Luận án Nghiên cứu biến tính vật liệu Zif - 8 và một số ứng dụng

Ảnh hưởng của thời gian hấp phụ trên ZIF-8 và Fe-ZIF-8 ở nồng độ đầu RDB thay đổi trong khoảng 30-50 mg.L-1 được thể hiện trên Hình 3.24. Kết quả cho thấy, dung lượng hấp phụ tăng lên khi nồng độ phẩm nhuộm tăng. Cùng nồng độ đầu, dung lượng hấp phụ RDB của Fe-ZIF-8 cao hơn của ZIF-8. Khi nồng độ phẩm nhuộm tăng từ 30 mg.L-1 đến 50 mg.L-1 thì dung lượng hấp phụ tăng lên, tương ứng với 30,2 - 42,1 mg.g-1 trên ZIF-8; 50,4 - 76,8 mg.g-1 trên Fe-ZIF-8(10%); 44,9 - 88,7 mg.g-1 trên Fe-ZIF-8(20%) và 41,1 - 72,0 mg.g-1 trên Fe-ZIF-8(30%). Khi nồng độ đầu của phẩm nhuộm tăng cao, sẽ cung cấp một lực động (driving force) để vượt qua sự truyền khối của RDB từ dung dịch vào bề mặt chất hấp phụ [185]

pdf171 trang | Chia sẻ: tueminh09 | Ngày: 24/01/2022 | Lượt xem: 651 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu biến tính vật liệu Zif - 8 và một số ứng dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
y in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties", J. Am. Chem. Soc. 131, pp. 3875-3877. 20. Bard A.J., Faulkner L.R. (2001), Fundamentals and applications - Electrochemical Methods, 2nd Edition ed, Wiley, New York, 157. 21. Behnajady M.A., Modirshahla N., Hamzavi R., (2006), "Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst", Journal of Hazardous Materials. B133, pp. 226–232. 130 22. Beldon P. J., Fabian L., Stein R. S., Thirumurugan A., Cheetham A. K., Friscic T., Angew (2010), "Rapid Room-Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry", Chem. Int. Ed. 49, pp. 9640 - 9643. 23. Belhadi A., Boumaza S., Trari M., (2011), "Photoassisted hydrogen production under visible light over p-NiO/n-ZnO hetero-system", Applied Energy. 88, pp. 4490 - 4495. 24. Bhattacharya A.K., Naiya T.K., Mandal S.N., Das S.K., (2008), "Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents", Chem. Eng. J. . 137, pp. 529 - 541. 25. Bohme U., Barth B., Paula C., Kuhnt A., Schwieger W., Mundstock A., Caro J., and Hartmann M., (2013), "Ethene/Ethane and Propene/Propane Separation via the Olefin and Paraffin Selective Metal−Organic Framework Adsorbents CPO-27 and ZIF‑8", Langmuir 29, p. 8592−8600. 26. Bordiga S., Lamberti C., Ricchiardi G., Regli L., Bonino F., Damin A., Lillerud K. P., Bjorgen M., Zecchina A. (2004), "Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour", Chem. Commun. 20, pp. 2300-2301. 27. Bowen H.K., Adler D., Auker B.H. (1975), "Electrical and optical properties of FeO", Journal of Solid State Chemistry 12, no. 3–4, pp 355-359. 28. Bui Hai Dang Son, Quang Mai, Dang Xuan Du, Nguyen Hai Phong, and Dinh Quang Khieu (2016), "A Study on Astrazon Black AFDL Dye Adsorption onto Vietnamese Diatomite", Journal of Chemistry and Biochemistry. Volume 2016, Article ID 8685437. 29. Bustamante E. L., Fernandez J. L., and M., Zamaro J. (2014), "Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature", J. Colloid Interface Sci. 424, pp. 37-43. 30. Bux H., Liang F., Li Y., Cravillon J., Wiebcke M. and Caro J. (2009), "Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis", J. Am. Chem. Soc. 131(44), pp. 16000-16001. 31. Cai X., Cai Y., Liub Y., Denga S., Wanga Y., Wanga Y., Djerdj I. (2014), "Photocatalytic degradation properties of Ni(OH)2 nanosheets/ZnO nanorods 131 composites for azo dyes under visible-light irradiation", Ceramics International. 40, pp. 57-65. 32. Chae H.K., Siberio-Pe´re D. Y., Kim J. , Go Y. , Eddaoudi M., Matzger A. J., O’Keeffe M. , Yaghi O.M., (2004), "A route to high surface area porosity and inclusion of large molecules in crystals", Nature. 427, pp. 523-527. 33. Chang G, Bao Z., Ren Q., Deng S., Zhang Z., Su B., Xing H., Yang Y (2014), "fabrication of cuprous nanoparticles in MIL -101: An efficient adsorbent for the separation of olefin/paraffin mixtures", Royal Society of Chemistry. 34. Chen S., Zhang S., Liu W., Zhao W. (2008), "Preparation and activity evaluation of p–n junction photocatalyst NiO/TiO2", J. Hazard. Mater. 155, pp. 320 -326. 35. Cheon Y. E., Park J., Suh M. P., ((2009)), "Selective gas adsorption in a magnesium-based metal–organic framework", Chem. Commun., pp. 5436– 5438. 36. Chi W.S., Sinyoung H., Lee S-J., Park S., Bae Y-S., Ryu D. Y., Kim J. H., Kim J. (2015), "Mixed matrix membranes consisting of SEBS block copolymers and size-controlled ZIF-8 nanoparticles for CO2 capture", Journal of Membrane Science. 495, pp. 479 - 488. 37. Chmelik C., Baten J.V., Krishna R. (2012), "Hindering effects in diffusion of CO2/CH4 mixtures in ZIF-8 crytals", Journal of membrane Science. 397, pp. 87-91. 38. Cho H-Y., Kim J., Kim S-N., Ahn W-S. (2013), "High yield 1-L scale synthesis of ZIF-8 via a sonochemical route", Microporous and Mesoporous Materials. 169, pp. 180–184. 39. Chowdhury P., Mekala S., Dreisbach F., Gumma S., (2012), "Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity", Microporous Mesoporous Mater. 152, pp. 246-252. 40. Crank G. (1975), The mathematics of diffusion, Clarendon Press, London. 41. Cravillon J., Munzer S., Lohmeier S. J., Feldhoff A., Huber K., Wiebcke M. (2009), "Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework", Chem. Mater. 21, pp. 1410-1412. 132 42. Cravillon J., Nayuk R., Springer S., Feldhoff A., Huber K., Wiebcke M. (2011), "Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering", Chem. Mater. 23, pp. 2130-2141. 43. D'Alessandro D. M., Smit B., Long J. R. (2010), "Carbon dioxide capture: Prospects for new materials", Angew. Chem., Int. Ed. 49(35), pp. 6058 - 6082. 44. Danaci D., Singh R., Xiao P., Paul A. W., (2015), "Assessment of ZIF materials for CO2 capture from high pressure natural gas streams", Chemical Engineering journal. 280, pp. 486-493. 45. David F-J., Raimondas R., Antonio T., Alistair D-G., Michael T.W., Paul A.W., Caroline M-D. and Tina D. (2012), "Flexibility and swing effect on the adsorption of energy-related gases on ZIF-8: combined experimental and simulation study", Dalton Transactions. 41, pp. 10752 - 10762. 46. Ding S., Yan Q., Jiang H., Zhong Z., Chen R., Xing W, (2016), "Fabrication of Pd@ZIF-8 catalysts with different Pd spatial distributions and their catalytic properties", Chemical Engineering Journal. 296, pp. 146-153. 47. Dinh Quang Khieu, Bui Hai Dang Son, Vo Thi Thanh Chau, Pham Dinh Du, Nguyen Hai Phong, and Nguyen Thi Diem Chau (2017), "3- Mercaptopropyltrimethoxysilane Modified Diatomite: Preparation and Application for Voltammetric Determination of Lead (II) and Cadmium (II)", Hindawi Journal of Chemistry Volume 2017, Article ID 9560293, 10 pages 48. Dong Y., Ding Y. et al (2014), "Differential pulse anodic stripping voltammetric determination of Pb ion at a montmorillonites/polyaniline nanocomposite modified glassy carbon electrode", Journal of Electroanalytical Chemistry 717-718 pp. 206–212. 49. Dorneanu P.P., Airinei A., Olaru N., Homocianu M., Nica V., Doroftei F. (2014), "Preparation and characterization of NiO, ZnO and NiO-ZnO composite nanofibers by electrospinning method", Materials Chemistry and Physics. 148, pp. 1029 - 1035. 50. Du Y., Chen R.Z., Yao J.F., Wang H.T., (2013), "Facile fabrication of porous ZnO by thermal treatment of zeolitic imidazolate framework-8 and its photocatalytic activity", Journal of Alloys and Compounds. 551(25), pp. 125- 130. 133 51. Eddaoudi M., Kim J., Wachter J.B., Chae H.K., O’Keeffe M.,Yaghi O.M. (2001), "Porous metal - organic polyhedra: 25 Å cubocta hedron constructed from 12 Cu2(CO2)4 paddle - wheel building blocks", J. Am. Chem. Soc., pp. 4368. 52. Eslava S., Zhang L., Esconjauregui S., Yang J., Vanstreels K., Baklanov M.R., Saiz E., (2012), "Metal - Organic Framework ZIF-8 Films As Low-k Dielectrics in Microelectronic", Chemistry of Materials, pp. 27 - 33. 53. Fan X., Wang W., Li W., Zhou J., Wang B., Jheng J., Li X. (2014), "Highly porous ZIF-8 nanocrystals prepared by a surfactant mediated method in aqueous solution with enhanced adsorption kinetics", ACS Appl. Mater. Interfaces 6, pp. 14994-14999. 54. Farha O. K., Eryazici I., Jeong N.C., Hauser B.G., Wilmer C.E., Sarjeant A.A., Snurr R.Q., Nguyen S.T., Yazaydın A.O., and Hupp J.T. (2012), "Metal−Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit", J. Am. Chem. Soc. 134(36), pp. 15016−15021. 55. Fogg A. G. (1994), "Adsorptive stripping voltammetry or cathodic stripping voltammetry methods of accumulation and determination in stripping voltammetry", Analytical Proceeding Including Analytical Communication. 31, pp. 313-317. 56. Freundlich H.M.F. (1915), "Over the adsorption in solution", Phys. Chem. 57, pp. 385 - 471. 57. Férey G.,(2008), " Hybrid porous solids: past, present, future", Chem. Soc. Rev. 37, pp. 191 -214. 58. Galindo C., Jacques P., and Kalt A., (2001), "Photooxidation of the phenylazonaphthol AO20 on TlO2: kinetic and mechanistic investigations. ", Chemosphere. 45 (6-7), pp. 997-1005. 59. Gang H., Feifei Z., Leilei Z., Xinchuan D. Jianwei W. and Limin W. (2014), "Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes", J. Mater. Chem. A. 2, pp. 8048-8053. 60. Furukawa H., Ko N., Go Y.B., Aratani N. and Choi S.B.(2010), "Ultrahigh Porosity in Metal-Organic Frameworks", Science. 329, pp. 424-428. 61. Gomez Y., Fernandez L., Borras C, Mostany J., Scharifker B., (2011), "Characterization of a carbon paste electrode modified with tripolyphosphate- 134 modified kaolinite clay for the detection of lead", Talanta. 85, pp. 1357 - 1363. 62. Graham D., (1953), "The characterization of physical adsorption systems. I. The equilibrium function and standard free energy of adsorption", J.Phys. Chem. 57, pp. 665–669. 63. Grote B. (2012), Application of advanced oxidation processes (AOP) in water treatment, 37th Annual old Water Industry Operations Workshop Parklands, Gold Coast, pp. 17-23. 64. Haldoupis E., Watanabe T., Nair S. and Sholl D.S. (2012), "Quantifying large effects of Framework Flexilibity on diffusion in MOFs: CH4 and CO2 in ZIF- 8", ChemPhysChem 0000, pp. 1-4. 65. Halsey G.D. (1952), "The role of surface heterogeneity in adsorption", Adv.Catal. 4, pp. 259-269. 66. Hameed A., Montini T., Gombac V., Fornasiero P., (2009), "Photocatalytic decolourization of dyes on NiO–ZnO nano-composites", Photochem. Photobiol. Sci. 8, pp. 677-682. 67. Han C., Chen Z., Zhang N., Colmenares J. C., Xu Y-J. (2015), "Hierarchically CdS Decorated 1D ZnO Nanorods-2D Graphene Hybrids: Low Temperature Synthesis and Enhanced Photocatalytic Performance", Advanced Functional Materials. 25(2), pp. 221–229. 68. Han T-T., Yang J., Liu Y-Y., Ma J-F. (2016), "Rhodamine 6G loaded zeolitic imidazolate framework-8 (ZIF-8) nanocomposites for highly selective luminescent sensing of Fe 3+ , Cr 6+ and aniline", Microporous and Mesoporous Materials. 228, pp. 275-288. 69. He M., Yao J., Liu Q., Wang K., Chen F., Wang H. (2014), "Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution", Microporous and Mesoporous Materials. 184, pp. 55-60. 70. Ho Y. S., McKay G. (1999), "Pseudo-second order model for sorption processes", Process Biochem. 34(5), pp. 451-465. 71. Hong D.-Y., Hwang Y. K., Serre C., Férey G., Chang J.-S. (2009), "Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis", Adv. Funct. Mater. 19, pp. 1537-1552. 135 72. Huang H., Zhang W., Liu D., Liu B., Chen G., Zhong C. ( 2011), "Effect of temperature on gas adsorption and separation in ZIF-8: A combined experimental and molecular simulation study", Chemical Engineering Science. 66, pp. 6297–6305. 73. Hwang S., Chi W.S., Lee S.J., Im S.H., Kim J. H. (2015), "Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation", Journal of Membrane Science. 480, pp. 11-19. 74. Iijima S. (1991), "Helical microtubules of graphitic carbon", Chem Phys Lett. 243(49), p. 354. 75. Jain C.K. (2001), " Adsorption of zinc onto bed sediments of the River Ganga: adsorption models and kinetics", Hydrol. Sci.46, pp. 419–434. 76. Jakkidi K.R., Basavaraju S., Valluri D.K. (2000), "Sm3+-doped Bi2O3 photocatalyst prepared by hydrothermal synthesis", Chem. Catal. Chem. 14, pp. 92–496. 77. James J. B., Lin Y. S. (2016), "Kinetics of ZIF-8 Thermal Decomposition in Inert, Oxidizing, and Reducing Environments", The Journal of Physical Chemistry C. 120(26), pp. 14015-14026. 78. Jang E. S., Won J. H., Hwang S. J., Choy J. H. (2006), "Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity", Adv. Mater. 18, pp. 3309. 79. Jian M., Liu B., Zhang G., Liu R., Zhang X. (2015), "Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles", Colloids and surfaces A: Physicochemical and Engineering Aspects. 465, pp. 67-76. 80. Jiang H.L., Liu B., Akita T., Haruta M., Sakurai H. and Xu Q. (2009), "Au@ZIF-8: CO Oxidation over Gold Nanoparticles Deposited to Metal−Organic Framework", J. Am. Chem. Soc. 131 (32), pp. 11302–11303. 81. Jiang J-Q., Yang C-X., and Yan X-P. (2013), "Zeolitic Imidazolate Framework‑8 for Fast Adsorption and Removal of Benzotriazoles from Aqueous Solution", ACS Applied Materials & Interfaces. 5, pp. 9837−9842. 82. Jiang X., Chen H-Y., Liu L-L., Qiu L-G.(2015), "Fe3O4 embedded ZIF-8 nanocrystals with ultra-high adsorption capacity towards hydroquinone", Journal of Alloys and Compounds. 646, pp. 1075-1082. 136 83. Jing H-P., Wang C-C., Zhang Y-W., Wanga P. and Li R. (2014), "Photocatalytic degradation of methylene blue in ZIF-8", RSC Advances. 4, pp. 54454–54462. 84. Josephine M., Ordonez C., Balkus K.J., Ferraris J.P., Musselman I.H., (2010), "Molecular sieving realized with ZIF-8/Matrimid mixed-matrix membranes", Journal of Membrane Science. 361, pp. 28–37. 85. Jung B.K., Jun J.W., Hasan Z., Jhung S. H., (2015), "Adsorptive removal of p- arsanilic acid from water using mesoporous zeolitic imidazolate framework- 8", Chemical Engineering journal. 267, pp. 9-15. 86. Kan C.C., Aganon M.C., Futalan C.M., Dalida M.L.P., (2013), "Adsorption of Mn2+ from aqueous solution using Fe and Mn oxide-coated sand", Journal of Environmental Sciences. 25(7), pp. 1483 - 1491. 87. Kang X-Z., Song Z-W., Shi Q. and Dong J-X. (2013), "Utilization of Zeolite imidazolate Framework as an Adsorbent for the Removal of Dye from Aqueous Solution", Asian journal of Chemistry. 25, pp. 8324 - 8328. 88. Kannan N., and Meenakshisundaram M. (2002), "Adsorption of Congo Red on Various Activated Carbons. A Comparative Study", Water, Air, & Soil Pollution. 138, pp. 289-305. 89. Karagiaridi O., Lalonde M.B., Bury W., Sarjeant A., Farha O.K., and Hupp J.T., (2012), "Opening ZIF-8: A Catalytically Active Zeolitic Imidazolate Framework of Sodalite Topology with Unsubstituted Linkers", J. Am. Chem. Soc. 134, pp. 18790−18796. 90. Khan N-A., Jung B-K., Hasan Z., Jhung S-H. (2015), "Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks", Journal of Hazardous Materials. 282(23), pp. 194–200. 91. Khudaish E.A., Al-Hinaai M.M., and Al-Harthi S.H. (2013), "A solid- state sensor based on tris(2,2-bipyridyl)ruthenium(II)/poly(4- aminodiphenylamine)modiied electrode: characterization and applications", Sensors and Actuators, B: Chemical. 185, pp. 478 -487. 92. Kida K., Okita M., Fujita K.,Tanaka S. and Miyakeab Y. (2013), "Formation of high crystalline ZIF-8 in an aqueous solution", CrystEngComm. 15, pp. 1794 -1801. 137 93. Kikkinides E. S., Yang R. T., Cho S. H. (1993), "Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption", Ind. Eng. Chem. Res. 32(11), pp. 2714 - 2720. 94. Kim J., Bhattacharjee S., Jeong K.E., Jeong S-Y. and Ahn W-S. (2009), "Selective oxidation of tetralin over a chromium terephthalate metal organic framework, MIL-101", Chem Commun. 26, pp. 3904-3906. 95. Kitture R., Koppikar S.J., Kaul-Ghanekar R., Kale S.N., (2011), "Catalyst efficiency, photostability and reusability study of ZnO nanoparticles in visible for dye degradation", Journal of physics and chemistry of solids. 72, pp. 60- 66. 96. Konstantinou I.K. , A Albanis T. (2004), "TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review", Applied Catalysis B: Environmental. 49, pp. 1-14. 97. Kreno L.E., Leong K., Farha O.K., Allendorf M., Van Duyne R.P., and Hupp J.T. (2011), "Metal–organic framework materials as chemical sensors", Chemical reviews. 112(2), pp. 1105-1125. 98. Kumar A., Prasad B., Mishra I.M. (2008), "Adsorptive removal of acrylonitrile by commercial grade activated carbon: kinetics, equilibrium and thermodynamics", J. Hazard. Mater. 152(2), pp. 589-600. 99. Kuppler R.J., Li J-R., Zhou H-C., (2009), "Selective gas adsorption and separation in metal–organic frameworksw", Chem. Soc. Rev. 38, pp. 1477– 1504. 100. Kwona H. T., and Jeong H-K. (2013), "Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth", Chem. Commun. 49, pp. 3854-3856. 101. Lai Y., Meng M. , Yu Y., Wang X., Ding T., (2011), "Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance", Applied Catalysis B: Environmental. 105, pp. 335-345. 102. Lana H., Ganb N., Pana D., Hua F., Li T., Longb N., Shenc H., Fengb Y. (2014), "Development of a novel magnetic molecularly imprinted polymer coating using porous zeolite imidazolate framework-8 coated magnetic iron 138 oxide as carrier for automated solid phase microextraction of estrogens in fish and pork samples", Journal of Chromatogr. A 1365, pp. 35-44. 103. Langmuir I. (1916), "The constitution and fundamental properties of solids and liquids", Am. Chem. Soc. 38(11), pp. 2221-2295. 104. Laviron E. (1979), "General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems", Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 101(1), pp. 19-28. 105. Lazaridis N.K., Karapantsios T.D., Georgantas D. (2003), "Kinetic analysis for the removal of a reactive dye from aqueous solution onto hydrotalcite by adsorption", Water Research. 37, pp. 3023-3033. 106. Lee H.J., Park J.U., Choi S., Son J., Oh M. (2013), "Synthesis and Photoluminescence Properties of Eu 3+ -Doped Silica@Coordination Polymer Core–Shell Structures and Their Calcinated Silica@Gd2O3:Eu and Hollow Gd2O3:Eu Microsphere Products", Small. 9, pp. 561– 569. 107. Lee J.Y., Farha O.K., Roberts J., Scheidt K.A. et al, (2009), "Metal–organic framework materials as catalysts", Chem. Soc.Rev. 38, pp. 1450–1459. 108. Lee Y-R., Jang M-S., Cho H-Y., Kwon H-J. et al (2015), "ZIF-8: A comparison of synthesis methods", Chemical Engineering Journal. 271, pp. 276 -280. 109. Li C., Feng C., Qu F., Liua J. et al, (2015), "Electrospun nanofibers of p-type NiO/n-type ZnO heterojunction with different NiO content and its influence on trimethylamine sensing properties", Sensors and Actuators B 207, pp. 90 - 96. 110. Li D.Y., Jia J.B., Wang J.G. (2010), "Simultaneous determination of Cd (II) and Pb (II) by differential pulse anodic stripping voltammetry based on graphite nanofibers–Nafion composite modified bismuth ", Talanta. 83, pp. 332 -336. 111. Li J. R. , Kuppler R.J., Zhou H.C., (2009), "Selective gas adsorption and separation in metal– organic frameworks", Chem. Soc. Rev. 38, pp. 1477- 1504. 112. Li K., Olson D. H., Seidel J., Emge T. J., Gong H., Zeng H., Li J. (2009), "Zeolitic imidazolate frameworks for kinetic separation of propane and 139 propene", Journal of the American Chemical Society. 131(30), pp. 10368- 10369. 113. Li P-Z., K. Aranishi K., and Xu Q. (2012), "ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane ", Chem. Commun. 48, pp. 3173–3175. 114. Li Q., Jiang S., Ji S. et al, (2015), "Synthesis of magnetically recyclable ZIF- 8@SiO2@Fe3O4 catalysts and their catalytic performance for Knoevenagel reaction", Journal of Solid State Chemistry. 223, pp. 65–72. 115. Li R., Ren X., Feng X., Li X., Hu C., and Wang B. (2014), "A highly stable metal- and nitrogen-doped nanocomposite derived from Zn/Ni-ZIF-8 capable of CO2 capture and separation", Chem. Commun. 50, pp. 6894-6897. 116. Li X., He K., Pan B., Zhang S., Lu L., Zhang W. (2012), "Efficient As(III) removal by macroporous anion exchanger-supported Fe-Mn binary oxide: Behavior and mechanism", Chemical Engineering Journal. 193, pp. 131-138. 117. Lin J.X., Zhan S.L., Fang M.H., Qian X.Q. (2007), "The adsorption of dyes from aqueous solution using diatomite", J. Porous Mater. 14, pp. 449-455. 118. Lin S.S., Gurol M.D. (1998), "Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide: Kinetics, Mechanism, and Implications", Environ. Sci. Technol. 32(10), pp. 1417-1423. 119. Liu D., Ma X., Xi H., Lin Y.S. (2014), "Gas transport properties and ropylene/propane separation characteristics of ZIF-8 membranes", Journal of Membrane Science. 451, pp. 85–93. 120. Liu J., He J., Wang L., Li R., Chen P., Rao X., Deng L., Rong L., and Lei J. (2016), "NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil", Scientific RepoRts. 6:23667, 10.1038/srep23667, 11 pages. 121. Liu J.Y. (2009), "Is the Free Energy Change of Adsorption Correctly Calculated", Chem. Eng. Data. 54, pp. 1981 - 1985. 122. Liua Y., Li G., Mi R., Denga C., Gaoa P. (2014), "An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis", Sensors and Actuators B. 191, pp. 537 - 544. 140 123. Llewellyn P. L., Bourrelly S., Serre C. et al (2008), "High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101", Langmuir. 24, pp. 7245-7250. 124. Lu G., Hupp J. T. ( 2010), "Metal-Organic Frameworks as Sensors: A ZIF-8 Based Fabry-Pe´rot Device as a Selective Sensor for Chemical Vapors and Gases", J. Am. Chem. Soc. 132, pp. 7832–7833. 125. Lu G., Li S., Guo Z., Farha O.K., Hauser B.G., Qi X. (2012), "Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation", Nature chemistry. 4, pp. 310–316. 126. Luebbers M. T., Wu T., Shen L., and Masel R. I. (2010), "Effects of Molecular Sieving and Electrostatic Enhancemen in the Adsorption of Organic Compounds on the Zeolitic Imidazolate Framework ZIF-8", Langmuir. 26(19), pp. 15625 - 15633. 127. Luna A.J., Rojas L.O.A., Melo D.M.A., Benachour M. et al (2009), "Total catalytic wet oxidation of phenol and its chlorinated derivates with MnO2/CeO2 catalyst in a slurry reactor", Brazilian Journal of Chemical Engineering. 26(3), pp. 493 -502. 128. Lv D., Huang X., Yue H., Yang Y. (2009), "Sodium-Ion-Assisted Hydrothermal Synthesis of γ-MnO2 and Its Electrochemical Performance", Journal of The Electrochemical Society. 156(11), pp. A911-A916. 129. Ma S.-C., Zhang J.-L., Sun D.-H., Liu G.-X. (2015), "Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite", Applied Surface Science. 359, pp. 48-54. 130. MacGillivray L.R. ( 2010), "Metal-Organic Frameworks: Design and Application", John Wiley & Sons, Inc., Hoboken, New Jersey, Canada. 131. Magheara A., Etienne M., Tertis M., Sandulescu R., Walcariusa A. (2013), "Clay-mesoporous silica composite films generated by electro-assisted self- assembly", Electrochimica Acta. 112, pp. 333-341. 132. Mai H. D., Rafiq K., Yoo H. (2017), "Nano Metal‐Organic Framework‐ derived Inorganic Hybrid Nanomaterials: Synthetic Strategies and Applications", Chemistry-A European Journal. 13, pp. 1-22. 133. Malash G.F., El-Khaiary M.I. (2010), "Piecewise linear regression: A statistical method for the analysis of experimental adsorption data by the 141 intraparticle-diffusion models", Chemical Engineering Journal. 163, pp. 256- 263. 134. Mandal B.K., Suzuki K.T. (2002), "Arsenic round the world: a review", Talanta. 58, pp. 201-235. 135. Mandal S., Sahu M.K., Patel R.K. (2013), "Adsorption studies of arsenic(III) removal from water by zirconium polyacrylamide hybrid material (ZrPACM- 43)", Water Resources and Industry. 4, pp. 51-67. 136. McEwen J., Hayman J.-D., Yazadin A. O., (2013), "A comparative study of CO2, CH4 and N2 adsorption in ZIF-8, Zeolite - 13X and BPL activated carbon", Chemical Physic. 412, pp. 72 -76. 137. Melero J.A., Calleja G., Martínez F., Molina R., Pariente M.I. (2007), "Nanocomposite Fe2O3-SBA-15-An efficient and stable catalyst for the CWPO of phenolic aqueous solutions", Chemical Engineering Journal. 131, pp. 245-256. 138. Mohamed R., Saphira M.R., Nanyan N.M., Rahman N.A., Kutty I., Kassim A.H.M. (2014), "Colour removal of reactive dye from textile industrial ưastewater using different types of coagulants", Asian Journal of Applied Sciences 2(5), pp. 650 -657. 139. Morris W., Doonan C.J., Furukawa H., Banerjee R., Yaghi O.M., ( 2008), "Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks", J. Am. Chem. Soc. 130, pp. 12626–12627. 140. Motulsky H., Christopoulos A. (2004), "Fitting modelsto biological data using linear and nonlinear regression: A practical guide to curve fitting", Oxford University Press, USA. 141. Mueller U., Schubert M., Teich F., Puetter H.et al (2006), "Metal–organic frameworks prospective industrial applications", J. Mater. Chem. 16, pp. 626– 636. 142. Mu J., Shao C., Guo Z., Zhang Z., Zhang M., Zhang P., Chen B., and Liu Y.(2011), "High Photocatalytic Activity of ZnO-Carbon Nanofiber Heteroarchitectures", ACS Appl. Mater. Interfaces. 3, pp. 590 - 596. 143. Naomil J. S., Julie P., Vinodgopal K., and Kamat P.V. (2000), "Combinative Sonolysis and Photocatalysis for Textile Dye Degradation", Environ. Sci. Technol. 34, pp. 1747 - 1750. 142 144. Ndung’u K., Hibdon, S., and Flegal, A.R. (2004), "Determination of lead in vinegar by ICP-MS and GFAAS: evaluation of different sample preparation procedures", Talanta. 64, pp. 258-263. 145. Ohtaa H., Hirano M., Nakahara K., Maruta H.,Tanabe T., Kamiya M., Kamiya T. and Hosono H. (2003), "Fabrication and photoresponse of a pn- heterojunction diode composed of transparent oxide semiconductors, p-NiO and n-ZnO", applied physics letters. 83, pp. 1029 - 1031. 146. Ordonez M.J.C., Balkus K.J., Ferraris J.P. (2010), "Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes", Journal of Membrane Science. 361(1-2), pp. 28-37. 147. Pan Y., Liu Y., Zeng G., Zhao L., Lai Z. (2011), "Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system", Chem. Commun. 47, pp. 2071–2073. 148. Park K.S., Ni Z., Côté A.P., Choi J.Y., Huang R., Uribe-Romo F.J., Chae H.K., O’Keeffe M., Yaghi O.M., (2006), "Exceptional chemical and thermal stability of zeolitic imidazolate frameworks", Proc. Nat. Acad. Sci. USA. 103 pp. 10186–10191. 149. Peter K. (2009), Controlling the Surface Growth of Metal-Organic Frameworks, Munich Ludwig Maximilians University, Munich. 150. Qadeer R. (2005), "Adsorption of ruthenium ions on activated charcoal: influence of temperature on the kinetics of the adsorption process", Journal of Zhejiang Uni 6B, pp. 353 - 365. 151. Qin J-S., Du D.Y., Li W.L., Zhang J.P., Li S.L., Su Z.M. (2012), "N-rich zeolite-like metal–organic framework with sodalite topology: high CO2 uptake, selective gas adsorption and efficient drug delivery", Chem. Sci. 3, pp. 2114-2118. 152. Romero-Gonzalez J., Peralta-Videa J.R., Rodrı´guez E., Ramirez S.L., Gardea-Torresdey J.L. (2005), "Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Aga elechuguilla biomass", J. Chem. Thermodyn. 37, pp. 343 -347. 153. Ryoo R., Joo S.H., Jun S. (1999), "Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation", The Journal of Physical Chemistry B. 103(37), pp. 7743 - 7746. 143 154. Sahoo P.K., Panigrahy B., Sahoo S., Satpati A.K., Li D., Bahadur D. (2014), "Facile synthesis of reduced graphene oxide/Pt–Ni nanocatalysts: their magnetic and catalytic properties", RSC Adv. 4, pp. 48563-48571. 155. Saien J., Khezrianjoo S.(2008), "Degradation of the fungicide carben-dazim in aqueous solutions withUV/TiO2 process: optimization, kinetics and toxicity studies", Journal of Hazardous Matter. 157, pp. 269–276. 156. Salimi A., Hallaj R., Soltanian S., Mamkhezri H. (2007), "Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles", Analytica chimica acta. 594(1), pp. 24-31. 157. Salunkhe R.R., Tang J., Kamachi Y., Nakato T., Kim J. H., Yamauchi Y. (2015), "Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework", ACS nano. 9(6), pp. 6288-6296. 158. Samadi-Maybodi A., Ghasemi S., Ghaffari H. (2015), "Ag-doped zeolitic imidazolate framework-8 nanoparticles modified CPE for efficient electrocatalytic reduction of H2O2", Electrochimica Acta. 163, pp. 280-287. 159. Samadi-Maybodi A., Ghasemi S., Ghaffari-Rad H. (2015), "A novel sensor based on Ag-loaded zeolitic imidazolate framework-8 nanocrystals for efficient electrocatalytic oxidation and trace level detection of hydrazine", Sensors and Actuators B: Chemical. 220, pp. 627 - 633. 160. Saquib M., Muneer M. (2003), "TiO2-mediated photocatalytic degradation of a triphenylmethane dye( gentian violet) in aqueous suspensions", Dyes and Pigments. 56, pp. 37-49. 161. Saravanakumar R., Sankararaman S. (2007), "Molecule Matters: Metal Organic Frameworks (MOFs)", Feature Article. 12, pp. 77-86. 162. Sava D.F., Rodriguez M.A., Chapman K.W., Chupas P.J., Greathouse J.A., Crozier P.S., Nenoff T.M., Am J., (2011), "Capture of Volatile Iodine, a Gaseous Fission Product, by Zeolitic Imidazolate Framework-8", Chem. Soc. 133, pp. 12398-12401. 163. Sawalha M.F., Peralta-Videa J.R., Romero-Gonzalez J., Gardea-Torresdey J.L. (2006), "Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: thermodynamic and isotherm studies", J. Colloid Interface Sci. 300, pp. 100 - 104. 144 164. Scheckel K.G., and Sparks D.L. (2001), "Temperature Effects on Nickel Sorption Kinetics at the Mineral–Water Interface", Soil Sci. Soc. Am. J. 65(3), pp. 719-728. 165. Seber G.A.F., Wild C.J. (1989), Nonlinear regression, John Wiley & Sons, New York. 166. Seoane B., Zamaro J. M., Tellez C., Coronas J. (2012), "Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20)", Crys. Eng. Commun. 14, pp. 3103-3107. 167. Sheha R.R., El-Zahhar A.A. (2008), "Synthesis of some ferromagnetic composite resins and their metal removal characteristics in aqueous solutions", J. Hazard. mater. B. 150, pp. 795 -803. 168. Shi Q., Chen Z. F., Song Z. W., Li J. P., Dong J. X. (2011), "Synthesis of ZIF- 8 and ZIF-67 by Steam-Assisted Conversion and an Investigation of Their Tribological Behaviors", Chem., Int. Ed. 50, pp. 672-675. 169. Shifu C., Sujuan Z., Wei L., Wei Z., (2008), "Preparation and activity evaluation of p–n junction photocatalyst NiO/TiO2", Journal of Hazardous Materials. 155, pp. 320 - 326. 170. Shifu C., Wei Z., Wei L., Sujuan Z. (2009), "Preparation, characterization and activity evaluation of p-n junction photocatalyst p-NiO/n-ZnO", J Sol-Gel Sci Technol. 50, pp. 387 - 396. 171. Silva C.G., Corma A., Garcia H. (2010), "Metal-organic frameworks as semiconductors", J. Mater. Chem. 20(16), pp. 3141-3156. 172. Soleymani J., Hasanzadeh M., Shadjou N. et al. (2016), "A new kinetic- mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode", Materials Science and Engineering: C. 61, pp. 638-650. 173. Song Q., Nataraj S.K., Roussenova M.V., Tan J.C. et al (2012), "Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation", Energy & Environmental Science. 5(8), pp. 8359-8369. 174. Sreethawong T., Suzuki Y., Yoshikawa S. (2005), "Photocatalytic evolution of hydrogen overmesoporous TiO2 supported NiO photocatalyst prepared by single-step sol–gel processwith surfactant template", International Journal of Hydrogen Energy. 30, pp. 1053 -1062. 145 175. Tan I.A.W., Ahmad A.L., Hameed B.H. (2008), "Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies", Journal of Hazardous Materials. 154, pp. 337-346. 176. Tanaka S., Kida K., Okita M., Ito Y., and Miyake Y. (2012), "Size-controlled Synthesisof ZeoliticImidazolate Framework-8 (ZIF-8) Crystals in an Aqueous System at Room Temperature", Chem. Lett. 41, pp. 1337-1339 177. Thompson J. A., Blad C.R., Brunelli N. A., Lydon M. E. et al ( 2012), "Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity and Functionality by Mixed-Linker Synthesis", Chem.Mater. 24, p. 1930−1936. 178. Thompson J. A., Chapman K.W., Koros W.J. et al (2012), "Sonication- induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF- 8/polymer composite membranes", Microporous and Mesoporous Materials. 158, pp. 292-299. 179. Tiana F., Liub Y. (2013), "Synthesis of p-type NiO/n-type ZnO heterostructure and its enhanced photocatalytic activity", Scripta Materialia Volume 69, Issue 5, September 2013, Pages 417–419. 69(5), pp. 417-419. 180. Tosun I. (2012), "Ammonium removal from aqueous solutions by clinoptilolite: determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models", Int J Environ Res Public Health. 9(3), pp. 970-984. 181. Tsai C.-W., Langner E.H.G. (2016), "The effect of synthesis temperature on the particle size of nano-ZIF-8", Microporous and Mesoporous Materials.221, pp. 8-13. 182. Tseng R.-L., Wu F.-C., Juang R.-S. (2003), "Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons", Carbon. 41(3), pp. 487-495. 183. Unuabonah E.I., Adebowale K.O., Olu-Owolabi B.I. (2007), "Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate- modified kaolinite clay", J. Hazard Mater. 144(1-2), pp. 386-395. 184. Uyen P.N. Tran, Ky K.A. Le, and and Nam T.S. Phan ( 2011), "Expanding Applications of Metal-Organic Frameworks: Zeolite Imidazolate Framework 146 ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction", ACS Catal 1, pp. 120–127. 185. Vadivelan V., Kumar K.V. (2005), "Equilibrium, kinetics, mechanism and process design for the sorption of methylene blue onto rice husk", Journal Colloid Interface Sci. 286(1), pp. 90 - 100. 186. Venna S.R., Jasinski J.B., Carreon M. A., Am J. (2010), "Structural Evolution of Zeolitic Imidazolate Framework-8", Chem. Soc. 132, pp. 18030-18033. 187. Walcarius A. (2015), Mesoporous Materials-Based Electrochemical Sensors, Electroanalysis. 27 (6), pp. 1303-1340. 188. Wang C., Shao X., Liu Q., Qu Q., Yang G., Hu X., (2006), "Differential pulse voltammetric determination of nimesulide in pharmaceutical formulation and human serum at glassy carbon electrode modified by cysteic acid/CNTs based on electrochemical oxidation of l-cysteine", Journal of Pharmaceutical and Biomedical Analysis. 42(2), pp. 237 - 244. 189. Wang F., Liu Z.S., Yang H., Tan Y.X. and Zhang J. (2011), "Hybrid zeolitic imidazolate frameworks with catalytically active TO4 building blocks", Angewandte Chemie International Edition. 50(2), pp 450-453. 190. Wang Q., Geng B., Wang S. (2009), "ZnO/Au Hybrid Nanoarchitectures: Wet-Chemical Synthesis and Structurally Enhanced Photocatalytic Performance", Environ. Sci. Technol. 43(23), pp. 8968–8973. 191. Wang S., Fan Y., Jia X. (2014), "Sodium dodecyl sulfate-assisted synthesis hierarchically porous ZIF-8 particles for removing mercaptan from gasolin", Chem. Eng. J. 256, pp. 14 -22. 192. Wang X., Zhang H., Lin H. et al (2016), " Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid", Nano Energy. 25, pp 110–119. 193. Wu M-S., and Chang H-W. (2013), "Self-Assembly of NiO-Coated ZnO Nanorod Electrodes with Core−Shell Nanostructures as Anode Materials for Rechargeable Lithium- Ion Batteries", J. Phys. Chem. C 117, pp. 2590 - 2599. 194. Wu R., Qian X., Zhou K., Wei J., Lou J., Ajayan P.M. (2014), "Porous Spinel ZnxCo3–xO4 Hollow Polyhedra Templated for High-Rate Lithium-Ion Batteries", ACS Nano. 8, pp. 6297 –6303. 147 195. Wu W., Jiang C. and Roy V.A.L.(2015), "Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts", Nanoscale. 7, pp. 38-58. 196. Wu Y., Zhou M., Zhang B., Wu B., Li J., Qiao J., Guan X., Li F. (2014), "Amino acid assisted templating synthesis of hierarchical zeolitic imidazolate framework-8 for efficient arsenate removal", Nanoscale. 6, pp. 1105–1112. 197. Xi Z., Hong P.Z., Gong Y.W., Zhi G.Y., Ying R.T., Shan S.Z., (2013), "Zeolitic imidazolate framework as efficient heterogeneous catalyst for the synthesis of ethyl methyl carbonate", Journal of Molecular Catalysis A: Chermical. 366, pp. 43-47. 198. Xia B., Cao N., Dai H., Su J., Wu X., Luo W., and Cheng G. (2014), "Bimetallic Nickel–Rhodium Nanoparticles Supported on ZIF-8 as Highly Efficient Catalysts for Hydrogen Generation from Hydrazine in Alkaline Solution", ChemCatChem 6, pp. 2549 – 2552 199. Xian S., Xu F., Ma C., Wu Y., Xia Q., Wang H., Li Z. (2015), "Vapor- enhanced CO2 adsorption mechanism of composite PEI@ZIF-8 modified by polyethyleneimine for CO2/N2 separation", Chemical Engineering Journal. 280, pp. 363-369. 200. Xiao L., Xu H., Zhou S., Song T., Wang H., Li S., Gan W. (2014), "Simultaneous detection of Pb(II) and Cd(II) by differential pulse anodic stripping voltammetry at a nitrogen-doped microporous carbon/Nafion/bismuth-film electrode", Electrochimica Acta. 143, pp. 143 - 151. 201. Xiao L., Zhou S., Hu G., Xu H., Wang Y., Yuan Q. (2015), "One-step synthesis of isoreticular metal-organic framework-8 derived hierarchical porous carbon and its application in differential pulse anodic stripping voltammetric determination of Pb(II)", RSC Advances. 5(94), pp. 77159 - 7167. 202. Xiao M., Lu Y., Li Y., Song H., Zhu L., and Ye Z. (2014), "A new type of p- type NiO/n-type ZnO nano- heterojunctions with enhanced photocatalytic activity", RSC Adv. 4, pp. 34649–34653. 203. Xu X., Duan G., Li Y. et al., (2014), "Fabrication of gold nanoparticles by laser ablation in liquid and their application for simultaneous electrochemical 148 detection of Cd 2+ ,Pb 2+ ,Cu 2+ ,Hg 2+ ", ACS Applied Materials and Interfaces. 6(1), pp. 65 - 71. 204. Yaghi O.M. (2004), Porous crystals for carbon dioxide storage‖, Center for Reticular Materials Research at California NanoSystems Institute UCLA. 205. Yaghi O.M., O'Keeffe M., Ockwig N.W., Chae H.K., Eddaoudi M., Kim J., (2003), "Reticular Synthesis and the Design of New Materials", Nature. 423, pp. 705-714. 206. Yaghi O.M., Tranchemontagne D.J., O’Keeffe M., (2009), "Secondary building units, nets and bonding in the chemistry of metal-organic frameworks", Chem. Soc. Rev. 38, , pp. 1257–1283. 207. Yagub M.T., Sen T.K., Afroze S., Ang H.M. (2014), "Dye and its removal from aqueous solution by adsorption: A review", Advances in Colloid and Interface Science. 209, pp. 172-184. 208. Yamamoto D., Maki T., Watanabe S., Tanaka H., Minoru T. M., Kazuhiro M. (2013), "Synthesis and adsorption properties of ZIF-8 nanoparticles using a micromixer", Chemical Engineering Journal 227, pp. 145-150. 209. Yan F., Liu Z.Y., Chen J.L., Sun X.Y., Li X.J., Su M.X., Li B., Di B., (2014), "Nanoscale zeolitic imidazolate framework-8 as a selective adsorbent for theophylline over caffeine and diprophylline", RSC Adv. 4, pp. 33047 - 33054. 210. Yang D., Wang L., Chen Z.,Megharaj M.,and Naidu R. (2014), "Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modiied with bismuth nanoparticles", Microchimica Acta. 181(11-12), pp. 1199 - 1206. 211. Yao J., Chen R., Wang K., Wang H. (2013), "Direct synthesis of zeolitic imidazolate framework-8/chitosan composites in chitosan hydrogels", Microporous and Mesoporous Materials. 165, pp. 200-204. 212. Yu B., Wang F., Dong W., Hou J., Lu P., Gong J., (2015), "Self-template synthesis of core–shell ZnO@ZIF-8 nanospheres and the photocatalysis under UV irradiation", Materials Letters. 156, pp. 50–53. 213. Zhang Y., Li L., Su H., Huang W., Dong X. (2015), "Binary metal oxide: advanced energy storage materials in supercapacitors", Journal of Materials Chemistry A. 3(1), pp. 43-59. 214. Zhang Z., Shao C., Li X., Wang C., Zhang M., and Liu Y. (2010), "Electrospun Nanofibers of p-Type NiO/n-Type ZnO Heterojunctions with 149 Enhanced Photocatalytic Activity", applied Materials and interfaces. 2, pp. 2915 -2923. 215. Zhang Z., Shao C., Li X., Zhang L., Xue H., Wang C., and Liu Y. (2010), "Electrospun Nanofibers of ZnO - SnO2 Heterojunction with High Photocatalytic Activity", J. Phys. Chem. 114, pp. 7920–7925. 216. Zhang Z., Xian S., Xi H., Wang H., li Z. (2011), "Improvement of CO2 adsorption on ZIF-8 crytals modified by enhancing basicity of surface", Chemical Engineering Science. 66, pp. 4878-4888. 217. Zhao X., Fang X., Wu B., Zheng L., Zheng N. (2013), "Facile synthesis of size-tunable ZIF-8 nanocrystals using reverse micelles as nanoreactors", Science China Chemistry. 57(1), pp. 141-146. 218. Zheng L., Zheng Y., Chen C., Zhan Y., Lin X., Zheng Q., Wei K. and Zhu J. (2014), "Network Structured SnO2/ZnO Heterojunction Nanocatalyst with High Photocatalytic Activity", RSC Adv. 4, pp. 34649 -34653. 219. Zhu J., Jiang L., Dai C., Yang N., Lei Z. (2015), "Gas adsorption in shaped zeolitic imidazolate framework-8", Chinese journal of Chemical Engineering. 23, pp. 1275 - 1282. 220. Zhu M., Srinivas D., Bhogeswararao S., Ratnasamy P.,Carreon M.A., (2013), "Catalytic activity of ZIF-8 in the synthesis of styrene carbonate from CO2 and styrene oxide", Catalysis Communications. 32, pp. 36–40. 221. Zhu M., Venna S. R., Jasinski J. B., Carreon M.A., ( 2011), "Room- Temperature Synthesis of ZIF-8: The Coexistence of ZnO Nanoneedles", Chem. Mater. 23, pp. 3590–3592. 222. Zou Z., Wang S., Jia J., Xu F., Long Z., Hou X. (2016), "Ultrasensitive determination of inorganic arsenic by hydride generation-atomic fluorescence spectrometry using Fe3O4@ZIF-8 nanoparticles for preconcentration", Microchemical Journal 124, pp. 578 -583. PHỤ LỤC Phụ lục 1. Thành phần biến tính và dung dịch phân tích đối với các loại WE Loại điện cực Dung dịch biến tính (1) Dung dịch phân tích (a) BiF/Naf–ZIF-8/GCE Dung dịch C 1 mL đệm acetate 1 M(pH = 4,72); [Pb(II)] = 50 ppb;[Bi(III)] = 300 ppb; (b) BiF/Naf/GCE Dung dịch B (c) Naf/GCE Dung dịch B 1 mL đệm acetate 1 M (pH = 4,72); [Pb(II)] = 50 ppb; (d) Naf–ZIF-8/GCE Dung dịch C (e) GCE - (f) BiF/GCE - 1 mL đệm acetate 1 M(pH = 4,72); [Pb(II)] = 50 ppb;[Bi(III)] = 300 ppb; Phụ lục 2. Các thông số cố định trong phương pháp CV STT Thông số Kí hiệu Giá trị Giá trị 1 Tốc độ quay điện cực Ω 2000 vòng/phút 2 Khoảng quét thế Erange -1000 – 300 mV 3 Thời gian nghỉ trest 10 s 4 Thế làm giàu Eacc -1000 mV 5 Thời gian làm giàu tacc 120 s 6 Tốc độ quét ν 100 mV/s Nghỉ 10 s 1. Giai đoạn làm giàu: - Dung dịch phân tích: đệm pH, V1 mL Pb(II), V2 mL Bi(III) và thêm nước cất 2 lần vừa đủ 10 ml (V0 mL); - Áp thế và thời gian làm giàu: Eacc (- 1200 mV) và tacc (120 s);  (2000 vòng/phút). 2. Giai đoạn hòa tan: - Quét thế theo chiều anode, khoảng quét thế từ - 1000 (mV) →300 (mV); - Sử dụng kỹ thuật DP để đo tín hiệu hòa tan (Ep,Pb và Ip,Pb); - Tín hiệu hòa tan: Ip và Ep, trong đó Ip,Pb  CPb. - Tiến hành định lượng bằng phương pháp thêm chuẩn. Phụ lục 3. Quy trình thí nghiệm của phương pháp DP-ASV Phụ lục 4. Các thông số cố định trong phương pháp DP-ASV STT Thông số Kí hiệu Đơn vị Giá trị 1 Tốc độ quay điện cực Ω 2000 vòng/phút 2 Khoảng quét thế Erange -1000 – 300 mV 3 Thời gian nghỉ trest 10 s 4 Thế làm giàu Eacc -1200 mV 5 Thời gian làm giàu tacc 120 s 6 Biên độ xung ∆E 50 mV 7 Thời gian mỗi bước thế tstep 0,3 s 8 Bước nhảy thế Ustep 6 mV 9 Tốc độ quét ν 20 mV/s Phụ lục 5. Tín hiệu hòa tan của Pb(II) ở các nồng độ Bi(III) khác nhau STT [Bi(III)] (ppb) Ep,Pb (V) Ip, Pb (1) (μA) SdIp (μA) RSDI p (%) (n=4) 1 10 -0,586 20,17 0,931 4,62 2 50 -0,589 24,16 0,143 0,59 3 100 -0,601 29,19 0,512 1,76 4 300 -0,580 36,21 0,355 0,98 5 500 -0,604 31,24 0,258 0,83 6 700 -0,612 25,16 0,046 0,18 7 1000 -0,622 14,61 0,622 4,26 Phụ lục 6. Tín hiệu hòa tan của Pb(II) ở các tốc độ quét thế khác nhau STT ν (mV/s) Ip,Pb (1) (μA) SdIp (μA) Ep,Pb (V) SdEp (V) Ep/2,Pb (V) SdEp/2 (V) 1 20 6,393 0,228 -0,570 0,002 -0,593 0,001 2 40 14,58 0,210 -0,553 0,001 -0,582 0,001 3 50 19,26 0,230 -0,548 0,001 -0,579 0 4 75 28,86 0,204 -0,538 0,001 -0,573 0,001 5 100 37,13 0,497 -0,533 0 -0,571 0,001 6 200 66,40 0,489 -0,514 0,002 -0,562 0 7 300 88,66 1,091 -0,506 0,003 -0,559 0 8 400 103,6 0,902 -0,500 0 -0,562 0 9 500 117,3 1,470 -0,492 0 -0,562 0 ĐKTN: WE = BiF/Naf-ZIF-8/GCE; mZIF-8 = 12,5 μg; đệm B-R 0,5 M (pH = 3,2); [Pb(II)] = 500 ppb; [Bi(III)] = 300 ppb; Ip là kết quả trung bình 4 lần đo lặp lại Phụ lục 7: Giản đồ XRD của ZIF-8 Phụ lục 8: Giản đồ XRD của Fe-ZIF-8(10%) Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - ZIF8 File: ThanhQN ZIF8.raw - Type: 2Th/Th locked - Start: 1.000 ° - End: 60.010 ° - Step: 0.030 ° - Step time: 0.5 s - Anode: Cu - WL1: 1.5406 - Generator kV: 40 kV - Generator mA: 40 mA - Creation: 19/09/2016 1:23:02 PM L in ( C p s ) 0 1000 2000 3000 4000 5000 2-Theta - Scale 1 10 20 30 40 50 60 d = 1 2 .0 8 4 d = 8 .5 4 2 d = 6 .9 6 2 d = 6 .0 1 6 d = 5 .3 7 4 d = 5 .1 3 4 d = 4 .9 1 7 d = 4 .7 3 5 d = 4 .5 4 6 d = 4 .0 2 8 d = 3 .6 2 7 d = 3 .4 6 5 d = 3 .3 3 7 d = 3 .0 8 1 d = 3 .0 0 7 d = 2 .9 1 8 d = 2 .8 3 5 d = 2 .7 6 2 d = 2 .6 2 6 d = 2 .5 6 3 d = 2 .4 5 6 Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - Fe-ZIF8-9:1 File: ThanhQN Fe-ZIF8-91.raw - Type: 2Th/Th locked - Start: 1.000 ° - End: 60.010 ° - Step: 0.030 ° - Step time: 0.5 s - Anode: Cu - WL1: 1.5406 - Generator kV: 40 kV - Generator mA: 40 mA - Creation: 19/09/2016 2:04:51 L in ( C p s ) 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 2-Theta - Scale 1 10 20 30 40 50 60 d = 1 2 .0 7 6 d = 8 .5 0 6 d = 6 .9 4 1 d = 5 .9 6 1 d = 5 .6 3 0 d = 5 .3 9 8 d = 4 .9 0 6 d = 4 .5 3 4 d = 3 .9 9 9 d = 3 .6 2 0 d = 3 .3 3 6 d = 2 .9 9 5 d = 2 .9 1 6 d = 2 .8 3 5 d = 2 .7 5 1 d = 2 .5 6 0 Phụ lục 9: Giản đồ XRD của Fe-ZIF-8(20%) Phụ lục 10: Giản đồ XRD của Fe-ZIF-8(30%) Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - Fe-ZIF8-8:2 File: ThanhQN Fe-ZIF8-82.raw - Type: 2Th/Th locked - Start: 1.000 ° - End: 60.010 ° - Step: 0.030 ° - Step time: 0.5 s - Anode: Cu - WL1: 1.5406 - Generator kV: 40 kV - Generator mA: 40 mA - Creation: 19/09/2016 1:41:00 L in ( C p s ) 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 2-Theta - Scale 1 10 20 30 40 50 60 d = 1 2 .1 3 3 d = 8 .5 5 5 d = 6 .9 4 3 d = 6 .4 9 2 d = 6 .0 4 2 d = 5 .7 9 4 d = 5 .4 2 2 d = 4 .9 2 1 d = 4 .3 5 4 d = 4 .0 1 1 d = 3 .6 3 1 d = 3 .3 2 8 d = 3 .0 1 3 d = 2 .9 2 1 d = 2 .8 4 2 Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - Fe-ZIF8-7:3 File: ThanhQN Fe-ZIF8-73.raw - Type: 2Th/Th locked - Start: 1.000 ° - End: 60.010 ° - Step: 0.030 ° - Step time: 0.5 s - Anode: Cu - WL1: 1.5406 - Generator kV: 40 kV - Generator mA: 40 mA - Creation: 19/09/2016 1:05:52 L in ( C p s) 0 100 200 300 400 500 600 700 800 900 1000 2-Theta - Scale 1 10 20 30 40 50 60 d = 1 2 .0 8 2 d = 8 .4 7 2 d = 6 .9 4 5 d = 6 .0 4 2 d = 5 .4 0 5 d = 4 .9 1 7 Phụ lục 11 :Giản đồ phân tích nhiệt TG - TGA của ZIF-8 Phụ lục 12 :Giản đồ phân tích nhiệt TG - TGA của Fe-ZIF-8(10%) Phụ lục 13 :Giản đồ phân tích nhiệt TG - TGA của Fe-ZIF-8(20%) Phụ lục 14 :Giản đồ phân tích nhiệt TG - TGA của Fe-ZIF-8(30%)

Các file đính kèm theo tài liệu này:

  • pdfluan_an_nghien_cuu_bien_tinh_vat_lieu_zif_8_va_mot_so_ung_du.pdf