Ảnh hưởng của thời gian hấp phụ trên ZIF-8 và Fe-ZIF-8 ở nồng độ đầu RDB
thay đổi trong khoảng 30-50 mg.L-1 được thể hiện trên Hình 3.24. Kết quả cho thấy,
dung lượng hấp phụ tăng lên khi nồng độ phẩm nhuộm tăng. Cùng nồng độ đầu,
dung lượng hấp phụ RDB của Fe-ZIF-8 cao hơn của ZIF-8. Khi nồng độ phẩm
nhuộm tăng từ 30 mg.L-1 đến 50 mg.L-1 thì dung lượng hấp phụ tăng lên, tương ứng
với 30,2 - 42,1 mg.g-1 trên ZIF-8; 50,4 - 76,8 mg.g-1 trên Fe-ZIF-8(10%); 44,9 - 88,7
mg.g-1 trên Fe-ZIF-8(20%) và 41,1 - 72,0 mg.g-1 trên Fe-ZIF-8(30%). Khi nồng độ
đầu của phẩm nhuộm tăng cao, sẽ cung cấp một lực động (driving force) để vượt
qua sự truyền khối của RDB từ dung dịch vào bề mặt chất hấp phụ [185]
                
              
                                            
                                
            
 
            
                 171 trang
171 trang | 
Chia sẻ: tueminh09 | Lượt xem: 1010 | Lượt tải: 0 
              
            Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu biến tính vật liệu Zif - 8 và một số ứng dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
y in Isoreticular Zeolitic 
Imidazolate Frameworks and their Carbon Dioxide Selective Capture 
Properties", J. Am. Chem. Soc. 131, pp. 3875-3877. 
20. Bard A.J., Faulkner L.R. (2001), Fundamentals and applications -
Electrochemical Methods, 2nd Edition ed, Wiley, New York, 157. 
21. Behnajady M.A., Modirshahla N., Hamzavi R., (2006), "Kinetic study on 
photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst", 
Journal of Hazardous Materials. B133, pp. 226–232. 
130 
22. Beldon P. J., Fabian L., Stein R. S., Thirumurugan A., Cheetham A. K., 
Friscic T., Angew (2010), "Rapid Room-Temperature Synthesis of Zeolitic 
Imidazolate Frameworks by Using Mechanochemistry", Chem. Int. Ed. 49, pp. 
9640 - 9643. 
23. Belhadi A., Boumaza S., Trari M., (2011), "Photoassisted hydrogen 
production under visible light over p-NiO/n-ZnO hetero-system", Applied 
Energy. 88, pp. 4490 - 4495. 
24. Bhattacharya A.K., Naiya T.K., Mandal S.N., Das S.K., (2008), "Adsorption, 
kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions 
using different low-cost adsorbents", Chem. Eng. J. . 137, pp. 529 - 541. 
25. Bohme U., Barth B., Paula C., Kuhnt A., Schwieger W., Mundstock A., Caro 
J., and Hartmann M., (2013), "Ethene/Ethane and Propene/Propane Separation 
via the Olefin and Paraffin Selective Metal−Organic Framework Adsorbents 
CPO-27 and ZIF‑8", Langmuir 29, p. 8592−8600. 
26. Bordiga S., Lamberti C., Ricchiardi G., Regli L., Bonino F., Damin A., 
Lillerud K. P., Bjorgen M., Zecchina A. (2004), "Electronic and vibrational 
properties of a MOF-5 metal-organic framework: ZnO quantum dot 
behaviour", Chem. Commun. 20, pp. 2300-2301. 
27. Bowen H.K., Adler D., Auker B.H. (1975), "Electrical and optical properties 
of FeO", Journal of Solid State Chemistry 12, no. 3–4, pp 355-359. 
28. Bui Hai Dang Son, Quang Mai, Dang Xuan Du, Nguyen Hai Phong, and Dinh 
Quang Khieu (2016), "A Study on Astrazon Black AFDL Dye Adsorption 
onto Vietnamese Diatomite", Journal of Chemistry and Biochemistry. Volume 
2016, Article ID 8685437. 
29. Bustamante E. L., Fernandez J. L., and M., Zamaro J. (2014), "Influence of the 
solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) 
nanocrystals at room temperature", J. Colloid Interface Sci. 424, pp. 37-43. 
30. Bux H., Liang F., Li Y., Cravillon J., Wiebcke M. and Caro J. (2009), 
"Zeolitic Imidazolate Framework Membrane with Molecular Sieving 
Properties by Microwave-Assisted Solvothermal Synthesis", J. Am. Chem. 
Soc. 131(44), pp. 16000-16001. 
31. Cai X., Cai Y., Liub Y., Denga S., Wanga Y., Wanga Y., Djerdj I. (2014), 
"Photocatalytic degradation properties of Ni(OH)2 nanosheets/ZnO nanorods 
131 
composites for azo dyes under visible-light irradiation", Ceramics 
International. 40, pp. 57-65. 
32. Chae H.K., Siberio-Pe´re D. Y., Kim J. , Go Y. , Eddaoudi M., Matzger A. J., 
O’Keeffe M. , Yaghi O.M., (2004), "A route to high surface area porosity and 
inclusion of large molecules in crystals", Nature. 427, pp. 523-527. 
33. Chang G, Bao Z., Ren Q., Deng S., Zhang Z., Su B., Xing H., Yang Y (2014), 
"fabrication of cuprous nanoparticles in MIL -101: An efficient adsorbent for 
the separation of olefin/paraffin mixtures", Royal Society of Chemistry. 
34. Chen S., Zhang S., Liu W., Zhao W. (2008), "Preparation and activity 
evaluation of p–n junction photocatalyst NiO/TiO2", J. Hazard. Mater. 155, 
pp. 320 -326. 
35. Cheon Y. E., Park J., Suh M. P., ((2009)), "Selective gas adsorption in a 
magnesium-based metal–organic framework", Chem. Commun., pp. 5436–
5438. 
36. Chi W.S., Sinyoung H., Lee S-J., Park S., Bae Y-S., Ryu D. Y., Kim J. H., 
Kim J. (2015), "Mixed matrix membranes consisting of SEBS block 
copolymers and size-controlled ZIF-8 nanoparticles for CO2 capture", Journal 
of Membrane Science. 495, pp. 479 - 488. 
37. Chmelik C., Baten J.V., Krishna R. (2012), "Hindering effects in diffusion of 
CO2/CH4 mixtures in ZIF-8 crytals", Journal of membrane Science. 397, pp. 
87-91. 
38. Cho H-Y., Kim J., Kim S-N., Ahn W-S. (2013), "High yield 1-L scale 
synthesis of ZIF-8 via a sonochemical route", Microporous and Mesoporous 
Materials. 169, pp. 180–184. 
39. Chowdhury P., Mekala S., Dreisbach F., Gumma S., (2012), "Adsorption of 
CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: 
Effect of open metal sites and adsorbate polarity", Microporous Mesoporous 
Mater. 152, pp. 246-252. 
40. Crank G. (1975), The mathematics of diffusion, Clarendon Press, London. 
41. Cravillon J., Munzer S., Lohmeier S. J., Feldhoff A., Huber K., Wiebcke M. 
(2009), "Rapid Room-Temperature Synthesis and Characterization of 
Nanocrystals of a Prototypical Zeolitic Imidazolate Framework", Chem. 
Mater. 21, pp. 1410-1412. 
132 
42. Cravillon J., Nayuk R., Springer S., Feldhoff A., Huber K., Wiebcke M. 
(2011), "Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal 
Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light 
Scattering", Chem. Mater. 23, pp. 2130-2141. 
43. D'Alessandro D. M., Smit B., Long J. R. (2010), "Carbon dioxide capture: 
Prospects for new materials", Angew. Chem., Int. Ed. 49(35), pp. 6058 - 6082. 
44. Danaci D., Singh R., Xiao P., Paul A. W., (2015), "Assessment of ZIF 
materials for CO2 capture from high pressure natural gas streams", Chemical 
Engineering journal. 280, pp. 486-493. 
45. David F-J., Raimondas R., Antonio T., Alistair D-G., Michael T.W., Paul 
A.W., Caroline M-D. and Tina D. (2012), "Flexibility and swing effect on the 
adsorption of energy-related gases on ZIF-8: combined experimental and 
simulation study", Dalton Transactions. 41, pp. 10752 - 10762. 
46. Ding S., Yan Q., Jiang H., Zhong Z., Chen R., Xing W, (2016), "Fabrication 
of Pd@ZIF-8 catalysts with different Pd spatial distributions and their 
catalytic properties", Chemical Engineering Journal. 296, pp. 146-153. 
47. Dinh Quang Khieu, Bui Hai Dang Son, Vo Thi Thanh Chau, Pham Dinh Du, 
Nguyen Hai Phong, and Nguyen Thi Diem Chau (2017), "3-
Mercaptopropyltrimethoxysilane Modified Diatomite: Preparation and 
Application for Voltammetric Determination of Lead (II) and Cadmium (II)", 
Hindawi Journal of Chemistry Volume 2017, Article ID 9560293, 10 pages 
48. Dong Y., Ding Y. et al (2014), "Differential pulse anodic stripping 
voltammetric determination of Pb ion at a montmorillonites/polyaniline 
nanocomposite modified glassy carbon electrode", Journal of 
Electroanalytical Chemistry 717-718 pp. 206–212. 
49. Dorneanu P.P., Airinei A., Olaru N., Homocianu M., Nica V., Doroftei F. 
(2014), "Preparation and characterization of NiO, ZnO and NiO-ZnO 
composite nanofibers by electrospinning method", Materials Chemistry and 
Physics. 148, pp. 1029 - 1035. 
50. Du Y., Chen R.Z., Yao J.F., Wang H.T., (2013), "Facile fabrication of porous 
ZnO by thermal treatment of zeolitic imidazolate framework-8 and its 
photocatalytic activity", Journal of Alloys and Compounds. 551(25), pp. 125-
130. 
133 
51. Eddaoudi M., Kim J., Wachter J.B., Chae H.K., O’Keeffe M.,Yaghi O.M. 
(2001), "Porous metal - organic polyhedra: 25 Å cubocta hedron constructed 
from 12 Cu2(CO2)4 paddle - wheel building blocks", J. Am. Chem. Soc., pp. 
4368. 
52. Eslava S., Zhang L., Esconjauregui S., Yang J., Vanstreels K., Baklanov M.R., 
Saiz E., (2012), "Metal - Organic Framework ZIF-8 Films As Low-k 
Dielectrics in Microelectronic", Chemistry of Materials, pp. 27 - 33. 
53. Fan X., Wang W., Li W., Zhou J., Wang B., Jheng J., Li X. (2014), "Highly 
porous ZIF-8 nanocrystals prepared by a surfactant mediated method in 
aqueous solution with enhanced adsorption kinetics", ACS Appl. Mater. 
Interfaces 6, pp. 14994-14999. 
54. Farha O. K., Eryazici I., Jeong N.C., Hauser B.G., Wilmer C.E., Sarjeant 
A.A., Snurr R.Q., Nguyen S.T., Yazaydın A.O., and Hupp J.T. (2012), 
"Metal−Organic Framework Materials with Ultrahigh Surface Areas: Is the 
Sky the Limit", J. Am. Chem. Soc. 134(36), pp. 15016−15021. 
55. Fogg A. G. (1994), "Adsorptive stripping voltammetry or cathodic stripping 
voltammetry methods of accumulation and determination in stripping 
voltammetry", Analytical Proceeding Including Analytical Communication. 
31, pp. 313-317. 
56. Freundlich H.M.F. (1915), "Over the adsorption in solution", Phys. Chem. 57, 
pp. 385 - 471. 
57. Férey G.,(2008), " Hybrid porous solids: past, present, future", Chem. Soc. 
Rev. 37, pp. 191 -214. 
58. Galindo C., Jacques P., and Kalt A., (2001), "Photooxidation of the 
phenylazonaphthol AO20 on TlO2: kinetic and mechanistic investigations. ", 
Chemosphere. 45 (6-7), pp. 997-1005. 
59. Gang H., Feifei Z., Leilei Z., Xinchuan D. Jianwei W. and Limin W. (2014), 
"Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic 
frameworks for superior lithium ion battery anodes", J. Mater. Chem. A. 2, pp. 
8048-8053. 
60. Furukawa H., Ko N., Go Y.B., Aratani N. and Choi S.B.(2010), "Ultrahigh 
Porosity in Metal-Organic Frameworks", Science. 329, pp. 424-428. 
61. Gomez Y., Fernandez L., Borras C, Mostany J., Scharifker B., (2011), 
"Characterization of a carbon paste electrode modified with tripolyphosphate-
134 
modified kaolinite clay for the detection of lead", Talanta. 85, pp. 1357 - 
1363. 
62. Graham D., (1953), "The characterization of physical adsorption systems. I. 
The equilibrium function and standard free energy of adsorption", J.Phys. 
Chem. 57, pp. 665–669. 
63. Grote B. (2012), Application of advanced oxidation processes (AOP) in water 
treatment, 37th Annual old Water Industry Operations Workshop Parklands, 
Gold Coast, pp. 17-23. 
64. Haldoupis E., Watanabe T., Nair S. and Sholl D.S. (2012), "Quantifying large 
effects of Framework Flexilibity on diffusion in MOFs: CH4 and CO2 in ZIF-
8", ChemPhysChem 0000, pp. 1-4. 
65. Halsey G.D. (1952), "The role of surface heterogeneity in adsorption", 
Adv.Catal. 4, pp. 259-269. 
66. Hameed A., Montini T., Gombac V., Fornasiero P., (2009), "Photocatalytic 
decolourization of dyes on NiO–ZnO nano-composites", Photochem. 
Photobiol. Sci. 8, pp. 677-682. 
67. Han C., Chen Z., Zhang N., Colmenares J. C., Xu Y-J. (2015), "Hierarchically 
CdS Decorated 1D ZnO Nanorods-2D Graphene Hybrids: Low Temperature 
Synthesis and Enhanced Photocatalytic Performance", Advanced Functional 
Materials. 25(2), pp. 221–229. 
68. Han T-T., Yang J., Liu Y-Y., Ma J-F. (2016), "Rhodamine 6G loaded zeolitic 
imidazolate framework-8 (ZIF-8) nanocomposites for highly selective 
luminescent sensing of Fe
3+
, Cr
6+
 and aniline", Microporous and Mesoporous 
Materials. 228, pp. 275-288. 
69. He M., Yao J., Liu Q., Wang K., Chen F., Wang H. (2014), "Facile synthesis 
of zeolitic imidazolate framework-8 from a concentrated aqueous solution", 
Microporous and Mesoporous Materials. 184, pp. 55-60. 
70. Ho Y. S., McKay G. (1999), "Pseudo-second order model for sorption 
processes", Process Biochem. 34(5), pp. 451-465. 
71. Hong D.-Y., Hwang Y. K., Serre C., Férey G., Chang J.-S. (2009), "Porous 
chromium terephthalate MIL-101 with coordinatively unsaturated sites: 
Surface functionalization, encapsulation, sorption and catalysis", Adv. Funct. 
Mater. 19, pp. 1537-1552. 
135 
72. Huang H., Zhang W., Liu D., Liu B., Chen G., Zhong C. ( 2011), "Effect of 
temperature on gas adsorption and separation in ZIF-8: A combined 
experimental and molecular simulation study", Chemical Engineering Science. 
66, pp. 6297–6305. 
73. Hwang S., Chi W.S., Lee S.J., Im S.H., Kim J. H. (2015), "Hollow ZIF-8 
nanoparticles improve the permeability of mixed matrix membranes for 
CO2/CH4 gas separation", Journal of Membrane Science. 480, pp. 11-19. 
74. Iijima S. (1991), "Helical microtubules of graphitic carbon", Chem Phys Lett. 
243(49), p. 354. 
75. Jain C.K. (2001), " Adsorption of zinc onto bed sediments of the River Ganga: 
adsorption models and kinetics", Hydrol. Sci.46, pp. 419–434. 
76. Jakkidi K.R., Basavaraju S., Valluri D.K. (2000), "Sm3+-doped Bi2O3 
photocatalyst prepared by hydrothermal synthesis", Chem. Catal. Chem. 
14, pp. 92–496. 
77. James J. B., Lin Y. S. (2016), "Kinetics of ZIF-8 Thermal Decomposition in 
Inert, Oxidizing, and Reducing Environments", The Journal of Physical 
Chemistry C. 120(26), pp. 14015-14026. 
78. Jang E. S., Won J. H., Hwang S. J., Choy J. H. (2006), "Fine Tuning of the 
Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity", 
Adv. Mater. 18, pp. 3309. 
79. Jian M., Liu B., Zhang G., Liu R., Zhang X. (2015), "Adsorptive removal of 
arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) 
nanoparticles", Colloids and surfaces A: Physicochemical and Engineering 
Aspects. 465, pp. 67-76. 
80. Jiang H.L., Liu B., Akita T., Haruta M., Sakurai H. and Xu Q. (2009), 
"Au@ZIF-8: CO Oxidation over Gold Nanoparticles Deposited to 
Metal−Organic Framework", J. Am. Chem. Soc. 131 (32), pp. 11302–11303. 
81. Jiang J-Q., Yang C-X., and Yan X-P. (2013), "Zeolitic Imidazolate 
Framework‑8 for Fast Adsorption and Removal of Benzotriazoles from 
Aqueous Solution", ACS Applied Materials & Interfaces. 5, pp. 9837−9842. 
82. Jiang X., Chen H-Y., Liu L-L., Qiu L-G.(2015), "Fe3O4 embedded ZIF-8 
nanocrystals with ultra-high adsorption capacity towards hydroquinone", 
Journal of Alloys and Compounds. 646, pp. 1075-1082. 
136 
83. Jing H-P., Wang C-C., Zhang Y-W., Wanga P. and Li R. (2014), 
"Photocatalytic degradation of methylene blue in ZIF-8", RSC Advances. 4, 
pp. 54454–54462. 
84. Josephine M., Ordonez C., Balkus K.J., Ferraris J.P., Musselman I.H., (2010), 
"Molecular sieving realized with ZIF-8/Matrimid mixed-matrix membranes", 
Journal of Membrane Science. 361, pp. 28–37. 
85. Jung B.K., Jun J.W., Hasan Z., Jhung S. H., (2015), "Adsorptive removal of p-
arsanilic acid from water using mesoporous zeolitic imidazolate framework-
8", Chemical Engineering journal. 267, pp. 9-15. 
86. Kan C.C., Aganon M.C., Futalan C.M., Dalida M.L.P., (2013), "Adsorption of 
Mn2+ from aqueous solution using Fe and Mn oxide-coated sand", Journal of 
Environmental Sciences. 25(7), pp. 1483 - 1491. 
87. Kang X-Z., Song Z-W., Shi Q. and Dong J-X. (2013), "Utilization of Zeolite 
imidazolate Framework as an Adsorbent for the Removal of Dye from 
Aqueous Solution", Asian journal of Chemistry. 25, pp. 8324 - 8328. 
88. Kannan N., and Meenakshisundaram M. (2002), "Adsorption of Congo Red 
on Various Activated Carbons. A Comparative Study", Water, Air, & Soil 
Pollution. 138, pp. 289-305. 
89. Karagiaridi O., Lalonde M.B., Bury W., Sarjeant A., Farha O.K., and Hupp 
J.T., (2012), "Opening ZIF-8: A Catalytically Active Zeolitic Imidazolate 
Framework of Sodalite Topology with Unsubstituted Linkers", J. Am. Chem. 
Soc. 134, pp. 18790−18796. 
90. Khan N-A., Jung B-K., Hasan Z., Jhung S-H. (2015), "Adsorption and 
removal of phthalic acid and diethyl phthalate from water with zeolitic 
imidazolate and metal–organic frameworks", Journal of Hazardous 
Materials. 282(23), pp. 194–200. 
91. Khudaish E.A., Al-Hinaai M.M., and Al-Harthi S.H. (2013), "A solid- state 
sensor based on tris(2,2-bipyridyl)ruthenium(II)/poly(4-
aminodiphenylamine)modiied electrode: characterization and applications", 
Sensors and Actuators, B: Chemical. 185, pp. 478 -487. 
92. Kida K., Okita M., Fujita K.,Tanaka S. and Miyakeab Y. (2013), "Formation 
of high crystalline ZIF-8 in an aqueous solution", CrystEngComm. 15, pp. 
1794 -1801. 
137 
93. Kikkinides E. S., Yang R. T., Cho S. H. (1993), "Concentration and recovery 
of carbon dioxide from flue gas by pressure swing adsorption", Ind. Eng. 
Chem. Res. 32(11), pp. 2714 - 2720. 
94. Kim J., Bhattacharjee S., Jeong K.E., Jeong S-Y. and Ahn W-S. (2009), 
"Selective oxidation of tetralin over a chromium terephthalate metal organic 
framework, MIL-101", Chem Commun. 26, pp. 3904-3906. 
95. Kitture R., Koppikar S.J., Kaul-Ghanekar R., Kale S.N., (2011), "Catalyst 
efficiency, photostability and reusability study of ZnO nanoparticles in visible 
for dye degradation", Journal of physics and chemistry of solids. 72, pp. 60-
66. 
96. Konstantinou I.K. , A Albanis T. (2004), "TiO2-assisted photocatalytic 
degradation of azo dyes in aqueous solution: kinetic and mechanistic 
investigations: A review", Applied Catalysis B: Environmental. 49, pp. 1-14. 
97. Kreno L.E., Leong K., Farha O.K., Allendorf M., Van Duyne R.P., and Hupp 
J.T. (2011), "Metal–organic framework materials as chemical sensors", 
Chemical reviews. 112(2), pp. 1105-1125. 
98. Kumar A., Prasad B., Mishra I.M. (2008), "Adsorptive removal of 
acrylonitrile by commercial grade activated carbon: kinetics, equilibrium and 
thermodynamics", J. Hazard. Mater. 152(2), pp. 589-600. 
99. Kuppler R.J., Li J-R., Zhou H-C., (2009), "Selective gas adsorption and 
separation in metal–organic frameworksw", Chem. Soc. Rev. 38, pp. 1477–
1504. 
100. Kwona H. T., and Jeong H-K. (2013), "Highly propylene-selective supported 
zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid 
microwave-assisted seeding and secondary growth", Chem. Commun. 49, pp. 
3854-3856. 
101. Lai Y., Meng M. , Yu Y., Wang X., Ding T., (2011), "Photoluminescence and 
photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile 
hydrothermal method with or without ultrasonic assistance", Applied Catalysis 
B: Environmental. 105, pp. 335-345. 
102. Lana H., Ganb N., Pana D., Hua F., Li T., Longb N., Shenc H., Fengb Y. 
(2014), "Development of a novel magnetic molecularly imprinted polymer 
coating using porous zeolite imidazolate framework-8 coated magnetic iron 
138 
oxide as carrier for automated solid phase microextraction of estrogens in 
fish and pork samples", Journal of Chromatogr. A 1365, pp. 35-44. 
103. Langmuir I. (1916), "The constitution and fundamental properties of solids 
and liquids", Am. Chem. Soc. 38(11), pp. 2221-2295. 
104. Laviron E. (1979), "General expression of the linear potential sweep 
voltammogram in the case of diffusionless electrochemical systems", Journal 
of Electroanalytical Chemistry and Interfacial Electrochemistry. 101(1), pp. 
19-28. 
105. Lazaridis N.K., Karapantsios T.D., Georgantas D. (2003), "Kinetic analysis 
for the removal of a reactive dye from aqueous solution onto hydrotalcite by 
adsorption", Water Research. 37, pp. 3023-3033. 
106. Lee H.J., Park J.U., Choi S., Son J., Oh M. (2013), "Synthesis and 
Photoluminescence Properties of Eu
3+
-Doped Silica@Coordination Polymer 
Core–Shell Structures and Their Calcinated Silica@Gd2O3:Eu and Hollow 
Gd2O3:Eu Microsphere Products", Small. 9, pp. 561– 569. 
107. Lee J.Y., Farha O.K., Roberts J., Scheidt K.A. et al, (2009), "Metal–organic 
framework materials as catalysts", Chem. Soc.Rev. 38, pp. 1450–1459. 
108. Lee Y-R., Jang M-S., Cho H-Y., Kwon H-J. et al (2015), "ZIF-8: A 
comparison of synthesis methods", Chemical Engineering Journal. 271, pp. 
276 -280. 
109. Li C., Feng C., Qu F., Liua J. et al, (2015), "Electrospun nanofibers of p-type 
NiO/n-type ZnO heterojunction with different NiO content and its influence 
on trimethylamine sensing properties", Sensors and Actuators B 207, pp. 90 -
96. 
110. Li D.Y., Jia J.B., Wang J.G. (2010), "Simultaneous determination of Cd (II) 
and Pb (II) by differential pulse anodic stripping voltammetry based on 
graphite nanofibers–Nafion composite modified bismuth ", Talanta. 83, pp. 
332 -336. 
111. Li J. R. , Kuppler R.J., Zhou H.C., (2009), "Selective gas adsorption and 
separation in metal– organic frameworks", Chem. Soc. Rev. 38, pp. 1477-
1504. 
112. Li K., Olson D. H., Seidel J., Emge T. J., Gong H., Zeng H., Li J. (2009), 
"Zeolitic imidazolate frameworks for kinetic separation of propane and 
139 
propene", Journal of the American Chemical Society. 131(30), pp. 10368-
10369. 
113. Li P-Z., K. Aranishi K., and Xu Q. (2012), "ZIF-8 immobilized nickel 
nanoparticles: highly effective catalysts for hydrogen generation from 
hydrolysis of ammonia borane ", Chem. Commun. 48, pp. 3173–3175. 
114. Li Q., Jiang S., Ji S. et al, (2015), "Synthesis of magnetically recyclable ZIF-
8@SiO2@Fe3O4 catalysts and their catalytic performance for Knoevenagel 
reaction", Journal of Solid State Chemistry. 223, pp. 65–72. 
115. Li R., Ren X., Feng X., Li X., Hu C., and Wang B. (2014), "A highly stable 
metal- and nitrogen-doped nanocomposite derived from Zn/Ni-ZIF-8 capable 
of CO2 capture and separation", Chem. Commun. 50, pp. 6894-6897. 
116. Li X., He K., Pan B., Zhang S., Lu L., Zhang W. (2012), "Efficient As(III) 
removal by macroporous anion exchanger-supported Fe-Mn binary oxide: 
Behavior and mechanism", Chemical Engineering Journal. 193, pp. 131-138. 
117. Lin J.X., Zhan S.L., Fang M.H., Qian X.Q. (2007), "The adsorption of dyes 
from aqueous solution using diatomite", J. Porous Mater. 14, pp. 449-455. 
118. Lin S.S., Gurol M.D. (1998), "Catalytic Decomposition of Hydrogen Peroxide 
on Iron Oxide: Kinetics, Mechanism, and Implications", Environ. Sci. 
Technol. 32(10), pp. 1417-1423. 
119. Liu D., Ma X., Xi H., Lin Y.S. (2014), "Gas transport properties and 
ropylene/propane separation characteristics of ZIF-8 membranes", Journal of 
Membrane Science. 451, pp. 85–93. 
120. Liu J., He J., Wang L., Li R., Chen P., Rao X., Deng L., Rong L., and Lei J. 
(2016), "NiO-PTA supported on ZIF-8 as a highly effective catalyst for 
hydrocracking of Jatropha oil", Scientific RepoRts. 6:23667, 
10.1038/srep23667, 11 pages. 
121. Liu J.Y. (2009), "Is the Free Energy Change of Adsorption Correctly 
Calculated", Chem. Eng. Data. 54, pp. 1981 - 1985. 
122. Liua Y., Li G., Mi R., Denga C., Gaoa P. (2014), "An environment-benign 
method for the synthesis of p-NiO/n-ZnO heterostructure with excellent 
performance for gas sensing and photocatalysis", Sensors and Actuators B. 
191, pp. 537 - 544. 
140 
123. Llewellyn P. L., Bourrelly S., Serre C. et al (2008), "High uptakes of CO2 
and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101", 
Langmuir. 24, pp. 7245-7250. 
124. Lu G., Hupp J. T. ( 2010), "Metal-Organic Frameworks as Sensors: A ZIF-8 
Based Fabry-Pe´rot Device as a Selective Sensor for Chemical Vapors and 
Gases", J. Am. Chem. Soc. 132, pp. 7832–7833. 
125. Lu G., Li S., Guo Z., Farha O.K., Hauser B.G., Qi X. (2012), "Imparting 
functionality to a metal–organic framework material by controlled 
nanoparticle encapsulation", Nature chemistry. 4, pp. 310–316. 
126. Luebbers M. T., Wu T., Shen L., and Masel R. I. (2010), "Effects of 
Molecular Sieving and Electrostatic Enhancemen in the Adsorption of Organic 
Compounds on the Zeolitic Imidazolate Framework ZIF-8", Langmuir. 26(19), 
pp. 15625 - 15633. 
127. Luna A.J., Rojas L.O.A., Melo D.M.A., Benachour M. et al (2009), "Total 
catalytic wet oxidation of phenol and its chlorinated derivates with 
MnO2/CeO2 catalyst in a slurry reactor", Brazilian Journal of Chemical 
Engineering. 26(3), pp. 493 -502. 
128. Lv D., Huang X., Yue H., Yang Y. (2009), "Sodium-Ion-Assisted 
Hydrothermal Synthesis of γ-MnO2 and Its Electrochemical Performance", 
Journal of The Electrochemical Society. 156(11), pp. A911-A916. 
129. Ma S.-C., Zhang J.-L., Sun D.-H., Liu G.-X. (2015), "Surface complexation 
modeling calculation of Pb(II) adsorption onto the calcined diatomite", 
Applied Surface Science. 359, pp. 48-54. 
130. MacGillivray L.R. ( 2010), "Metal-Organic Frameworks: Design and 
Application", John Wiley & Sons, Inc., Hoboken, New Jersey, Canada. 
131. Magheara A., Etienne M., Tertis M., Sandulescu R., Walcariusa A. (2013), 
"Clay-mesoporous silica composite films generated by electro-assisted self-
assembly", Electrochimica Acta. 112, pp. 333-341. 
132. Mai H. D., Rafiq K., Yoo H. (2017), "Nano Metal‐Organic Framework‐
derived Inorganic Hybrid Nanomaterials: Synthetic Strategies and 
Applications", Chemistry-A European Journal. 13, pp. 1-22. 
133. Malash G.F., El-Khaiary M.I. (2010), "Piecewise linear regression: A 
statistical method for the analysis of experimental adsorption data by the 
141 
intraparticle-diffusion models", Chemical Engineering Journal. 163, pp. 256-
263. 
134. Mandal B.K., Suzuki K.T. (2002), "Arsenic round the world: a review", 
Talanta. 58, pp. 201-235. 
135. Mandal S., Sahu M.K., Patel R.K. (2013), "Adsorption studies of arsenic(III) 
removal from water by zirconium polyacrylamide hybrid material (ZrPACM-
43)", Water Resources and Industry. 4, pp. 51-67. 
136. McEwen J., Hayman J.-D., Yazadin A. O., (2013), "A comparative study of 
CO2, CH4 and N2 adsorption in ZIF-8, Zeolite - 13X and BPL activated 
carbon", Chemical Physic. 412, pp. 72 -76. 
137. Melero J.A., Calleja G., Martínez F., Molina R., Pariente M.I. (2007), 
"Nanocomposite Fe2O3-SBA-15-An efficient and stable catalyst for the 
CWPO of phenolic aqueous solutions", Chemical Engineering Journal. 131, 
pp. 245-256. 
138. Mohamed R., Saphira M.R., Nanyan N.M., Rahman N.A., Kutty I., Kassim 
A.H.M. (2014), "Colour removal of reactive dye from textile industrial 
ưastewater using different types of coagulants", Asian Journal of Applied 
Sciences 2(5), pp. 650 -657. 
139. Morris W., Doonan C.J., Furukawa H., Banerjee R., Yaghi O.M., ( 2008), 
"Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic 
Imidazolate Frameworks", J. Am. Chem. Soc. 130, pp. 12626–12627. 
140. Motulsky H., Christopoulos A. (2004), "Fitting modelsto biological data using 
linear and nonlinear regression: A practical guide to curve fitting", Oxford 
University Press, USA. 
141. Mueller U., Schubert M., Teich F., Puetter H.et al (2006), "Metal–organic 
frameworks prospective industrial applications", J. Mater. Chem. 16, pp. 626–
636. 
142. Mu J., Shao C., Guo Z., Zhang Z., Zhang M., Zhang P., Chen B., and Liu 
Y.(2011), "High Photocatalytic Activity of ZnO-Carbon Nanofiber 
Heteroarchitectures", ACS Appl. Mater. Interfaces. 3, pp. 590 - 596. 
143. Naomil J. S., Julie P., Vinodgopal K., and Kamat P.V. (2000), "Combinative 
Sonolysis and Photocatalysis for Textile Dye Degradation", Environ. Sci. 
Technol. 34, pp. 1747 - 1750. 
142 
144. Ndung’u K., Hibdon, S., and Flegal, A.R. (2004), "Determination of lead in 
vinegar by ICP-MS and GFAAS: evaluation of different sample preparation 
procedures", Talanta. 64, pp. 258-263. 
145. Ohtaa H., Hirano M., Nakahara K., Maruta H.,Tanabe T., Kamiya M., Kamiya 
T. and Hosono H. (2003), "Fabrication and photoresponse of a pn-
heterojunction diode composed of transparent oxide semiconductors, p-NiO 
and n-ZnO", applied physics letters. 83, pp. 1029 - 1031. 
146. Ordonez M.J.C., Balkus K.J., Ferraris J.P. (2010), "Molecular sieving realized 
with ZIF-8/Matrimid® mixed-matrix membranes", Journal of Membrane 
Science. 361(1-2), pp. 28-37. 
147. Pan Y., Liu Y., Zeng G., Zhao L., Lai Z. (2011), "Rapid synthesis of zeolitic 
imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system", Chem. 
Commun. 47, pp. 2071–2073. 
148. Park K.S., Ni Z., Côté A.P., Choi J.Y., Huang R., Uribe-Romo F.J., Chae 
H.K., O’Keeffe M., Yaghi O.M., (2006), "Exceptional chemical and thermal 
stability of zeolitic imidazolate frameworks", Proc. Nat. Acad. Sci. USA. 103 
pp. 10186–10191. 
149. Peter K. (2009), Controlling the Surface Growth of Metal-Organic 
Frameworks, Munich Ludwig Maximilians University, Munich. 
150. Qadeer R. (2005), "Adsorption of ruthenium ions on activated charcoal: 
influence of temperature on the kinetics of the adsorption process", Journal of 
Zhejiang Uni 6B, pp. 353 - 365. 
151. Qin J-S., Du D.Y., Li W.L., Zhang J.P., Li S.L., Su Z.M. (2012), "N-rich 
zeolite-like metal–organic framework with sodalite topology: high CO2 
uptake, selective gas adsorption and efficient drug delivery", Chem. Sci. 3, pp. 
2114-2118. 
152. Romero-Gonzalez J., Peralta-Videa J.R., Rodrı´guez E., Ramirez S.L., 
Gardea-Torresdey J.L. (2005), "Determination of thermodynamic parameters 
of Cr(VI) adsorption from aqueous solution onto Aga elechuguilla biomass", 
J. Chem. Thermodyn. 37, pp. 343 -347. 
153. Ryoo R., Joo S.H., Jun S. (1999), "Synthesis of highly ordered carbon 
molecular sieves via template-mediated structural transformation", The 
Journal of Physical Chemistry B. 103(37), pp. 7743 - 7746. 
143 
154. Sahoo P.K., Panigrahy B., Sahoo S., Satpati A.K., Li D., Bahadur D. (2014), 
"Facile synthesis of reduced graphene oxide/Pt–Ni nanocatalysts: their 
magnetic and catalytic properties", RSC Adv. 4, pp. 48563-48571. 
155. Saien J., Khezrianjoo S.(2008), "Degradation of the fungicide carben-dazim in 
aqueous solutions withUV/TiO2 process: optimization, kinetics and toxicity 
studies", Journal of Hazardous Matter. 157, pp. 269–276. 
156. Salimi A., Hallaj R., Soltanian S., Mamkhezri H. (2007), "Nanomolar 
detection of hydrogen peroxide on glassy carbon electrode modified with 
electrodeposited cobalt oxide nanoparticles", Analytica chimica acta. 594(1), 
pp. 24-31. 
157. Salunkhe R.R., Tang J., Kamachi Y., Nakato T., Kim J. H., Yamauchi Y. 
(2015), "Asymmetric supercapacitors using 3D nanoporous carbon and cobalt 
oxide electrodes synthesized from a single metal–organic framework", ACS 
nano. 9(6), pp. 6288-6296. 
158. Samadi-Maybodi A., Ghasemi S., Ghaffari H. (2015), "Ag-doped zeolitic 
imidazolate framework-8 nanoparticles modified CPE for efficient 
electrocatalytic reduction of H2O2", Electrochimica Acta. 163, pp. 280-287. 
159. Samadi-Maybodi A., Ghasemi S., Ghaffari-Rad H. (2015), "A novel sensor 
based on Ag-loaded zeolitic imidazolate framework-8 nanocrystals for 
efficient electrocatalytic oxidation and trace level detection of hydrazine", 
Sensors and Actuators B: Chemical. 220, pp. 627 - 633. 
160. Saquib M., Muneer M. (2003), "TiO2-mediated photocatalytic degradation of a 
triphenylmethane dye( gentian violet) in aqueous suspensions", Dyes and 
Pigments. 56, pp. 37-49. 
161. Saravanakumar R., Sankararaman S. (2007), "Molecule Matters: Metal 
Organic Frameworks (MOFs)", Feature Article. 12, pp. 77-86. 
162. Sava D.F., Rodriguez M.A., Chapman K.W., Chupas P.J., Greathouse J.A., 
Crozier P.S., Nenoff T.M., Am J., (2011), "Capture of Volatile Iodine, a 
Gaseous Fission Product, by Zeolitic Imidazolate Framework-8", Chem. Soc. 
133, pp. 12398-12401. 
163. Sawalha M.F., Peralta-Videa J.R., Romero-Gonzalez J., Gardea-Torresdey 
J.L. (2006), "Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex 
canescens) biomass: thermodynamic and isotherm studies", J. Colloid 
Interface Sci. 300, pp. 100 - 104. 
144 
164. Scheckel K.G., and Sparks D.L. (2001), "Temperature Effects on Nickel 
Sorption Kinetics at the Mineral–Water Interface", Soil Sci. Soc. Am. J. 65(3), 
pp. 719-728. 
165. Seber G.A.F., Wild C.J. (1989), Nonlinear regression, John Wiley & Sons, 
New York. 
166. Seoane B., Zamaro J. M., Tellez C., Coronas J. (2012), "Sonocrystallization 
of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20)", Crys. 
Eng. Commun. 14, pp. 3103-3107. 
167. Sheha R.R., El-Zahhar A.A. (2008), "Synthesis of some ferromagnetic 
composite resins and their metal removal characteristics in aqueous solutions", 
J. Hazard. mater. B. 150, pp. 795 -803. 
168. Shi Q., Chen Z. F., Song Z. W., Li J. P., Dong J. X. (2011), "Synthesis of ZIF-
8 and ZIF-67 by Steam-Assisted Conversion and an Investigation of Their 
Tribological Behaviors", Chem., Int. Ed. 50, pp. 672-675. 
169. Shifu C., Sujuan Z., Wei L., Wei Z., (2008), "Preparation and activity 
evaluation of p–n junction photocatalyst NiO/TiO2", Journal of Hazardous 
Materials. 155, pp. 320 - 326. 
170. Shifu C., Wei Z., Wei L., Sujuan Z. (2009), "Preparation, characterization and 
activity evaluation of p-n junction photocatalyst p-NiO/n-ZnO", J Sol-Gel Sci 
Technol. 50, pp. 387 - 396. 
171. Silva C.G., Corma A., Garcia H. (2010), "Metal-organic frameworks as 
semiconductors", J. Mater. Chem. 20(16), pp. 3141-3156. 
172. Soleymani J., Hasanzadeh M., Shadjou N. et al. (2016), "A new kinetic-
mechanistic approach to elucidate electrooxidation of doxorubicin 
hydrochloride in unprocessed human fluids using magnetic graphene based 
nanocomposite modified glassy carbon electrode", Materials Science and 
Engineering: C. 61, pp. 638-650. 
173. Song Q., Nataraj S.K., Roussenova M.V., Tan J.C. et al (2012), "Zeolitic 
imidazolate framework (ZIF-8) based polymer nanocomposite membranes for 
gas separation", Energy & Environmental Science. 5(8), pp. 8359-8369. 
174. Sreethawong T., Suzuki Y., Yoshikawa S. (2005), "Photocatalytic evolution of 
hydrogen overmesoporous TiO2 supported NiO photocatalyst prepared by 
single-step sol–gel processwith surfactant template", International Journal of 
Hydrogen Energy. 30, pp. 1053 -1062. 
145 
175. Tan I.A.W., Ahmad A.L., Hameed B.H. (2008), "Adsorption of basic dye on 
high-surface-area activated carbon prepared from coconut husk: Equilibrium, 
kinetic and thermodynamic studies", Journal of Hazardous Materials. 154, pp. 
337-346. 
176. Tanaka S., Kida K., Okita M., Ito Y., and Miyake Y. (2012), "Size-controlled 
Synthesisof ZeoliticImidazolate Framework-8 (ZIF-8) Crystals in an Aqueous 
System at Room Temperature", Chem. Lett. 41, pp. 1337-1339 
177. Thompson J. A., Blad C.R., Brunelli N. A., Lydon M. E. et al ( 2012), 
"Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity 
and Functionality by Mixed-Linker Synthesis", Chem.Mater. 24, p. 
1930−1936. 
178. Thompson J. A., Chapman K.W., Koros W.J. et al (2012), "Sonication-
induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-
8/polymer composite membranes", Microporous and Mesoporous Materials. 
158, pp. 292-299. 
179. Tiana F., Liub Y. (2013), "Synthesis of p-type NiO/n-type ZnO 
heterostructure and its enhanced photocatalytic activity", Scripta Materialia 
Volume 69, Issue 5, September 2013, Pages 417–419. 69(5), pp. 417-419. 
180. Tosun I. (2012), "Ammonium removal from aqueous solutions by 
clinoptilolite: determination of isotherm and thermodynamic parameters and 
comparison of kinetics by the double exponential model and conventional 
kinetic models", Int J Environ Res Public Health. 9(3), pp. 970-984. 
181. Tsai C.-W., Langner E.H.G. (2016), "The effect of synthesis temperature on 
the particle size of nano-ZIF-8", Microporous and Mesoporous Materials.221, 
pp. 8-13. 
182. Tseng R.-L., Wu F.-C., Juang R.-S. (2003), "Liquid-phase adsorption of dyes 
and phenols using pinewood-based activated carbons", Carbon. 41(3), pp. 
487-495. 
183. Unuabonah E.I., Adebowale K.O., Olu-Owolabi B.I. (2007), "Kinetic and 
thermodynamic studies of the adsorption of lead (II) ions onto phosphate-
modified kaolinite clay", J. Hazard Mater. 144(1-2), pp. 386-395. 
184. Uyen P.N. Tran, Ky K.A. Le, and and Nam T.S. Phan ( 2011), "Expanding 
Applications of Metal-Organic Frameworks: Zeolite Imidazolate Framework 
146 
ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction", 
ACS Catal 1, pp. 120–127. 
185. Vadivelan V., Kumar K.V. (2005), "Equilibrium, kinetics, mechanism and 
process design for the sorption of methylene blue onto rice husk", Journal 
Colloid Interface Sci. 286(1), pp. 90 - 100. 
186. Venna S.R., Jasinski J.B., Carreon M. A., Am J. (2010), "Structural Evolution 
of Zeolitic Imidazolate Framework-8", Chem. Soc. 132, pp. 18030-18033. 
187. Walcarius A. (2015), Mesoporous Materials-Based Electrochemical Sensors, 
Electroanalysis. 27 (6), pp. 1303-1340. 
188. Wang C., Shao X., Liu Q., Qu Q., Yang G., Hu X., (2006), "Differential pulse 
voltammetric determination of nimesulide in pharmaceutical formulation and 
human serum at glassy carbon electrode modified by cysteic acid/CNTs based 
on electrochemical oxidation of l-cysteine", Journal of Pharmaceutical and 
Biomedical Analysis. 42(2), pp. 237 - 244. 
189. Wang F., Liu Z.S., Yang H., Tan Y.X. and Zhang J. (2011), "Hybrid zeolitic 
imidazolate frameworks with catalytically active TO4 building blocks", 
Angewandte Chemie International Edition. 50(2), pp 450-453. 
190. Wang Q., Geng B., Wang S. (2009), "ZnO/Au Hybrid Nanoarchitectures: 
Wet-Chemical Synthesis and Structurally Enhanced Photocatalytic 
Performance", Environ. Sci. Technol. 43(23), pp. 8968–8973. 
191. Wang S., Fan Y., Jia X. (2014), "Sodium dodecyl sulfate-assisted synthesis 
hierarchically porous ZIF-8 particles for removing mercaptan from gasolin", 
Chem. Eng. J. 256, pp. 14 -22. 
192. Wang X., Zhang H., Lin H. et al (2016), " Directly converting Fe-doped 
metal–organic frameworks into highly active and stable Fe-N-C catalysts for 
oxygen reduction in acid", Nano Energy. 25, pp 110–119. 
193. Wu M-S., and Chang H-W. (2013), "Self-Assembly of NiO-Coated ZnO 
Nanorod Electrodes with Core−Shell Nanostructures as Anode Materials for 
Rechargeable Lithium- Ion Batteries", J. Phys. Chem. C 117, pp. 2590 - 2599. 
194. Wu R., Qian X., Zhou K., Wei J., Lou J., Ajayan P.M. (2014), "Porous Spinel 
ZnxCo3–xO4 Hollow Polyhedra Templated for High-Rate Lithium-Ion 
Batteries", ACS Nano. 8, pp. 6297 –6303. 
147 
195. Wu W., Jiang C. and Roy V.A.L.(2015), "Recent progress in magnetic iron 
oxide–semiconductor composite nanomaterials as promising photocatalysts", 
Nanoscale. 7, pp. 38-58. 
196. Wu Y., Zhou M., Zhang B., Wu B., Li J., Qiao J., Guan X., Li F. (2014), 
"Amino acid assisted templating synthesis of hierarchical zeolitic imidazolate 
framework-8 for efficient arsenate removal", Nanoscale. 6, pp. 1105–1112. 
197. Xi Z., Hong P.Z., Gong Y.W., Zhi G.Y., Ying R.T., Shan S.Z., (2013), 
"Zeolitic imidazolate framework as efficient heterogeneous catalyst for the 
synthesis of ethyl methyl carbonate", Journal of Molecular Catalysis A: 
Chermical. 366, pp. 43-47. 
198. Xia B., Cao N., Dai H., Su J., Wu X., Luo W., and Cheng G. (2014), 
"Bimetallic Nickel–Rhodium Nanoparticles Supported on ZIF-8 as Highly 
Efficient Catalysts for Hydrogen Generation from Hydrazine in Alkaline 
Solution", ChemCatChem 6, pp. 2549 – 2552 
199. Xian S., Xu F., Ma C., Wu Y., Xia Q., Wang H., Li Z. (2015), "Vapor-
enhanced CO2 adsorption mechanism of composite PEI@ZIF-8 modified by 
polyethyleneimine for CO2/N2 separation", Chemical Engineering Journal. 
280, pp. 363-369. 
200. Xiao L., Xu H., Zhou S., Song T., Wang H., Li S., Gan W. (2014), 
"Simultaneous detection of Pb(II) and Cd(II) by differential pulse anodic 
stripping voltammetry at a nitrogen-doped microporous 
carbon/Nafion/bismuth-film electrode", Electrochimica Acta. 143, pp. 143 -
151. 
201. Xiao L., Zhou S., Hu G., Xu H., Wang Y., Yuan Q. (2015), "One-step 
synthesis of isoreticular metal-organic framework-8 derived hierarchical 
porous carbon and its application in differential pulse anodic stripping 
voltammetric determination of Pb(II)", RSC Advances. 5(94), pp. 77159 - 
7167. 
202. Xiao M., Lu Y., Li Y., Song H., Zhu L., and Ye Z. (2014), "A new type of p-
type NiO/n-type ZnO nano- heterojunctions with enhanced photocatalytic 
activity", RSC Adv. 4, pp. 34649–34653. 
203. Xu X., Duan G., Li Y. et al., (2014), "Fabrication of gold nanoparticles by 
laser ablation in liquid and their application for simultaneous electrochemical 
148 
detection of Cd
2+
 ,Pb
2+
 ,Cu
2+
,Hg
2+
", ACS Applied Materials and Interfaces. 
6(1), pp. 65 - 71. 
204. Yaghi O.M. (2004), Porous crystals for carbon dioxide storage‖, Center for 
Reticular Materials Research at California NanoSystems Institute UCLA. 
205. Yaghi O.M., O'Keeffe M., Ockwig N.W., Chae H.K., Eddaoudi M., Kim J., 
(2003), "Reticular Synthesis and the Design of New Materials", Nature. 423, 
pp. 705-714. 
206. Yaghi O.M., Tranchemontagne D.J., O’Keeffe M., (2009), "Secondary 
building units, nets and bonding in the chemistry of metal-organic 
frameworks", Chem. Soc. Rev. 38, , pp. 1257–1283. 
207. Yagub M.T., Sen T.K., Afroze S., Ang H.M. (2014), "Dye and its removal 
from aqueous solution by adsorption: A review", Advances in Colloid and 
Interface Science. 209, pp. 172-184. 
208. Yamamoto D., Maki T., Watanabe S., Tanaka H., Minoru T. M., Kazuhiro M. 
(2013), "Synthesis and adsorption properties of ZIF-8 nanoparticles using a 
micromixer", Chemical Engineering Journal 227, pp. 145-150. 
209. Yan F., Liu Z.Y., Chen J.L., Sun X.Y., Li X.J., Su M.X., Li B., Di B., (2014), 
"Nanoscale zeolitic imidazolate framework-8 as a selective adsorbent for 
theophylline over caffeine and diprophylline", RSC Adv. 4, pp. 33047 - 33054. 
210. Yang D., Wang L., Chen Z.,Megharaj M.,and Naidu R. (2014), "Anodic 
stripping voltammetric determination of traces of Pb(II) and Cd(II) using a 
glassy carbon electrode modiied with bismuth nanoparticles", Microchimica 
Acta. 181(11-12), pp. 1199 - 1206. 
211. Yao J., Chen R., Wang K., Wang H. (2013), "Direct synthesis of zeolitic 
imidazolate framework-8/chitosan composites in chitosan hydrogels", 
Microporous and Mesoporous Materials. 165, pp. 200-204. 
212. Yu B., Wang F., Dong W., Hou J., Lu P., Gong J., (2015), "Self-template 
synthesis of core–shell ZnO@ZIF-8 nanospheres and the photocatalysis under 
UV irradiation", Materials Letters. 156, pp. 50–53. 
213. Zhang Y., Li L., Su H., Huang W., Dong X. (2015), "Binary metal oxide: 
advanced energy storage materials in supercapacitors", Journal of Materials 
Chemistry A. 3(1), pp. 43-59. 
214. Zhang Z., Shao C., Li X., Wang C., Zhang M., and Liu Y. (2010), 
"Electrospun Nanofibers of p-Type NiO/n-Type ZnO Heterojunctions with 
149 
Enhanced Photocatalytic Activity", applied Materials and interfaces. 2, pp. 
2915 -2923. 
215. Zhang Z., Shao C., Li X., Zhang L., Xue H., Wang C., and Liu Y. (2010), 
"Electrospun Nanofibers of ZnO - SnO2 Heterojunction with High 
Photocatalytic Activity", J. Phys. Chem. 114, pp. 7920–7925. 
216. Zhang Z., Xian S., Xi H., Wang H., li Z. (2011), "Improvement of CO2 
adsorption on ZIF-8 crytals modified by enhancing basicity of surface", 
Chemical Engineering Science. 66, pp. 4878-4888. 
217. Zhao X., Fang X., Wu B., Zheng L., Zheng N. (2013), "Facile synthesis of 
size-tunable ZIF-8 nanocrystals using reverse micelles as nanoreactors", 
Science China Chemistry. 57(1), pp. 141-146. 
218. Zheng L., Zheng Y., Chen C., Zhan Y., Lin X., Zheng Q., Wei K. and Zhu J. 
(2014), "Network Structured SnO2/ZnO Heterojunction Nanocatalyst with 
High Photocatalytic Activity", RSC Adv. 4, pp. 34649 -34653. 
219. Zhu J., Jiang L., Dai C., Yang N., Lei Z. (2015), "Gas adsorption in shaped 
zeolitic imidazolate framework-8", Chinese journal of Chemical Engineering. 
23, pp. 1275 - 1282. 
220. Zhu M., Srinivas D., Bhogeswararao S., Ratnasamy P.,Carreon M.A., (2013), 
"Catalytic activity of ZIF-8 in the synthesis of styrene carbonate from CO2 and 
styrene oxide", Catalysis Communications. 32, pp. 36–40. 
221. Zhu M., Venna S. R., Jasinski J. B., Carreon M.A., ( 2011), "Room-
Temperature Synthesis of ZIF-8: The Coexistence of ZnO Nanoneedles", 
Chem. Mater. 23, pp. 3590–3592. 
222. Zou Z., Wang S., Jia J., Xu F., Long Z., Hou X. (2016), "Ultrasensitive 
determination of inorganic arsenic by hydride generation-atomic fluorescence 
spectrometry using Fe3O4@ZIF-8 nanoparticles for preconcentration", 
Microchemical Journal 124, pp. 578 -583. 
PHỤ LỤC 
 Phụ lục 1. Thành phần biến tính và dung dịch phân tích đối với các loại WE 
 Loại điện cực 
 Dung dịch 
 biến 
tính
(1) 
 Dung dịch phân tích 
(a) BiF/Naf–ZIF-8/GCE 
 Dung dịch 
C 
 1 mL đệm acetate 1 M(pH = 
4,72); 
 [Pb(II)] = 50 ppb;[Bi(III)] = 300 
ppb; 
(b) BiF/Naf/GCE 
 Dung dịch 
B 
(c) Naf/GCE 
 Dung dịch 
B 1 mL đệm acetate 1 M (pH = 
4,72); 
 [Pb(II)] = 50 ppb; 
(d) Naf–ZIF-8/GCE 
 Dung dịch 
C 
(e) GCE - 
(f) BiF/GCE - 
 1 mL đệm acetate 1 M(pH = 
4,72); 
 [Pb(II)] = 50 ppb;[Bi(III)] = 300 
ppb; 
Phụ lục 2. Các thông số cố định trong phương pháp CV 
 STT Thông số Kí hiệu Giá trị Giá trị 
1 Tốc độ quay điện cực Ω 2000 vòng/phút 
 2 Khoảng quét thế Erange 
 -1000 – 
300 
 mV 
 3 Thời gian nghỉ trest 10 s 
 4 Thế làm giàu Eacc -1000 mV 
 5 Thời gian làm giàu tacc 120 s 
 6 Tốc độ quét ν 100 mV/s 
Nghỉ 10 s 
1. Giai đoạn làm giàu: 
- Dung dịch phân tích: đệm pH, V1 mL Pb(II), V2 mL Bi(III) và thêm nước cất 2 
lần vừa đủ 10 ml (V0 mL); 
- Áp thế và thời gian làm giàu: Eacc (- 1200 mV) và tacc (120 s);  (2000 vòng/phút). 
2. Giai đoạn hòa tan: 
- Quét thế theo chiều anode, khoảng quét thế từ - 1000 (mV) →300 (mV); 
- Sử dụng kỹ thuật DP để đo tín hiệu hòa tan (Ep,Pb và Ip,Pb); 
- Tín hiệu hòa tan: Ip và Ep, trong đó Ip,Pb  CPb. 
- Tiến hành định lượng bằng phương pháp thêm chuẩn. 
Phụ lục 3. Quy trình thí nghiệm của phương pháp DP-ASV 
Phụ lục 4. Các thông số cố định trong phương pháp DP-ASV 
 STT Thông số Kí hiệu Đơn vị Giá trị 
 1 Tốc độ quay điện cực Ω 2000 vòng/phút 
 2 Khoảng quét thế Erange 
 -1000 – 
300 
 mV 
 3 Thời gian nghỉ trest 10 s 
 4 Thế làm giàu Eacc -1200 mV 
 5 Thời gian làm giàu tacc 120 s 
 6 Biên độ xung ∆E 50 mV 
 7 Thời gian mỗi bước thế tstep 0,3 s 
 8 Bước nhảy thế Ustep 6 mV 
 9 Tốc độ quét ν 20 mV/s 
Phụ lục 5. Tín hiệu hòa tan của Pb(II) ở các nồng độ Bi(III) khác nhau 
 STT [Bi(III)] (ppb) Ep,Pb (V) 
 Ip, Pb
(1)
(μA) 
 SdIp (μA) 
 RSDI
p (%) 
 (n=4) 
1 10 -0,586 20,17 0,931 4,62 
 2 50 -0,589 24,16 0,143 0,59 
 3 100 -0,601 29,19 0,512 1,76 
 4 300 -0,580 36,21 0,355 0,98 
 5 500 -0,604 31,24 0,258 0,83 
 6 700 -0,612 25,16 0,046 0,18 
 7 1000 -0,622 14,61 0,622 4,26 
Phụ lục 6. Tín hiệu hòa tan của Pb(II) ở các tốc độ quét thế khác nhau 
 STT ν (mV/s) 
 Ip,Pb
(1)
 (μA) 
 SdIp 
 (μA) 
 Ep,Pb 
 (V) 
 SdEp 
 (V) 
 Ep/2,Pb 
 (V) 
 SdEp/2 
 (V) 
 1 20 6,393 0,228 -0,570 0,002 -0,593 0,001 
 2 40 14,58 0,210 -0,553 0,001 -0,582 0,001 
 3 50 19,26 0,230 -0,548 0,001 -0,579 0 
 4 75 28,86 0,204 -0,538 0,001 -0,573 0,001 
 5 100 37,13 0,497 -0,533 0 -0,571 0,001 
 6 200 66,40 0,489 -0,514 0,002 -0,562 0 
 7 300 88,66 1,091 -0,506 0,003 -0,559 0 
 8 400 103,6 0,902 -0,500 0 -0,562 0 
 9 500 117,3 1,470 -0,492 0 -0,562 0 
ĐKTN: WE = BiF/Naf-ZIF-8/GCE; mZIF-8 = 12,5 μg; đệm B-R 0,5 M (pH = 3,2); [Pb(II)] 
= 500 ppb; [Bi(III)] = 300 ppb; Ip là kết quả trung bình 4 lần đo lặp lại 
Phụ lục 7: Giản đồ XRD của ZIF-8 
Phụ lục 8: Giản đồ XRD của Fe-ZIF-8(10%) 
Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - ZIF8
File: ThanhQN ZIF8.raw - Type: 2Th/Th locked - Start: 1.000 ° - End: 60.010 ° - Step: 0.030 ° - Step time: 0.5 s - Anode: Cu - WL1: 1.5406 - Generator kV: 40 kV - Generator mA: 40 mA - Creation: 19/09/2016 1:23:02 PM
L
in
 (
C
p
s
)
0
1000
2000
3000
4000
5000
2-Theta - Scale
1 10 20 30 40 50 60
d
=
1
2
.0
8
4
d
=
8
.5
4
2
d
=
6
.9
6
2
d
=
6
.0
1
6
d
=
5
.3
7
4
d
=
5
.1
3
4
d
=
4
.9
1
7
d
=
4
.7
3
5
d
=
4
.5
4
6
d
=
4
.0
2
8
d
=
3
.6
2
7
d
=
3
.4
6
5 d
=
3
.3
3
7
d
=
3
.0
8
1
d
=
3
.0
0
7
d
=
2
.9
1
8
d
=
2
.8
3
5
d
=
2
.7
6
2
d
=
2
.6
2
6
d
=
2
.5
6
3
d
=
2
.4
5
6
Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - Fe-ZIF8-9:1
File: ThanhQN Fe-ZIF8-91.raw - Type: 2Th/Th locked - Start: 1.000 ° - End: 60.010 ° - Step: 0.030 ° - Step time: 0.5 s - Anode: Cu - WL1: 1.5406 - Generator kV: 40 kV - Generator mA: 40 mA - Creation: 19/09/2016 2:04:51 
L
in
 (
C
p
s
)
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
2-Theta - Scale
1 10 20 30 40 50 60
d
=
1
2
.0
7
6
d
=
8
.5
0
6
d
=
6
.9
4
1
d
=
5
.9
6
1
d
=
5
.6
3
0
d
=
5
.3
9
8
d
=
4
.9
0
6
d
=
4
.5
3
4
d
=
3
.9
9
9
d
=
3
.6
2
0
d
=
3
.3
3
6
d
=
2
.9
9
5
d
=
2
.9
1
6
d
=
2
.8
3
5
d
=
2
.7
5
1
d
=
2
.5
6
0
Phụ lục 9: Giản đồ XRD của Fe-ZIF-8(20%) 
Phụ lục 10: Giản đồ XRD của Fe-ZIF-8(30%) 
Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - Fe-ZIF8-8:2
File: ThanhQN Fe-ZIF8-82.raw - Type: 2Th/Th locked - Start: 1.000 ° - End: 60.010 ° - Step: 0.030 ° - Step time: 0.5 s - Anode: Cu - WL1: 1.5406 - Generator kV: 40 kV - Generator mA: 40 mA - Creation: 19/09/2016 1:41:00 
L
in
 (
C
p
s
)
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
2-Theta - Scale
1 10 20 30 40 50 60
d
=
1
2
.1
3
3
d
=
8
.5
5
5
d
=
6
.9
4
3
d
=
6
.4
9
2 d
=
6
.0
4
2
d
=
5
.7
9
4
d
=
5
.4
2
2
d
=
4
.9
2
1
d
=
4
.3
5
4
d
=
4
.0
1
1
d
=
3
.6
3
1
d
=
3
.3
2
8
d
=
3
.0
1
3
d
=
2
.9
2
1
d
=
2
.8
4
2
Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - Fe-ZIF8-7:3
File: ThanhQN Fe-ZIF8-73.raw - Type: 2Th/Th locked - Start: 1.000 ° - End: 60.010 ° - Step: 0.030 ° - Step time: 0.5 s - Anode: Cu - WL1: 1.5406 - Generator kV: 40 kV - Generator mA: 40 mA - Creation: 19/09/2016 1:05:52 
L
in
 (
C
p
s)
0
100
200
300
400
500
600
700
800
900
1000
2-Theta - Scale
1 10 20 30 40 50 60
d
=
1
2
.0
8
2
d
=
8
.4
7
2 d
=
6
.9
4
5
d
=
6
.0
4
2
d
=
5
.4
0
5 d
=
4
.9
1
7
Phụ lục 11 :Giản đồ phân tích nhiệt TG - TGA của ZIF-8 
Phụ lục 12 :Giản đồ phân tích nhiệt TG - TGA của Fe-ZIF-8(10%) 
Phụ lục 13 :Giản đồ phân tích nhiệt TG - TGA của Fe-ZIF-8(20%) 
Phụ lục 14 :Giản đồ phân tích nhiệt TG - TGA của Fe-ZIF-8(30%) 
            Các file đính kèm theo tài liệu này:
 luan_an_nghien_cuu_bien_tinh_vat_lieu_zif_8_va_mot_so_ung_du.pdf luan_an_nghien_cuu_bien_tinh_vat_lieu_zif_8_va_mot_so_ung_du.pdf