This thesis investigates the firm’s investment – cash flow relationship under
the two different contexts: state ownership and banking system reform in a small
transition economy – Vietnam, which are presented in two separate studies in Chapter
4 and Chapter 5 respectively. And this final chapter discusses the thesis’ main
findings, contributions, implications, limitations, and future research directions of
each study. Section 6.2 and Section 6.3 review the two studies respectively, and then
Section 6.4 concludes the Chapter
                
              
                                            
                                
            
 
            
                 178 trang
178 trang | 
Chia sẻ: tueminh09 | Lượt xem: 633 | Lượt tải: 1 
              
            Bạn đang xem trước 20 trang tài liệu Firms’ investment – cash flow relationship in the context of state ownership and banking system reform in Vietnam, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
uded in the analysis due to its unavailability of data. Otherwise, listed 
companies are currently concentrated on some industries such as 
137 
constructions, real estates, commerce, plastic and chemicals, food processing 
and beverage, etc.. 
- In terms of methodology, the thesis mainly used the quantitative method and 
does not take into account the qualitative factors which may have impact on 
the investment – cash flow relations such as managerial attitudes (e.g. 
managerial optimistics/pessimistics). 
With these limitations, I expect that the future studies may have broader 
sample size, including variety of companies and length of time as well as including 
some qualitative method. 
6.3. Firm’s investment – cash flow relationship in the context of banking 
system reform in Vietnam 
6.3.1. Research findings 
Along with the world economic integration, according to WTO accession 
roadmap, Vietnam has to open the banking sector to foreign banks. This study aims 
to test whether the investment behaviors of Vietnamese listed companies is affected 
by banking reform, especially whether banking reform will help reduce the problems 
of political-oriented investment, which are listed by the state-controlled enterprises, 
and at the same time eliminate under-investment issues due to the financial constraint 
of the listed state-uncontrolled companies? Using an unbalanced panel of companies 
listing on HOSE and HNX from 2009 and 2014, I find evidence for U-shape relation 
between investment and cash flows, both state controlled and non state controlled 
firms. Banking system reform measured by presence of foreign banks has signigicant 
impact on investment behaviour of Vietnamese companies. Underinvestment 
problem of uncontrolled firms is mitigated by the reforms due to their better 
accessibility to external financing. Unlike my expectation, overinvestment problem 
of state controlled firms is almost not reduced which is different with findings by Tsai 
138 
et al. (2014)Tsai et al. (2014). It can be explained that foreign bank presence in 
Vietnam is still very limited while state owned banks are still playing dominating role 
on the credit market. Besides, both high and low growth state controlled firms seem 
do not change their investment behavior much after the reform. However, high 
growth uncontrolled firms signigicantly increase their investment after the reforms 
while low growth uncontrolled firms seems have to more rely on their cash flows in 
the post reform period. The results also shows a significant change from negative to 
positive investment – leverage relation from pre reform period to post reform period 
for both state and non state controlled firms, meaning that firm investments are less 
dependent on internal financing in the post reform period. This impact are especially 
significant for low growth opportunity firms. As a result, it can be concluded that 
banking system reform measured by presence of foreign banks has significant impact 
on both company’s investment and financing behaviors. The impacts are not the same 
for different group of companies. 
Therefore, the reform of the banking system has had a positive impact on 
corporate governance of Vietnamese listed companies. However, different groups 
have different effects. 
6.3.2. Research contributions , implications and policy recommendations 
This study contributes additional empirical evidence to the financial literature 
on the topic of impact of banking system reform on investment – cash flow relation, 
especially in a context of small transition country. Most of my findings are similar to 
the previous study results except that overinvestment problem of state controlled 
firms is not mitigated in the post reform period. Perhaps, in the post reform period 
state controlled firms are still main customers of state-owned local banks who are 
dominating the credit market. Moreover, presence and operation of foreign banks in 
Vietnam is still limited. 
139 
The study contributed to existing theories as well as expanded previous studies 
on the impact of banking system reform on the relationship between cash flow and 
investment of listed companies in Vietnam. The study also brought about really 
useful results for policy makers as well as Vietnamese enterprises in managing and 
developing the banking system, creating a healthy capital mobilization channel for 
businesses as well as help businesses make financial decisions to add value to the 
business. 
Based on the above research results, I propose a few policy suggestions as 
follows: 
• Under the context of present international economic integration, the opening 
of the financial system is indispensable, which requires deep and broad reforms in 
the national financial system. However, in order to carry out the reforms proactively 
and effectively, it is necessary to improve the competitiveness of the banking system 
through the healthy banking operations and strict management of bad debts. 
• Step by step opening and liberalizing the financial sector to integrate deeply 
and broadly with the world, thereby making it more transparent and healthier for the 
national banking system. This opening also helps to reduce businesses to access 
funds more effectively, making better investment decisions. 
• For businesses, different growth opportunities may have different cash flow 
sensitivity of investment as well as leverage sensitivity of investment, so when there 
is a good investment opportunity in the future, businesses may choose a low level of 
financial leverage to avoid debt overhang, so that it cannot mobilize additional 
funding for financing the opportunities. 
140 
6.3.3. Research limitations and future research directions 
This study has several limitations in terms of its timeframe, sample sizes and 
methodology as below: 
- In term of time period, the study only covers for the period of 2008 – 2015, in 
a relatively short time due to the operation of the foreign banking system in 
Vietnam. not long period of time. It is because the study was conducted in 
2015, so I use data upto 2014 and Vietnam has not actually opened its financial 
sector to the world until after joinint the WTO in 2007. 
- In term of sample size, the data used in this study are extracted from financial 
statements of listed companies. Many non-listed equitized firms have not been 
included in the analysis due to its unavailability of data. Otherwise, listed 
companies are currently concentrated on some industries such as 
constructions, real estates, commerce, plastic and chemicals, food processing 
and beverage, etc. In addition, the topic has only been studied for businesses 
in general, but there is no evaluation for each specific industry. 
- In terms of methodology, the thesis mainly used the quantitative method and 
does not take into account the qualitative factors which may have impact on 
the investment – cash flow relations such as managerial attitudes (e.g. 
managerial optimistics/pessimistics). Furthermore, variable proxies for 
banking system reform using foreign bank presence includes branches, outlets, 
representative offices may not cover the real pressures for local bank to reform 
their operations. Accordingly, presence and operations of foreign banks in 
Vietnam are still not widespread yet, mainly located in big cities and mainly 
serve for foreign clients. 
With these limitations, I expect that the future studies may have broader 
sample size, including variety of companies and length of time, as well as including 
some qualitative method and may be conducted for some specific industries. 
141 
THESIS-RELATED LIST OF AUTHOR’S 
PUBLICATIONS 
1. Thoa, T. T. K., & Uyen, N. T. U. (2017). Banking system reform and investment–
cash flow relation: Case of a small transition economy. Research in International 
Business and Finance, 41, 500-515, Doi: 10.1016/j.ribaf.2017.04.038. 
2. Từ Thị Kim Thoa & Nguyễn Thị Uyên Uyên (2017). Kiểm định mối quan hệ giữa 
đầu tư và dòng tiền: Trường hợp Việt Nam. Tạp chí khoa học, 57 (6), 49-63. 
3. Thoa, T. T. K., & Uyen, N. T. U. (2019). State Ownership and the Relationship 
between Investment and Cash Flow: The Case of Vietnamese Listed Firms. Emerging 
Markets Finance Trade, 1-23, Doi: 10.1080/1540496X.2019.1610874 
142 
REFERENCES 
Abel, A. B. (1980). Empirical investment equations: An integrative framework. Paper 
presented at the Carnegie-Rochester conference series on public policy. 
Abel, A. B., & Blanchard, O. J. (1986). The Present Value of Profits and Cyclical 
Movements in Investment. Econometrica, 54(2), 249-273. doi:10.2307/1913150 
Ahn, S., Denis, D. J., & Denis, D. K. (2006). Leverage and investment in diversified firms. 
Journal of financial economics, 79(2), 317-337. 
Aivazian, V. A., Ge, Y., & Qiu, J. (2005). The impact of leverage on firm investment: 
Canadian evidence. Journal of Corporate Finance, 11(1), 277-291. 
Akerlof, G. A. (1970). The market for lemons: Quality and the market mechanism. . 
Quarterly Journal of Economics, 84, 488-500. 
Allayannis, G., & Mozumdar, A. (2001). The investment-cash flow sensitivity puzzle: can 
negative cash flow observations explain it? University of Virginia. Photocopy. 
Allayannis, G., & Mozumdar, A. (2004). The impact of negative cash flow and influential 
observations on investment–cash flow sensitivity estimates. Journal of Banking & 
Finance, 28(5), 901-930. 
Allen, F., Qian, J., & Qian, M. (2005). Law, finance, and economic growth in China. Journal 
of financial economics, 77(1), 57-116. 
Almeida, H., & Campello, M. (2007). Financial constraints, asset tangibility, and corporate 
investment. The Review of Financial Studies, 20(5), 1429-1460. 
Almeida, H., Campello, M., & Weisbach, M. S. (2004). The cash flow sensitivity of cash. 
The Journal of Finance, 59(4), 1777-1804. 
Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo 
evidence and an application to employment equations. The review of economic studies, 
58(2), 277-297. 
Attig, N., Cleary, S., El Ghoul, S., & Guedhami, O. (2012). Institutional investment horizon 
and investment–cash flow sensitivity. Journal of Banking Finance, 36(4), 1164-1180. 
Bai, C.-E., Lu, J., & Tao, Z. (2006). The multitask theory of state enterprise reform: 
empirical evidence from China. The American economic review, 96(2), 353-357. 
Baum, C. F., Schäfer, D., & Talavera, O. (2011). The impact of the financial system’s 
structure on firms’ financial constraints. Journal of International Money Finance, 30(4), 
678-691. 
Beck, T., Demirgüç-Kunt, A., & Maksimovic, V. (2008). Financing patterns around the 
world: Are small firms different? Journal of financial economics, 89(3), 467-487. 
Becker, B., & Sivadasan, J. (2010). The effect of financial development on the investment-
cash flow relationship: cross-country evidence from Europe. The BE Journal of 
Economic Analysis Policy, 10(1). 
Berger, A. N., Klapper, L. F., Peria, M. S. M., & Zaidi, R. (2008). Bank ownership type and 
banking relationships. Journal of Financial Intermediation, 17(1), 37-62. 
Bernanke, B., Gertler, M., & Gilchrist, S. (1994). The financial accelerator and the flight to 
quality (Report). National Bureau of Economic Research. 
143 
Bhaduri, S. N. (2005). Investment, financial constraints and financial liberalization: Some 
stylized facts from a developing economy, India. Journal of Asian Economics, 16(4), 
704-718. 
Bhagat, S., Moyen, N., & Suh, I. (2005). Investment and internal funds of distressed firms. 
Journal of Corporate Finance, 11(3), 449-472. 
Bond, S., & Meghir, C. (1994a). Dynamic investment models and the firm's financial policy. 
The review of economic studies, 61(2), 197-222. 
Bond, S., & Meghir, C. (1994b). Financial constraints and company investment. Fiscal 
Studies, 15(2), 1-18. 
Borisova, G., & Megginson, W. L. (2011). Does government ownership affect the cost of 
debt? Evidence from privatization. The Review of Financial Studies, 24(8), 2693-2737. 
Brown, J. R., & Petersen, B. C. (2009). Why has the investment-cash flow sensitivity 
declined so sharply? Rising R&D and equity market developments. Journal of Banking 
& Finance, 33(5), 971-984. 
Campello, M., Graham, J. R., & Harvey, C. R. (2010). The real effects of financial 
constraints: Evidence from a financial crisis. Journal of financial economics, 97(3), 470-
487. 
Chen, C. R., Li, Y., Luo, D., & Zhang, T. (2017a). Helping hands or grabbing hands? An 
analysis of political connections and firm value. Journal of Banking & Finance, 80, 71-
89. 
Chen, G., Firth, M., & Xu, L. (2009). Does the type of ownership control matter? Evidence 
from China’s listed companies. Journal of Banking & Finance, 33(1), 171-181. 
Chen, R., El Ghoul, S., Guedhami, O., & Wang, H. (2017b). Do state and foreign ownership 
affect investment efficiency? Evidence from privatizations. Journal of Corporate 
Finance, 42, 408-421. 
Chen, R. R., El Ghoul, S., Guedhami, O., & Nash, R. (2018). State ownership and corporate 
cash holdings. Journal of financial and quantitative analysis, 53(5), 2293-2334. 
Chow, C. K. W., & Fung, M. K. Y. (1998). Ownership structure, lending bias, and liquidity 
constraints: evidence from Shanghai's manufacturing sector. Journal of comparative 
economics, 26(2), 301-316. 
Cleary, S. (1999). The relationship between firm investment and financial status. The 
Journal of Finance, 54(2), 673-692. 
Cleary, S., Povel, P., & Raith, M. (2007). The U-shaped investment curve: Theory and 
evidence. Journal of financial and quantitative analysis, 42(01), 1-39. 
Cull, R., Li, W., Sun, B., & Xu, L. C. (2015). Government connections and financial 
constraints: Evidence from a large representative sample of Chinese firms. Journal of 
Corporate Finance, 32, 271-294. 
Cull, R., & Xu, L. C. (2003). Who gets credit? The behavior of bureaucrats and state banks 
in allocating credit to Chinese state-owned enterprises. Journal of Development 
Economics, 71(2), 533-559. 
Deloof, M. (1998). Internal capital markets, bank borrowing, and financing constraints: 
evidence from Belgian firms. Journal of Business Finance Accounting, 25(7‐8), 945-
968. 
Denis, D. J., Denis, D. K., & Economics. (1993). Managerial discretion, organizational 
structure, and corporate performance: A study of leveraged recapitalizations. Journal of 
Accounting and economics, 16(1-3), 209-236. 
144 
Denis, D. J., & Sibilkov, V. (2009). Financial constraints, investment, and the value of cash 
holdings. Review of financial studies, hhp031. 
Detragiache, E., Tressel, T., & Gupta, P. (2008). Foreign banks in poor countries: theory and 
evidence. The Journal of Finance, 63(5), 2123-2160. 
Devereux, M., & Schiantarelli, F. (1990). Investment, financial factors, and cash flow: 
Evidence from UK panel data. In Asymmetric information, corporate finance, and 
investment (pp. 279-306): University of Chicago Press. 
Du, M., & Boateng, A. (2015). State ownership, institutional effects and value creation in 
cross-border mergers & acquisitions by Chinese firms. International business review, 
24(3), 430-442. 
Duchin, R., Ozbas, O., & Sensoy, B. A. (2010). Costly external finance, corporate 
investment, and the subprime mortgage credit crisis. Journal of financial economics, 
97(3), 418-435. 
Eberly, J., Rebelo, S., & Vincent, N. (2012). What explains the lagged-investment effect? 
Journal of monetary Economics, 59(4), 370-380. 
Erickson, T., & Whited, T. M. (2000). Measurement error and the relationship between 
investment and q. Journal of political economy, 108(5), 1027-1057. 
Faccio, M. (2006). Politically connected firms. The American economic review, 96(1), 369-
386. 
Fazzari, S. M., Hubbard, R. G., Petersen, B. C., Blinder, A. S., & Poterba, J. M. (1988). 
Financing constraints and corporate investment. Brookings papers on economic activity, 
1988(1), 141-206. 
Firth, M., Lin, C., & Wong, S. M. (2008). Leverage and investment under a state-owned 
bank lending environment: Evidence from China. Journal of Corporate Finance, 14(5), 
642-653. 
Firth, M., Malatesta, P. H., Xin, Q., & Xu, L. (2012). Corporate investment, government 
control, and financing channels: Evidence from China's Listed Companies. Journal of 
Corporate Finance, 18(3), 433-450. 
Fohlin, C., & López-Iturriaga, F. (2006). Bank Relationships, Ownership Concentration, and 
Investment Patterns of Spanish Corporate Firms. 
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=938525. 
Gan, J. (2007). Collateral, debt capacity, and corporate investment: Evidence from a natural 
experiment. Journal of financial economics, 85(3), 709-734. 
Gilchrist, S., & Himmelberg, C. P. (1995). Evidence on the role of cash flow for investment. 
Journal of monetary Economics, 36(3), 541-572. 
Goergen, M., & Renneboog, L. (2001). Investment policy, internal financing and ownership 
concentration in the UK. Journal of Corporate Finance, 7(3), 257-284. 
Gorodnichenko, Y., Schaefer, D., & Talavera, O. (2009). Financial constraints and 
continental business groups: Evidence from German Konzerns. Research in 
International Business Finance, 23(3), 233-242. 
Goyal, V. K., Lehn, K., & Racic, S. (2002). Growth opportunities and corporate debt policy: 
the case of the US defense industry. Journal of financial economics, 64(1), 35-59. 
Greenwald, B., Stiglitz, J., & Weiss, A. (1984). Informational Imperfections in the Capital 
Market and Macroeconomic Fluctuations. American Economic Review, 74(2), 194-199. 
Guariglia, A. (2008). Internal financial constraints, external financial constraints, and 
investment choice: Evidence from a panel of UK firms. Journal of Banking & Finance, 
32(9), 1795-1809. 
145 
Guariglia, A., Liu, X., & Song, L. (2011). Internal finance and growth: microeconometric 
evidence on Chinese firms. Journal of Development Economics, 96(1), 79-94. 
Haider, Z. A., Liu, M., Wang, Y., & Zhang, Y. (2018). Government ownership, financial 
constraint, corruption, and corporate performance: International evidence. Journal of 
International Financial Markets, Institutions and Money, 53, 76-93. 
Hayashi, F. (1982). Tobin's marginal q and average q: A neoclassical interpretation. 
Econometrica: Journal of the econometric society, 213-224. 
Héricourt, J., & Poncet, S. (2009). FDI and credit constraints: Firm-level evidence from 
China. Economic systems, 33(1), 1-21. 
Hoshi, T., Kashyap, A., & Scharfstein, D. (1991). Corporate structure, liquidity, and 
investment: Evidence from Japanese industrial groups. The Quarterly Journal of 
Economics, 106(1), 33-60. 
Hovakimian, G. (2009). Determinants of investment cash flow sensitivity. Financial 
management, 38(1), 161-183. 
Hubbard, R. G. (1997). Capital-market imperfections and investment. National Bureau of 
Economic Research. 
Jensen, M. C. (1986). Agency costs of free cash flow, corporate finance, and takeovers. The 
American economic review, 76(2), 323-329. 
Jensen, M. C., & Meckling, W. H. (1976). Theory of the firm: Managerial behavior, agency 
costs and ownership structure. Journal of financial economics, 3(4), 305-360. 
John, K., Lang, L. H., & Netter, J. (1992). The voluntary restructuring of large firms in 
response to performance decline. The Journal of Finance, 47(3), 891-917. 
Jorgenson, D., & Hall, R. E. (1967). Tax policy and investment behavior. American 
Economic Review, 57(3). 
Jorgenson, D. W. (1963). Capital theory and investment behavior. The American economic 
review, 53(2), 247-259. 
Jung, K., Kim, Y.-C., & Stulz, R. (1996). Timing, investment opportunities, managerial 
discretion, and the security issue decision. Journal of financial economics, 42(2), 159-
185. 
Kadapakkam, P.-R., Kumar, P., & Riddick, L. A. (1998). The impact of cash flows and firm 
size on investment: The international evidence. Journal of Banking & Finance, 22(3), 
293-320. 
Kaplan, S. N., & Zingales, L. (1997). Do investment-cash flow sensitivities provide useful 
measures of financing constraints? The Quarterly Journal of Economics, 112(1), 169-
215. 
Kiyotaki, N., & Moore, J. (1997). Credit cycles. Journal of political economy, 105(2), 211-
248. 
Kornai, J. (1979). Resource-constrained versus demand-constrained systems. Econometrica, 
47(4), 801-819. 
Kornai, J. (1980). " Hard" and" Soft" budget constraint. Acta Oeconomica, Vol. 25(3), 
231:245. 
Laeven, L. (2000). Financial liberalization and financing constraints: evidence from panel 
data on emerging economies: World Bank, Financial Sector Strategy and Policy 
Department. 
Lamont, O., Polk, C., & Saá-Requejo, J. (2001). New Evidence on Measuring Financial 
Constraints: Moving Beyond the KZ Index. The RAND Journal of Economics, 32(1), 
101-128. 
146 
Lamont, O., Polk, C., & Saaá-Requejo, J. (2001). Financial constraints and stock returns. 
The Review of Financial Studies, 14(2), 529-554. 
Lang, L., Ofek, E., & Stulz, R. (1996). Leverage, investment, and firm growth. Journal of 
financial economics, 40(1), 3-29. 
Lin, H.-C. M., & Bo, H. (2012). State-ownership and financial constraints on investment of 
Chinese-listed firms: New evidence. The European Journal of Finance, 18(6), 497-513. 
Lin, J. Y., & Tan, G. (1999). Policy burdens, accountability, and the soft budget constraint. 
The American economic review, 89(2), 426-431. 
Liu, Q., & Lu, Z. J. (2007). Corporate governance and earnings management in the Chinese 
listed companies: A tunneling perspective. Journal of Corporate Finance, 13(5), 881-
906. 
Maskin, E., Kornai, J., & Roland, G. (2003). Understanding the Soft Budget Constraint. 
Journal of Economic literature, 41(4), 1095-1136. 
McConnell, J. J., & Servaes, H. (1995). Equity ownership and the two faces of debt. Journal 
of financial economics, 39(1), 131-157. 
Meyer, J. R., & Kuh, E. (1957). The investment decision: An empirical study (Vol. 102): 
Harvard University Press Cambridge, MA. 
Mizen, P., & Vermeulen, P. (2005). Investment and cash flow sensitivity what drives the 
relationship? Working Paper Series(485). 
Modigliani, F., & Miller, M. H. (1958). The cost of capital, corporation finance and the 
theory of investment. The American economic review, 48, 261-297. 
Moyen, N. (2004). Investment–cash flow sensitivities: Constrained versus unconstrained 
firms. The Journal of Finance, 59(5), 2061-2092. 
Myers, S. C. (1977). Determinants of corporate borrowing. Journal of financial economics, 
5(2), 147-175. 
Myers, S. C., & Majluf, N. S. (1984). Corporate financing and investment decisions when 
firms have information that investors do not have. Journal of financial economics, 13(2), 
187-221. 
Nguyen, T. H. (2017). Vietnam State-owned Enterprise (SOE) Reform: A productivity and 
efficiency perspective. The University of Queensland, espace.library.uq.edu.au. 
Retrieved from https://espace.library.uq.edu.au 
Nhung, L. T. P., & Okuda, H. (2015). Effects of state ownership on companies’ capital 
structure and profitability: Estimation analysis before and after the Lehman shock. 
Journal of Asian Economics, 38, 64-78. 
O'Toole, C. M., Morgenroth, E. L., & Ha, T. T. (2016). Investment efficiency, state-owned 
enterprises and privatisation: Evidence from Viet Nam in Transition. Journal of 
Corporate Finance, 37, 93-108. 
Oliner, S. D., & Rudebusch, G. D. (1992). Sources of the financing hierarchy for business 
investment. The review of economics and statistics, 643-654. 
Oliner, S. D., Rudebusch, G. D., & Sichel, D. (1996). The Lucas critique revisited assessing 
the stability of empirical Euler equations for investment. Journal of Econometrics, 
70(1), 291-316. 
Petersen, M. A., & Rajan, R. G. (1993). The benefits of firm-creditor relationships: evidence 
from small business data. CEPR/ESF Network in Financial Markets Working Paper. 
Petersen, M. A., & Rajan, R. G. (1997). Trade credit: theories and evidence. The Review of 
Financial Studies, 10(3), 661-691. 
147 
Peyer, U. C., & Shivdasani, A. (2001). Leverage and internal capital markets: evidence from 
leveraged recapitalizations. Journal of financial economics, 59(3), 477-515. 
Poncet, S., Steingress, W., & Vandenbussche, H. (2010). Financial constraints in China: 
firm-level evidence. China Economic Review, 21(3), 411-422. 
Schiantarelli, F. (1996). Financial constraints and investment: methodological issues and 
international evidence. Oxford Review of Economic Policy, 12(2), 70-89. 
Sheshinski, E., & López-Calva, L. F. (2003). Privatization and its benefits: theory and 
evidence. CESifo Economic Studies, 49(3), 429-459. 
Smith Jr, C. W., & Watts, R. L. (1992). The investment opportunity set and corporate 
financing, dividend, and compensation policies. Journal of financial economics, 32(3), 
263-292. 
Sun, Q., & Tong, W. H. (2003). China share issue privatization: the extent of its success. 
Journal of financial economics, 70(2), 183-222. 
Tobin, J. (1969). A general equilibrium approach to monetary theory. Journal of money, 
credit and banking, 1(1), 15-29. 
Townsend, R. M. (1979). Optimal contracts and competitive markets with costly state 
verification. Journal of Economic theory, 21(2), 265-293. 
Tsai, Y.-J., Chen, Y.-P., Lin, C.-L., & Hung, J.-H. (2014). The effect of banking system 
reform on investment–cash flow sensitivity: Evidence from China. Journal of Banking 
& Finance, 46, 166-176. 
Whited, T. M. (1992). Debt, liquidity constraints, and corporate investment: Evidence from 
panel data. The Journal of Finance, 47(4), 1425-1460. 
Whited, T. M., & Wu, G. (2006). Financial constraints risk. The Review of Financial Studies, 
19(2), 531-559. 
148 
APPENDIX 
Table A.1: Distribution of sample by exchange listed, 2008 - 2015 
 2009 2010 2011 2012 2013 2014 2015 
HOSE 155 217 237 249 252 256 230 
HNX 178 247 253 262 278 274 278 
Results of study 1: Firm’s investment – cash flow relationship in the 
context of state-ownership in Vietnam 
Descriptive statistics 
 .249256 .1926 0 .9672 .2470144
 .6872852 .6286357 -.812584 2.563472 .5369431
 4.288176 4 0 14 2.682421
 .4683225 .4950439 0 .9673918 .2326286
 13.14515 13.09501 9.211022 18.79565 1.461
 1.115838 .862403 0 24.96242 1.007965
 .2848621 .0951423 -1 102.1511 2.277554
 .3291741 0 0 1 .4699831
 1.610909 .0463943 -546.2458 2449.613 50.7206
 Total .4117665 .0613529 -.9972563 72.87134 1.901333
 .5686346 .5237 .5 .9672 .0868816
 .7049496 .6518565 -.5645162 2.563472 .5398727
 4.257053 4 0 14 2.493667
 .5249629 .5683659 0 .9458926 .2370742
 13.39007 13.39519 9.211022 17.85354 1.424266
 1.073435 .8595031 0 8.980172 .8381049
 .1147715 .0852457 -1 4.075042 .3602047
 .2821317 0 0 1 .4502724
 .2427256 .0722566 -53.58707 47.18148 2.954176
 1 .3866601 .0709187 -.9330725 21.05208 1.28195
 .1223795 0 0 .49996 .1600808
 .6802679 .6201371 -.812584 2.243514 .5357256
 4.30054 4 0 14 2.754218
 .4458215 .4692345 0 .9673918 .2269979
 13.04786 12.93289 9.514849 18.79565 1.464301
 1.132683 .8648809 0 24.96242 1.067664
 .3524324 .099277 -1 102.1511 2.679779
 .3478622 0 0 1 .4763909
 2.154434 .0364233 -546.2458 2449.613 59.92064
 0 .4217402 .0577088 -.9972563 72.87134 2.097377
State_05 mean p50 min max sd
149 
Correlations 
 GOV 0.1230* 0.0140 -0.0219 0.8151* 1.0000 
 State_05 0.1535* -0.0073 0.0207 1.0000 
 BETA 0.1951* -0.0999* 1.0000 
 AGE -0.1792* 1.0000 
 LEV 1.0000 
 LEV AGE BETA State_05 GOV
 GOV -0.0188 -0.0155 0.0227 -0.0206 -0.0666* 0.0051 0.0206 
 State_05 -0.0083 -0.0170 0.0199 -0.0215 -0.0471* -0.0265 0.1057*
 BETA -0.0920* -0.0102 0.0456* -0.0199 0.0328 -0.0528* 0.3209*
 AGE 0.0224 -0.0140 -0.0339 -0.0073 -0.0285 -0.0001 0.0659*
 LEV -0.1506* -0.0584* 0.0455* -0.0691* -0.0025 -0.1563* 0.2930*
 SIZE -0.0491* -0.0219 0.0373 -0.0301 0.0336 0.1568* 1.0000 
 Q 0.0604* -0.0074 -0.0272 -0.0019 0.0115 1.0000 
 SG -0.0029 0.0036 0.0029 0.0030 1.0000 
 CFKPOS 0.6832* 0.9791* 0.0023 1.0000 
 CFKNEG -0.0264 0.2056* 1.0000 
 CFK 0.6632* 1.0000 
 IK 1.0000 
 IK CFK CFKNEG CFKPOS SG Q SIZE
. pwcorr IK CFK CFKNEG CFKPOS SG Q SIZE LEV AGE BETA State_05 GOV,star(.01)
. //Correlation
 GOV 0.0015 0.0656* 0.0613* 0.0770* -0.0418 0.0089 0.0109 0.1330* 0.0383 -0.0308 0.8043* 1.0000 
 State_05 0.0367 0.0502* 0.0628* 0.0547* -0.0256 -0.0074 0.1102* 0.1589* 0.0088 0.0206 1.0000 
 BETA -0.0571* -0.0886* -0.0629* -0.0886* 0.0543* -0.0714* 0.3267* 0.1856* -0.1032* 1.0000 
 AGE -0.1081* -0.0612* 0.0631* -0.0942* -0.1208* -0.0859* 0.0652* -0.1730* 1.0000 
 LEV -0.0919* -0.1405* -0.1377* -0.1143* 0.0692* -0.1677* 0.3086* 1.0000 
 SIZE 0.0810* -0.0768* 0.0026 -0.0834* 0.0771* 0.1074* 1.0000 
 Q 0.2265* 0.1225* 0.0751* 0.1298* 0.1661* 1.0000 
 SG 0.1225* 0.0169 -0.0198 0.0329 1.0000 
 CFKPOS 0.1025* 0.9740* 0.7622* 1.0000 
 CFKNEG -0.0095 0.8356* 1.0000 
 CFK 0.0885* 1.0000 
 IK 1.0000 
 IK CFK CFKNEG CFKPOS SG Q SIZE LEV AGE BETA State_05 GOV
(obs=3366)
. spearman IK CFK CFKNEG CFKPOS SG Q SIZE LEV AGE BETA State_05 GOV,star(.01)
150 
Linear relationship between investment and cash flows 
 (-3.33) (-0.44) (-2.79) 
BETA -0.0430*** -0.00956 -0.0404***
 (1.05) (0.21) (0.62) 
AGE 0.00284 0.000888 0.00185 
 (-2.62) (-1.27) (-2.80) 
SIZE -0.0132*** -0.0112 -0.0159***
 (1.13) (-0.33) (1.45) 
LEV 0.0335 -0.0167 0.0481 
 (-0.31) (4.21) (-0.40) 
L.SG -0.00204 0.120*** -0.00266 
 (14.80) (-1.59) (17.38) 
CFK 0.0209*** -0.00921 0.0224***
 IK IK IK 
 (1) (2) (3) 
* p<0.1, ** p<0.05, *** p<0.01
t statistics in parentheses
R-sq 
N 2734 773 1961 
 (5.90) (4.11) (5.22) 
_cons 0.426*** 0.427*** 0.458***
151 
Non-linear relationship between investment and cash flow 
Approach 1: CFKSQR 
Approach 2: using CFKPOS vs CFKNEG 
 (-4.24) (0.06) (-3.46) 
BETA -0.0574*** 0.00116 -0.0493***
 (1.01) (-0.06) (-0.32) 
AGE 0.00255 -0.000244 -0.000868 
 (-2.79) (-0.94) (-3.39) 
SIZE -0.0135*** -0.00770 -0.0168***
 (-0.22) (-0.18) (-0.59) 
LEV -0.00660 -0.00876 -0.0199 
 (-1.50) (4.61) (-1.62) 
L.SG -0.00818 0.126*** -0.00893 
 (34.72) (7.43) (34.06) 
CFKSQR 0.0000111*** 0.00185*** 0.0000111***
 (2.69) (-0.64) (2.87) 
CFK 0.00207*** -0.00467 0.00224***
 IK IK IK 
 (1) (2) (3) 
R-sq 
N 2734 773 1961 
 (-3.48) (-0.02) (-0.95) 
BETA -0.0455*** -0.000394 -0.0121 
 (1.81) (0.89) (-0.67) 
AGE 0.00460* 0.00340 -0.00172 
 (-2.81) (-0.63) (-3.52) 
SIZE -0.0136*** -0.00482 -0.0185***
 (0.62) (-0.27) (0.66) 
LEV 0.0184 -0.0124 0.0212 
 (-0.39) (5.74) (-0.91) 
L.SG -0.00238 0.145*** -0.00547 
 (-1.42) (-6.18) (0.64) 
CFKNEG -0.00149 -0.105*** 0.000485 
 (16.95) (15.00) (20.56) 
CFKPOS 0.0256*** 0.0674*** 0.0263***
 IK IK IK 
 (1) (2) (3) 
R-sq 
N 2734 773 1961 
 (6.41) (3.17) (5.97) 
_cons 0.439*** 0.281*** 0.494***
152 
Examining impact of state ownership on investment – cash flow relationship 
 (-2.55) (-3.50) 
BETA -0.0316** -0.0448***
 (0.89) (1.99) 
AGE 0.00218 0.00496** 
 (-1.73) (-3.04) 
SIZE -0.00804* -0.0144***
 (-0.16) (0.36) 
LEV -0.00465 0.0105 
 (-0.25) (-0.51) 
L.SG -0.00147 -0.00276 
 (1.21) 
State_05 0.0151 
 (-13.52) 
CFKNEGSTATE -0.119*** 
 (7.28) 
CFKPOSSTATE 0.0478*** 
 (0.07) (8.27) 
CFKNEG 0.0000523 0.00169***
 (15.24) (24.47) 
CFKPOS 0.0234*** 0.0282***
 IK IK 
 (1) (2) 
R-sq 
N 2734 2734 
 (5.23) (6.54) 
_cons 0.343*** 0.441***
 (1.36) 
GOV 0.0294 
 (-2.28) 
CFKNEGGOV -0.0389** 
 (-7.63) 
CFKPOSGOV -0.0294***
153 
Examining impact of state ownership on investment – cash flow relationship at different 
investment oportunities 
 (-1.81) (-1.18) (-1.64) (-3.11) (-2.22) (-2.67) 
BETA -0.0186* -0.0123 -0.0207 -0.0363*** -0.0229** -0.0279***
 (-4.88) (-2.97) (-2.69) (0.70) (1.73) (-0.26) 
AGE -0.0102*** -0.00743*** -0.00565*** 0.00175 0.00385* -0.000604 
 (-0.85) (0.27) (-0.63) (-3.28) (-5.22) (-4.85) 
SIZE -0.00336 0.00126 -0.00229 -0.0153*** -0.0215*** -0.0209***
 (5.50) (4.80) (6.74) (0.53) (-0.12) (0.68) 
LEV 0.105*** 0.109*** 0.119*** 0.0122 -0.00253 0.0154 
 (2.75) (2.05) (3.53) (-1.17) (-0.41) (-0.84) 
L.SG 0.0258*** 0.0190** 0.0322*** -0.00216 -0.000988 -0.00179 
 (-0.46) (-0.19) (-0.62) (-1.84) (0.44) (15.11) 
CFKNEG -0.00223 -0.00133 -0.00125 -0.00204* 0.000344 0.00187***
 (28.41) (27.57) (27.47) (22.43) (21.33) (0.86) 
CFKPOS 0.0285*** 0.0283*** 0.0285*** 0.0190*** 0.0190*** 0.000612 
 IK IK IK IK IK IK 
 (1) (2) (3) (4) (5) (6) 
R-sq 
N 665 665 665 2069 2069 2069 
 (6.79) (6.68) (10.51) (6.60) (7.16) (7.66) 
_cons 0.408*** 0.441*** 0.485*** 0.412*** 0.423*** 0.462***
 (-8.89) (1.23) 
GOV -0.183*** 0.0247 
 (-0.88) (-2.24) 
CFKNEGGOV -0.0699 -0.0393** 
 (13.04) (26.07) 
CFKPOSGOV 0.0655*** 0.0624***
 (-11.57) (3.37) 
State_05 -0.0971*** 0.0382*** 
 (2.54) (-21.92) 
CFKNEGSTATE 0.0189** -0.122*** 
 (5.18) (7.48) 
CFKPOSSTATE 0.0538*** 0.0456*** 
154 
Robustness check 
- Endogeineity problem 
R-sq 
N 527 527 527 1637 527 527 
 (-1.29) (-1.29) 
GOV -2.483 -2.483 
 (-1.91) (-1.91) 
CFKNEGGOV -1.430* -1.430* 
 (1.40) (1.40) 
CFKPOSGOV 0.278 0.278 
 (0.93) (0.93) 
State_05 3.879 3.879 
 (2.20) (2.20) 
CFKNEGSTATE 0.499** 0.499** 
 (3.63) (3.63) 
CFKPOSSTATE 0.473*** 0.473*** 
 (1.26) (1.17) (0.83) (-2.30) (1.17) (0.83) 
BETA 0.147 0.151 0.102 -0.122** 0.151 0.102 
 (-5.20) (-4.28) (-5.32) (-4.45) (-4.28) (-5.32) 
AGE -0.308*** -0.265*** -0.286*** -0.0834*** -0.265*** -0.286***
 (6.37) (6.42) (6.91) (1.09) (6.42) (6.91) 
SIZE 1.817*** 2.121*** 1.810*** 0.169 2.121*** 1.810***
 (-0.81) (-1.99) (-1.56) (-6.27) (-1.99) (-1.56) 
LEV -0.739 -1.605** -1.159 -2.582*** -1.605** -1.159 
 (-3.85) (-1.69) (-4.38) (-1.45) (-1.69) (-4.38) 
L.SG -0.00930*** -0.00929* -0.00874*** -0.0131 -0.00929* -0.00874***
 (-0.21) (-4.88) (3.12) (-2.86) (-4.88) (3.12) 
CFKNEG -0.0184 -0.752*** 0.183*** -0.0603*** -0.752*** 0.183***
 (3.14) (1.88) (3.90) (3.66) (1.88) (3.90) 
CFKPOS 0.0330*** 0.0280* 0.0234*** 0.0153*** 0.0280* 0.0234***
 IK IK IK IK IK IK 
 (1) (2) (3) (4) (5) (6) 
155 
- Classifying SOEs using the threshole of state ownership of 33.15% 
 (-3.39) (-3.86) (-4.05) (-1.43) (-1.58) (-0.93) 
BETA -0.0406*** -0.0435*** -0.0458*** -0.0122 -0.0148 -0.00895 
 (1.62) (0.41) (1.32) (4.01) (2.65) (2.03) 
AGE 0.00397 0.000867 0.00291 0.00758*** 0.00559*** 0.00412** 
 (-8.42) (-6.75) (-7.00) (-7.55) (-4.42) (-5.71) 
SIZE -0.0342*** -0.0275*** -0.0286*** -0.0254*** -0.0179*** -0.0223***
 (5.17) (5.69) (6.39) (2.78) (0.32) (1.05) 
LEV 0.126*** 0.112*** 0.133*** 0.0400*** 0.00672 0.0217 
 (3.19) (4.24) (4.30) (-0.88) (-0.33) (-0.34) 
L.SG 0.0318*** 0.0411*** 0.0414*** -0.00210 -0.000833 -0.000864 
 (3.75) (6.19) (5.94) (-1.85) (-1.92) (0.61) 
CFKNEG 0.00172*** 0.00182*** 0.00185*** -0.00959* -0.00622* 0.00559 
 (30.29) (20.17) (20.12) (114.19) (120.54) (118.68) 
CFKPOS 0.0305*** 0.0272*** 0.0271*** 0.0193*** 0.0194*** 0.0194***
 IK IK IK IK IK IK 
 (1) (2) (3) (4) (5) (6) 
R-sq 
N 1350 1350 1350 1384 1384 1384 
 (12.17) (10.84) (11.25) (9.66) (7.04) (8.50) 
_cons 0.712*** 0.647*** 0.668*** 0.489*** 0.385*** 0.446***
 (-5.09) (2.72) 
GOV -0.0883*** 0.0425***
 (-2.76) (-2.28) 
CFKNEGGOV -0.138*** -0.0689** 
 (3.71) (2.13) 
CFKPOSGOV 0.0172*** 0.0697** 
 (-3.55) (2.23) 
State_03 -0.0351*** 0.0200** 
 (-5.11) (-2.55) 
CFKNEGSTATE -0.115*** -0.0345** 
 (1.89) (2.13) 
CFKPOSSTATE 0.00642* 0.0371** 
156 
- Classifying high or low investment opportunities using quartile 
 (-1.81) (-1.18) (-1.64) (-9.48) (-12.79) (-8.01) 
BETA -0.0186* -0.0123 -0.0207 -0.0763*** -0.0987*** -0.0634***
 (-4.88) (-2.97) (-2.69) (-13.97) (-34.28) (-16.11) 
AGE -0.0102*** -0.00743*** -0.00565*** -0.0200*** -0.0289*** -0.0187***
 (-0.85) (0.27) (-0.63) (-14.40) (-18.88) (-12.11) 
SIZE -0.00336 0.00126 -0.00229 -0.0523*** -0.0563*** -0.0474***
 (5.50) (4.80) (6.74) (-1.00) (-4.72) (-2.33) 
LEV 0.105*** 0.109*** 0.119*** -0.0133 -0.0724*** -0.0337** 
 (2.75) (2.05) (3.53) (0.55) (1.43) (-0.07) 
L.SG 0.0258*** 0.0190** 0.0322*** 0.00103 0.00265 -0.000119 
 (-0.46) (-0.19) (-0.62) (-2.63) (-1.19) (1.35) 
CFKNEG -0.00223 -0.00133 -0.00125 -0.0217*** -0.00419 0.0131 
 (28.41) (27.57) (27.47) (-1.18) (-14.61) (-3.72) 
CFKPOS 0.0285*** 0.0283*** 0.0285*** -0.0148 -0.0749*** -0.0612***
 IK IK IK IK IK IK 
 (1) (2) (3) (4) (5) (6) 
R-sq 
N 665 665 665 693 693 693 
 (6.79) (6.68) (10.51) (19.26) (33.44) (17.48) 
_cons 0.408*** 0.441*** 0.485*** 1.013*** 1.100*** 0.935***
 (-8.89) (-2.36) 
GOV -0.183*** -0.0293** 
 (-0.88) (-4.98) 
CFKNEGGOV -0.0699 -0.150***
 (13.04) (4.08) 
CFKPOSGOV 0.0655*** 0.225***
 (-11.57) (6.00) 
State_05 -0.0971*** 0.0331*** 
 (2.54) (-10.83) 
CFKNEGSTATE 0.0189** -0.113*** 
 (5.18) (14.98) 
CFKPOSSTATE 0.0538*** 0.118*** 
157 
Results of study 2: Firm’s investment – cash flow relationship in the context 
of banking system reform in Vietnam 
Descriptive statistics 
Correlations 
 BETA 3124 .6683068 .6016663 -4.16368 4.299188
 AGE 3124 4.299296 2.659763 0 14
 LEV 3124 .5125405 .2216628 .0019807 1.307401
 A 3124 1641549 4854095 11665.52 9.05e+07
 TOBINQ 3124 1.92319 8.520481 .0228228 231.905
 CFK 3124 .1730158 3.887125 -122.0205 116.1839
 IK 3124 .1682955 .7922232 -.9330725 24.67087
 Variable Obs Mean Std. Dev. Min Max
. sum IK CFK TOBINQ A LEV AGE BETA
 BETA -0.0250 -0.0418 0.0028 -0.0148 0.0316 -0.0550* 1.0000 
 AGE -0.0783* -0.0363 0.0066 -0.0175 -0.1341* 1.0000 
 LEV -0.0056 -0.0105 -0.0521* 0.0145 1.0000 
 SaleGrowth -0.0006 0.0017 0.0020 1.0000 
 CFKNEG -0.0970* 0.0136 1.0000 
 CFKPOS 0.1038* 1.0000 
 IK 1.0000 
 IK CFKPOS CFKNEG SaleGr~h LEV AGE BETA
. pwcorr IK CFKPOS CFKNEG SaleGrowth LEV AGE BETA,star(.01)
 BETA -0.0250 -0.0418* 0.0028 -0.0148 0.0316 -0.0550* 1.0000 
 AGE -0.0783* -0.0363* 0.0066 -0.0175 -0.1341* 1.0000 
 LEV -0.0056 -0.0105 -0.0521* 0.0145 1.0000 
 SaleGrowth -0.0006 0.0017 0.0020 1.0000 
 CFKNEG -0.0970* 0.0136 1.0000 
 CFKPOS 0.1038* 1.0000 
 IK 1.0000 
 IK CFKPOS CFKNEG SaleGr~h LEV AGE BETA
. pwcorr IK CFKPOS CFKNEG SaleGrowth LEV AGE BETA,star(.05)
 BETA -0.0250 -0.0418* 0.0028 -0.0148 0.0316* -0.0550* 1.0000 
 AGE -0.0783* -0.0363* 0.0066 -0.0175 -0.1341* 1.0000 
 LEV -0.0056 -0.0105 -0.0521* 0.0145 1.0000 
 SaleGrowth -0.0006 0.0017 0.0020 1.0000 
 CFKNEG -0.0970* 0.0136 1.0000 
 CFKPOS 0.1038* 1.0000 
 IK 1.0000 
 IK CFKPOS CFKNEG SaleGr~h LEV AGE BETA
. pwcorr IK CFKPOS CFKNEG SaleGrowth LEV AGE BETA,star(.1)
158 
Test to choose appropriate regression models 
 BETA 0.0626* -0.0826* -0.0560* 0.0996* 0.0387 -0.0750* 1.0000 
 AGE -0.2137* -0.0617* 0.0927* -0.1051* -0.1199* 1.0000 
 LEV 0.0410 -0.1453* -0.1459* 0.0368 1.0000 
 SaleGrowth 0.1870* 0.0110 -0.0223 1.0000 
 CFKNEG -0.0096 0.8143* 1.0000 
 CFKPOS 0.1461* 1.0000 
 IK 1.0000 
 IK CFKPOS CFKNEG SaleGr~h LEV AGE BETA
(obs=3124)
. spearman IK CFKPOS CFKNEG SaleGrowth LEV AGE BETA,star(.01)
 BETA 0.0626* -0.0826* -0.0560* 0.0996* 0.0387* -0.0750* 1.0000 
 AGE -0.2137* -0.0617* 0.0927* -0.1051* -0.1199* 1.0000 
 LEV 0.0410* -0.1453* -0.1459* 0.0368* 1.0000 
 SaleGrowth 0.1870* 0.0110 -0.0223 1.0000 
 CFKNEG -0.0096 0.8143* 1.0000 
 CFKPOS 0.1461* 1.0000 
 IK 1.0000 
 IK CFKPOS CFKNEG SaleGr~h LEV AGE BETA
(obs=3124)
. spearman IK CFKPOS CFKNEG SaleGrowth LEV AGE BETA,star(.05)
 BETA 0.0626* -0.0826* -0.0560* 0.0996* 0.0387* -0.0750* 1.0000 
 AGE -0.2137* -0.0617* 0.0927* -0.1051* -0.1199* 1.0000 
 LEV 0.0410* -0.1453* -0.1459* 0.0368* 1.0000 
 SaleGrowth 0.1870* 0.0110 -0.0223 1.0000 
 CFKNEG -0.0096 0.8143* 1.0000 
 CFKPOS 0.1461* 1.0000 
 IK 1.0000 
 IK CFKPOS CFKNEG SaleGr~h LEV AGE BETA
(obs=3124)
. spearman IK CFKPOS CFKNEG SaleGrowth LEV AGE BETA,star(.1)
. 
F test that all u_i=0: F(640, 1834) = 1.30 Prob > F = 0.0000
 rho .30326317 (fraction of variance due to u_i)
 sigma_e .6422438
 sigma_u .42371649
 _cons .2008878 .1472872 1.36 0.173 -.0879804 .4897559
 BETA -.0281792 .027172 -1.04 0.300 -.0814705 .0251122
 AGE -.0245311 .0060154 -4.08 0.000 -.0363288 -.0127335
 SIZE .0055252 .0116854 0.47 0.636 -.0173929 .0284433
 LEV -.0226819 .0775927 -0.29 0.770 -.1748612 .1294973
 L1. .0007502 .0014875 0.50 0.614 -.0021673 .0036676
 SaleGrowth 
 CFK .0070506 .0034768 2.03 0.043 .0002318 .0138694
 IK Coef. Std. Err. t P>|t| [95% Conf. Interval]
corr(u_i, Xb) = -0.0486 Prob > F = 0.0011
 F(6,1834) = 3.74
 overall = 0.0068 max = 5
 between = 0.0001 avg = 3.9
R-sq: within = 0.0121 Obs per group: min = 1
Group variable: X_ID Number of groups = 641
Fixed-effects (within) regression Number of obs = 2481
. xtreg IK CFK l.SaleGrowth LEV SIZE AGE BETA,fe
159 
Testing investment – cash flow relationship 
. 
Prob>chi2 = 0.0000
chi2 (641) = 7.5e+09
H0: sigma(i)^2 = sigma^2 for all i
in fixed effect regression model
Modified Wald test for groupwise heteroskedasticity
. xttest3
F test that all u_i=0: F(640, 1833) = 1.30 Prob > F = 0.0000
 rho .30332155 (fraction of variance due to u_i)
 sigma_e .64205246
 sigma_u .42364878
 _cons .2011257 .1472434 1.37 0.172 -.0876567 .4899081
 BETA -.026626 .0271851 -0.98 0.327 -.0799431 .0266911
 AGE -.0244476 .0060138 -4.07 0.000 -.0362423 -.0126529
 SIZE .0056091 .0116821 0.48 0.631 -.0173025 .0285207
 LEV -.0295671 .0777154 -0.38 0.704 -.1819871 .1228529
 L1. .0007476 .0014871 0.50 0.615 -.0021689 .0036642
 SaleGrowth 
 CFKSQR .0000497 .0000344 1.45 0.148 -.0000177 .0001171
 CFK .0063911 .0035055 1.82 0.068 -.0004841 .0132662
 IK Coef. Std. Err. t P>|t| [95% Conf. Interval]
corr(u_i, Xb) = -0.0472 Prob > F = 0.0010
 F(7,1833) = 3.51
 overall = 0.0076 max = 5
 between = 0.0002 avg = 3.9
R-sq: within = 0.0132 Obs per group: min = 1
Group variable: X_ID Number of groups = 641
Fixed-effects (within) regression Number of obs = 2481
. xtreg IK CFK CFKSQR l.SaleGrowth LEV SIZE AGE BETA,fe
 6 -.1859982 .1269743 -1.46 0.143 -.4348632 .0628667
 5 -.171073 .0989869 -1.73 0.084 -.3650837 .0229377
 4 -.2880367 .1093619 -2.63 0.008 -.5023821 -.0736913
 3 -.3487145 .1096718 -3.18 0.001 -.5636673 -.1337616
 2 -.3295833 .1005061 -3.28 0.001 -.5265716 -.132595
 X_ID 
 BETA -.0380689 .00255 -14.93 0.000 -.0430668 -.0330709
 AGE .0012561 .0009879 1.27 0.204 -.0006802 .0031924
 SIZE .0172359 .0013755 12.53 0.000 .0145399 .0199319
 LEV -.0625214 .0083003 -7.53 0.000 -.0787897 -.046253
 L1. .0006839 .0001478 4.63 0.000 .0003943 .0009735
 SaleGrowth 
 CFKNEG -.0049034 .0033463 -1.47 0.143 -.011462 .0016552
 CFKPOS .0157487 .0027344 5.76 0.000 .0103894 .0211079
 IK Coef. Std. Err. z P>|z| [95% Conf. Interval]
 Prob > chi2 = 0.0000
 Wald chi2(638) = 6753.82
 max = 5
 avg = 3.870515
Estimated coefficients = 639 Obs per group: min = 1
Estimated autocorrelations = 0 Number of groups = 641
Estimated covariances = 641 Number of obs = 2481
Correlation: no autocorrelation
Panels: heteroskedastic
Coefficients: generalized least squares
Cross-sectional time-series FGLS regression
. xtgls IK CFKPOS CFKNEG l.SaleGrowth LEV SIZE AGE BETA i.X_ID i.T_ID, p(h)
160 
 (-15.43) (-15.80) (-13.93) (-3.37) (-7.30) (-6.26) 
BETA -0.0403*** -0.0392*** -0.111*** -0.0532*** -0.0278*** -0.0241***
 (1.24) (0.59) (8.22) (7.36) (-5.03) (-4.54) 
AGE 0.00124 0.000582 0.0272*** 0.0277*** -0.00538*** -0.00487***
 (-6.06) (-6.39) (-15.67) (-16.75) (6.81) (4.91) 
LEV -0.0508*** -0.0541*** -0.548*** -0.513*** 0.0672*** 0.0495***
 (13.24) (13.40) (0.37) (-0.81) (2.67) (2.95) 
SIZE 0.0186*** 0.0186*** 0.00110 -0.00205 0.00366*** 0.00430***
 (4.56) (4.49) (-0.76) (-4.42) (-0.61) (-0.70) 
L.SaleGrowth 0.000706*** 0.000695*** -0.00274 -0.0124*** -0.00108 -0.00127 
 (2.54) (3.17) (9.66) (13.50) (1.76) (2.02) 
CFK 0.00358** 0.00429*** 0.0512*** 0.163*** 0.00162* 0.00333** 
 IK IK IK IK IK IK 
 (1) (2) (3) (4) (5) (6) 
. esttab a b c d e f, star(* 0.1 ** 0.05 *** 0.01)
. 
* p<0.1, ** p<0.05, *** p<0.01
t statistics in parentheses
N 2481 2481 697 697 1784 1784 
 (2.79) (2.79) (3.73) (3.00) (5.06) (4.98) 
_cons 0.268*** 0.268*** 0.358*** 0.264*** 0.439*** 0.434***
 (2.46) (-12.48) (0.65) 
CFKSQR 0.0000298** -0.00361*** 0.0000126 
 (-14.93) (-17.49) (-7.55) 
BETA -0.0381*** -0.116*** -0.0258***
 (1.27) (14.77) (-3.05) 
AGE 0.00126 0.0334*** -0.00320***
 (-7.53) (-19.97) (5.26) 
LEV -0.0625*** -0.622*** 0.0476***
 (12.53) (1.84) (2.20) 
SIZE 0.0172*** 0.00842* 0.00314** 
 (4.63) (-2.04) (-0.20) 
L.SaleGrowth 0.000684*** -0.00770** -0.000341 
 (-1.47) (0.78) (-1.27) 
CFKNEG -0.00490 0.0127 -0.00516 
 (5.76) (9.31) (3.66) 
CFKPOS 0.0157*** 0.0614*** 0.0110***
 IK IK IK 
 (1) (2) (3) 
. esttab g h i , star(* 0.1 ** 0.05 *** 0.01)
* p<0.1, ** p<0.05, *** p<0.01
t statistics in parentheses
N 2481 697 1784 
 (2.99) (2.79) (5.16) 
_cons 0.287*** 0.288*** 0.451***
161 
Testing impact of banking system reform on investment cash flow relationship 
 (-14.93) (-10.55) (-17.49) (-12.78) (-7.55) (-3.71) 
BETA -0.0381*** -0.0311*** -0.116*** -0.113*** -0.0258*** -0.0122***
 (1.27) (0.22) (14.77) (12.05) (-3.05) (-7.05) 
AGE 0.00126 0.000175 0.0334*** 0.0331*** -0.00320*** -0.00598***
 (-7.53) (-4.72) (-19.97) (-16.08) (5.26) (5.60) 
LEV -0.0625*** -0.0376*** -0.622*** -0.533*** 0.0476*** 0.0375***
 (12.53) (10.36) (1.84) (1.64) (2.20) (0.54) 
SIZE 0.0172*** 0.0134*** 0.00842* 0.00679 0.00314** 0.000628 
 (4.63) (5.06) (-2.04) (-0.32) (-0.20) (-1.06) 
L.SaleGrowth 0.000684*** 0.000684*** -0.00770** -0.00176 -0.000341 -0.00163 
 (-1.47) (-4.31) (0.78) (-3.34) (-1.27) (-9.73) 
CFKNEG -0.00490 -0.0962*** 0.0127 -0.0772*** -0.00516 -0.243***
 (5.76) (2.00) (9.31) (-0.37) (3.66) (18.17) 
CFKPOS 0.0157*** 0.0239** 0.0614*** -0.0109 0.0110*** 0.226***
 IK IK IK IK IK IK 
 (1) (2) (3) (4) (5) (6) 
. esttab MH1 MH2 MH3 MH4 MH5 MH6, star(* 0.10 ** 0.05 *** 0.01)
* p<0.10, ** p<0.05, *** p<0.01
t statistics in parentheses
N 2481 2481 697 697 1784 1784 
 (2.99) (3.27) (2.79) (2.45) (5.16) (4.70) 
_cons 0.287*** 0.320*** 0.288*** 0.273** 0.451*** 0.435***
 (-1.10) (-10.12) (14.79) 
BANK -0.00599 -0.226*** 0.0772***
 (4.16) (3.75) (9.52) 
CFKNEGBANK 0.0934*** 0.106*** 0.239***
 (-0.92) (1.38) (-16.90) 
CFKPOSBANK -0.0113 0.0432 -0.217***
162 
Impact of banking system reform on listed state controlled companies’ investment – 
cash flow relation 
 (0.45) (5.10) (3.33) (4.43) 
BETA 0.0145 0.120*** 0.0384*** 0.0462***
 (3.07) (7.26) (0.52) (0.95) 
AGE 0.0603*** 0.0318*** 0.00166 0.00301 
 (1.73) (5.33) (-0.75) (-0.26) 
LEV 0.242* 0.317*** -0.0292 -0.00988 
 (1.10) (2.96) (0.99) (2.05) 
SIZE 0.0158 0.0121*** 0.00399 0.00823** 
 (1.56) (0.43) (-0.26) (-0.51) 
L.SaleGrowth 0.0165 0.00300 -0.00118 -0.00228 
 (-11.90) (-8.92) (-2.44) (2.85) 
CFKNEG -1.066*** -0.750*** -0.0320** 0.274***
 (8.27) (54.49) (0.25) (0.40) 
CFKPOS 1.168*** 3.581*** 0.000882 0.00149 
 IK IK IK IK 
 (1) (2) (3) (4) 
. esttab MH1 MH2 MH3 MH4,star(* 0.1 ** 0.05 *** 0.01)
 (11.38) (1.45) 
BANK 0.478*** 0.0230 
 (3.77) (-3.10) 
CFKNEGBANK 0.348*** -0.309***
 (-48.12) (-1.79) 
CFKPOSBANK -3.408*** -0.0178* 
N 344 344 353 353 
 (1.32) (-2.42) (0.97) (0.18) 
_cons 4.761 -2.169** 0.0694 0.0136 
163 
Impact of banking system reform on listed state uncontrolled companies’ investment 
– cash flow relation 
 (-13.53) (-15.32) (6.60) (8.99) 
BETA -0.0754*** -0.0627*** 0.0152*** 0.0298***
 (-3.71) (-15.53) (-37.26) (-33.01) 
AGE -0.00377*** -0.0130*** -0.0164*** -0.0227***
 (-0.77) (-22.51) (4.61) (-0.84) 
LEV -0.00967 -0.180*** 0.0254*** -0.00776 
 (5.06) (16.83) (0.52) (-0.01) 
SIZE 0.00972*** 0.0238*** 0.000553 -0.0000113 
 (-3.07) (-4.04) (2.26) (2.77) 
L.SaleGrowth -0.00140*** -0.00453*** 0.00343** 0.00652***
 (-26.40) (-16.97) (-2.42) (9.17) 
CFKNEG -0.213*** -0.914*** -0.00982** 0.0337***
 (9.69) (1.92) (0.39) (32.65) 
CFKPOS 0.0597*** 0.0603* 0.000452 0.337***
 IK IK IK IK 
 (1) (2) (3) (4) 
. esttab MH5 MH6 MH7 MH8,star(* 0.1 ** 0.05 *** 0.01)
 (17.40) (24.49) 
BANK 0.123*** 0.0916***
 (14.15) (-6.94) 
CFKNEGBANK 0.777*** -0.0570***
 (-0.26) (-32.56) 
CFKPOSBANK -0.00831 -0.336***
* p<0.1, ** p<0.05, *** p<0.01
t statistics in parentheses
N 898 898 886 886 
 (3.81) (2.06) (2.78) (1.22) 
_cons 0.402*** 0.242** 0.177*** 0.0587 
164 
Testing impact of banking system reform on investment – leverage relation 
 (11.12) (-22.19) (9.30) 
SIZE 0.00968*** -0.0668*** 0.00509***
 (2.88) (-0.58) (-2.00) 
L.SaleGrowth 0.000549*** -0.00192 -0.00284** 
 (4.16) (10.27) (-21.60) 
BANKLEV1 0.0795*** 1.177*** -0.161***
 (-5.53) (-12.45) (16.07) 
BANK -0.0699*** -0.878*** 0.0819***
 (-4.32) (-9.09) (29.79) 
L.LEV -0.0818*** -1.036*** 0.104***
 (3.85) (5.60) (1.50) 
CFK 0.00431*** 0.0430*** 0.00156 
 IK IK IK 
 (1) (2) (3) 
. esttab A B C, star (* 0.1 ** 0.05 *** 0.01)
* p<0.1, ** p<0.05, *** p<0.01
t statistics in parentheses
N 2481 697 1784 
 (72.68) (46.74) (62.44) 
_cons 126.6*** 265.8*** 137.3***
 (-3.62) (3.98) (-20.10) (7.87) 
SIZE -0.0351*** 0.00986*** -0.0203*** 0.00982***
 (-10.45) (-0.75) (-2.67) (-0.54) 
L.SaleGrowth -0.144*** -0.00302 -0.00420*** -0.000997 
 (4.60) (4.42) (-17.86) (0.28) 
BANKLEV1 1.656*** 0.173*** -0.326*** 0.00596 
 (-4.52) (-2.14) (16.01) (2.84) 
BANK -1.083*** -0.0493** 0.167*** 0.0322***
 (-3.79) (10.19) (12.03) (1.20) 
L.LEV -1.352*** 0.173*** 0.187*** 0.0251 
 (9.10) (0.23) (-27.39) (-0.32) 
CFK 0.855*** 0.000558 -0.0755*** -0.000418 
 IK IK IK IK 
 (1) (2) (3) (4) 
. esttab D E F G, star(* 0.1 ** 0.05 *** 0.01)
* p<0.1, ** p<0.05, *** p<0.01
t statistics in parentheses
N 344 353 898 886 
 (7.33) (9.58) (80.42) (45.27) 
_cons 177.3*** 88.32*** 158.2*** 131.6***