Ảnh hưởng của thời gian hấp phụ trên ZIF-8 và Fe-ZIF-8 ở nồng độ đầu RDB
thay đổi trong khoảng 30-50 mg.L-1 được thể hiện trên Hình 3.24. Kết quả cho thấy,
dung lượng hấp phụ tăng lên khi nồng độ phẩm nhuộm tăng. Cùng nồng độ đầu,
dung lượng hấp phụ RDB của Fe-ZIF-8 cao hơn của ZIF-8. Khi nồng độ phẩm
nhuộm tăng từ 30 mg.L-1 đến 50 mg.L-1 thì dung lượng hấp phụ tăng lên, tương ứng
với 30,2 - 42,1 mg.g-1 trên ZIF-8; 50,4 - 76,8 mg.g-1 trên Fe-ZIF-8(10%); 44,9 - 88,7
mg.g-1 trên Fe-ZIF-8(20%) và 41,1 - 72,0 mg.g-1 trên Fe-ZIF-8(30%). Khi nồng độ
đầu của phẩm nhuộm tăng cao, sẽ cung cấp một lực động (driving force) để vượt
qua sự truyền khối của RDB từ dung dịch vào bề mặt chất hấp phụ [185]
171 trang |
Chia sẻ: tueminh09 | Lượt xem: 693 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu biến tính vật liệu Zif - 8 và một số ứng dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
y in Isoreticular Zeolitic
Imidazolate Frameworks and their Carbon Dioxide Selective Capture
Properties", J. Am. Chem. Soc. 131, pp. 3875-3877.
20. Bard A.J., Faulkner L.R. (2001), Fundamentals and applications -
Electrochemical Methods, 2nd Edition ed, Wiley, New York, 157.
21. Behnajady M.A., Modirshahla N., Hamzavi R., (2006), "Kinetic study on
photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst",
Journal of Hazardous Materials. B133, pp. 226–232.
130
22. Beldon P. J., Fabian L., Stein R. S., Thirumurugan A., Cheetham A. K.,
Friscic T., Angew (2010), "Rapid Room-Temperature Synthesis of Zeolitic
Imidazolate Frameworks by Using Mechanochemistry", Chem. Int. Ed. 49, pp.
9640 - 9643.
23. Belhadi A., Boumaza S., Trari M., (2011), "Photoassisted hydrogen
production under visible light over p-NiO/n-ZnO hetero-system", Applied
Energy. 88, pp. 4490 - 4495.
24. Bhattacharya A.K., Naiya T.K., Mandal S.N., Das S.K., (2008), "Adsorption,
kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions
using different low-cost adsorbents", Chem. Eng. J. . 137, pp. 529 - 541.
25. Bohme U., Barth B., Paula C., Kuhnt A., Schwieger W., Mundstock A., Caro
J., and Hartmann M., (2013), "Ethene/Ethane and Propene/Propane Separation
via the Olefin and Paraffin Selective Metal−Organic Framework Adsorbents
CPO-27 and ZIF‑8", Langmuir 29, p. 8592−8600.
26. Bordiga S., Lamberti C., Ricchiardi G., Regli L., Bonino F., Damin A.,
Lillerud K. P., Bjorgen M., Zecchina A. (2004), "Electronic and vibrational
properties of a MOF-5 metal-organic framework: ZnO quantum dot
behaviour", Chem. Commun. 20, pp. 2300-2301.
27. Bowen H.K., Adler D., Auker B.H. (1975), "Electrical and optical properties
of FeO", Journal of Solid State Chemistry 12, no. 3–4, pp 355-359.
28. Bui Hai Dang Son, Quang Mai, Dang Xuan Du, Nguyen Hai Phong, and Dinh
Quang Khieu (2016), "A Study on Astrazon Black AFDL Dye Adsorption
onto Vietnamese Diatomite", Journal of Chemistry and Biochemistry. Volume
2016, Article ID 8685437.
29. Bustamante E. L., Fernandez J. L., and M., Zamaro J. (2014), "Influence of the
solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8)
nanocrystals at room temperature", J. Colloid Interface Sci. 424, pp. 37-43.
30. Bux H., Liang F., Li Y., Cravillon J., Wiebcke M. and Caro J. (2009),
"Zeolitic Imidazolate Framework Membrane with Molecular Sieving
Properties by Microwave-Assisted Solvothermal Synthesis", J. Am. Chem.
Soc. 131(44), pp. 16000-16001.
31. Cai X., Cai Y., Liub Y., Denga S., Wanga Y., Wanga Y., Djerdj I. (2014),
"Photocatalytic degradation properties of Ni(OH)2 nanosheets/ZnO nanorods
131
composites for azo dyes under visible-light irradiation", Ceramics
International. 40, pp. 57-65.
32. Chae H.K., Siberio-Pe´re D. Y., Kim J. , Go Y. , Eddaoudi M., Matzger A. J.,
O’Keeffe M. , Yaghi O.M., (2004), "A route to high surface area porosity and
inclusion of large molecules in crystals", Nature. 427, pp. 523-527.
33. Chang G, Bao Z., Ren Q., Deng S., Zhang Z., Su B., Xing H., Yang Y (2014),
"fabrication of cuprous nanoparticles in MIL -101: An efficient adsorbent for
the separation of olefin/paraffin mixtures", Royal Society of Chemistry.
34. Chen S., Zhang S., Liu W., Zhao W. (2008), "Preparation and activity
evaluation of p–n junction photocatalyst NiO/TiO2", J. Hazard. Mater. 155,
pp. 320 -326.
35. Cheon Y. E., Park J., Suh M. P., ((2009)), "Selective gas adsorption in a
magnesium-based metal–organic framework", Chem. Commun., pp. 5436–
5438.
36. Chi W.S., Sinyoung H., Lee S-J., Park S., Bae Y-S., Ryu D. Y., Kim J. H.,
Kim J. (2015), "Mixed matrix membranes consisting of SEBS block
copolymers and size-controlled ZIF-8 nanoparticles for CO2 capture", Journal
of Membrane Science. 495, pp. 479 - 488.
37. Chmelik C., Baten J.V., Krishna R. (2012), "Hindering effects in diffusion of
CO2/CH4 mixtures in ZIF-8 crytals", Journal of membrane Science. 397, pp.
87-91.
38. Cho H-Y., Kim J., Kim S-N., Ahn W-S. (2013), "High yield 1-L scale
synthesis of ZIF-8 via a sonochemical route", Microporous and Mesoporous
Materials. 169, pp. 180–184.
39. Chowdhury P., Mekala S., Dreisbach F., Gumma S., (2012), "Adsorption of
CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks:
Effect of open metal sites and adsorbate polarity", Microporous Mesoporous
Mater. 152, pp. 246-252.
40. Crank G. (1975), The mathematics of diffusion, Clarendon Press, London.
41. Cravillon J., Munzer S., Lohmeier S. J., Feldhoff A., Huber K., Wiebcke M.
(2009), "Rapid Room-Temperature Synthesis and Characterization of
Nanocrystals of a Prototypical Zeolitic Imidazolate Framework", Chem.
Mater. 21, pp. 1410-1412.
132
42. Cravillon J., Nayuk R., Springer S., Feldhoff A., Huber K., Wiebcke M.
(2011), "Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal
Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light
Scattering", Chem. Mater. 23, pp. 2130-2141.
43. D'Alessandro D. M., Smit B., Long J. R. (2010), "Carbon dioxide capture:
Prospects for new materials", Angew. Chem., Int. Ed. 49(35), pp. 6058 - 6082.
44. Danaci D., Singh R., Xiao P., Paul A. W., (2015), "Assessment of ZIF
materials for CO2 capture from high pressure natural gas streams", Chemical
Engineering journal. 280, pp. 486-493.
45. David F-J., Raimondas R., Antonio T., Alistair D-G., Michael T.W., Paul
A.W., Caroline M-D. and Tina D. (2012), "Flexibility and swing effect on the
adsorption of energy-related gases on ZIF-8: combined experimental and
simulation study", Dalton Transactions. 41, pp. 10752 - 10762.
46. Ding S., Yan Q., Jiang H., Zhong Z., Chen R., Xing W, (2016), "Fabrication
of Pd@ZIF-8 catalysts with different Pd spatial distributions and their
catalytic properties", Chemical Engineering Journal. 296, pp. 146-153.
47. Dinh Quang Khieu, Bui Hai Dang Son, Vo Thi Thanh Chau, Pham Dinh Du,
Nguyen Hai Phong, and Nguyen Thi Diem Chau (2017), "3-
Mercaptopropyltrimethoxysilane Modified Diatomite: Preparation and
Application for Voltammetric Determination of Lead (II) and Cadmium (II)",
Hindawi Journal of Chemistry Volume 2017, Article ID 9560293, 10 pages
48. Dong Y., Ding Y. et al (2014), "Differential pulse anodic stripping
voltammetric determination of Pb ion at a montmorillonites/polyaniline
nanocomposite modified glassy carbon electrode", Journal of
Electroanalytical Chemistry 717-718 pp. 206–212.
49. Dorneanu P.P., Airinei A., Olaru N., Homocianu M., Nica V., Doroftei F.
(2014), "Preparation and characterization of NiO, ZnO and NiO-ZnO
composite nanofibers by electrospinning method", Materials Chemistry and
Physics. 148, pp. 1029 - 1035.
50. Du Y., Chen R.Z., Yao J.F., Wang H.T., (2013), "Facile fabrication of porous
ZnO by thermal treatment of zeolitic imidazolate framework-8 and its
photocatalytic activity", Journal of Alloys and Compounds. 551(25), pp. 125-
130.
133
51. Eddaoudi M., Kim J., Wachter J.B., Chae H.K., O’Keeffe M.,Yaghi O.M.
(2001), "Porous metal - organic polyhedra: 25 Å cubocta hedron constructed
from 12 Cu2(CO2)4 paddle - wheel building blocks", J. Am. Chem. Soc., pp.
4368.
52. Eslava S., Zhang L., Esconjauregui S., Yang J., Vanstreels K., Baklanov M.R.,
Saiz E., (2012), "Metal - Organic Framework ZIF-8 Films As Low-k
Dielectrics in Microelectronic", Chemistry of Materials, pp. 27 - 33.
53. Fan X., Wang W., Li W., Zhou J., Wang B., Jheng J., Li X. (2014), "Highly
porous ZIF-8 nanocrystals prepared by a surfactant mediated method in
aqueous solution with enhanced adsorption kinetics", ACS Appl. Mater.
Interfaces 6, pp. 14994-14999.
54. Farha O. K., Eryazici I., Jeong N.C., Hauser B.G., Wilmer C.E., Sarjeant
A.A., Snurr R.Q., Nguyen S.T., Yazaydın A.O., and Hupp J.T. (2012),
"Metal−Organic Framework Materials with Ultrahigh Surface Areas: Is the
Sky the Limit", J. Am. Chem. Soc. 134(36), pp. 15016−15021.
55. Fogg A. G. (1994), "Adsorptive stripping voltammetry or cathodic stripping
voltammetry methods of accumulation and determination in stripping
voltammetry", Analytical Proceeding Including Analytical Communication.
31, pp. 313-317.
56. Freundlich H.M.F. (1915), "Over the adsorption in solution", Phys. Chem. 57,
pp. 385 - 471.
57. Férey G.,(2008), " Hybrid porous solids: past, present, future", Chem. Soc.
Rev. 37, pp. 191 -214.
58. Galindo C., Jacques P., and Kalt A., (2001), "Photooxidation of the
phenylazonaphthol AO20 on TlO2: kinetic and mechanistic investigations. ",
Chemosphere. 45 (6-7), pp. 997-1005.
59. Gang H., Feifei Z., Leilei Z., Xinchuan D. Jianwei W. and Limin W. (2014),
"Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic
frameworks for superior lithium ion battery anodes", J. Mater. Chem. A. 2, pp.
8048-8053.
60. Furukawa H., Ko N., Go Y.B., Aratani N. and Choi S.B.(2010), "Ultrahigh
Porosity in Metal-Organic Frameworks", Science. 329, pp. 424-428.
61. Gomez Y., Fernandez L., Borras C, Mostany J., Scharifker B., (2011),
"Characterization of a carbon paste electrode modified with tripolyphosphate-
134
modified kaolinite clay for the detection of lead", Talanta. 85, pp. 1357 -
1363.
62. Graham D., (1953), "The characterization of physical adsorption systems. I.
The equilibrium function and standard free energy of adsorption", J.Phys.
Chem. 57, pp. 665–669.
63. Grote B. (2012), Application of advanced oxidation processes (AOP) in water
treatment, 37th Annual old Water Industry Operations Workshop Parklands,
Gold Coast, pp. 17-23.
64. Haldoupis E., Watanabe T., Nair S. and Sholl D.S. (2012), "Quantifying large
effects of Framework Flexilibity on diffusion in MOFs: CH4 and CO2 in ZIF-
8", ChemPhysChem 0000, pp. 1-4.
65. Halsey G.D. (1952), "The role of surface heterogeneity in adsorption",
Adv.Catal. 4, pp. 259-269.
66. Hameed A., Montini T., Gombac V., Fornasiero P., (2009), "Photocatalytic
decolourization of dyes on NiO–ZnO nano-composites", Photochem.
Photobiol. Sci. 8, pp. 677-682.
67. Han C., Chen Z., Zhang N., Colmenares J. C., Xu Y-J. (2015), "Hierarchically
CdS Decorated 1D ZnO Nanorods-2D Graphene Hybrids: Low Temperature
Synthesis and Enhanced Photocatalytic Performance", Advanced Functional
Materials. 25(2), pp. 221–229.
68. Han T-T., Yang J., Liu Y-Y., Ma J-F. (2016), "Rhodamine 6G loaded zeolitic
imidazolate framework-8 (ZIF-8) nanocomposites for highly selective
luminescent sensing of Fe
3+
, Cr
6+
and aniline", Microporous and Mesoporous
Materials. 228, pp. 275-288.
69. He M., Yao J., Liu Q., Wang K., Chen F., Wang H. (2014), "Facile synthesis
of zeolitic imidazolate framework-8 from a concentrated aqueous solution",
Microporous and Mesoporous Materials. 184, pp. 55-60.
70. Ho Y. S., McKay G. (1999), "Pseudo-second order model for sorption
processes", Process Biochem. 34(5), pp. 451-465.
71. Hong D.-Y., Hwang Y. K., Serre C., Férey G., Chang J.-S. (2009), "Porous
chromium terephthalate MIL-101 with coordinatively unsaturated sites:
Surface functionalization, encapsulation, sorption and catalysis", Adv. Funct.
Mater. 19, pp. 1537-1552.
135
72. Huang H., Zhang W., Liu D., Liu B., Chen G., Zhong C. ( 2011), "Effect of
temperature on gas adsorption and separation in ZIF-8: A combined
experimental and molecular simulation study", Chemical Engineering Science.
66, pp. 6297–6305.
73. Hwang S., Chi W.S., Lee S.J., Im S.H., Kim J. H. (2015), "Hollow ZIF-8
nanoparticles improve the permeability of mixed matrix membranes for
CO2/CH4 gas separation", Journal of Membrane Science. 480, pp. 11-19.
74. Iijima S. (1991), "Helical microtubules of graphitic carbon", Chem Phys Lett.
243(49), p. 354.
75. Jain C.K. (2001), " Adsorption of zinc onto bed sediments of the River Ganga:
adsorption models and kinetics", Hydrol. Sci.46, pp. 419–434.
76. Jakkidi K.R., Basavaraju S., Valluri D.K. (2000), "Sm3+-doped Bi2O3
photocatalyst prepared by hydrothermal synthesis", Chem. Catal. Chem.
14, pp. 92–496.
77. James J. B., Lin Y. S. (2016), "Kinetics of ZIF-8 Thermal Decomposition in
Inert, Oxidizing, and Reducing Environments", The Journal of Physical
Chemistry C. 120(26), pp. 14015-14026.
78. Jang E. S., Won J. H., Hwang S. J., Choy J. H. (2006), "Fine Tuning of the
Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity",
Adv. Mater. 18, pp. 3309.
79. Jian M., Liu B., Zhang G., Liu R., Zhang X. (2015), "Adsorptive removal of
arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8)
nanoparticles", Colloids and surfaces A: Physicochemical and Engineering
Aspects. 465, pp. 67-76.
80. Jiang H.L., Liu B., Akita T., Haruta M., Sakurai H. and Xu Q. (2009),
"Au@ZIF-8: CO Oxidation over Gold Nanoparticles Deposited to
Metal−Organic Framework", J. Am. Chem. Soc. 131 (32), pp. 11302–11303.
81. Jiang J-Q., Yang C-X., and Yan X-P. (2013), "Zeolitic Imidazolate
Framework‑8 for Fast Adsorption and Removal of Benzotriazoles from
Aqueous Solution", ACS Applied Materials & Interfaces. 5, pp. 9837−9842.
82. Jiang X., Chen H-Y., Liu L-L., Qiu L-G.(2015), "Fe3O4 embedded ZIF-8
nanocrystals with ultra-high adsorption capacity towards hydroquinone",
Journal of Alloys and Compounds. 646, pp. 1075-1082.
136
83. Jing H-P., Wang C-C., Zhang Y-W., Wanga P. and Li R. (2014),
"Photocatalytic degradation of methylene blue in ZIF-8", RSC Advances. 4,
pp. 54454–54462.
84. Josephine M., Ordonez C., Balkus K.J., Ferraris J.P., Musselman I.H., (2010),
"Molecular sieving realized with ZIF-8/Matrimid mixed-matrix membranes",
Journal of Membrane Science. 361, pp. 28–37.
85. Jung B.K., Jun J.W., Hasan Z., Jhung S. H., (2015), "Adsorptive removal of p-
arsanilic acid from water using mesoporous zeolitic imidazolate framework-
8", Chemical Engineering journal. 267, pp. 9-15.
86. Kan C.C., Aganon M.C., Futalan C.M., Dalida M.L.P., (2013), "Adsorption of
Mn2+ from aqueous solution using Fe and Mn oxide-coated sand", Journal of
Environmental Sciences. 25(7), pp. 1483 - 1491.
87. Kang X-Z., Song Z-W., Shi Q. and Dong J-X. (2013), "Utilization of Zeolite
imidazolate Framework as an Adsorbent for the Removal of Dye from
Aqueous Solution", Asian journal of Chemistry. 25, pp. 8324 - 8328.
88. Kannan N., and Meenakshisundaram M. (2002), "Adsorption of Congo Red
on Various Activated Carbons. A Comparative Study", Water, Air, & Soil
Pollution. 138, pp. 289-305.
89. Karagiaridi O., Lalonde M.B., Bury W., Sarjeant A., Farha O.K., and Hupp
J.T., (2012), "Opening ZIF-8: A Catalytically Active Zeolitic Imidazolate
Framework of Sodalite Topology with Unsubstituted Linkers", J. Am. Chem.
Soc. 134, pp. 18790−18796.
90. Khan N-A., Jung B-K., Hasan Z., Jhung S-H. (2015), "Adsorption and
removal of phthalic acid and diethyl phthalate from water with zeolitic
imidazolate and metal–organic frameworks", Journal of Hazardous
Materials. 282(23), pp. 194–200.
91. Khudaish E.A., Al-Hinaai M.M., and Al-Harthi S.H. (2013), "A solid- state
sensor based on tris(2,2-bipyridyl)ruthenium(II)/poly(4-
aminodiphenylamine)modiied electrode: characterization and applications",
Sensors and Actuators, B: Chemical. 185, pp. 478 -487.
92. Kida K., Okita M., Fujita K.,Tanaka S. and Miyakeab Y. (2013), "Formation
of high crystalline ZIF-8 in an aqueous solution", CrystEngComm. 15, pp.
1794 -1801.
137
93. Kikkinides E. S., Yang R. T., Cho S. H. (1993), "Concentration and recovery
of carbon dioxide from flue gas by pressure swing adsorption", Ind. Eng.
Chem. Res. 32(11), pp. 2714 - 2720.
94. Kim J., Bhattacharjee S., Jeong K.E., Jeong S-Y. and Ahn W-S. (2009),
"Selective oxidation of tetralin over a chromium terephthalate metal organic
framework, MIL-101", Chem Commun. 26, pp. 3904-3906.
95. Kitture R., Koppikar S.J., Kaul-Ghanekar R., Kale S.N., (2011), "Catalyst
efficiency, photostability and reusability study of ZnO nanoparticles in visible
for dye degradation", Journal of physics and chemistry of solids. 72, pp. 60-
66.
96. Konstantinou I.K. , A Albanis T. (2004), "TiO2-assisted photocatalytic
degradation of azo dyes in aqueous solution: kinetic and mechanistic
investigations: A review", Applied Catalysis B: Environmental. 49, pp. 1-14.
97. Kreno L.E., Leong K., Farha O.K., Allendorf M., Van Duyne R.P., and Hupp
J.T. (2011), "Metal–organic framework materials as chemical sensors",
Chemical reviews. 112(2), pp. 1105-1125.
98. Kumar A., Prasad B., Mishra I.M. (2008), "Adsorptive removal of
acrylonitrile by commercial grade activated carbon: kinetics, equilibrium and
thermodynamics", J. Hazard. Mater. 152(2), pp. 589-600.
99. Kuppler R.J., Li J-R., Zhou H-C., (2009), "Selective gas adsorption and
separation in metal–organic frameworksw", Chem. Soc. Rev. 38, pp. 1477–
1504.
100. Kwona H. T., and Jeong H-K. (2013), "Highly propylene-selective supported
zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid
microwave-assisted seeding and secondary growth", Chem. Commun. 49, pp.
3854-3856.
101. Lai Y., Meng M. , Yu Y., Wang X., Ding T., (2011), "Photoluminescence and
photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile
hydrothermal method with or without ultrasonic assistance", Applied Catalysis
B: Environmental. 105, pp. 335-345.
102. Lana H., Ganb N., Pana D., Hua F., Li T., Longb N., Shenc H., Fengb Y.
(2014), "Development of a novel magnetic molecularly imprinted polymer
coating using porous zeolite imidazolate framework-8 coated magnetic iron
138
oxide as carrier for automated solid phase microextraction of estrogens in
fish and pork samples", Journal of Chromatogr. A 1365, pp. 35-44.
103. Langmuir I. (1916), "The constitution and fundamental properties of solids
and liquids", Am. Chem. Soc. 38(11), pp. 2221-2295.
104. Laviron E. (1979), "General expression of the linear potential sweep
voltammogram in the case of diffusionless electrochemical systems", Journal
of Electroanalytical Chemistry and Interfacial Electrochemistry. 101(1), pp.
19-28.
105. Lazaridis N.K., Karapantsios T.D., Georgantas D. (2003), "Kinetic analysis
for the removal of a reactive dye from aqueous solution onto hydrotalcite by
adsorption", Water Research. 37, pp. 3023-3033.
106. Lee H.J., Park J.U., Choi S., Son J., Oh M. (2013), "Synthesis and
Photoluminescence Properties of Eu
3+
-Doped Silica@Coordination Polymer
Core–Shell Structures and Their Calcinated Silica@Gd2O3:Eu and Hollow
Gd2O3:Eu Microsphere Products", Small. 9, pp. 561– 569.
107. Lee J.Y., Farha O.K., Roberts J., Scheidt K.A. et al, (2009), "Metal–organic
framework materials as catalysts", Chem. Soc.Rev. 38, pp. 1450–1459.
108. Lee Y-R., Jang M-S., Cho H-Y., Kwon H-J. et al (2015), "ZIF-8: A
comparison of synthesis methods", Chemical Engineering Journal. 271, pp.
276 -280.
109. Li C., Feng C., Qu F., Liua J. et al, (2015), "Electrospun nanofibers of p-type
NiO/n-type ZnO heterojunction with different NiO content and its influence
on trimethylamine sensing properties", Sensors and Actuators B 207, pp. 90 -
96.
110. Li D.Y., Jia J.B., Wang J.G. (2010), "Simultaneous determination of Cd (II)
and Pb (II) by differential pulse anodic stripping voltammetry based on
graphite nanofibers–Nafion composite modified bismuth ", Talanta. 83, pp.
332 -336.
111. Li J. R. , Kuppler R.J., Zhou H.C., (2009), "Selective gas adsorption and
separation in metal– organic frameworks", Chem. Soc. Rev. 38, pp. 1477-
1504.
112. Li K., Olson D. H., Seidel J., Emge T. J., Gong H., Zeng H., Li J. (2009),
"Zeolitic imidazolate frameworks for kinetic separation of propane and
139
propene", Journal of the American Chemical Society. 131(30), pp. 10368-
10369.
113. Li P-Z., K. Aranishi K., and Xu Q. (2012), "ZIF-8 immobilized nickel
nanoparticles: highly effective catalysts for hydrogen generation from
hydrolysis of ammonia borane ", Chem. Commun. 48, pp. 3173–3175.
114. Li Q., Jiang S., Ji S. et al, (2015), "Synthesis of magnetically recyclable ZIF-
8@SiO2@Fe3O4 catalysts and their catalytic performance for Knoevenagel
reaction", Journal of Solid State Chemistry. 223, pp. 65–72.
115. Li R., Ren X., Feng X., Li X., Hu C., and Wang B. (2014), "A highly stable
metal- and nitrogen-doped nanocomposite derived from Zn/Ni-ZIF-8 capable
of CO2 capture and separation", Chem. Commun. 50, pp. 6894-6897.
116. Li X., He K., Pan B., Zhang S., Lu L., Zhang W. (2012), "Efficient As(III)
removal by macroporous anion exchanger-supported Fe-Mn binary oxide:
Behavior and mechanism", Chemical Engineering Journal. 193, pp. 131-138.
117. Lin J.X., Zhan S.L., Fang M.H., Qian X.Q. (2007), "The adsorption of dyes
from aqueous solution using diatomite", J. Porous Mater. 14, pp. 449-455.
118. Lin S.S., Gurol M.D. (1998), "Catalytic Decomposition of Hydrogen Peroxide
on Iron Oxide: Kinetics, Mechanism, and Implications", Environ. Sci.
Technol. 32(10), pp. 1417-1423.
119. Liu D., Ma X., Xi H., Lin Y.S. (2014), "Gas transport properties and
ropylene/propane separation characteristics of ZIF-8 membranes", Journal of
Membrane Science. 451, pp. 85–93.
120. Liu J., He J., Wang L., Li R., Chen P., Rao X., Deng L., Rong L., and Lei J.
(2016), "NiO-PTA supported on ZIF-8 as a highly effective catalyst for
hydrocracking of Jatropha oil", Scientific RepoRts. 6:23667,
10.1038/srep23667, 11 pages.
121. Liu J.Y. (2009), "Is the Free Energy Change of Adsorption Correctly
Calculated", Chem. Eng. Data. 54, pp. 1981 - 1985.
122. Liua Y., Li G., Mi R., Denga C., Gaoa P. (2014), "An environment-benign
method for the synthesis of p-NiO/n-ZnO heterostructure with excellent
performance for gas sensing and photocatalysis", Sensors and Actuators B.
191, pp. 537 - 544.
140
123. Llewellyn P. L., Bourrelly S., Serre C. et al (2008), "High uptakes of CO2
and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101",
Langmuir. 24, pp. 7245-7250.
124. Lu G., Hupp J. T. ( 2010), "Metal-Organic Frameworks as Sensors: A ZIF-8
Based Fabry-Pe´rot Device as a Selective Sensor for Chemical Vapors and
Gases", J. Am. Chem. Soc. 132, pp. 7832–7833.
125. Lu G., Li S., Guo Z., Farha O.K., Hauser B.G., Qi X. (2012), "Imparting
functionality to a metal–organic framework material by controlled
nanoparticle encapsulation", Nature chemistry. 4, pp. 310–316.
126. Luebbers M. T., Wu T., Shen L., and Masel R. I. (2010), "Effects of
Molecular Sieving and Electrostatic Enhancemen in the Adsorption of Organic
Compounds on the Zeolitic Imidazolate Framework ZIF-8", Langmuir. 26(19),
pp. 15625 - 15633.
127. Luna A.J., Rojas L.O.A., Melo D.M.A., Benachour M. et al (2009), "Total
catalytic wet oxidation of phenol and its chlorinated derivates with
MnO2/CeO2 catalyst in a slurry reactor", Brazilian Journal of Chemical
Engineering. 26(3), pp. 493 -502.
128. Lv D., Huang X., Yue H., Yang Y. (2009), "Sodium-Ion-Assisted
Hydrothermal Synthesis of γ-MnO2 and Its Electrochemical Performance",
Journal of The Electrochemical Society. 156(11), pp. A911-A916.
129. Ma S.-C., Zhang J.-L., Sun D.-H., Liu G.-X. (2015), "Surface complexation
modeling calculation of Pb(II) adsorption onto the calcined diatomite",
Applied Surface Science. 359, pp. 48-54.
130. MacGillivray L.R. ( 2010), "Metal-Organic Frameworks: Design and
Application", John Wiley & Sons, Inc., Hoboken, New Jersey, Canada.
131. Magheara A., Etienne M., Tertis M., Sandulescu R., Walcariusa A. (2013),
"Clay-mesoporous silica composite films generated by electro-assisted self-
assembly", Electrochimica Acta. 112, pp. 333-341.
132. Mai H. D., Rafiq K., Yoo H. (2017), "Nano Metal‐Organic Framework‐
derived Inorganic Hybrid Nanomaterials: Synthetic Strategies and
Applications", Chemistry-A European Journal. 13, pp. 1-22.
133. Malash G.F., El-Khaiary M.I. (2010), "Piecewise linear regression: A
statistical method for the analysis of experimental adsorption data by the
141
intraparticle-diffusion models", Chemical Engineering Journal. 163, pp. 256-
263.
134. Mandal B.K., Suzuki K.T. (2002), "Arsenic round the world: a review",
Talanta. 58, pp. 201-235.
135. Mandal S., Sahu M.K., Patel R.K. (2013), "Adsorption studies of arsenic(III)
removal from water by zirconium polyacrylamide hybrid material (ZrPACM-
43)", Water Resources and Industry. 4, pp. 51-67.
136. McEwen J., Hayman J.-D., Yazadin A. O., (2013), "A comparative study of
CO2, CH4 and N2 adsorption in ZIF-8, Zeolite - 13X and BPL activated
carbon", Chemical Physic. 412, pp. 72 -76.
137. Melero J.A., Calleja G., Martínez F., Molina R., Pariente M.I. (2007),
"Nanocomposite Fe2O3-SBA-15-An efficient and stable catalyst for the
CWPO of phenolic aqueous solutions", Chemical Engineering Journal. 131,
pp. 245-256.
138. Mohamed R., Saphira M.R., Nanyan N.M., Rahman N.A., Kutty I., Kassim
A.H.M. (2014), "Colour removal of reactive dye from textile industrial
ưastewater using different types of coagulants", Asian Journal of Applied
Sciences 2(5), pp. 650 -657.
139. Morris W., Doonan C.J., Furukawa H., Banerjee R., Yaghi O.M., ( 2008),
"Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic
Imidazolate Frameworks", J. Am. Chem. Soc. 130, pp. 12626–12627.
140. Motulsky H., Christopoulos A. (2004), "Fitting modelsto biological data using
linear and nonlinear regression: A practical guide to curve fitting", Oxford
University Press, USA.
141. Mueller U., Schubert M., Teich F., Puetter H.et al (2006), "Metal–organic
frameworks prospective industrial applications", J. Mater. Chem. 16, pp. 626–
636.
142. Mu J., Shao C., Guo Z., Zhang Z., Zhang M., Zhang P., Chen B., and Liu
Y.(2011), "High Photocatalytic Activity of ZnO-Carbon Nanofiber
Heteroarchitectures", ACS Appl. Mater. Interfaces. 3, pp. 590 - 596.
143. Naomil J. S., Julie P., Vinodgopal K., and Kamat P.V. (2000), "Combinative
Sonolysis and Photocatalysis for Textile Dye Degradation", Environ. Sci.
Technol. 34, pp. 1747 - 1750.
142
144. Ndung’u K., Hibdon, S., and Flegal, A.R. (2004), "Determination of lead in
vinegar by ICP-MS and GFAAS: evaluation of different sample preparation
procedures", Talanta. 64, pp. 258-263.
145. Ohtaa H., Hirano M., Nakahara K., Maruta H.,Tanabe T., Kamiya M., Kamiya
T. and Hosono H. (2003), "Fabrication and photoresponse of a pn-
heterojunction diode composed of transparent oxide semiconductors, p-NiO
and n-ZnO", applied physics letters. 83, pp. 1029 - 1031.
146. Ordonez M.J.C., Balkus K.J., Ferraris J.P. (2010), "Molecular sieving realized
with ZIF-8/Matrimid® mixed-matrix membranes", Journal of Membrane
Science. 361(1-2), pp. 28-37.
147. Pan Y., Liu Y., Zeng G., Zhao L., Lai Z. (2011), "Rapid synthesis of zeolitic
imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system", Chem.
Commun. 47, pp. 2071–2073.
148. Park K.S., Ni Z., Côté A.P., Choi J.Y., Huang R., Uribe-Romo F.J., Chae
H.K., O’Keeffe M., Yaghi O.M., (2006), "Exceptional chemical and thermal
stability of zeolitic imidazolate frameworks", Proc. Nat. Acad. Sci. USA. 103
pp. 10186–10191.
149. Peter K. (2009), Controlling the Surface Growth of Metal-Organic
Frameworks, Munich Ludwig Maximilians University, Munich.
150. Qadeer R. (2005), "Adsorption of ruthenium ions on activated charcoal:
influence of temperature on the kinetics of the adsorption process", Journal of
Zhejiang Uni 6B, pp. 353 - 365.
151. Qin J-S., Du D.Y., Li W.L., Zhang J.P., Li S.L., Su Z.M. (2012), "N-rich
zeolite-like metal–organic framework with sodalite topology: high CO2
uptake, selective gas adsorption and efficient drug delivery", Chem. Sci. 3, pp.
2114-2118.
152. Romero-Gonzalez J., Peralta-Videa J.R., Rodrı´guez E., Ramirez S.L.,
Gardea-Torresdey J.L. (2005), "Determination of thermodynamic parameters
of Cr(VI) adsorption from aqueous solution onto Aga elechuguilla biomass",
J. Chem. Thermodyn. 37, pp. 343 -347.
153. Ryoo R., Joo S.H., Jun S. (1999), "Synthesis of highly ordered carbon
molecular sieves via template-mediated structural transformation", The
Journal of Physical Chemistry B. 103(37), pp. 7743 - 7746.
143
154. Sahoo P.K., Panigrahy B., Sahoo S., Satpati A.K., Li D., Bahadur D. (2014),
"Facile synthesis of reduced graphene oxide/Pt–Ni nanocatalysts: their
magnetic and catalytic properties", RSC Adv. 4, pp. 48563-48571.
155. Saien J., Khezrianjoo S.(2008), "Degradation of the fungicide carben-dazim in
aqueous solutions withUV/TiO2 process: optimization, kinetics and toxicity
studies", Journal of Hazardous Matter. 157, pp. 269–276.
156. Salimi A., Hallaj R., Soltanian S., Mamkhezri H. (2007), "Nanomolar
detection of hydrogen peroxide on glassy carbon electrode modified with
electrodeposited cobalt oxide nanoparticles", Analytica chimica acta. 594(1),
pp. 24-31.
157. Salunkhe R.R., Tang J., Kamachi Y., Nakato T., Kim J. H., Yamauchi Y.
(2015), "Asymmetric supercapacitors using 3D nanoporous carbon and cobalt
oxide electrodes synthesized from a single metal–organic framework", ACS
nano. 9(6), pp. 6288-6296.
158. Samadi-Maybodi A., Ghasemi S., Ghaffari H. (2015), "Ag-doped zeolitic
imidazolate framework-8 nanoparticles modified CPE for efficient
electrocatalytic reduction of H2O2", Electrochimica Acta. 163, pp. 280-287.
159. Samadi-Maybodi A., Ghasemi S., Ghaffari-Rad H. (2015), "A novel sensor
based on Ag-loaded zeolitic imidazolate framework-8 nanocrystals for
efficient electrocatalytic oxidation and trace level detection of hydrazine",
Sensors and Actuators B: Chemical. 220, pp. 627 - 633.
160. Saquib M., Muneer M. (2003), "TiO2-mediated photocatalytic degradation of a
triphenylmethane dye( gentian violet) in aqueous suspensions", Dyes and
Pigments. 56, pp. 37-49.
161. Saravanakumar R., Sankararaman S. (2007), "Molecule Matters: Metal
Organic Frameworks (MOFs)", Feature Article. 12, pp. 77-86.
162. Sava D.F., Rodriguez M.A., Chapman K.W., Chupas P.J., Greathouse J.A.,
Crozier P.S., Nenoff T.M., Am J., (2011), "Capture of Volatile Iodine, a
Gaseous Fission Product, by Zeolitic Imidazolate Framework-8", Chem. Soc.
133, pp. 12398-12401.
163. Sawalha M.F., Peralta-Videa J.R., Romero-Gonzalez J., Gardea-Torresdey
J.L. (2006), "Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex
canescens) biomass: thermodynamic and isotherm studies", J. Colloid
Interface Sci. 300, pp. 100 - 104.
144
164. Scheckel K.G., and Sparks D.L. (2001), "Temperature Effects on Nickel
Sorption Kinetics at the Mineral–Water Interface", Soil Sci. Soc. Am. J. 65(3),
pp. 719-728.
165. Seber G.A.F., Wild C.J. (1989), Nonlinear regression, John Wiley & Sons,
New York.
166. Seoane B., Zamaro J. M., Tellez C., Coronas J. (2012), "Sonocrystallization
of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20)", Crys.
Eng. Commun. 14, pp. 3103-3107.
167. Sheha R.R., El-Zahhar A.A. (2008), "Synthesis of some ferromagnetic
composite resins and their metal removal characteristics in aqueous solutions",
J. Hazard. mater. B. 150, pp. 795 -803.
168. Shi Q., Chen Z. F., Song Z. W., Li J. P., Dong J. X. (2011), "Synthesis of ZIF-
8 and ZIF-67 by Steam-Assisted Conversion and an Investigation of Their
Tribological Behaviors", Chem., Int. Ed. 50, pp. 672-675.
169. Shifu C., Sujuan Z., Wei L., Wei Z., (2008), "Preparation and activity
evaluation of p–n junction photocatalyst NiO/TiO2", Journal of Hazardous
Materials. 155, pp. 320 - 326.
170. Shifu C., Wei Z., Wei L., Sujuan Z. (2009), "Preparation, characterization and
activity evaluation of p-n junction photocatalyst p-NiO/n-ZnO", J Sol-Gel Sci
Technol. 50, pp. 387 - 396.
171. Silva C.G., Corma A., Garcia H. (2010), "Metal-organic frameworks as
semiconductors", J. Mater. Chem. 20(16), pp. 3141-3156.
172. Soleymani J., Hasanzadeh M., Shadjou N. et al. (2016), "A new kinetic-
mechanistic approach to elucidate electrooxidation of doxorubicin
hydrochloride in unprocessed human fluids using magnetic graphene based
nanocomposite modified glassy carbon electrode", Materials Science and
Engineering: C. 61, pp. 638-650.
173. Song Q., Nataraj S.K., Roussenova M.V., Tan J.C. et al (2012), "Zeolitic
imidazolate framework (ZIF-8) based polymer nanocomposite membranes for
gas separation", Energy & Environmental Science. 5(8), pp. 8359-8369.
174. Sreethawong T., Suzuki Y., Yoshikawa S. (2005), "Photocatalytic evolution of
hydrogen overmesoporous TiO2 supported NiO photocatalyst prepared by
single-step sol–gel processwith surfactant template", International Journal of
Hydrogen Energy. 30, pp. 1053 -1062.
145
175. Tan I.A.W., Ahmad A.L., Hameed B.H. (2008), "Adsorption of basic dye on
high-surface-area activated carbon prepared from coconut husk: Equilibrium,
kinetic and thermodynamic studies", Journal of Hazardous Materials. 154, pp.
337-346.
176. Tanaka S., Kida K., Okita M., Ito Y., and Miyake Y. (2012), "Size-controlled
Synthesisof ZeoliticImidazolate Framework-8 (ZIF-8) Crystals in an Aqueous
System at Room Temperature", Chem. Lett. 41, pp. 1337-1339
177. Thompson J. A., Blad C.R., Brunelli N. A., Lydon M. E. et al ( 2012),
"Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity
and Functionality by Mixed-Linker Synthesis", Chem.Mater. 24, p.
1930−1936.
178. Thompson J. A., Chapman K.W., Koros W.J. et al (2012), "Sonication-
induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-
8/polymer composite membranes", Microporous and Mesoporous Materials.
158, pp. 292-299.
179. Tiana F., Liub Y. (2013), "Synthesis of p-type NiO/n-type ZnO
heterostructure and its enhanced photocatalytic activity", Scripta Materialia
Volume 69, Issue 5, September 2013, Pages 417–419. 69(5), pp. 417-419.
180. Tosun I. (2012), "Ammonium removal from aqueous solutions by
clinoptilolite: determination of isotherm and thermodynamic parameters and
comparison of kinetics by the double exponential model and conventional
kinetic models", Int J Environ Res Public Health. 9(3), pp. 970-984.
181. Tsai C.-W., Langner E.H.G. (2016), "The effect of synthesis temperature on
the particle size of nano-ZIF-8", Microporous and Mesoporous Materials.221,
pp. 8-13.
182. Tseng R.-L., Wu F.-C., Juang R.-S. (2003), "Liquid-phase adsorption of dyes
and phenols using pinewood-based activated carbons", Carbon. 41(3), pp.
487-495.
183. Unuabonah E.I., Adebowale K.O., Olu-Owolabi B.I. (2007), "Kinetic and
thermodynamic studies of the adsorption of lead (II) ions onto phosphate-
modified kaolinite clay", J. Hazard Mater. 144(1-2), pp. 386-395.
184. Uyen P.N. Tran, Ky K.A. Le, and and Nam T.S. Phan ( 2011), "Expanding
Applications of Metal-Organic Frameworks: Zeolite Imidazolate Framework
146
ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction",
ACS Catal 1, pp. 120–127.
185. Vadivelan V., Kumar K.V. (2005), "Equilibrium, kinetics, mechanism and
process design for the sorption of methylene blue onto rice husk", Journal
Colloid Interface Sci. 286(1), pp. 90 - 100.
186. Venna S.R., Jasinski J.B., Carreon M. A., Am J. (2010), "Structural Evolution
of Zeolitic Imidazolate Framework-8", Chem. Soc. 132, pp. 18030-18033.
187. Walcarius A. (2015), Mesoporous Materials-Based Electrochemical Sensors,
Electroanalysis. 27 (6), pp. 1303-1340.
188. Wang C., Shao X., Liu Q., Qu Q., Yang G., Hu X., (2006), "Differential pulse
voltammetric determination of nimesulide in pharmaceutical formulation and
human serum at glassy carbon electrode modified by cysteic acid/CNTs based
on electrochemical oxidation of l-cysteine", Journal of Pharmaceutical and
Biomedical Analysis. 42(2), pp. 237 - 244.
189. Wang F., Liu Z.S., Yang H., Tan Y.X. and Zhang J. (2011), "Hybrid zeolitic
imidazolate frameworks with catalytically active TO4 building blocks",
Angewandte Chemie International Edition. 50(2), pp 450-453.
190. Wang Q., Geng B., Wang S. (2009), "ZnO/Au Hybrid Nanoarchitectures:
Wet-Chemical Synthesis and Structurally Enhanced Photocatalytic
Performance", Environ. Sci. Technol. 43(23), pp. 8968–8973.
191. Wang S., Fan Y., Jia X. (2014), "Sodium dodecyl sulfate-assisted synthesis
hierarchically porous ZIF-8 particles for removing mercaptan from gasolin",
Chem. Eng. J. 256, pp. 14 -22.
192. Wang X., Zhang H., Lin H. et al (2016), " Directly converting Fe-doped
metal–organic frameworks into highly active and stable Fe-N-C catalysts for
oxygen reduction in acid", Nano Energy. 25, pp 110–119.
193. Wu M-S., and Chang H-W. (2013), "Self-Assembly of NiO-Coated ZnO
Nanorod Electrodes with Core−Shell Nanostructures as Anode Materials for
Rechargeable Lithium- Ion Batteries", J. Phys. Chem. C 117, pp. 2590 - 2599.
194. Wu R., Qian X., Zhou K., Wei J., Lou J., Ajayan P.M. (2014), "Porous Spinel
ZnxCo3–xO4 Hollow Polyhedra Templated for High-Rate Lithium-Ion
Batteries", ACS Nano. 8, pp. 6297 –6303.
147
195. Wu W., Jiang C. and Roy V.A.L.(2015), "Recent progress in magnetic iron
oxide–semiconductor composite nanomaterials as promising photocatalysts",
Nanoscale. 7, pp. 38-58.
196. Wu Y., Zhou M., Zhang B., Wu B., Li J., Qiao J., Guan X., Li F. (2014),
"Amino acid assisted templating synthesis of hierarchical zeolitic imidazolate
framework-8 for efficient arsenate removal", Nanoscale. 6, pp. 1105–1112.
197. Xi Z., Hong P.Z., Gong Y.W., Zhi G.Y., Ying R.T., Shan S.Z., (2013),
"Zeolitic imidazolate framework as efficient heterogeneous catalyst for the
synthesis of ethyl methyl carbonate", Journal of Molecular Catalysis A:
Chermical. 366, pp. 43-47.
198. Xia B., Cao N., Dai H., Su J., Wu X., Luo W., and Cheng G. (2014),
"Bimetallic Nickel–Rhodium Nanoparticles Supported on ZIF-8 as Highly
Efficient Catalysts for Hydrogen Generation from Hydrazine in Alkaline
Solution", ChemCatChem 6, pp. 2549 – 2552
199. Xian S., Xu F., Ma C., Wu Y., Xia Q., Wang H., Li Z. (2015), "Vapor-
enhanced CO2 adsorption mechanism of composite PEI@ZIF-8 modified by
polyethyleneimine for CO2/N2 separation", Chemical Engineering Journal.
280, pp. 363-369.
200. Xiao L., Xu H., Zhou S., Song T., Wang H., Li S., Gan W. (2014),
"Simultaneous detection of Pb(II) and Cd(II) by differential pulse anodic
stripping voltammetry at a nitrogen-doped microporous
carbon/Nafion/bismuth-film electrode", Electrochimica Acta. 143, pp. 143 -
151.
201. Xiao L., Zhou S., Hu G., Xu H., Wang Y., Yuan Q. (2015), "One-step
synthesis of isoreticular metal-organic framework-8 derived hierarchical
porous carbon and its application in differential pulse anodic stripping
voltammetric determination of Pb(II)", RSC Advances. 5(94), pp. 77159 -
7167.
202. Xiao M., Lu Y., Li Y., Song H., Zhu L., and Ye Z. (2014), "A new type of p-
type NiO/n-type ZnO nano- heterojunctions with enhanced photocatalytic
activity", RSC Adv. 4, pp. 34649–34653.
203. Xu X., Duan G., Li Y. et al., (2014), "Fabrication of gold nanoparticles by
laser ablation in liquid and their application for simultaneous electrochemical
148
detection of Cd
2+
,Pb
2+
,Cu
2+
,Hg
2+
", ACS Applied Materials and Interfaces.
6(1), pp. 65 - 71.
204. Yaghi O.M. (2004), Porous crystals for carbon dioxide storage‖, Center for
Reticular Materials Research at California NanoSystems Institute UCLA.
205. Yaghi O.M., O'Keeffe M., Ockwig N.W., Chae H.K., Eddaoudi M., Kim J.,
(2003), "Reticular Synthesis and the Design of New Materials", Nature. 423,
pp. 705-714.
206. Yaghi O.M., Tranchemontagne D.J., O’Keeffe M., (2009), "Secondary
building units, nets and bonding in the chemistry of metal-organic
frameworks", Chem. Soc. Rev. 38, , pp. 1257–1283.
207. Yagub M.T., Sen T.K., Afroze S., Ang H.M. (2014), "Dye and its removal
from aqueous solution by adsorption: A review", Advances in Colloid and
Interface Science. 209, pp. 172-184.
208. Yamamoto D., Maki T., Watanabe S., Tanaka H., Minoru T. M., Kazuhiro M.
(2013), "Synthesis and adsorption properties of ZIF-8 nanoparticles using a
micromixer", Chemical Engineering Journal 227, pp. 145-150.
209. Yan F., Liu Z.Y., Chen J.L., Sun X.Y., Li X.J., Su M.X., Li B., Di B., (2014),
"Nanoscale zeolitic imidazolate framework-8 as a selective adsorbent for
theophylline over caffeine and diprophylline", RSC Adv. 4, pp. 33047 - 33054.
210. Yang D., Wang L., Chen Z.,Megharaj M.,and Naidu R. (2014), "Anodic
stripping voltammetric determination of traces of Pb(II) and Cd(II) using a
glassy carbon electrode modiied with bismuth nanoparticles", Microchimica
Acta. 181(11-12), pp. 1199 - 1206.
211. Yao J., Chen R., Wang K., Wang H. (2013), "Direct synthesis of zeolitic
imidazolate framework-8/chitosan composites in chitosan hydrogels",
Microporous and Mesoporous Materials. 165, pp. 200-204.
212. Yu B., Wang F., Dong W., Hou J., Lu P., Gong J., (2015), "Self-template
synthesis of core–shell ZnO@ZIF-8 nanospheres and the photocatalysis under
UV irradiation", Materials Letters. 156, pp. 50–53.
213. Zhang Y., Li L., Su H., Huang W., Dong X. (2015), "Binary metal oxide:
advanced energy storage materials in supercapacitors", Journal of Materials
Chemistry A. 3(1), pp. 43-59.
214. Zhang Z., Shao C., Li X., Wang C., Zhang M., and Liu Y. (2010),
"Electrospun Nanofibers of p-Type NiO/n-Type ZnO Heterojunctions with
149
Enhanced Photocatalytic Activity", applied Materials and interfaces. 2, pp.
2915 -2923.
215. Zhang Z., Shao C., Li X., Zhang L., Xue H., Wang C., and Liu Y. (2010),
"Electrospun Nanofibers of ZnO - SnO2 Heterojunction with High
Photocatalytic Activity", J. Phys. Chem. 114, pp. 7920–7925.
216. Zhang Z., Xian S., Xi H., Wang H., li Z. (2011), "Improvement of CO2
adsorption on ZIF-8 crytals modified by enhancing basicity of surface",
Chemical Engineering Science. 66, pp. 4878-4888.
217. Zhao X., Fang X., Wu B., Zheng L., Zheng N. (2013), "Facile synthesis of
size-tunable ZIF-8 nanocrystals using reverse micelles as nanoreactors",
Science China Chemistry. 57(1), pp. 141-146.
218. Zheng L., Zheng Y., Chen C., Zhan Y., Lin X., Zheng Q., Wei K. and Zhu J.
(2014), "Network Structured SnO2/ZnO Heterojunction Nanocatalyst with
High Photocatalytic Activity", RSC Adv. 4, pp. 34649 -34653.
219. Zhu J., Jiang L., Dai C., Yang N., Lei Z. (2015), "Gas adsorption in shaped
zeolitic imidazolate framework-8", Chinese journal of Chemical Engineering.
23, pp. 1275 - 1282.
220. Zhu M., Srinivas D., Bhogeswararao S., Ratnasamy P.,Carreon M.A., (2013),
"Catalytic activity of ZIF-8 in the synthesis of styrene carbonate from CO2 and
styrene oxide", Catalysis Communications. 32, pp. 36–40.
221. Zhu M., Venna S. R., Jasinski J. B., Carreon M.A., ( 2011), "Room-
Temperature Synthesis of ZIF-8: The Coexistence of ZnO Nanoneedles",
Chem. Mater. 23, pp. 3590–3592.
222. Zou Z., Wang S., Jia J., Xu F., Long Z., Hou X. (2016), "Ultrasensitive
determination of inorganic arsenic by hydride generation-atomic fluorescence
spectrometry using Fe3O4@ZIF-8 nanoparticles for preconcentration",
Microchemical Journal 124, pp. 578 -583.
PHỤ LỤC
Phụ lục 1. Thành phần biến tính và dung dịch phân tích đối với các loại WE
Loại điện cực
Dung dịch
biến
tính
(1)
Dung dịch phân tích
(a) BiF/Naf–ZIF-8/GCE
Dung dịch
C
1 mL đệm acetate 1 M(pH =
4,72);
[Pb(II)] = 50 ppb;[Bi(III)] = 300
ppb;
(b) BiF/Naf/GCE
Dung dịch
B
(c) Naf/GCE
Dung dịch
B 1 mL đệm acetate 1 M (pH =
4,72);
[Pb(II)] = 50 ppb;
(d) Naf–ZIF-8/GCE
Dung dịch
C
(e) GCE -
(f) BiF/GCE -
1 mL đệm acetate 1 M(pH =
4,72);
[Pb(II)] = 50 ppb;[Bi(III)] = 300
ppb;
Phụ lục 2. Các thông số cố định trong phương pháp CV
STT Thông số Kí hiệu Giá trị Giá trị
1 Tốc độ quay điện cực Ω 2000 vòng/phút
2 Khoảng quét thế Erange
-1000 –
300
mV
3 Thời gian nghỉ trest 10 s
4 Thế làm giàu Eacc -1000 mV
5 Thời gian làm giàu tacc 120 s
6 Tốc độ quét ν 100 mV/s
Nghỉ 10 s
1. Giai đoạn làm giàu:
- Dung dịch phân tích: đệm pH, V1 mL Pb(II), V2 mL Bi(III) và thêm nước cất 2
lần vừa đủ 10 ml (V0 mL);
- Áp thế và thời gian làm giàu: Eacc (- 1200 mV) và tacc (120 s); (2000 vòng/phút).
2. Giai đoạn hòa tan:
- Quét thế theo chiều anode, khoảng quét thế từ - 1000 (mV) →300 (mV);
- Sử dụng kỹ thuật DP để đo tín hiệu hòa tan (Ep,Pb và Ip,Pb);
- Tín hiệu hòa tan: Ip và Ep, trong đó Ip,Pb CPb.
- Tiến hành định lượng bằng phương pháp thêm chuẩn.
Phụ lục 3. Quy trình thí nghiệm của phương pháp DP-ASV
Phụ lục 4. Các thông số cố định trong phương pháp DP-ASV
STT Thông số Kí hiệu Đơn vị Giá trị
1 Tốc độ quay điện cực Ω 2000 vòng/phút
2 Khoảng quét thế Erange
-1000 –
300
mV
3 Thời gian nghỉ trest 10 s
4 Thế làm giàu Eacc -1200 mV
5 Thời gian làm giàu tacc 120 s
6 Biên độ xung ∆E 50 mV
7 Thời gian mỗi bước thế tstep 0,3 s
8 Bước nhảy thế Ustep 6 mV
9 Tốc độ quét ν 20 mV/s
Phụ lục 5. Tín hiệu hòa tan của Pb(II) ở các nồng độ Bi(III) khác nhau
STT [Bi(III)] (ppb) Ep,Pb (V)
Ip, Pb
(1)
(μA)
SdIp (μA)
RSDI
p (%)
(n=4)
1 10 -0,586 20,17 0,931 4,62
2 50 -0,589 24,16 0,143 0,59
3 100 -0,601 29,19 0,512 1,76
4 300 -0,580 36,21 0,355 0,98
5 500 -0,604 31,24 0,258 0,83
6 700 -0,612 25,16 0,046 0,18
7 1000 -0,622 14,61 0,622 4,26
Phụ lục 6. Tín hiệu hòa tan của Pb(II) ở các tốc độ quét thế khác nhau
STT ν (mV/s)
Ip,Pb
(1)
(μA)
SdIp
(μA)
Ep,Pb
(V)
SdEp
(V)
Ep/2,Pb
(V)
SdEp/2
(V)
1 20 6,393 0,228 -0,570 0,002 -0,593 0,001
2 40 14,58 0,210 -0,553 0,001 -0,582 0,001
3 50 19,26 0,230 -0,548 0,001 -0,579 0
4 75 28,86 0,204 -0,538 0,001 -0,573 0,001
5 100 37,13 0,497 -0,533 0 -0,571 0,001
6 200 66,40 0,489 -0,514 0,002 -0,562 0
7 300 88,66 1,091 -0,506 0,003 -0,559 0
8 400 103,6 0,902 -0,500 0 -0,562 0
9 500 117,3 1,470 -0,492 0 -0,562 0
ĐKTN: WE = BiF/Naf-ZIF-8/GCE; mZIF-8 = 12,5 μg; đệm B-R 0,5 M (pH = 3,2); [Pb(II)]
= 500 ppb; [Bi(III)] = 300 ppb; Ip là kết quả trung bình 4 lần đo lặp lại
Phụ lục 7: Giản đồ XRD của ZIF-8
Phụ lục 8: Giản đồ XRD của Fe-ZIF-8(10%)
Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - ZIF8
File: ThanhQN ZIF8.raw - Type: 2Th/Th locked - Start: 1.000 ° - End: 60.010 ° - Step: 0.030 ° - Step time: 0.5 s - Anode: Cu - WL1: 1.5406 - Generator kV: 40 kV - Generator mA: 40 mA - Creation: 19/09/2016 1:23:02 PM
L
in
(
C
p
s
)
0
1000
2000
3000
4000
5000
2-Theta - Scale
1 10 20 30 40 50 60
d
=
1
2
.0
8
4
d
=
8
.5
4
2
d
=
6
.9
6
2
d
=
6
.0
1
6
d
=
5
.3
7
4
d
=
5
.1
3
4
d
=
4
.9
1
7
d
=
4
.7
3
5
d
=
4
.5
4
6
d
=
4
.0
2
8
d
=
3
.6
2
7
d
=
3
.4
6
5 d
=
3
.3
3
7
d
=
3
.0
8
1
d
=
3
.0
0
7
d
=
2
.9
1
8
d
=
2
.8
3
5
d
=
2
.7
6
2
d
=
2
.6
2
6
d
=
2
.5
6
3
d
=
2
.4
5
6
Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - Fe-ZIF8-9:1
File: ThanhQN Fe-ZIF8-91.raw - Type: 2Th/Th locked - Start: 1.000 ° - End: 60.010 ° - Step: 0.030 ° - Step time: 0.5 s - Anode: Cu - WL1: 1.5406 - Generator kV: 40 kV - Generator mA: 40 mA - Creation: 19/09/2016 2:04:51
L
in
(
C
p
s
)
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
2-Theta - Scale
1 10 20 30 40 50 60
d
=
1
2
.0
7
6
d
=
8
.5
0
6
d
=
6
.9
4
1
d
=
5
.9
6
1
d
=
5
.6
3
0
d
=
5
.3
9
8
d
=
4
.9
0
6
d
=
4
.5
3
4
d
=
3
.9
9
9
d
=
3
.6
2
0
d
=
3
.3
3
6
d
=
2
.9
9
5
d
=
2
.9
1
6
d
=
2
.8
3
5
d
=
2
.7
5
1
d
=
2
.5
6
0
Phụ lục 9: Giản đồ XRD của Fe-ZIF-8(20%)
Phụ lục 10: Giản đồ XRD của Fe-ZIF-8(30%)
Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - Fe-ZIF8-8:2
File: ThanhQN Fe-ZIF8-82.raw - Type: 2Th/Th locked - Start: 1.000 ° - End: 60.010 ° - Step: 0.030 ° - Step time: 0.5 s - Anode: Cu - WL1: 1.5406 - Generator kV: 40 kV - Generator mA: 40 mA - Creation: 19/09/2016 1:41:00
L
in
(
C
p
s
)
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
2-Theta - Scale
1 10 20 30 40 50 60
d
=
1
2
.1
3
3
d
=
8
.5
5
5
d
=
6
.9
4
3
d
=
6
.4
9
2 d
=
6
.0
4
2
d
=
5
.7
9
4
d
=
5
.4
2
2
d
=
4
.9
2
1
d
=
4
.3
5
4
d
=
4
.0
1
1
d
=
3
.6
3
1
d
=
3
.3
2
8
d
=
3
.0
1
3
d
=
2
.9
2
1
d
=
2
.8
4
2
Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - Fe-ZIF8-7:3
File: ThanhQN Fe-ZIF8-73.raw - Type: 2Th/Th locked - Start: 1.000 ° - End: 60.010 ° - Step: 0.030 ° - Step time: 0.5 s - Anode: Cu - WL1: 1.5406 - Generator kV: 40 kV - Generator mA: 40 mA - Creation: 19/09/2016 1:05:52
L
in
(
C
p
s)
0
100
200
300
400
500
600
700
800
900
1000
2-Theta - Scale
1 10 20 30 40 50 60
d
=
1
2
.0
8
2
d
=
8
.4
7
2 d
=
6
.9
4
5
d
=
6
.0
4
2
d
=
5
.4
0
5 d
=
4
.9
1
7
Phụ lục 11 :Giản đồ phân tích nhiệt TG - TGA của ZIF-8
Phụ lục 12 :Giản đồ phân tích nhiệt TG - TGA của Fe-ZIF-8(10%)
Phụ lục 13 :Giản đồ phân tích nhiệt TG - TGA của Fe-ZIF-8(20%)
Phụ lục 14 :Giản đồ phân tích nhiệt TG - TGA của Fe-ZIF-8(30%)
Các file đính kèm theo tài liệu này:
- luan_an_nghien_cuu_bien_tinh_vat_lieu_zif_8_va_mot_so_ung_du.pdf