Để đánh giá ảnh hưởng của vật liệu lên cơ thể khi cho uống bán trường diễn thì sau thời gian thí nghiệm chuột ở các lô được lấy máu, thu huyết thanh, xác định một số chỉ tiêu huyết học. Kết quả được trình bày ở Bảng 3.21.
Khi uống MIL-100(Fe) liều 900 mg/kg và 300mg/kg trong thời gian 28 ngày thì số lượng các chỉ số bạch cầu, tiểu cầu, thể tích trung bình hồng cầu (MCV), MCH, CH, RDW, HDW, MPV không có sự sai khác đáng kể so với mẫu đối chứng. Trong khi đó số lượng hồng cầu, huyết sắc tố (HGB), Hematocrit (HCT), nồng độ Hb trung bình hồng cầu (MCHC) so với lô đối chứng là có sự sai khác đáng kể. Nguyên nhân dẫn đến việc tăng một số chỉ số liên quan đến hồng cầu trong máu là do khi sử dụng vật liệu trong thời gian dài sẽ gây nên hiện tượng tăng nồng độ sắt trong máu (do quá trình phân hủy từ vật liệu). Lượng sắt trong máu tăng thúc đẩy quá trình tổng hợp hemoglobin, (là thành phần chính của hồng cầu), từ đó dẫn đến việc tăng số lượng hồng cầu, huyết sắc tố, hematocrit và nồng độ Hb trung bình hồng cầu. Các chỉ số này có thể sẽ trở lại bình thường khi ngừng uống vật liệu. Ngoài ra, đối với một số bệnh do ký sinh trùng như sốt rét, babesia. huyết sắc tố của người bệnh có xu hướng bị giảm do hồng cầu bị phá vỡ, việc sử dụng vật liệu MIL-100(Fe) làm chất mang cùng góp phần cân bằng lượng huyết sắc tố trong cơ thể.
Đánh giá chức năng gan, thận
Chức năng gan của chuột được đánh giá thông qua hoạt độ enzyme AST và ALT trong máu.
173 trang |
Chia sẻ: Kim Linh 2 | Ngày: 09/11/2024 | Lượt xem: 180 | Lượt tải: 3
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu chế tạo hệ vật liệu khung cơ kim trên cơ sở Fe (III) theo quy trình hóa học xanh định hướng ứng dụng mang dược chất, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
"Effect of synergistic
interplay between surface charge, crystalline defects, and pore volume of
MIL-100 (Fe) on adsorption of aqueous organic dyes", Industrial
Engineering Chemistry Research. 59, pp. 2113-2122.
66. Guo Y., Yan B., Cheng Y. et al. (2019), "A new Dy (III)-based metal-
organic framework with polar pores for pH-controlled anticancer drug
delivery and inhibiting human osteosarcoma cells", Journal of
Coordination Chemistry. 72, pp. 262-271.
67. Haeusler I., Chan X., Guérin P. et al. (2018), "The arrhythmogenic
cardiotoxicity of the quinoline and structurally related antimalarial drugs:
a systematic review", BMC Med. 16, pp. 200.
68. Hasan Z., Choi E.-J. và Jhung S. H. (2013), "Adsorption of naproxen and
clofibric acid over a metal–organic framework MIL-101 functionalized
with acidic and basic groups", Chemical engineering journal. 219, pp.
537-544.
69. Hasegawa S., Horike S., Matsuda R. et al. (2007), "Three-dimensional
porous coordination polymer functionalized with amide groups based on
140
tridentate ligand: selective sorption and catalysis", Journal of the
American Chemical Society. 129, pp. 2607-2614.
70. He J., Zhang Y., Zhang X. et al. (2018), "Highly efficient Fenton and
enzyme-mimetic activities of NH2-MIL-88B (Fe) metal organic
framework for methylene blue degradation", Scientific reports. 8, pp. 1-8.
71. Hemdal (2013), "Aquarium Fish: Chloroquine: A “New” Drug for
Treating Fish Diseases", Advanced Aquafish. 12.
72. Hidalgo T., Alonso-Nocelo M., Bouzo B. et al. (2020), "Biocompatible
iron (III) carboxylate metal–organic frameworks as promising RNA
nanocarriers", Nanoscale. 12, pp. 4839-4845.
73. Hidalgo T., Giménez-Marqués M., Bellido E. et al. (2017), "Chitosan-
coated mesoporous MIL-100 (Fe) nanoparticles as improved bio-
compatible oral nanocarriers", Scientific reports. 7, pp. 1-14.
74. Horcajada P., Chevreau H., Heurtaux D. et al. (2014), "Extended and
functionalized porous iron (III) tri-or dicarboxylates with MIL-100/101
topologies", Chemical Communications. 50, pp. 6872-6874.
75. Horcajada P., Chalati T., Serre C. et al. (2010), "Porous metal–organic-
framework nanoscale carriers as a potential platform for drug delivery and
imaging", Nature materials. 9, pp. 172-178.
76. Horcajada P., Serre C., Maurin G. et al. (2008), "Flexible porous metal-
organic frameworks for a controlled drug delivery", Journal of the
American Chemical Society. 130, pp. 6774-6780.
77. Horcajada P., Serre C., Vallet‐Regí M. et al. (2006), "Metal–organic
frameworks as efficient materials for drug delivery", Angewandte chemie.
118, pp. 6120-6124.
78. Huang S., Yang K.-L., Liu X.-F. et al. (2017), "MIL-100 (Fe)-catalyzed
efficient conversion of hexoses to lactic acid", RSC advances. 7, pp. 5621-
5627.
141
79. Huxford R. C., Della Rocca J. và Lin W. (2010), "Metal–organic
frameworks as potential drug carriers", Current opinion in chemical
biology. 14, pp. 262-268.
80. Iannazzo D., Pistone A., Celesti C. et al. (2019), "A smart nanovector for
cancer targeted drug delivery based on graphene quantum dots",
Nanomaterials. 9, pp. 282.
81. Israr F., Chun D., Kim Y. et al. (2016), "High yield synthesis of Ni-BTC
metal–organic framework with ultrasonic irradiation: Role of polar aprotic
DMF solvent", Ultrasonics sonochemistry. 31, pp. 93-101.
82. Javanbakht S., Pooresmaeil M. và Namazi H. (2019), "Green one-pot
synthesis of carboxymethylcellulose/Zn-based metal-organic
framework/graphene oxide bio-nanocomposite as a nanocarrier for drug
delivery system", Carbohydrate polymers. 208, pp. 294-301.
83. Jeremias F., Henninger S. K. và Janiak C. (2016), "Ambient pressure
synthesis of MIL-100 (Fe) MOF from homogeneous solution using a
redox pathway", Dalton transactions. 45, pp. 8637-8644.
84. Jhung S. H., Lee J. H., Yoon J. W. et al. (2007), "Microwave synthesis of
chromium terephthalate MIL‐101 and its benzene sorption ability",
Advanced Materials. 19, pp. 121-124.
85. Jiang K., Zhang L., Hu Q. et al. (2017), "Thermal Stimuli‐Triggered Drug
Release from a Biocompatible Porous Metal–Organic Framework",
Chemistry–A European Journal. 23, pp. 10215-10221.
86. Jodłowski P. J., Kurowski G., Kuterasiński Ł. et al. (2020), "Cracking the
chloroquine conundrum: the application of defective UiO-66 metal–
organic framework materials to prevent the onset of heart defects—in vivo
and in vitro", ACS Applied Materials Interfaces. 13, pp. 312-323.
87. Joseph L., Jun B.-M., Jang M. et al. (2019), "Removal of contaminants of
emerging concern by metal-organic framework nanoadsorbents: A
142
review", Chemical Engineering Journal. 369, pp. 928-946.
88. Julien P. A., Mottillo C. và Friščić T. (2017), "Metal–organic frameworks
meet scalable and sustainable synthesis", J Green Chemistry. 19, pp.
2729-2747.
89. Karademir U., Ural K., Aysul N. et al. (2016), "The efficacy of
chloroquine treatment against naturally occuring Giardia duodenalis
infection in lambs", Revista MVZ Córdoba. 21, pp. 5328-5335.
90. Ke X., Qin N., Zhang T. et al. (2020), "Highly augmented antioxidant and
anticancer effect of biocompatible MIL-100 (Fe)@ SiO 2-immobilized
green tea Catechin", Journal of Inorganic Organometallic Polymers
Materials. 30, pp. 935-942.
91. Kersh G. J. (2013), "Antimicrobial therapies for Q fever", Expert review
of anti-infective therapy. 11, pp. 1207-1214.
92. Keskin S. và Kızılel S. (2011), "Biomedical applications of metal organic
frameworks", Industrial Engineering Chemistry Research. 50, pp. 1799-
1812.
93. Kim J., Kim S.-H., Yang S.-T. et al. (2012), "Bench-scale preparation of
Cu3 (BTC) 2 by ethanol reflux: Synthesis optimization and
adsorption/catalytic applications", Microporous mesoporous materials.
161, pp. 48-55.
94. Kimura T., Takabatake Y., Takahashi A. et al. (2013), "Chloroquine in
cancer therapy: a double-edged sword of autophagy", Cancer research.
73, pp. 3-7.
95. Kreno L. E., Leong K., Farha O. K. et al. (2012), "Metal–organic
framework materials as chemical sensors", Chemical reviews. 112, pp.
1105-1125.
96. Kritskiy I., Volkova T., Sapozhnikova T. et al. (2020), "Methotrexate-
loaded metal-organic frameworks on the basis of γ-cyclodextrin: Design,
143
characterization, in vitro and in vivo investigation", Materials Science
Engineering: C. 111, pp. 110774.
97. Leong J., Chin W., Ke X. et al. (2018), "Disease-directed design of
biodegradable polymers: Reactive oxygen species and pH-responsive
micellar nanoparticles for anticancer drug delivery", Nanomedicine:
Nanotechnology, Biology Medicine. 14, pp. 2666-2677.
98. Lestari W. W., Meilani R., Nurcahyo I. et al. (2021), "In Situ Green
Synthesis of Mil-100 (Fe) Modified Edta as an Enhanced Candidate
Detoxifying Agent of Lead Heavy Metal (Pb) and Its Adsorption
Characteristics", Journal of Inorganic and Organometallic Polymers and
Materials.
99. Lestari W. W., Hartono J., Adreane M. et al. (2016), "Electro-synthetic
optimization of host material based on MIL-100 (Fe)", Molekul. 11, pp.
61-70.
100. Li H., Lv N., Li X. et al. (2017), "Composite CD-MOF nanocrystals-
containing microspheres for sustained drug delivery", Nanoscale. 9, pp.
7454-7463.
101. Li X., Guo T., Lachmanski L. et al. (2017), "Cyclodextrin-based metal-
organic frameworks particles as efficient carriers for lansoprazole: Study
of morphology and chemical composition of individual particles",
International journal of pharmaceutics. 531, pp. 424-432.
102. Li Y., Lu A., Long M. et al. (2019), "Nitroimidazole derivative
incorporated liposomes for hypoxia-triggered drug delivery and enhanced
therapeutic efficacy in patient-derived tumor xenografts", Acta
biomaterialia. 83, pp. 334-348.
103. Li Z.-Q., Qiu L.-G., Xu T. et al. (2009), "Ultrasonic synthesis of the
microporous metal–organic framework Cu3 (BTC) 2 at ambient
temperature and pressure: an efficient and environmentally friendly
144
method", Materials Letters. 63, pp. 78-80.
104. Lin S.-X., Pan W.-L., Niu R.-J. et al. (2019), "Effective loading of
cisplatin into a nanoscale UiO-66 metal–organic framework with
preformed defects", Dalton Transactions. 48, pp. 5308-5314.
105. Lin W., Hu Q., Jiang K. et al. (2017), "A porous Zn-based metal-organic
framework for pH and temperature dual-responsive controlled drug
release", Microporous Mesoporous Materials. 249, pp. 55-60.
106. Lin W., Hu Q., Yu J. et al. (2016), "Low Cytotoxic Metal–Organic
Frameworks as Temperature‐Responsive Drug Carriers",
ChemPlusChem. 81, pp. 804-810.
107. Liu J. và Wang Y. (2023), "Research on Improved MOF Materials
Modified by Functional Groups for Purification of Water", Molecules. 28,
pp. 2141.
108. Liu J., Cao R., Xu M. et al. (2020), "Hydroxychloroquine, a less toxic
derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection
in vitro", Cell discovery. 6, pp. 16.
109. Lou X. Y., Li Y. P. và Yang Y. W. (2019), "Gated Materials: Installing
Macrocyclic Arenes‐Based Supramolecular Nanovalves on Porous
Nanomaterials for Controlled Cargo Release", Biotechnology journal. 14,
pp. 1800354.
110. Lv H., Zhao H., Cao T. et al. (2015), "Efficient degradation of high
concentration azo-dye wastewater by heterogeneous Fenton process with
iron-based metal-organic framework", Journal of Molecular Catalysis A:
Chemical. 400, pp. 81-89.
111. Mahmood A., Xia W., Mahmood N. et al. (2015), "Hierarchical
heteroaggregation of binary metal-organic gels with tunable porosity and
mixed valence metal sites for removal of dyes in water", Scientific reports.
5, pp. 1-12.
145
112. Mahmoudi F., Amini M. M. và Sillanpää M. (2020), "Hydrothermal
synthesis of novel MIL-100 (Fe)@ SBA-15 composite material with high
adsorption efficiency towards dye pollutants for wastewater remediation",
Journal of the Taiwan Institute of Chemical Engineers. 116, pp. 303-313.
113. Mallakpour S., Nikkhoo E. và Hussain C. M. (2022), "Application of
MOF materials as drug delivery systems for cancer therapy and dermal
treatment", Coordination Chemistry Reviews. 451, pp. 214262.
114. Manic G., Obrist F., Kroemer G. et al. (2014), "Chloroquine and
hydroxychloroquine for cancer therapy", Molecular cellular oncology. 1,
pp. e29911.
115. Márquez A., Demessence A., Platero-Prats A. et al. (2012), "Green
microwave synthesis of MIL-100 (Al, Cr, Fe) nanoparticles for thin-film
elaboration", European Journal of Inorganic Chemistry, pp. 5165-5174.
116. Matsuda R., Kitaura R., Kitagawa S. et al. (2005), "Highly controlled
acetylene accommodation in a metal–organic microporous material",
Nature Materials. 436, pp. 238-241.
117. Matsuyama K., Hayashi N., Yokomizo M. et al. (2014), "Supercritical
carbon dioxide-assisted drug loading and release from biocompatible
porous metal–organic frameworks", Journal of Materials Chemistry B. 2,
pp. 7551-7558.
118. McKinlay A., Eubank J., Wuttke S. et al. (2013), "Nitric oxide adsorption
and delivery in flexible MIL-88 (Fe) metal–organic frameworks",
Chemistry of Materials. 25, pp. 1592-1599.
119. Michael J. Raymond C. S. S., Mariano J. Savelski (2010), "LCA approach
to the analysis of solvent waste issues in the pharmaceutical industry",
Green Chemistry. 12, pp. 1826-1834.
120. Millward A. R. và Yaghi O. M. (2005), "Metal− organic frameworks with
exceptionally high capacity for storage of carbon dioxide at room
146
temperature", Journal of the American Chemical Society 127, pp. 17998-
17999.
121. Mondol M. M. H., Park J. M. và Jhung S. H. (2022), "A remarkable
adsorbent for denitrogenation of liquid fuel: Ethylenediaminetetraacetic
acid-grafted metal–organic framework, MOF-808", Separation
Purification Technology. 284, pp. 120248.
122. Mubagwa K. (2020), "Cardiac effects and toxicity of chloroquine: a short
update", International journal of antimicrobial agents. 56, pp. 106057.
123. Muga J. O., Gathirwa J. W., Tukulula M. et al. (2018), "In vitro evaluation
of chloroquine-loaded and heparin surface-functionalized solid lipid
nanoparticles", Malaria journal. 17, pp. 1-7.
124. Mulyati T. A., Ediati R. và Rosyidah A. (2015), "Influence of
solvothermal temperatures and times on crystallinity and morphology of
MOF-5", Indonesian Journal of Chemistry. 15, pp. 101-107.
125. Munster T., Gibbs J. P., Shen D. et al. (2002), "Hydroxychloroquine
concentration–response relationships in patients with rheumatoid
arthritis", Arthritis Rheumatism: Official Journal of the American College
of Rheumatology. 46, pp. 1460-1469.
126. Mura S., Nicolas J. và Couvreur P. (2013), "Stimuli-responsive
nanocarriers for drug delivery", Nature materials. 12, pp. 991-1003.
127. Nam P. T. S., Tung N. T. và Anh T. H. (2012), "The arylation of aldehydes
with arylboronic acids using metal-organic framework Ni (HBTC) BPY
as an efficient heterogeneous catalyst", Journal of Molecular Catalysis A:
Chemical. 365, pp. 95-102.
128. Nasrabadi M., Ghasemzadeh M. A. và Monfared M. R. Z. (2019), "The
preparation and characterization of UiO-66 metal–organic frameworks for
the delivery of the drug ciprofloxacin and an evaluation of their
antibacterial activities", New Journal of Chemistry. 43, pp. 16033-16040.
147
129. Nejadshafiee V., Naeimi H., Goliaei B. et al. (2019), "Magnetic bio-
metal–organic framework nanocomposites decorated with folic acid
conjugated chitosan as a promising biocompatible targeted theranostic
system for cancer treatment", Materials Science Engineering: C. 99, pp.
805-815.
130. Nezhad-Mokhtari P., Arsalani N., Javanbakht S. et al. (2019),
"Development of gelatin microsphere encapsulated Cu-based metal-
organic framework nanohybrid for the methotrexate delivery", Journal of
Drug Delivery Science. 50, pp. 174-180.
131. Nguyen Thi Hoai Phuong, Ninh Ha Duc, Tran Chinh Van et al. (2019),
"Size‐Control and Surface Modification of Flexible Metal‐Organic
Framework MIL‐53 (Fe) by Polyethyleneglycol for 5‐Fluorouracil
Anticancer Drug Delivery", ChemistrySelect. 4, pp. 2333-2338.
132. Nguyen Thi Hoai Phuong D. H. Y., Ha Thi Thanh Duong, Le Thanh Bac,
Bui Thi Le Thuy, Ninh Duc Ha (2020), "Study on "green' synthetic
methods using ultrasonic and microwave methods for Fe-BDC as a drug
carrier", Vietnam Journal of Chemistry. 58, pp. 316-321.
133. Nguyen Thi Thuy Van, Cam Loc Luu, Hoang Tien Cuong et al. (2013),
"Synthesis of MOF-199 and application to CO2 adsorption", Advances in
natural sciences: nanoscience nanotechnology. 4, pp. 035016.
134. Nivetha R., Gothandapani K., Raghavan V. et al. (2020), "Highly Porous
MIL-100 (Fe) for the Hydrogen Evolution Reaction (HER) in Acidic and
Basic Media", ACS omega. 5, pp. 18941-18949.
135. Nouar F., Devic T., Chevreau H. et al. (2012), "Tuning the breathing
behaviour of MIL-53 by cation mixing", Chemical Communications. 48,
pp. 10237-10239.
136. Pan S., Chen X., Li X. et al. (2019), "Nonderivatization method for
determination of glyphosate, glufosinate, bialaphos, and their main
148
metabolites in environmental waters based on magnetic metal‐organic
framework pretreatment", Journal of separation science. 42, pp. 1045-
1050.
137. Pardo J., Peng Z. và Leblanc R. M. (2018), "Cancer targeting and drug
delivery using carbon-based quantum dots and nanotubes", Molecules. 23,
pp. 378.
138. Park E. Y., Hasan Z., Khan N. A. et al. (2013), "Adsorptive removal of
bisphenol-A from water with a metal-organic framework, a porous
chromium-benzenedicarboxylate", Journal of nanoscience
nanotechnology. 13, pp. 2789-2794.
139. Park K. S., Ni Z., Côté A. P. et al. (2006), "Exceptional chemical and
thermal stability of zeolitic imidazolate frameworks", Proceedings of the
National Academy of Sciences. 103, pp. 10186-10191.
140. Pham Thanh Vinh, Nguyen Hong Van, Nguyen Van Van et al. (2015),
"Confirmed Plasmodium vivax resistance to chloroquine in central
Vietnam", Antimicrobial agents chemotherapy. 59, pp. 7411-7419.
141. Price R. N., Auburn S., Marfurt J. et al. (2012), "Phenotypic and genotypic
characterisation of drug-resistant Plasmodium vivax", Trends in
parasitology. 28, pp. 522-529.
142. Qadir N. U., Said S. A., Mansour R. B. et al. (2016), "Synthesis,
characterization, and water adsorption properties of a novel multi-walled
carbon nanotube/MIL-100 (Fe) composite", Dalton Transactions. 45, pp.
15621-15633.
143. Qiu L.-G., Li Z.-Q., Wu Y. et al. (2008), "Facile synthesis of nanocrystals
of a microporous metal–organic framework by an ultrasonic method and
selective sensing of organoamines", Chemical communications, pp. 3642-
3644.
144. Ramaswamy R. S., Prathyusha N., Saranya R. et al. (2012), "Acute
149
toxicity and the 28-day repeated dose study of a Siddha medicine Nuna
Kadugu in rats", BMC complementary alternative medicine. 12, pp. 1-13.
145. Ranjbar M., Pardakhty A., Amanatfard A. et al. (2018), "Efficient drug
delivery of β-estradiol encapsulated in Zn-metal–organic framework
nanostructures by microwave-assisted coprecipitation method", Drug
design, development. 12, pp. 2635.
146. Ren H., Zhang L., An J. et al. (2014), "Polyacrylic acid@ zeolitic
imidazolate framework-8 nanoparticles with ultrahigh drug loading
capability for pH-sensitive drug release", Chemical Communications. 50,
pp. 1000-1002.
147. Reyes-Márquez V., Rojas L. E. C., Colorado-Peralta R. et al. (2023),
"Adsorption potential of polymeric porous crystalline materials (MOFs)
for the removal of Indigo carmine, Congo red, and Malachite green from
water", Inorganica Chimica Acta, pp. 121743.
148. Rezaei M., Abbasi A., Varshochian R. et al. (2018), "NanoMIL-100 (Fe)
containing docetaxel for breast cancer therapy", Artificial cells,
nanomedicine, biotechnology. 46, pp. 1390-1401.
149. Saafan H. A., Ibrahim K. M., Thabet Y. et al. (2021), "Intratracheal
administration of chloroquine-loaded niosomes minimize systemic drug
exposure", Pharmaceutics. 13, pp. 1677.
150. Samuel M. S., Savunthari K. V., Chandrasekar N. et al. (2022), "Removal
of environmental contaminants of emerging concern using metal–organic
framework composite", Environmental Technology Innovation. 25, pp.
102216.
151. Sebaiy M., Abdelazeem A., AboulfotouhA R. A. et al. (2022),
"Instrumental Analysis of Chloroquine and Hydroxychloroquine in
Different Matrices", Current Research: Integrative Medicine 7, pp. 1-8.
152. Seo Y.-K., Yoon J. W., Lee J. S. et al. (2012), "Large scale fluorine-free
150
synthesis of hierarchically porous iron (III) trimesate MIL-100 (Fe) with
a zeolite MTN topology", Microporous Mesoporous Materials. 157, pp.
137-145.
153. Sherje A. P., Jadhav M., Dravyakar B. R. et al. (2018), "Dendrimers: A
versatile nanocarrier for drug delivery and targeting", International
journal of pharmaceutics. 548, pp. 707-720.
154. Shi L., Wang T., Zhang H. et al. (2015), "An amine‐functionalized iron
(III) metal–organic framework as efficient visible‐light photocatalyst for
Cr (VI) reduction", Advanced science. 2, pp. 1500006.
155. Shi Z., Chen X., Zhang L. et al. (2018), "FA-PEG decorated MOF
nanoparticles as a targeted drug delivery system for controlled release of
an autophagy inhibitor", Biomaterials science. 6, pp. 2582-2590.
156. Shi Z., Yu Y., Fu C. et al. (2017), "Water-based synthesis of zeolitic
imidazolate framework-8 for CO 2 capture", RSC advances. 7, pp. 29227-
29232.
157. Simon-Yarza T., Baati T., Neffati F. et al. (2016), "In vivo behavior of
MIL-100 nanoparticles at early times after intravenous administration",
International Journal of Pharmaceutics. 511, pp. 1042-1047.
158. Simon M. A., Anggraeni E., Soetaredjo F. E. et al. (2019), "Hydrothermal
synthesize of HF-free MIL-100 (Fe) for isoniazid-drug delivery",
Scientific reports. 9, pp. 16907.
159. Sose A. T., Cornell H. D., Gibbons B. J. et al. (2021), "Modelling drug
adsorption in metal–organic frameworks: the role of solvent", RSC
advances. 11, pp. 17064-17071.
160. Souza B. E., Möslein A. F., Titov K. et al. (2020), "Green reconstruction
of MIL-100 (Fe) in water for high crystallinity and enhanced guest
encapsulation", ACS Sustainable Chemistry Engineering. 8, pp. 8247-
8255.
151
161. Stavila V., Talin A. A. và Allendorf M. D. (2014), "MOF-based electronic
and opto-electronic devices", Chemical Society Reviews. 43, pp. 5994-
6010.
162. Sturrock B. R. và Chevassut T. (2020), "Chloroquine and COVID-19–a
potential game changer?", Clinical Medicine. 20, pp. 278.
163. Sun C.-Y., Qin C., Wang X.-L. et al. (2013), "Metal-organic frameworks
as potential drug delivery systems", Expert opinion on drug delivery. 10,
pp. 89-101.
164. Sun C.-Y., Qin C., Wang X.-L. et al. (2012), "Zeolitic imidazolate
framework-8 as efficient pH-sensitive drug delivery vehicle", Dalton
Transactions. 41, pp. 6906-6909.
165. Sun Y., Zheng L., Yang Y. et al. (2020), "Metal–organic framework
nanocarriers for drug delivery in biomedical applications", Nano-Micro
Letters. 12, pp. 1-29.
166. Surblé S., Serre C., Mellot-Draznieks C. et al. (2006), "A new isoreticular
class of metal-organic-frameworks with the MIL-88 topology", Chemical
communications, pp. 284-286.
167. Szota M., Reczyńska-Kolman K., Pamuła E. et al. (2021), "Poly
(amidoamine) Dendrimers as Nanocarriers for 5-Fluorouracil:
Effectiveness of Complex Formation and Cytotoxicity Studies",
International journal of molecular sciences. 22, pp. 11167.
168. Tamames-Tabar C., Cunha D., Imbuluzqueta E. et al. (2014),
"Cytotoxicity of nanoscaled metal–organic frameworks", Journal of
Materials Chemistry B. 2, pp. 262-271.
169. Tan K. và Foo K. (2021), "Facile synthesis of MIL-100 metal-organic
framework via heatless technique for the adsorptive treatment of cationic
and anionic pollutants", Arabian Journal of Chemistry. 14, pp. 103359.
170. Tan S. Y., Ang C. Y., Mahmood A. et al. (2016), "Doxorubicin‐Loaded
152
Metal–Organic Gels for pH and Glutathione Dual‐Responsive Release",
ChemNanoMat. 2, pp. 504-508.
171. Tang T., Xu W., Ma J. et al. (2019), "Inhibitory mechanisms of DHA/CQ
on pH and iron homeostasis of erythrocytic stage growth of Plasmodium
falciparum", Molecules. 24, pp. 1941.
172. Tchinsa A., Hossain M. F., Wang T. et al. (2021), "Removal of organic
pollutants from aqueous solution using metal organic frameworks
(MOFs)-based adsorbents: A review", Chemosphere. 284, pp. 131393.
173. Tella A. C., Bamgbose J. T., Adimula V. O. et al. (2021), "Synthesis of
metal–organic frameworks (MOFs) MIL-100 (Fe) functionalized with
thioglycolic acid and ethylenediamine for removal of eosin B dye from
aqueous solution", SN Applied Sciences. 3, pp. 1-15.
174. Thomas S., Thomas R., Zachariah A. K. et al. (2017), Thermal and
rheological measurement techniques for nanomaterials characterization,
Vol. 3, Elsevier.
175. Tomalia D. A., Baker H., Dewald J. et al. (1985), "A new class of
polymers: starburst-dendritic macromolecules", Polymer journal. 17, pp.
117-132.
176. Valadi F. M., Ekramipooya A. và Gholami M. R. (2020), "Selective
separation of Congo Red from a mixture of anionic and cationic dyes using
magnetic-MOF: Experimental and DFT study", Journal of Molecular
Liquids. 318, pp. 114051.
177. Vasconcelos I. B., da Silva T. G., Militão G. C. et al. (2012), "Cytotoxicity
and slow release of the anti-cancer drug doxorubicin from ZIF-8", RSC
advances. 2, pp. 9437-9442.
178. Vehrenberg J., Vepsäläinen M., Macedo D. S. et al. (2020), "Steady-state
electrochemical synthesis of HKUST-1 with polarity reversal",
Microporous Mesoporous Materials. 303, pp. 110218.
153
179. Velásquez-Hernández M. d. J., Linares-Moreau M., Astria E. et al. (2020),
"Towards applications of bioentities@ MOFs in biomedicine",
Coordination chemistry reviews, pp. 213651.
180. Vergote V., Laenen L., Mols R. et al. (2021), "Chloroquine, an anti-
malaria drug as effective prevention for hantavirus infections", Frontiers
in Cellular Infection Microbiology. 11, pp. 580532.
181. Viswanathan V. P., Divya K., Dubal D. P. et al. (2021), "Ag/AgCl@ MIL-
88A (Fe) heterojunction ternary composites: towards the photocatalytic
degradation of organic pollutants", Dalton Transactions. 50, pp. 2891-
2902.
182. Vlahopoulos S., Critselis E., F Voutsas I. et al. (2014), "New use for old
drugs? Prospective targets of chloroquines in cancer therapy", Current
Drug Targets. 15, pp. 843-851.
183. Vu A Tuan, Le H Giang, Vu T Hoa et al. (2017), "Highly photocatalytic
activity of novel Fe-MIL-88B/GO nanocomposite in the degradation of
reactive dye from aqueous solution", Materials Research Express. 4, pp.
035038.
184. Wang J., Chen D., Li B. et al. (2016), "Fe-MIL-101 exhibits selective
cytotoxicity and inhibition of angiogenesis in ovarian cancer cells via
downregulation of MMP", Scientific reports. 6, pp. 26126.
185. Wang Q.-S., Gao L.-N., Zhu X.-N. et al. (2019), "Co-delivery of
glycyrrhizin and doxorubicin by alginate nanogel particles attenuates the
activation of macrophage and enhances the therapeutic efficacy for
hepatocellular carcinoma", Theranostics. 9, pp. 6239.
186. Wang S., Wu H., Sun K. et al. (2021), "A novel pH-responsive Fe-MOF
system for enhanced cancer treatment mediated by the Fenton reaction",
New Journal of Chemistry. 45, pp. 3271-3279.
187. Wang X.-G., Dong Z.-Y., Cheng H. et al. (2015), "A multifunctional
154
metal–organic framework based tumor targeting drug delivery system for
cancer therapy", Nanoscale. 7, pp. 16061-16070.
188. Wong-Foy A. G., Matzger A. J. và Yaghi O. M. (2006), "Exceptional H2
saturation uptake in microporous metal− organic frameworks", Journal of
the American Chemical Society. 128, pp. 3494-3495.
189. Wu X., Bao Z., Yuan B. et al. (2013), "Microwave synthesis and
characterization of MOF-74 (M= Ni, Mg) for gas separation",
JMicroporous mesoporous materials. 180, pp. 114-122.
190. Xie L., Liu D., Huang H. et al. (2014), "Efficient capture of nitrobenzene
from waste water using metal–organic frameworks", Chemical
Engineering Journal. 246, pp. 142-149.
191. Xinxing G., Jianguo L., Peng W. et al. (2020), "Electrochemical Synthesis
of ZIF-8 for Adsorption of Tetracycline", Environmental Chemistry, pp.
581-592.
192. Xue Z., Zhu M., Dong Y. et al. (2019), "An integrated targeting drug
delivery system based on the hybridization of graphdiyne and MOFs for
visualized cancer therapy", Nanoscale. 11, pp. 11709-11718.
193. Yang K., Sun Q., Xue F. et al. (2011), "Adsorption of volatile organic
compounds by metal–organic frameworks MIL-101: Influence of
molecular size and shape", Journal of hazardous materials. 195, pp. 124-
131.
194. Yang Y., Ren G., Yang W. et al. (2021), "Single-Crystal to Single-Crystal
Transformation of Metal–Organic Framework Nanoparticles for
Encapsulation and pH-Stimulated Release of Camptothecin", ACS
Applied Nano Materials. 4, pp. 7191-7198.
195. Yin Y., Hu B., Yuan X. et al. (2020), "Nanogel: A versatile nano-delivery
system for biomedical applications", Pharmaceutics. 12, pp. 290.
196. Yoon J. W., Lee J. S., Lee S. et al. (2015), "Adsorptive separation of
155
acetylene from light hydrocarbons by mesoporous iron trimesate MIL‐100
(Fe)", Chemistry–A European Journal. 21, pp. 18431-18438.
197. Yoskamtorn T., Zhao P., Wu X.-P. et al. (2021), "Responses of defect-rich
Zr-based metal–organic frameworks toward NH3 adsorption", Journal of
the American Chemical Society. 143, pp. 3205-3218.
198. Yuan B., Wang X., Zhou X. et al. (2019), "Novel room-temperature
synthesis of MIL-100 (Fe) and its excellent adsorption performances for
separation of light hydrocarbons", Chemical Engineering Journal. 355,
pp. 679-686.
199. Zhang F.-M., Dong H., Zhang X. et al. (2017), "Postsynthetic
modification of ZIF-90 for potential targeted codelivery of two anticancer
drugs", ACS applied materials. 9, pp. 27332-27337.
200. Zhang H., Hu X., Li T. et al. (2022), "MIL series of metal organic
frameworks (MOFs) as novel adsorbents for heavy metals in water: A
review", Journal of hazardous materials. 429, pp. 128271.
201. Zhang W., Ma Y.-B., Li Y.-A. et al. (2019), "A low cytotoxic porous zinc-
adeninate metal-organic framework carrier: pH-triggered drug release and
anti-breast cancer study", Journal of the Iranian Chemical Society. 16, pp.
65-71.
202. Zhang Y., Wang L., Liu L. et al. (2018), "Engineering metal–organic
frameworks for photoacoustic imaging-guided chemo-/photothermal
combinational tumor therapy", ACS applied materials interfaces. 10, pp.
41035-41045.
203. Zheng X., Rehman S. và Zhang P. (2023), "Room temperature synthesis
of monolithic MIL-100 (Fe) in aqueous solution for energy-efficient
removal and recovery of aromatic volatile organic compounds", Journal
of Hazardous Materials. 442, pp. 129998.
204. Zhong G., Liu D., Zhang J. et al. (2018), "Applications of Porous Metal–
156
Organic Framework MIL-100 (M)(M= Cr, Fe, Sc, Al, V)", Crystal
Growth. 18, pp. 7730-7744.
205. Zhou X., Xu L., Xu J. et al. (2018), "Construction of a high-efficiency
drug and gene co-delivery system for cancer therapy from a pH-sensitive
supramolecular inclusion between oligoethylenimine-graft-β-
cyclodextrin and hyperbranched polyglycerol derivative", ACS applied
materials. 10, pp. 35812-35829.
206. Zorainy M. Y., Kaliaguine S., Gobara M. et al. (2022), "Microwave-
Assisted Synthesis of the Flexible Iron-based MIL-88B Metal–Organic
Framework for Advanced Energetic Systems", Journal of Inorganic
Organometallic Polymers Materials, pp. 1-19.