tầng bậc hai bằng trùng phùng
gamma-gamma, xác suất ghi nhận lượng tử gamma nối tầng bậc ba như một
nối tầng bậc hai là rất nhỏ. Xác suất này đóng góp trực tiếp vào diện tích các
đỉnh có sự sai khác giữa mức đầu và mức cuối lớn hơn 3, |Iλ-If|≥3. Bên cạnh
xác suất ghi nhận bé, các phân rã gamma nối tầng của các dịch chuyển lưỡng
cực M1+E2 hoặc E1+M2 cũng có cường độ bé.
- Xác suất ghi nhận năng lượng toàn phần của nối tầng trong trường hợp có
trao đổi năng lượng giữa hai detectơ đã được giảm từ 12% đến 0,2% khi sử
dụng một phin lọc chì.
- Sự biến dạng của phân bố cường độ gamma nối tầng tạo ra từ phân bố góc
do hình học đo không vượt quá 5%. Sai số có thể đóng góp vào giá trị thu
được khi tích phân trên góc được chuẩn hoá với giá trị cường độ tuyệt đối đã
biết.
- Số liệu thực nghiệm phân tích phù hợp với phân bố thực nghiệm giống như
một đối xứng gương chỉ phụ thuộc vào năng lượng của các chuyển dời sơ cấp
và thứ cấp của nối tầng. Quá trình này cho phép thu được quan hệ Iγγ=f(E1)
12
với sai số bé hơn 5%, khi số liệu thực nghiệm đủ thống kê. Đánh giá này đã
được suy từ tích lũy cường độ tổng của tất cả các nối tầng phân tách được với
một năng lượng dịch chuyển sơ cấp được chọn về mức dưới của nó.
- Sai số cực đại trong xác định cường độ nối tầng thực nghiệm vào cỡ 20%.
Sai số này rất khó giảm được do sự xác định không chính xác cường độ
chuyển dời sơ cấp trong phản ứng (n,γ).
Với các nghiên cứu đã được tiến hành, sai số hệ thống trong k và ρ được giả
thuyết rằng đã làm tăng tổng cường độ nối tầng bậc hai một hệ số cỡ 1.5. Sự
tăng này không làm thay đổi dạng hàm của ρ và k.
- Tất cả các mức trong khoảng năng lượng kích thích phân bố đơn lẻ làm
giảm xác suất phân bố của dịch chuyển M1 và E1, giống như một mức bất kỳ
trong cửa sổ chọn lựa spin theo quy tắc chọn lựa và phù hợp với sự phụ thuộc
của hàm sóng của các cộng hưởng nơtron và mức nối tầng trung gian Ei.
13
MÔ TẢ MẬT ĐỘ MỨC
I. Tình hình mô tả mật độ mức
Tính thống kê của các mức hạt nhân kích thích từng là chủ đề được quan tâm
và nghiên cứu trong suốt hơn 50 năm qua. Một trong những tính chất thống
kê cơ bản của các mức là mật độ mức. Đối với việc mô tả mật độ mức, mẫu
nhiệt độ không đổi và mẫu khí Fermi được sử dụng thường xuyên với các
thông số thu được từ việc làm khớp với dữ liệu thực nghiệm. Nhưng những
giả thuyết của cả hai mẫu trên đều không thể cho phép chúng miêu tả chính
xác các điểm khác nhau của mật độ mức trên khoảng năng lượng rộng từ
trạng thái cơ bản đến các năng lượng cao hơn năng lượng liên kết của nơtron.
Những hiệu ứng cơ bản nhất hiện nay được sử dụng để xây dựng lên các mẫu
hạt nhân bao gồm hiệu ứng vỏ, hiệu ứng kết đôi và hiệu ứng tập thể. Các hiệu
ứng này được thể hiện đầy đủ trong mẫu siêu lỏng suy rộng (Generalized
Superfluid Model). Mẫu này đã được nhiều học giả phát triển trong suốt hơn
20 năm qua, bên cạnh đó sự phân tích số liệu thực nghiệm cũng được phát
triển đồng thời để làm các cơ sở kiểm chứng và hiệu chỉnh lại các mẫu lý
thuyết.
Theo Sokolov Iu.P., mô tả mật độ mức trạng thái hạt nhân với các đặc trưng
lượng tử xác định là một trong những công việc chính của vật lý hạt nhân.
Hiện nay, việc tính toán mật độ mức trạng thái của hạt nhân được thực hiện
bằng một số phương pháp sau đây:
* Phương pháp tổ hợp:
Phương pháp này được dựa trên việc giải bài toán trị riêng, chúng ta sẽ thu
được mật độ mức của hạt nhân (số trạng thái trong một khoảng năng lượng)
nhờ việc giải bài toán trị riêng này. Halmintonian của hạt nhân có dạng:
14
(11) qpairsp HHHH ˆˆˆˆ ++=
Với là thế hạt nhân một hạt mô tả trường trung bình của hệ các
nucleon. là phần tương tác cặp trong kênh hạt-hạt dẫn đến tương quan
cặp dạng siêu chảy. là phần tương tác dư trong kênh hạt-lỗ trống.
spHˆ
pairHˆ
qHˆ
Phương pháp này cho phép tính toán mật độ mức ở năng lượng kích thích bất
kỳ trên cơ sở đã biết Hamiltonian của hạt khi nghiên cứu các trạng thái kích
thích thấp. Tuy nhiên, việc giải phương trình này trên thực tế là bài toán khó
đối với không chỉ những người làm công tác thực nghiệm mà cả những người
chuyên tính toán lý thuyết cấu trúc hạt nhân.
* Phương pháp nhiệt động học:
Phương pháp này dựa trên việc xác định entropi của hệ. Nếu chúng ta giả
thiết hạt nhân là một hệ các hạt cô lập và được đặc trưng bằng M+1 tích
phân chuyển động (M là số thông số tự do), thì sự liên hệ giữa mật độ trạng
thái P của hệ và entropi S của hệ được biễu diễn bằng công thức sau:
( ) ( )( )( ) ⎥⎥⎦
⎤
⎢⎢⎣
⎡
∆= + 2/12/12exp M
qSqP π (12)
Để xác định P(q), ta cần xác định entropi của hệ, nhưng để làm điều này ta
cần phải biết phổ trạng thái của hệ (giải bài toán trị riêng với Hamiltonian).
Do vậy, biểu thức (12) không thể làm cơ sở để tính chính xác giá trị của mật
độ mức.
* Phương pháp bán vi mô:
Phương pháp này dựa trên một số giả thiết để làm đơn giản vấn đề hơn: Ví dụ
như: Coi hạt nhân nói trên như một hệ hạt khí tuân theo phân bố Fermi. Trong
những mẫu lý thuyết này, người ta chú ý tới các hiện tượng khác nhau không
liên quan tới tính thống kê như sự tương tác cặp và dao động bề mặt của hạt
nhân.
15
Với những giả thiết về hạt nhân như một hệ khí tuân theo phân bố Fermi, thì
mật độ mức trạng thái kích thích được xác định là hàm của năng lượng kích
thích E với hai thông số a và σ [2]. Sự phụ thuộc của mật độ mức vào năng
lượng kích thích và spin có dạng:
( )
( ) ( )( )
4/54/13
2
2
224
2
2/12exp12
,
Ea
JaEJ
JE σ
σρ
⎟⎟⎠
⎞
⎜⎜⎝
⎛ +−+
= (12)
còn mật độ mức toàn phần phụ thuộc vào năng lượng theo công thức:
( ) ( )
4/54/1 Ea212
aE2expE
σ
ρ = (13)
với a là thông số mật độ mức, σ2 là thông số phụ thuộc spin và được tính như
sau:
2
2
2 6 maEπσ = (14)
Các số liệu thực nghiệm về mật độ mức cộng hưởng nơtron hay chính xác
hơn là các số liệu về khoảng cách trung bình D giữa các cộng hưởng là thông
tin trực tiếp kiểm tra sự đúng đắn của công thức (12). Khoảng cách và vị trí
của các cộng hưởng này được xác định một cách dễ dàng với các hệ phổ kế
nơtron như hệ phổ kế thời gian bay. Việc so sánh với số liệu thực nghiệm cho
thấy sự phụ thuộc của tham số mật độ mức nói trên cần được bổ sung thêm
những hiệu ứng không liên quan tới các giả thiết thống kê:
- Hiệu ứng cặp nucleon.
- Hiệu ứng lớp [3,7].
Các số liệu thực nghiệm về thông số mật độ mức không phụ thuộc đơn điệu
vào số khối A. Mối tương quan giữa tỷ số a/A và bổ chính lớp (thể hiện trong
mẫu lớp) đã được phát hiện và nghiên cứu trong công trình [4]. Sự tương
quan đó chỉ ra vai trò quan trọng của hiệu ứng lớp trong việc mô tả các đặc
trưng thống kê của hạt nhân.
16
Từ việc so sánh với số liệu thực nghiệm, người ta đã nhận thấy rằng trong một
số trường hợp mật độ mức thấp được mô tả bằng công thức sau:
( ) ⎟⎠
⎞⎜⎝
⎛ −=
T
EE
T
E 0exp1ρ (15)
Cần lưu ý rằng, đối với các hạt nhân với A < 40 và những hạt nhân có N hoặc
Z nhỏ hơn số magic 1-2 đơn vị thì việc mô tả mật độ mức như công thức tổng
thống kê lnQ(β,α) là không thích hợp cho vùng năng lượng liên kết của
nơtron trong hạt nhân. Điều này là do những hạt nhân này có số mức kích
thích rất ít [4], việc chuyển sự mô tả mật độ mức từ vùng năng lượng thấp tới
vùng năng lượng liên kết của nơtron ở trong hạt nhân là không đơn giản.
Những điểm đặc biệt của thông số a được tính đến trong dạng chung được mô
tả trong giả thiết của phương pháp bổ chính lớp. Các số liệu về sự tương quan
của đại lượng a/A và bổ chính lớp là cơ sở để hệ thống hoá sự phụ thuộc của
thông số a vào số khối A:
( ) ( ) ( ) ( )⎟⎠
⎞⎜⎝
⎛ +⋅=
E
EfAZEAaAZEa ,1~,, 0 (16)
trong đó f(E) và liên quan đến các giá trị A và E thông qua các thông số
α và β dưới dạng sau:
( )Aa~
( ) 2~ AAAa βα += (17)
và
( ) ( )EEf γ−−= exp1 (18)
Các giá trị α, β, γ được làm khớp với thực nghiệm bằng phương pháp bình
phương tối thiểu, sau khi làm khớp với 203 hạt nhân thì ta có:
α = 0.154; β = -6.3×10-5; γ = 0.054 MeV-2.
Việc làm khớp đối với những hạt nhân trong những vùng nào đó có thể sẽ có
giá trị khác nhau.
17
Dilg W. và các cộng sự đã đưa ra các phương pháp mô tả hiện tượng luận mật
độ mức của hạt nhân trong vùng năng lượng kích thích từ 0÷10 MeV. Cơ sở
của phương pháp này dựa trên các hệ thức của mẫu khí Fermi với sự dịch
chuyển ngược phụ thuộc vào năng lượng kích thích E và moment góc J có
dạng:
( )
( ) ( ) ( )( )
( ) 4/54/13
2
224
2
12exp12
,
tEa
JJEaJ
JE +∆−
⎥⎦
⎤⎢⎣
⎡ +−∆−+
= σ
σρ (19)
Mật độ mức toàn phần có dạng:
( ) ( )( )( ) 4/54/1212 2exp tEa EaE +∆− ∆−= σρ (20)
Nhiệt độ t được thu từ việc giải phương trình:
(21) tatE −=∆− 2
Thông số phụ thuộc spin σ2 được xác định bằng công thức:
( ) 222/122 6 h
JtmaE == πσ (22)
Các biểu thức (19) và (20) không chuyển thành biểu thức của mẫu khí Fermi
khi ∆ = 0, chúng chỉ có dạng gần giống các biểu thức của mẫu khí Fermi và
không phân kỳ khi E→0 đối với ∆≤0.
Các đại lượng a, ∆ và J được xác định từ số liệu thực nghiệm. Giá trị a và ∆
được chọn ở giữa giá trị Jtb và Jtb/2 với Jtb = 2/5MR2, với R = 2.25A1/3 fm:
.0150.0 3/52
2 tA
h
tJtb ==σ
Đối với các hạt nhân lẻ-lẻ và hạt nhân có số khối lẻ thì ∆ < 0, còn với hạt
nhân chẵn-chẵn thì ∆ > 0 một chút [8]. Các giá trị lý thuyết có thể thu được
bằng cách sử dụng mẫu siêu chảy để tính hiệu ứng chẵn lẻ.
Nếu so sánh a và ∆ thu được với J = Jtb và J = Jtb/2 cho thấy: Với hạt nhân có
A>70, các giá trị ∆ khác nhau cỡ 0.1MeV, còn các giá trị của a khác nhau cỡ
8%.
18
Dưới đây ta sẽ tìm hiểu thêm về mô tả mật độ mức theo mẫu khí Fermi và
Fermi có dịch chuyển ngược.
II. Một số giá trị của tham số mật độ mức
Số liệu tích lũy các mức thấp của hạt nhân cũng rất quan trọng trong phân tích
mật độ mức. Các mô tả trước đây cho thấy rằng số mức tích lũy phụ thuộc
năng lượng được mô tả khá tốt bằng hàm:
N(E) = exp[( E – E0)/T] (23)
Trong đó E0 và T là các tham số tự do được xác định từ khớp số liệu thực
nghiệm. Số các mức tích lũy N(E) liên quan với mật độ mức theo quan hệ:
⎥⎦
⎤⎢⎣
⎡ −==
T
EE
TdE
dNElev
)(exp1)( 0ρ (24)
Tham số T là nhiệt độ hạt nhân, nó được giả sử là không đổi trên khoảng năng
lượng được xét, mật độ mức tính theo (24) được gọi là mẫu nhiệt độ không
đổi.
Để thu được mô tả mật độ mức trong toàn dải năng lượng kích thích, mật độ
mức kích thích thấp theo phương trình (24) được kết hợp với các tiên đoán
của mẫu khí Fermi cho vùng năng lượng cao. Sự kết hợp các thông số của cả
hai mẫu dựa trên điều kiện liên tục của mật độ mức và đạo hàm bậc nhất của
nó ở một số năng lượng
Ex = E0 + Tlnρfg(Ex). (25)
19
Hình 2. Các tham số mật độ mức của mẫu khí Fermi (phần trên) và năng lượng
hiệu chỉnh cặp (phần dưới).
Các phân tích của Gibert và Cameron được trình bày trong Hình 2 và Hình 3
cho thấy sự không phù hợp khi mô tả mật độ mức theo mẫu khí Fermi.
20
Hình 3. Tham số mật độ mức cho mẫu nhiệt độ không đổi.
Gibert và Cameron đã hiệu chỉnh hiệu ứng chẵn-lẻ ở các năng lượng kích
thích và đề nghị sự thay đổi tham số mật độ mức theo quan hệ:
N)Q(Z,S(N)) S(Z) 0.00917(
A
a ++= (26)
Trong đó S(I) là hiệu chỉnh lớp của proton và nơtron tương ứng, Q(Z,N) =
0.142 khi 54<Z<78, 86<N<122 và Q(Z,N) = 0.120 khi 86<Z<122,
130<N<182. Các giá trị thu được của tham số a phụ thuộc vào phạm vi xác
định của giá trị spin ngưỡng.
21
Một trong những vấn đề hệ thống của mật độ mức là sự phụ thuộc năng lượng
của tham số a. Kết quả của tất cả các tính toán về mật độ mức hạt nhân đều
cho thấy sự suy giảm của hiệu ứng lớp ở năng lượng cao [6]. Khi tính đến sự
suy giảm của hiệu ứng lớp lên tham số mật độ mức theo năng lượng, sự phụ
thuộc này có thể được xác định gần đúng theo công thức:
[ ]⎭⎬
⎫
⎩⎨
⎧ −−+= )exp(11)(~),,( 0 U
U
EAaAZUa γδ , (27)
a~ là tham số mật độ mức tiệm cận với a(U) ở năng lượng kích thích cao,
δE0=S(N)+S(Z) là năng lượng hiệu chỉnh lớp và γ là tham số suy giảm. Hiệu
chỉnh lớp được xác định:
δE0 = Mexp(Z,A) – Mld(Z,A,β) (28)
Trong đó M là giá trị độ hụt khối thực nghiệm và Mld là thành phần giọt chất
lỏng của công thức khối lượng tính được cho các biến dạng hạt nhân cân bằng
β.
22
XÁC ĐỊNH MẬT ĐỘ MỨC CỦA 172Yb VÀ 153Sm
I. Mô tả thực nghiệm
Thực nghiệm được tiến hành trên kênh ngang số 3 của Lò phản ứng hạt nhân
Đà lạt, cấu hình thực nghiệm được mô tả trên Hình 4. Thông lượng nơtron
nhiệt tại vị trí mẫu ~106n.cm2.s-1, bia mẫu là hợp chất giàu đồng vị của các
nguyên tố này với ô xy và có xuất xứ từ Nga. Thời gian tiến hành thực nghiệm
với bia đồng vị 171Yb là 400 giờ đo và 152Sm là 600 giờ đo trong các đợt chạy lò
từ tháng 7/2005 đến tháng 12/2006. Số liệu được thu nhận bằng hệ phổ cộng
biên độ các xung trùng phùng dưới dạng code biên độ, được lưu tích luỹ thành
nhiều tập tin theo thời gian đo trên máy tính để tránh các hiệu ứng không ổn
định của hệ đo trong quá trình đo làm ảnh hưởng đến kết quả đo.
Thiết bị chuẩn trục
Chùm nơtron
Detectơ ghi nhận
bức xạ gamma
Bia mẫu
Che chắn
phông bức xạ
Hình 4. Bố trí thực nghiệm nghiên cứu phân rã gamma nối tầng.
Số liệu được xử lý theo các thuật toán và quy trình xử lý của phương pháp
được mô tả chi tiết trong các tài liệu [2] theo quy trình gồm các bước sau:
- Chuẩn số liệu,
- Tạo và xử lý phổ tổng,
- Tìm các phổ nối tầng bậc hai tương ứng với các đỉnh tổng tìm được,
- Tính cường độ dịch chuyển gamma nối tầng và xây dựng sơ đồ mức,
- Tính mật độ mức thực nghiệm và xác suất dịch chuyển,
- Tìm và tính xác suất phân rã theo các kênh phân rã khác nhau của các
trạng thái kích thích trung gian do các dịch chuyển sơ cấp mạnh tạo nên.
23
Sai số trong quá trình xác định năng lượng của dịch chuyển gamma chủ yếu
phụ thuộc vào độ phân giải của hệ phổ kế tại năng lượng tương ứng của dịch
chuyển gamma ghi nhận được, còn sai số trong xác định cường độ dịch
chuyển sẽ phụ thuộc chủ yếu vào sai số thống kê số đếm tại đỉnh. Số liệu sau
khi xử lý xong sẽ được đánh giá thống kê theo các phương pháp khác nhau để
tìm ra các quy luật chung nhằm mục đích đánh giá các quy luật phân rã, sự
phân bố của các trạng thái kích thích cũng như sự dịch chuyển của nucleon
trong lớp vỏ của các hạt nhân này ở trạng thái kích thích về trạng thái cơ bản.
II. Một số phổ thực nghiệm
6500 7000 7500 8000
100
1000
5000 5500 6000
1500
2000
2500
3000
3500
70
02
74
27
79
45
80
25
C
ou
nt
s
keV
171Yb(n,γ)172Yb
54
53
57
73
58
30 58
58
C
ou
nt
s
keV
152Sm(n,γ)153Sm
Hình 5a. Một phần phổ tổng của phản ứng
171Yb(n,γ)172Yb với nơtron nhiệt.
Hình 5b. Một phần phổ tổng của phản ứng
152Sm(n,γ)153Sm với nơtron nhiệt.
0 200 400 600
-20000
0
20000
40000
60000
80000
100000
400 600 800 1000 1200
0
5000
10000
15000
20000
25000
59
6
86
8
26
0
33
2
44
0
51
2
C
ou
nt
s
keV
E1+E2=1464
C
ou
nt
s
keV
E1+E2=771
Hình 6a. Phổ gamma phân rã nối tầng
bậc hai từ trạng thái Bn về mức cuối
5086keV của 153Sm.
Hình 6b. Phổ gamma phân rã nối tầng
bậc hai từ trạng thái Bn về mức cuối
6560keV của 172Yb.
24
E1+E2=7946keV
0
5
10
15
20
25
30
35
40
45
1 628 1255 1882 2509 3136 3763 4390 5017 5644 6271 6898 7525
Hình 7. Phổ hai dịch chuyển nối tầng 5542keV và 2402keV của 172Yb.
Hình 8. Phổ các dịch chuyển gamma từ mức 2482±2keV về các mức thấp hơn.
III. Số liệu thực nghiệm đo trùng phùng gamma-gamma của 172Yb và 153Sm
Bảng 1. Các mức kích thích trung gian do dịch chuyển gamma sơ cấp từ mức có
spin 0+ của phản ứng Yb171(nth,γ)172Yb (số liệu được xác định với sai số ±1keV).
1764.94 2008.95 2873.38 3854.18 6724.42 6923.12 7062.14 7427.23
1787.07 2022.09 3389.09 5621.27 6735.37 6929.61 7155.74 7514.23
1792.88 2195.04 3506.23 6552.05 6819.41 6948.63 7165.56 7524.16
1808.86 2329.95 3539.76 6558.92 6904.21 7027.28 7416.47 7547.17
Bảng 2. Các mức kích thích trung gian do dịch chuyển gamma sơ cấp từ mức có
spin 0+ của phản ứng Yb171(nth,γ)172Yb (số liệu được xác định với sai số +1keV).
868.28 1787.07 2414.35 3539.76 6747.11 6930.52 7087.44 7417.72 7514.23
1204.61 1792.88 2480.73 3559.73 6820.26 6948.63 7105.38 7427.23 7514.39
1471.95 2008.95 2613.15 3854.18 6904.21 7027.28 7156.02 7428.08 7517.07
1549.76 2022.09 2873.38 6558.92 6905.31 7062.14 7156.86 7428.27 7529.29
1635.12 2195.04 3389.09 6724.42 6923.12 7062.75 7416.47
1764.94 2329.95 3506.23 6729.72 6929.61 7081.59
25
Bảng 3. Các mức kích thích trung gian do dịch chuyển gamma sơ cấp từ mức có
spin 0+ của phản ứng Yb171(nth,γ)172Yb (số liệu được xác định với sai số -1keV).
1170.57 2022.09 3389.09 6552.05 6819.41 6947.37 7155.74 7513.17
1764.94 2195.04 3506.23 6558.92 6904.21 6948.63 7165.56 7514.23
1787.07 2329.46 3539.76 6724.42 6921.61 7027.28 7416.47 7524.16
1792.88 2329.95 3854.18 6735.37 6923.12 7060.44 7427.05 7529.29
2008.95 2873.38 5621.27 6740.08 6929.61 7062.14 7427.23 7547.17
Bảng 4. Các mức kích thích trung gian do dịch chuyển gamma sơ cấp từ mức có
spin (½)+ của phản ứng 152Sm(nth,γ)153Sm (số liệu được xác định với sai số ±1keV).
5575.97 5275.45 5028.3 4701.79 4641.63 4384 4043.91 3725.83 3381.73
5545.36 5263.26 5025.31 4697.46 4639 4371.97 4014.65 3708.62 3376.1
5532.12 5255.15 5020.99 4694.29 4623.34 4307.39 3993.88 3705.9 3330.73
5525.64 5230 4991.27 4691.97 4607.68 4302.14 3962.55 3688.4 3321.92
5506.12 5227.45 4951.68 4688.57 4562 4222.5 3945.04 3685.23 3310.58
5462.88 5198.26 4898.69 4676.38 4525.75 4173.13 3936.55 3660.16 3296.6
5419.68 5182.65 4861.91 4672.29 4518.12 4116.72 3928.17 3649.02 3288.7
5385.21 5146.54 4810.51 4666.87 4506.37 4113.11 3877.78 3642.6 3272.46
5383.09 5121.44 4769.51 4663.2 4477.31 4108.45 3842.06 3636.76 3243.69
5380.73 5105.08 4760.57 4661.18 4462.89 4084.88 3830.38 3556.52 3157.07
5348.6 5048.15 4756.97 4658.79 4457.15 4072.29 3780.11 3544.03 2980.86
5290.2 5041.38 4753.78 4656.31 4441.88 4048.4 3757.34 3384.16
Bảng 5. Các mức kích thích trung gian do dịch chuyển gamma sơ cấp từ mức có
spin (½)+ của phản ứng 152Sm(nth,γ)153Sm (số liệu được xác định với sai số +1keV).
5675.63 5385.32 5263.49 5090.38 4760.57 4658.79 4302.14 3842.06 3376.1
5575.97 5385.21 5263.26 5048.15 4757.61 4656.31 4222.5 3830.38 3330.73
5545.36 5383.09 5255.15 5041.38 4756.97 4641.63 4173.13 3780.11 3321.92
5532.12 5380.73 5230 5029.66 4754.58 4639 4116.72 3757.34 3310.58
5526.86 5350.09 5229.38 5028.3 4753.78 4623.34 4113.67 3725.83 3296.6
5525.95 5349.8 5229.03 5025.31 4701.79 4607.68 4113.11 3708.62 3288.7
5525.92 5349.4 5227.45 5020.99 4697.46 4562 4108.45 3705.9 3272.46
5525.81 5349.33 5199.43 4992.27 4694.29 4525.75 4084.88 3688.4 3243.69
5506.12 5348.81 5199.37 4991.27 4691.97 4518.12 4072.29 3685.23 3157.07
5420.99 5348.7 5198.26 4951.68 4690.27 4506.37 4043.91 3660.16 2980.86
5420.65 5348.6 5182.65 4898.69 4688.57 4477.31 4014.65 3649.02
5420.58 5290.2 5148.16 4876.79 4676.38 4462.89 3993.88 3642.6
5420.2 5287.76 5146.54 4874.64 4672.29 4457.15 3962.55 3636.76
5419.92 5275.58 5122.23 4861.91 4666.87 4441.88 3945.04 3556.52
5419.9 5275.45 5122.2 4812.14 4664.06 4384 3936.55 3544.03
5419.68 5264.01 5121.44 4810.51 4663.2 4371.97 3928.17 3447.07
5385.33 5263.71 5105.08 4769.51 4661.18 4307.39 3877.78 3381.73
26
Bảng 6. Các mức kích thích trung gian do dịch chuyển gamma sơ cấp từ mức có
spin (½)+ của phản ứng 152Sm(nth,γ)153Sm (số liệu được xác định với sai số -1keV).
5575.97 5382.76 5230 5019.66 4697.46 4639 4222.5 3928.17 3636.76
5545.36 5380.73 5227.45 4991.27 4694.29 4623.34 4173.13 3877.78 3556.52
5544.86 5380.29 5198.26 4990.33 4691.97 4607.68 4116.72 3842.06 3544.03
5532.12 5376.27 5196.77 4989.47 4688.57 4562 4113.11 3830.38 3384.16
5525.64 5348.6 5182.65 4951.68 4687.91 4525.75 4108.45 3780.11 3381.73
5525.38 5348.27 5146.54 4951.26 4687.67 4518.12 4084.88 3757.34 3376.1
5524.45 5290.2 5146.06 4898.69 4676.38 4506.37 4072.29 3725.83 3330.73
5506.12 5275.45 5121.44 4861.91 4672.29 4477.31 4071.33 3708.62 3321.92
5462.88 5274.57 5121.1 4810.51 4666.87 4462.89 4048.4 3705.9 3310.58
5457.91 5263.26 5120.16 4793.27 4663.2 4457.15 4043.91 3688.4 3296.6
5444.37 5263.17 5105.08 4769.51 4661.18 4441.88 4014.65 3685.23 3288.7
5419.68 5262.75 5048.15 4760.57 4658.79 4384 3993.88 3660.16 3272.46
5419.61 5262.71 5041.38 4756.97 4656.31 4371.97 3962.55 3649.02 3243.69
5385.21 5255.15 5028.3 4753.78 4656.14 4307.39 3945.04 3647.85 3157.07
5383.09 5244.64 5025.31 4701.79 4641.63 4302.14 3936.55 3642.6 2980.86
IV. Mật độ mức thực nghiệm các trạng thái kích thích trung gian tạo ra
sau dịch chuyển gamma sơ cấp của Sm153 và 172Yb theo phương pháp
cộng biên độ các xung trùng phùng
1 2 3 4 5 6 7 8
0 .0 00
0 .0 01
0 .0 02
0 .0 03
0 .0 04
0 .0 05
0 .0 06
ρ/M
eV
M e V
172Y b
Hình 9. Mật độ mức thực nghiệm các trạng thái kích thích ứng với dịch chuyển
gamma sơ cấp của 172Yb.
27
2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5
0 . 0 0 0
0 . 0 0 5
0 . 0 1 0
0 . 0 1 5
0 . 0 2 0
0 . 0 2 5
0 . 0 3 0
M e V
ρ/M
eV 1 5 3 S m
Hình 10. Mật độ mức thực nghiệm các trạng thái kích thích ứng với dịch chuyển
gamma sơ cấp của 153Sm
Bảng 7. Khả năng xác định các mức trung gian tạo ra từ mức trung gian thứ nhất
bằng thực nghiệm (khả năng xác định các hệ số rẽ nhánh).
Gate (keV) Các tia gamma trùng phùng (keV)
5542 328, 509, 596, 857, 870, 1041, 1204, 1302, 1473, 1725, 1917, 2008, 2120, 2251, 2406
Mức dưới Mức tương ứng
2482 2156, 1975, 1888, 1627, 1614, 1443, 1280, 1182, 1011, 759, 567, 476, 364, 233, 78
Gate* (keV) Các tia gamma trùng phùng* (keV)
78.7 961
181.5 857.6, 912, 961, 1588
278.1 857.6, 1039.2, 1118
476.3 1521
490.4 1093.6
602.6 1076.2
Ghi chú: *Số liệu đo sử dụng bia đồng vị 171Yb có mật độ 200 mg.cm-2, thông lượng nơtron
nhiệt 108 n.cm-2, sử dụng các detectơ Ge(Li) có thể tích 15cm3 và 31cm3. Ngưỡng xác định
được đặt ở các khoảng năng lượng 0÷1MeV và 1÷2MeV, sử dụng hệ trùng phùng nhanh
chậm. Các kết quả thí nghiệm được trình bày trong báo cáo của W Gelletly [5].
V. Khả năng hoàn thiện sơ đồ phân rã và xác định mật độ mức thực
nghiệm
Để hoàn thiện sơ đồ phân rã của một hạt nhân cần phải biết được tất cả các
kiểu phân rã của hạt nhân từ trạng thái kích thích về trạng thái cơ bản. Điều
đó đạt được bằng các kiểu ghi đo bức xạ khác nhau như trùng phùng beta-
28
gamma, trùng phùng gamma-gamma, đo đối trùng giảm phông,… Ngoài ra,
các dải năng lượng ghi nhận và hiệu suất ghi được sử dụng trong từng cấu
hình đo cũng là vấn đề được lưu ý và kết hợp. Như vậy, không thể có một
phương pháp thực nghiệm nào có thể cung cấp đầy đủ thông tin về kiểu phân
rã hay thông tin về tất cả các trạng thái kích thích của hạt nhân.
Để hoàn thiện sơ đồ phân rã của hạt nhân từ trạng thái kích thích về trạng thái
cơ bản, số liệu của tất cả các phương pháp đo cần được kết hợp với nhau. Sự
bổ sung thêm các trạng thái kích thích trung gian sẽ là cơ sở tốt để kiểm
chứng các mô hình lý thuyết nghiên cứu mật độ mức hay cấu trúc hạt nhân.
Việc chính xác hoá các tham số mô tả trong các mẫu sẽ là cơ sở tốt để đánh
giá số liệu hạt nhân trong những vùng năng lượng chưa đo được hoặc khó
khăn khi tạo ra các bia giàu đồng vị để nghiện cứu. Dưới đây chúng ta sẽ kết
hợp số liệu các trạng thái kích thích trung gian thứ nhất từ Nuclear Data Sheet
để đánh giá mật độ mức các trạng thái kích thích trung gian tạo ra sau các
dịch chuyển sơ cấp từ mức kích thích thứ nhất có spin 0+ trong hạt nhân 172Yb
và spin ½+ trong hạt nhân 153Sm.
Bảng 8. Các mức kích thích trung gian thứ nhất tạo ra sau dịch chuyển gamma sơ
cấp từ phản ứng 171Yb(nth,γ)172Yb.
1764.94 4220.3* 4730.1* 5318.9* 6124.62*
1787.07 4233* 4736.2* 5342.2* 6169.84*
1792.88 4252.8* 4759.1* 5351.1* 6225.0*
1808.86 4264.6* 4764.9* 5391.3* 6410.34*
2008.95 4271.7* 4813.8* 5411.5* 6420.48*
2022.09 4278.4* 4843.7* 5420.3* 6542.44*
2195.04 4300.1* 4878.0* 5430.7* 6552.05
2329.95 4305.1* 4888.7* 5436.4* 6553.03*
2873.38 4338.4* 4899.2* 5443.55* 6558.92
3389.09 4349.6* 4920.6* 5459.7* 6614.12*
3506.23 4362.3* 4944.5* 5472.2* 6724.42
3539.76 4378.9* 4982.5* 5480.0* 6735.37
3667.8* 4385* 4999.1* 5484.3* 6819.41
3767.8* 4391.8* 5017.8* 5495.05* 6820.62*
3854.18 4432.4* 5025.5* 5515.28* 6864.28*
3856.5* 4449.3* 5033.9* 5538.8* 6901.32*
29
Bảng 8 (tt). Các mức kích thích trung gian thứ nhất tạo ra sau dịch chuyển gamma
sơ cấp từ phản ứng 171Yb(nth,γ)172Yb.
3941.1* 4462* 5059.4* 5555.06* 6904.21
3957.2* 4475.9* 5076.2* 5621.27 6923.12
3963.1* 4513.3* 5102.8* 5630.7* 6929.61
3975.9* 4524.6* 5131.9* 5643.63* 6948.63
3998.5* 4529* 5147.0* 5677.23* 6976.22*
4010.5* 4554.2* 5157.4* 5690.89* 7027.28
4028.6* 4592.9* 5174.9* 5702.2* 7062.14
4034.4* 4611.4* 5184.6* 5706.9* 7155.74
4056.3* 4631.7* 5200.7* 5791.2* 7165.56
4063.6* 4637.8* 5211.2* 5824.84* 7416.47
4091.7* 4652.6* 5231.6* 5915.86* 7427.23
4102* 4658.6* 5237.8* 5943.15* 7514.23
4111* 4672.7* 5242.4* 5972.6* 7524.16
4142.9* 4684.7* 5252.9* 6009.15* 7547.17
4163* 4710.8* 5271.9* 6062.48* 7940.36*
4199.8* 4719.1* 5286.4* 6100.0*
Ghi chú: * Số liệu tham khảo từ Nuclear Data Sheets, số liệu có giá trị keV.
Bảng 9. Các mức kích thích trung gian thứ nhất tạo ra sau dịch chuyển gamma sơ
cấp từ phản ứng 152Sm(nth,γ)153Sm.
6.6* 1924.5* 3842.06 4623.34 5121.44
35.4* 1933.4* 3877.78 4639 5146.54
127.1* 2496.2* 3928.17 4641.63 5182.65
276.4* 2642.4* 3936.55 4656.31 5198.26
321* 2980.86 3945.04 4658.79 5227.45
355.2* 3157.07 3962.55 4661.18 5230.00
361.6* 3243.69 3993.88 4663.2 5255.15
405* 3272.46 4014.65 4666.87 5263.26
414.9* 3288.7 4043.91 4672.29 5275.45
481.2* 3296.6 4048.4 4676.38 5290.2
584.1* 3310.58 4072.29 4688.57 5348.6
630.2* 3321.92 4084.88 4691.97 5380.73
647.6* 3330.73 4108.45 4694.29 5383.09
695.3* 3376.1 4113.11 4697.46 5385.21
734.7* 3381.73 4116.72 4701.79 5419.68
750.2* 3384.16 4173.13 4753.78 5462.88
916.5* 3544.03 4222.5 4756.97 5506.12
984* 3556.52 4302.14 4760.57 5525.64
1004* 3636.76 4307.39 4769.51 5532.12
1018* 3642.6 4371.97 4810.51 5545.36
1110.1* 3649.02 4384.00 4861.91 5575.97
30
Bảng 9 (tt). Các mức kích thích trung gian thứ nhất tạo ra sau dịch chuyển gamma
sơ cấp từ phản ứng 152Sm(nth,γ)153Sm.
1170.8* 3660.16 4441.88 4898.69
1223.4* 3685.23 4457.15 4951.68
1322.3* 3688.4 4462.89 4991.27
1343.7* 3705.9 4477.31 5020.99
1362.4* 3708.62 4506.37 5025.31
1393.6* 3725.83 4518.12 5028.3
1399.7* 3757.34 4525.75 5041.38
1526.6* 3780.11 4562 5048.15
1557.4* 3830.38 4607.68 5105.08
Ghi chú: * Số liệu tham khảo từ Nuclear Data Sheets, số liệu có giá trị keV.
VI. Mô tả mật độ mức của 172Yb và 153Sm theo mẫu khí Fermi dịch
chuyển ngược
Mật độ mức của 172Yb và 153Sm được tính trên chương trình tính mật độ mức,
chương trình cho phép nạp các tham số ban đầu từ file hoặc thay đổi các tham
số theo yêu cầu của người sử dụng. Các kết quả tính hoặc hiệu chỉnh được thể
hiện trực tiếp trên đồ thị cho phép người sử dụng tính và quan sát sự thay đổi
của mật độ mức theo các giá trị tham số khác nhau nhanh chóng. Kết quả tính
được lưu thành các tập tin cùng với các tham số đã được lựa chọn.
Hình 11. Mật độ mức của 172Yb mô tả theo chương trình.
31
Hình 12. Mật độ mức của 153Sm mô tả theo chương trình.
Bảng 10. Mật độ mức kích thích tạo nên do các dịch chuyển sơ cấp từ trạng thái Bn
khi mô tả với nhiệt độ không đổi.
172Yb 153Sm Ex (MeV)
ρ(Ex) ρ(Ex)
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
1.60E-01
7.63E-01
2.76E+00
8.53E+00
2.36E+01
6.05E+01
1.45E+02
3.32E+02
7.27E+02
1.53E+03
3.14E+03
6.24E+03
1.21E+04
2.30E+04
7.35E+00
2.14E+01
5.67E+01
1.40E+02
3.28E+02
7.32E+02
1.57E+03
3.26E+03
6.57E+03
1.29E+04
Tham số a=14.00; ∆=0.27; T=0.47; J=0; σ= 4.50
a=14.00 ∆=-1.01;
T=0.55 J=1/2; σ=5.00
32
Bảng 11. Mật độ mức kích thích tạo nên do các dịch chuyển sơ cấp từ trạng thái Bn
của 172Yb khi mô tả theo mẫu khí Fermi dịch chuyển ngược.
a ∆ T σ Ex ρ
17.3 0.27 0.3 0.699 1 5.14E+01
17.3 0.27 0.3 0.772 1.25 1.12E+02
17.3 0.27 0.3 0.838 1.5 2.30E+02
17.3 0.27 0.3 0.899 1.75 4.45E+02
17.3 0.27 0.4 0.955 2 8.30E+02
17.3 0.27 0.4 1.008 2.25 1.49E+03
17.3 0.27 0.4 1.058 2.5 2.62E+03
17.3 0.27 0.4 1.106 2.75 4.48E+03
17.3 0.27 0.4 1.152 3 7.50E+03
17.3 0.27 0.5 1.195 3.25 1.23E+04
17.3 0.27 0.5 1.237 3.5 2.00E+04
17.3 0.27 0.5 1.278 3.75 3.18E+04
17.3 0.27 0.5 1.317 4 5.01E+04
17.3 0.27 0.5 1.356 4.25 7.78E+04
17.3 0.27 0.5 1.393 4.5 1.19E+05
17.3 0.27 0.6 1.429 4.75 1.82E+05
17.3 0.27 0.6 1.464 5 2.74E+05
17.3 0.27 0.6 1.498 5.25 4.08E+05
17.3 0.27 0.6 1.531 5.5 6.04E+05
17.3 0.27 0.6 1.564 5.75 8.87E+05
17.3 0.27 0.6 1.596 6 1.29E+06
17.3 0.27 0.6 1.627 6.25 1.87E+06
17.3 0.27 0.6 1.658 6.5 2.69E+06
17.3 0.27 0.7 1.688 6.75 3.85E+06
17.3 0.27 0.7 1.717 7 5.47E+06
17.3 0.27 0.7 1.746 7.25 7.72E+06
17.3 0.27 0.7 1.775 7.5 1.09E+07
17.3 0.27 0.7 1.803 7.75 1.52E+07
17.3 0.27 0.7 1.831 8 2.11E+07
Bảng 12. Mật độ mức kích thích tạo nên do các dịch chuyển sơ cấp từ trạng thái Bn
của 153Sm khi mô tả theo mẫu khí Fermi dịch chuyển ngược.
a ∆ T σ Ex ρ
16.69 -1.01 0.3 0.635 1 5.46E+02
16.69 -1.01 0.3 0.701 1.25 1.39E+03
16.69 -1.01 0.3 0.76 1.5 3.04E+03
16.69 -1.01 0.4 0.815 1.75 6.07E+03
16.69 -1.01 0.4 0.866 2 1.14E+04
16.69 -1.01 0.4 0.914 2.25 2.04E+04
16.69 -1.01 0.4 0.96 2.5 3.52E+04
16.69 -1.01 0.4 1.003 2.75 5.90E+04
16.69 -1.01 0.5 1.044 3 9.67E+04
16.69 -1.01 0.5 1.084 3.25 1.55E+05
33
Bảng 12 (tt). Mật độ mức kích thích tạo nên do các dịch chuyển sơ cấp từ trạng thái
Bn của 153Sm khi mô tả theo mẫu khí Fermi dịch chuyển ngược.
a ∆ T σ Ex ρ
16.69 -1.01 0.5 1.122 3.5 2.45E+05
16.69 -1.01 0.5 1.159 3.75 3.80E+05
16.69 -1.01 0.5 1.194 4 5.82E+05
16.69 -1.01 0.5 1.229 4.25 8.80E+05
16.69 -1.01 0.6 1.262 4.5 1.32E+06
16.69 -1.01 0.6 1.295 4.75 1.95E+06
16.69 -1.01 0.6 1.327 5 2.87E+06
16.69 -1.01 0.6 1.358 5.25 4.17E+06
16.69 -1.01 0.6 1.388 5.5 6.03E+06
16.69 -1.01 0.6 1.418 5.75 8.65E+06
16.69 -1.01 0.6 1.447 6 1.23E+07
VII. Làm khớp tham số mật độ mức
Để mô tả số liệu thực nghiệm theo mẫu lý thuyết, phương pháp khớp bình
phương tối thiểu đã được sử dụng. Nguyên tắc cơ bản của phương pháp như
sau:
Giả sử ta thu được một tập số liệu thực nghiệm ứng với các giá trị độc lập (x1,
x2, x3, …) là các giá trị phụ thuộc (y1, y2, y3, …). Biểu thức toán học mô tả sự
phụ thuộc của các đại lượng theo mẫu lý thuyết có dạng:
y1=f1(x1, x2, x3,…; p1, p2, p3, …)
y2=f2(x1, x2, x3,…; p1, p2, p3, …)
y3=f3(x1, x2, x3,…; p1, p2, p3, …)
Thông thường các mẫu lý thuyết thường phụ thuộc vào nhiều tham số
p1,p2,p3,… Ta cần xác định các tham số này để có sự mô tả tốt nhất các số liệu
thực nghiệm. Tổng bình phương độ lệch chuẩn giữa giá trị mô tả theo hàm lý
thuyết và thực nghiệm được mô tả dưới dạng:
( ) ( )[ ]22121212 ,...,,...;,1,..., ∑∑ −−= i iijij jieff ppxxfjypnpp ωχ
Trong đó: yji là giá trị thực nghiệm, neff là số điểm thực nghiệm, ωji là trọng số
của từng điểm thực nghiệm. Khi sử dụng phương pháp không trọng số ωji=1,
34
khi có trọng số trong đó σ là độ lệch chuẩn của thiết bị đo, p là số
tham số cần xác định, nếu sử dụng phương pháp thống kê
2/1 jiji σω =
jiji y/1=ω .
Trong trường hợp chỉ có một biến độc lập:
y=f(x; p1, p2, p3, …)
Biểu thức χ2 có dạng đơn giản như sau:
( ) ( )[ ]221212 ,...,;1,..., ∑ −−= i iiieff ppxfypnpp ωχ
Ở đây ta thay f bằng công thức tính mật độ mức lý thuyết. Để thu được giá trị
của các tham số cần tính các đạo hàm riêng phần theo các biến phụ thuộc để
thu được hệ các phương trình đại số theo theo các biến. Giải các hệ phương
trình này theo phương pháp giải số gần đúng ta thu được các tham số mô tả
mật độ mức cho từng hạt nhân cụ thể.
Mật độ mức của 172Yb với J=0+
2 3 4 5 6 7 8
0
5
1 0
1 5
2 0
2 5
E x p e r im e n t
G i lb e r _ C a m e r o n f i t o f C o u n t1 _ B
S h if te d F e r m i f i t o f C o u n t1 _ B
ρ(E
x)
/M
eV
M e V
Y b 1 7 2 J = 0
Hình 13. Đồ thị biểu diễn mật độ mức thực nghiệm và tính theo các mẫu lý thuyết của
172Yb, đường nét đứt làm khớp theo mẫu nhiệt độ không đổi, đường nét liền làm khớp tham
số a theo mẫu khí Fermi dịch chyển ngược.
35
2 3 4 5 6 7 8
0
5
1 0
1 5
2 0
2 5
J = 0
E x p e r i m e n t
G i l b e r _ C a m e r o n f i t o f C o u n t 1 _ B
S h i f t e d F e r m i f i t o f C o u n t 1 _ B
ρ(E
x)
/M
eV
M e V
Y b 1 7 2
Hình 14. Đồ thị biểu diễn mật độ mức thực nghiệm và tính theo các mẫu lý thuyết của
172Yb, đường nét liền làm khớp theo mẫu nhiệt độ không đổi, đường nét đứt làm khớp các
tham số theo mẫu khí Fermi dịch chyển ngược.
Bảng 13. Các giá trị tham số mô tả mật độ mức thu được từ quá trình làm khớp thực
nghiệm của 172Yb với J=0+.
Làm khớp theo mẫu nhiệt
độ không đổi
Làm khớp tham số a theo mẫu
Fermi dịch chuyển ngược
Làm khớp các tham số theo
mẫu Fermi dịch chuyển ngược
χ2 r2
----------------------------
1.70 0.968
----------------------------
Parameter Value Error
T 1.324 0.133
U0 1.113 0.529
----------------------------
χ2 r2
----------------------------------------
6.77 0.854
----------------------------------------
Parameter Value Error
----------------------------------------
J 0 0
a 8.639 0.127
∆ 0.27 0
σ 4.50 0
T 0.475 0
χ2 r2
------------------------------------
2.23982 0.97254
------------------------------------
Parameter Value Error
------------------------------------
J 0 0
a 4.333 5.077
∆ 1.151 4.530
σ 1.151 3.514
T -0.555 3.656
Mật độ mức của 153Sm với J=(1/2)+
36
0 1 2 3 4 5 6
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34 J=1/2
ρ(E
x)
/M
eV
Experim ent
ShiftedFerm i fit of Count2_Experim ent
G ilber_Cam eron fit of Count2_Experim ent
M eV
Sm 153
Hình 15. Đồ thị biểu diễn mật độ mức thực nghiệm và tính theo các mẫu lý thuyết của
153Sm, đường nét đứt làm khớp theo mẫu nhiệt độ không đổi, đường nét liền làm khớp các
tham số theo mẫu khí Fermi dịch chyển ngược.
Bảng 14. Các giá trị tham số mô tả mật độ mức thu được từ quá trình làm khớp thực
nghiệm của 153Sm với J=(1/2)+.
Làm khớp các tham số mật độ mức theo
mẫu Fermi dịch chuyển ngược
Làm khớp theo công thức nhiệt độ không đổi
χ2 r2
5.55809 0.89599
----------------------------------------
Parameter Value Error
----------------------------------------
J 0.5 0
a 1.331 433
∆ -13.36 22211
σ 1.22 600
T 9.99 143875
χ2 = 3.51977
r2 = 0.89023
----------------------------------------
Parameter Value Error
----------------------------------------
T 4.26 0.736
U0 -14.08 3.986
Các kết quả khớp cho thấy mẫu khí Fermi có dịch chuyển ngược và mẫu nhiệt
độ không đổi mô tả mật độ mức của 153Sm khá phù hợp với thực nghiệm trong
vùng 3÷6 MeV và của 172Yb trong vùng từ 2÷6 MeV. Ngoài các vùng năng
lượng trên cần phải có các mô tả khác hoặc có thể còn cần thêm các thông tin
thực nghiệm chính xác về mật độ mức thực nghiệm trong các vùng năng lượng
này.
37
TÀI LIỆU THAM KHẢO
[1]. Hoàng Hữu Thư, Bài giảng về cấu trúc hạt nhân, Nhà xuất bản ĐH&THCN, Hà
Nội 1972.
[2]. Vương Hữu Tấn và các cộng sự, báo cáo đề tài khoa học công nghệ cấp bộ năm
2005-2006.
[3]. A.V. Malyshev, Level Density and Structure of Atomic Nuclei (in Russian).
(Atomizdat, Moscow 1969)
[4]. A.V. Ignatyuk, Statistical Properties of Excited Atomic Nuclei (in Russian).
(Energo atomizdat, Moscow 1983); Translated by IAEA, Report INDC-233(L)
(IAEA Vienna 1985).
[5]. A. Bohr, B. Mottelson, Nuclear Structure, vol 1 (Benjamin Inc., New York and
Amsterdam, 1969).
[6]. W Gelletly et al, The reaction 171Yb(n, γ)172Yb and the level scheme of 172Yb, J.
Phys. G: Nucl. Phys. 11 1055-1085, 1985.
[7]. Handbook for calculations of nuclear reaction data, IAEA-TECDOC-1034.
[8]. Workshop on nuclear structure and decay data: theory and evaluation,
INDC(NDS)-452, IAEA Nuclear Data Section, Vienna, Austria, November 2004.
38
Mục lục Trang
MỞ ĐẦU 2
GIỚI THIỆU 3
XÁC ĐỊNH MẬT ĐỘ MỨC BẰNG THỰC NGHIỆM
I. Đo các mức năng lượng kích thích 4
II. Sơ đồ mức thực nghiệm theo phương pháp cộng biên độ các xung
trùng phùng
6
III. Khả năng xây dựng hoàn chỉnh sơ đồ phân rã từ phản ứng (n,γ) 9
III. Đánh giá phân bố mật độ mức kích thích ρ và hàm lực photon k của
các dịch chuyển nối tầng
10
IV. Sai số hệ thống trong việc xác định các tham số 11
MÔ TẢ MẬT ĐỘ MỨC
I. Tình hình mô tả mật độ mức 13
II. Một số giá trị của tham số mật độ mức 18
XÁC ĐỊNH MẬT ĐỘ MỨC CỦA 172Yb VÀ 153Sm
I. Mô tả thực nghiệm 23
II. Một số phổ thực nghiệm 24
III. Số liệu thực nghiệm đo trùng phùng gamma-gamma của 172Yb và
153Sm
25
IV. Mật độ mức thực nghiệm các trạng thái kích thích trung gian tạo ra
sau dịch chuyển gamma sơ cấp của Sm153 và 172Yb theo phương pháp
cộng biên độ các xung trùng phùng
27
V. Khả năng hoàn thiện sơ đồ phân rã và xác định mật độ mức thực
nghiệm
28
VI. Mô tả mật độ mức của 172Yb và 153Sm theo mẫu khí Fermi dịch
chuyển ngược
31
VII. Làm khớp tham số mật độ mức 34
TÀI LIỆU THAM KHẢO 38
39
Các file đính kèm theo tài liệu này:
- oparhugy_7277.pdf