Luận án Nghiên cứu chế tạo hệ vật liệu khung cơ kim trên cơ sở Fe (III) theo quy trình hóa học xanh định hướng ứng dụng mang dược chất

Để đánh giá ảnh hưởng của vật liệu lên cơ thể khi cho uống bán trường diễn thì sau thời gian thí nghiệm chuột ở các lô được lấy máu, thu huyết thanh, xác định một số chỉ tiêu huyết học. Kết quả được trình bày ở Bảng 3.21. Khi uống MIL-100(Fe) liều 900 mg/kg và 300mg/kg trong thời gian 28 ngày thì số lượng các chỉ số bạch cầu, tiểu cầu, thể tích trung bình hồng cầu (MCV), MCH, CH, RDW, HDW, MPV không có sự sai khác đáng kể so với mẫu đối chứng. Trong khi đó số lượng hồng cầu, huyết sắc tố (HGB), Hematocrit (HCT), nồng độ Hb trung bình hồng cầu (MCHC) so với lô đối chứng là có sự sai khác đáng kể. Nguyên nhân dẫn đến việc tăng một số chỉ số liên quan đến hồng cầu trong máu là do khi sử dụng vật liệu trong thời gian dài sẽ gây nên hiện tượng tăng nồng độ sắt trong máu (do quá trình phân hủy từ vật liệu). Lượng sắt trong máu tăng thúc đẩy quá trình tổng hợp hemoglobin, (là thành phần chính của hồng cầu), từ đó dẫn đến việc tăng số lượng hồng cầu, huyết sắc tố, hematocrit và nồng độ Hb trung bình hồng cầu. Các chỉ số này có thể sẽ trở lại bình thường khi ngừng uống vật liệu. Ngoài ra, đối với một số bệnh do ký sinh trùng như sốt rét, babesia. huyết sắc tố của người bệnh có xu hướng bị giảm do hồng cầu bị phá vỡ, việc sử dụng vật liệu MIL-100(Fe) làm chất mang cùng góp phần cân bằng lượng huyết sắc tố trong cơ thể. Đánh giá chức năng gan, thận Chức năng gan của chuột được đánh giá thông qua hoạt độ enzyme AST và ALT trong máu.

pdf173 trang | Chia sẻ: Kim Linh 2 | Ngày: 09/11/2024 | Lượt xem: 180 | Lượt tải: 3download
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu chế tạo hệ vật liệu khung cơ kim trên cơ sở Fe (III) theo quy trình hóa học xanh định hướng ứng dụng mang dược chất, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
"Effect of synergistic interplay between surface charge, crystalline defects, and pore volume of MIL-100 (Fe) on adsorption of aqueous organic dyes", Industrial Engineering Chemistry Research. 59, pp. 2113-2122. 66. Guo Y., Yan B., Cheng Y. et al. (2019), "A new Dy (III)-based metal- organic framework with polar pores for pH-controlled anticancer drug delivery and inhibiting human osteosarcoma cells", Journal of Coordination Chemistry. 72, pp. 262-271. 67. Haeusler I., Chan X., Guérin P. et al. (2018), "The arrhythmogenic cardiotoxicity of the quinoline and structurally related antimalarial drugs: a systematic review", BMC Med. 16, pp. 200. 68. Hasan Z., Choi E.-J. và Jhung S. H. (2013), "Adsorption of naproxen and clofibric acid over a metal–organic framework MIL-101 functionalized with acidic and basic groups", Chemical engineering journal. 219, pp. 537-544. 69. Hasegawa S., Horike S., Matsuda R. et al. (2007), "Three-dimensional porous coordination polymer functionalized with amide groups based on 140 tridentate ligand: selective sorption and catalysis", Journal of the American Chemical Society. 129, pp. 2607-2614. 70. He J., Zhang Y., Zhang X. et al. (2018), "Highly efficient Fenton and enzyme-mimetic activities of NH2-MIL-88B (Fe) metal organic framework for methylene blue degradation", Scientific reports. 8, pp. 1-8. 71. Hemdal (2013), "Aquarium Fish: Chloroquine: A “New” Drug for Treating Fish Diseases", Advanced Aquafish. 12. 72. Hidalgo T., Alonso-Nocelo M., Bouzo B. et al. (2020), "Biocompatible iron (III) carboxylate metal–organic frameworks as promising RNA nanocarriers", Nanoscale. 12, pp. 4839-4845. 73. Hidalgo T., Giménez-Marqués M., Bellido E. et al. (2017), "Chitosan- coated mesoporous MIL-100 (Fe) nanoparticles as improved bio- compatible oral nanocarriers", Scientific reports. 7, pp. 1-14. 74. Horcajada P., Chevreau H., Heurtaux D. et al. (2014), "Extended and functionalized porous iron (III) tri-or dicarboxylates with MIL-100/101 topologies", Chemical Communications. 50, pp. 6872-6874. 75. Horcajada P., Chalati T., Serre C. et al. (2010), "Porous metal–organic- framework nanoscale carriers as a potential platform for drug delivery and imaging", Nature materials. 9, pp. 172-178. 76. Horcajada P., Serre C., Maurin G. et al. (2008), "Flexible porous metal- organic frameworks for a controlled drug delivery", Journal of the American Chemical Society. 130, pp. 6774-6780. 77. Horcajada P., Serre C., Vallet‐Regí M. et al. (2006), "Metal–organic frameworks as efficient materials for drug delivery", Angewandte chemie. 118, pp. 6120-6124. 78. Huang S., Yang K.-L., Liu X.-F. et al. (2017), "MIL-100 (Fe)-catalyzed efficient conversion of hexoses to lactic acid", RSC advances. 7, pp. 5621- 5627. 141 79. Huxford R. C., Della Rocca J. và Lin W. (2010), "Metal–organic frameworks as potential drug carriers", Current opinion in chemical biology. 14, pp. 262-268. 80. Iannazzo D., Pistone A., Celesti C. et al. (2019), "A smart nanovector for cancer targeted drug delivery based on graphene quantum dots", Nanomaterials. 9, pp. 282. 81. Israr F., Chun D., Kim Y. et al. (2016), "High yield synthesis of Ni-BTC metal–organic framework with ultrasonic irradiation: Role of polar aprotic DMF solvent", Ultrasonics sonochemistry. 31, pp. 93-101. 82. Javanbakht S., Pooresmaeil M. và Namazi H. (2019), "Green one-pot synthesis of carboxymethylcellulose/Zn-based metal-organic framework/graphene oxide bio-nanocomposite as a nanocarrier for drug delivery system", Carbohydrate polymers. 208, pp. 294-301. 83. Jeremias F., Henninger S. K. và Janiak C. (2016), "Ambient pressure synthesis of MIL-100 (Fe) MOF from homogeneous solution using a redox pathway", Dalton transactions. 45, pp. 8637-8644. 84. Jhung S. H., Lee J. H., Yoon J. W. et al. (2007), "Microwave synthesis of chromium terephthalate MIL‐101 and its benzene sorption ability", Advanced Materials. 19, pp. 121-124. 85. Jiang K., Zhang L., Hu Q. et al. (2017), "Thermal Stimuli‐Triggered Drug Release from a Biocompatible Porous Metal–Organic Framework", Chemistry–A European Journal. 23, pp. 10215-10221. 86. Jodłowski P. J., Kurowski G., Kuterasiński Ł. et al. (2020), "Cracking the chloroquine conundrum: the application of defective UiO-66 metal– organic framework materials to prevent the onset of heart defects—in vivo and in vitro", ACS Applied Materials Interfaces. 13, pp. 312-323. 87. Joseph L., Jun B.-M., Jang M. et al. (2019), "Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: A 142 review", Chemical Engineering Journal. 369, pp. 928-946. 88. Julien P. A., Mottillo C. và Friščić T. (2017), "Metal–organic frameworks meet scalable and sustainable synthesis", J Green Chemistry. 19, pp. 2729-2747. 89. Karademir U., Ural K., Aysul N. et al. (2016), "The efficacy of chloroquine treatment against naturally occuring Giardia duodenalis infection in lambs", Revista MVZ Córdoba. 21, pp. 5328-5335. 90. Ke X., Qin N., Zhang T. et al. (2020), "Highly augmented antioxidant and anticancer effect of biocompatible MIL-100 (Fe)@ SiO 2-immobilized green tea Catechin", Journal of Inorganic Organometallic Polymers Materials. 30, pp. 935-942. 91. Kersh G. J. (2013), "Antimicrobial therapies for Q fever", Expert review of anti-infective therapy. 11, pp. 1207-1214. 92. Keskin S. và Kızılel S. (2011), "Biomedical applications of metal organic frameworks", Industrial Engineering Chemistry Research. 50, pp. 1799- 1812. 93. Kim J., Kim S.-H., Yang S.-T. et al. (2012), "Bench-scale preparation of Cu3 (BTC) 2 by ethanol reflux: Synthesis optimization and adsorption/catalytic applications", Microporous mesoporous materials. 161, pp. 48-55. 94. Kimura T., Takabatake Y., Takahashi A. et al. (2013), "Chloroquine in cancer therapy: a double-edged sword of autophagy", Cancer research. 73, pp. 3-7. 95. Kreno L. E., Leong K., Farha O. K. et al. (2012), "Metal–organic framework materials as chemical sensors", Chemical reviews. 112, pp. 1105-1125. 96. Kritskiy I., Volkova T., Sapozhnikova T. et al. (2020), "Methotrexate- loaded metal-organic frameworks on the basis of γ-cyclodextrin: Design, 143 characterization, in vitro and in vivo investigation", Materials Science Engineering: C. 111, pp. 110774. 97. Leong J., Chin W., Ke X. et al. (2018), "Disease-directed design of biodegradable polymers: Reactive oxygen species and pH-responsive micellar nanoparticles for anticancer drug delivery", Nanomedicine: Nanotechnology, Biology Medicine. 14, pp. 2666-2677. 98. Lestari W. W., Meilani R., Nurcahyo I. et al. (2021), "In Situ Green Synthesis of Mil-100 (Fe) Modified Edta as an Enhanced Candidate Detoxifying Agent of Lead Heavy Metal (Pb) and Its Adsorption Characteristics", Journal of Inorganic and Organometallic Polymers and Materials. 99. Lestari W. W., Hartono J., Adreane M. et al. (2016), "Electro-synthetic optimization of host material based on MIL-100 (Fe)", Molekul. 11, pp. 61-70. 100. Li H., Lv N., Li X. et al. (2017), "Composite CD-MOF nanocrystals- containing microspheres for sustained drug delivery", Nanoscale. 9, pp. 7454-7463. 101. Li X., Guo T., Lachmanski L. et al. (2017), "Cyclodextrin-based metal- organic frameworks particles as efficient carriers for lansoprazole: Study of morphology and chemical composition of individual particles", International journal of pharmaceutics. 531, pp. 424-432. 102. Li Y., Lu A., Long M. et al. (2019), "Nitroimidazole derivative incorporated liposomes for hypoxia-triggered drug delivery and enhanced therapeutic efficacy in patient-derived tumor xenografts", Acta biomaterialia. 83, pp. 334-348. 103. Li Z.-Q., Qiu L.-G., Xu T. et al. (2009), "Ultrasonic synthesis of the microporous metal–organic framework Cu3 (BTC) 2 at ambient temperature and pressure: an efficient and environmentally friendly 144 method", Materials Letters. 63, pp. 78-80. 104. Lin S.-X., Pan W.-L., Niu R.-J. et al. (2019), "Effective loading of cisplatin into a nanoscale UiO-66 metal–organic framework with preformed defects", Dalton Transactions. 48, pp. 5308-5314. 105. Lin W., Hu Q., Jiang K. et al. (2017), "A porous Zn-based metal-organic framework for pH and temperature dual-responsive controlled drug release", Microporous Mesoporous Materials. 249, pp. 55-60. 106. Lin W., Hu Q., Yu J. et al. (2016), "Low Cytotoxic Metal–Organic Frameworks as Temperature‐Responsive Drug Carriers", ChemPlusChem. 81, pp. 804-810. 107. Liu J. và Wang Y. (2023), "Research on Improved MOF Materials Modified by Functional Groups for Purification of Water", Molecules. 28, pp. 2141. 108. Liu J., Cao R., Xu M. et al. (2020), "Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro", Cell discovery. 6, pp. 16. 109. Lou X. Y., Li Y. P. và Yang Y. W. (2019), "Gated Materials: Installing Macrocyclic Arenes‐Based Supramolecular Nanovalves on Porous Nanomaterials for Controlled Cargo Release", Biotechnology journal. 14, pp. 1800354. 110. Lv H., Zhao H., Cao T. et al. (2015), "Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework", Journal of Molecular Catalysis A: Chemical. 400, pp. 81-89. 111. Mahmood A., Xia W., Mahmood N. et al. (2015), "Hierarchical heteroaggregation of binary metal-organic gels with tunable porosity and mixed valence metal sites for removal of dyes in water", Scientific reports. 5, pp. 1-12. 145 112. Mahmoudi F., Amini M. M. và Sillanpää M. (2020), "Hydrothermal synthesis of novel MIL-100 (Fe)@ SBA-15 composite material with high adsorption efficiency towards dye pollutants for wastewater remediation", Journal of the Taiwan Institute of Chemical Engineers. 116, pp. 303-313. 113. Mallakpour S., Nikkhoo E. và Hussain C. M. (2022), "Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment", Coordination Chemistry Reviews. 451, pp. 214262. 114. Manic G., Obrist F., Kroemer G. et al. (2014), "Chloroquine and hydroxychloroquine for cancer therapy", Molecular cellular oncology. 1, pp. e29911. 115. Márquez A., Demessence A., Platero-Prats A. et al. (2012), "Green microwave synthesis of MIL-100 (Al, Cr, Fe) nanoparticles for thin-film elaboration", European Journal of Inorganic Chemistry, pp. 5165-5174. 116. Matsuda R., Kitaura R., Kitagawa S. et al. (2005), "Highly controlled acetylene accommodation in a metal–organic microporous material", Nature Materials. 436, pp. 238-241. 117. Matsuyama K., Hayashi N., Yokomizo M. et al. (2014), "Supercritical carbon dioxide-assisted drug loading and release from biocompatible porous metal–organic frameworks", Journal of Materials Chemistry B. 2, pp. 7551-7558. 118. McKinlay A., Eubank J., Wuttke S. et al. (2013), "Nitric oxide adsorption and delivery in flexible MIL-88 (Fe) metal–organic frameworks", Chemistry of Materials. 25, pp. 1592-1599. 119. Michael J. Raymond C. S. S., Mariano J. Savelski (2010), "LCA approach to the analysis of solvent waste issues in the pharmaceutical industry", Green Chemistry. 12, pp. 1826-1834. 120. Millward A. R. và Yaghi O. M. (2005), "Metal− organic frameworks with exceptionally high capacity for storage of carbon dioxide at room 146 temperature", Journal of the American Chemical Society 127, pp. 17998- 17999. 121. Mondol M. M. H., Park J. M. và Jhung S. H. (2022), "A remarkable adsorbent for denitrogenation of liquid fuel: Ethylenediaminetetraacetic acid-grafted metal–organic framework, MOF-808", Separation Purification Technology. 284, pp. 120248. 122. Mubagwa K. (2020), "Cardiac effects and toxicity of chloroquine: a short update", International journal of antimicrobial agents. 56, pp. 106057. 123. Muga J. O., Gathirwa J. W., Tukulula M. et al. (2018), "In vitro evaluation of chloroquine-loaded and heparin surface-functionalized solid lipid nanoparticles", Malaria journal. 17, pp. 1-7. 124. Mulyati T. A., Ediati R. và Rosyidah A. (2015), "Influence of solvothermal temperatures and times on crystallinity and morphology of MOF-5", Indonesian Journal of Chemistry. 15, pp. 101-107. 125. Munster T., Gibbs J. P., Shen D. et al. (2002), "Hydroxychloroquine concentration–response relationships in patients with rheumatoid arthritis", Arthritis Rheumatism: Official Journal of the American College of Rheumatology. 46, pp. 1460-1469. 126. Mura S., Nicolas J. và Couvreur P. (2013), "Stimuli-responsive nanocarriers for drug delivery", Nature materials. 12, pp. 991-1003. 127. Nam P. T. S., Tung N. T. và Anh T. H. (2012), "The arylation of aldehydes with arylboronic acids using metal-organic framework Ni (HBTC) BPY as an efficient heterogeneous catalyst", Journal of Molecular Catalysis A: Chemical. 365, pp. 95-102. 128. Nasrabadi M., Ghasemzadeh M. A. và Monfared M. R. Z. (2019), "The preparation and characterization of UiO-66 metal–organic frameworks for the delivery of the drug ciprofloxacin and an evaluation of their antibacterial activities", New Journal of Chemistry. 43, pp. 16033-16040. 147 129. Nejadshafiee V., Naeimi H., Goliaei B. et al. (2019), "Magnetic bio- metal–organic framework nanocomposites decorated with folic acid conjugated chitosan as a promising biocompatible targeted theranostic system for cancer treatment", Materials Science Engineering: C. 99, pp. 805-815. 130. Nezhad-Mokhtari P., Arsalani N., Javanbakht S. et al. (2019), "Development of gelatin microsphere encapsulated Cu-based metal- organic framework nanohybrid for the methotrexate delivery", Journal of Drug Delivery Science. 50, pp. 174-180. 131. Nguyen Thi Hoai Phuong, Ninh Ha Duc, Tran Chinh Van et al. (2019), "Size‐Control and Surface Modification of Flexible Metal‐Organic Framework MIL‐53 (Fe) by Polyethyleneglycol for 5‐Fluorouracil Anticancer Drug Delivery", ChemistrySelect. 4, pp. 2333-2338. 132. Nguyen Thi Hoai Phuong D. H. Y., Ha Thi Thanh Duong, Le Thanh Bac, Bui Thi Le Thuy, Ninh Duc Ha (2020), "Study on "green' synthetic methods using ultrasonic and microwave methods for Fe-BDC as a drug carrier", Vietnam Journal of Chemistry. 58, pp. 316-321. 133. Nguyen Thi Thuy Van, Cam Loc Luu, Hoang Tien Cuong et al. (2013), "Synthesis of MOF-199 and application to CO2 adsorption", Advances in natural sciences: nanoscience nanotechnology. 4, pp. 035016. 134. Nivetha R., Gothandapani K., Raghavan V. et al. (2020), "Highly Porous MIL-100 (Fe) for the Hydrogen Evolution Reaction (HER) in Acidic and Basic Media", ACS omega. 5, pp. 18941-18949. 135. Nouar F., Devic T., Chevreau H. et al. (2012), "Tuning the breathing behaviour of MIL-53 by cation mixing", Chemical Communications. 48, pp. 10237-10239. 136. Pan S., Chen X., Li X. et al. (2019), "Nonderivatization method for determination of glyphosate, glufosinate, bialaphos, and their main 148 metabolites in environmental waters based on magnetic metal‐organic framework pretreatment", Journal of separation science. 42, pp. 1045- 1050. 137. Pardo J., Peng Z. và Leblanc R. M. (2018), "Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes", Molecules. 23, pp. 378. 138. Park E. Y., Hasan Z., Khan N. A. et al. (2013), "Adsorptive removal of bisphenol-A from water with a metal-organic framework, a porous chromium-benzenedicarboxylate", Journal of nanoscience nanotechnology. 13, pp. 2789-2794. 139. Park K. S., Ni Z., Côté A. P. et al. (2006), "Exceptional chemical and thermal stability of zeolitic imidazolate frameworks", Proceedings of the National Academy of Sciences. 103, pp. 10186-10191. 140. Pham Thanh Vinh, Nguyen Hong Van, Nguyen Van Van et al. (2015), "Confirmed Plasmodium vivax resistance to chloroquine in central Vietnam", Antimicrobial agents chemotherapy. 59, pp. 7411-7419. 141. Price R. N., Auburn S., Marfurt J. et al. (2012), "Phenotypic and genotypic characterisation of drug-resistant Plasmodium vivax", Trends in parasitology. 28, pp. 522-529. 142. Qadir N. U., Said S. A., Mansour R. B. et al. (2016), "Synthesis, characterization, and water adsorption properties of a novel multi-walled carbon nanotube/MIL-100 (Fe) composite", Dalton Transactions. 45, pp. 15621-15633. 143. Qiu L.-G., Li Z.-Q., Wu Y. et al. (2008), "Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines", Chemical communications, pp. 3642- 3644. 144. Ramaswamy R. S., Prathyusha N., Saranya R. et al. (2012), "Acute 149 toxicity and the 28-day repeated dose study of a Siddha medicine Nuna Kadugu in rats", BMC complementary alternative medicine. 12, pp. 1-13. 145. Ranjbar M., Pardakhty A., Amanatfard A. et al. (2018), "Efficient drug delivery of β-estradiol encapsulated in Zn-metal–organic framework nanostructures by microwave-assisted coprecipitation method", Drug design, development. 12, pp. 2635. 146. Ren H., Zhang L., An J. et al. (2014), "Polyacrylic acid@ zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release", Chemical Communications. 50, pp. 1000-1002. 147. Reyes-Márquez V., Rojas L. E. C., Colorado-Peralta R. et al. (2023), "Adsorption potential of polymeric porous crystalline materials (MOFs) for the removal of Indigo carmine, Congo red, and Malachite green from water", Inorganica Chimica Acta, pp. 121743. 148. Rezaei M., Abbasi A., Varshochian R. et al. (2018), "NanoMIL-100 (Fe) containing docetaxel for breast cancer therapy", Artificial cells, nanomedicine, biotechnology. 46, pp. 1390-1401. 149. Saafan H. A., Ibrahim K. M., Thabet Y. et al. (2021), "Intratracheal administration of chloroquine-loaded niosomes minimize systemic drug exposure", Pharmaceutics. 13, pp. 1677. 150. Samuel M. S., Savunthari K. V., Chandrasekar N. et al. (2022), "Removal of environmental contaminants of emerging concern using metal–organic framework composite", Environmental Technology Innovation. 25, pp. 102216. 151. Sebaiy M., Abdelazeem A., AboulfotouhA R. A. et al. (2022), "Instrumental Analysis of Chloroquine and Hydroxychloroquine in Different Matrices", Current Research: Integrative Medicine 7, pp. 1-8. 152. Seo Y.-K., Yoon J. W., Lee J. S. et al. (2012), "Large scale fluorine-free 150 synthesis of hierarchically porous iron (III) trimesate MIL-100 (Fe) with a zeolite MTN topology", Microporous Mesoporous Materials. 157, pp. 137-145. 153. Sherje A. P., Jadhav M., Dravyakar B. R. et al. (2018), "Dendrimers: A versatile nanocarrier for drug delivery and targeting", International journal of pharmaceutics. 548, pp. 707-720. 154. Shi L., Wang T., Zhang H. et al. (2015), "An amine‐functionalized iron (III) metal–organic framework as efficient visible‐light photocatalyst for Cr (VI) reduction", Advanced science. 2, pp. 1500006. 155. Shi Z., Chen X., Zhang L. et al. (2018), "FA-PEG decorated MOF nanoparticles as a targeted drug delivery system for controlled release of an autophagy inhibitor", Biomaterials science. 6, pp. 2582-2590. 156. Shi Z., Yu Y., Fu C. et al. (2017), "Water-based synthesis of zeolitic imidazolate framework-8 for CO 2 capture", RSC advances. 7, pp. 29227- 29232. 157. Simon-Yarza T., Baati T., Neffati F. et al. (2016), "In vivo behavior of MIL-100 nanoparticles at early times after intravenous administration", International Journal of Pharmaceutics. 511, pp. 1042-1047. 158. Simon M. A., Anggraeni E., Soetaredjo F. E. et al. (2019), "Hydrothermal synthesize of HF-free MIL-100 (Fe) for isoniazid-drug delivery", Scientific reports. 9, pp. 16907. 159. Sose A. T., Cornell H. D., Gibbons B. J. et al. (2021), "Modelling drug adsorption in metal–organic frameworks: the role of solvent", RSC advances. 11, pp. 17064-17071. 160. Souza B. E., Möslein A. F., Titov K. et al. (2020), "Green reconstruction of MIL-100 (Fe) in water for high crystallinity and enhanced guest encapsulation", ACS Sustainable Chemistry Engineering. 8, pp. 8247- 8255. 151 161. Stavila V., Talin A. A. và Allendorf M. D. (2014), "MOF-based electronic and opto-electronic devices", Chemical Society Reviews. 43, pp. 5994- 6010. 162. Sturrock B. R. và Chevassut T. (2020), "Chloroquine and COVID-19–a potential game changer?", Clinical Medicine. 20, pp. 278. 163. Sun C.-Y., Qin C., Wang X.-L. et al. (2013), "Metal-organic frameworks as potential drug delivery systems", Expert opinion on drug delivery. 10, pp. 89-101. 164. Sun C.-Y., Qin C., Wang X.-L. et al. (2012), "Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle", Dalton Transactions. 41, pp. 6906-6909. 165. Sun Y., Zheng L., Yang Y. et al. (2020), "Metal–organic framework nanocarriers for drug delivery in biomedical applications", Nano-Micro Letters. 12, pp. 1-29. 166. Surblé S., Serre C., Mellot-Draznieks C. et al. (2006), "A new isoreticular class of metal-organic-frameworks with the MIL-88 topology", Chemical communications, pp. 284-286. 167. Szota M., Reczyńska-Kolman K., Pamuła E. et al. (2021), "Poly (amidoamine) Dendrimers as Nanocarriers for 5-Fluorouracil: Effectiveness of Complex Formation and Cytotoxicity Studies", International journal of molecular sciences. 22, pp. 11167. 168. Tamames-Tabar C., Cunha D., Imbuluzqueta E. et al. (2014), "Cytotoxicity of nanoscaled metal–organic frameworks", Journal of Materials Chemistry B. 2, pp. 262-271. 169. Tan K. và Foo K. (2021), "Facile synthesis of MIL-100 metal-organic framework via heatless technique for the adsorptive treatment of cationic and anionic pollutants", Arabian Journal of Chemistry. 14, pp. 103359. 170. Tan S. Y., Ang C. Y., Mahmood A. et al. (2016), "Doxorubicin‐Loaded 152 Metal–Organic Gels for pH and Glutathione Dual‐Responsive Release", ChemNanoMat. 2, pp. 504-508. 171. Tang T., Xu W., Ma J. et al. (2019), "Inhibitory mechanisms of DHA/CQ on pH and iron homeostasis of erythrocytic stage growth of Plasmodium falciparum", Molecules. 24, pp. 1941. 172. Tchinsa A., Hossain M. F., Wang T. et al. (2021), "Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review", Chemosphere. 284, pp. 131393. 173. Tella A. C., Bamgbose J. T., Adimula V. O. et al. (2021), "Synthesis of metal–organic frameworks (MOFs) MIL-100 (Fe) functionalized with thioglycolic acid and ethylenediamine for removal of eosin B dye from aqueous solution", SN Applied Sciences. 3, pp. 1-15. 174. Thomas S., Thomas R., Zachariah A. K. et al. (2017), Thermal and rheological measurement techniques for nanomaterials characterization, Vol. 3, Elsevier. 175. Tomalia D. A., Baker H., Dewald J. et al. (1985), "A new class of polymers: starburst-dendritic macromolecules", Polymer journal. 17, pp. 117-132. 176. Valadi F. M., Ekramipooya A. và Gholami M. R. (2020), "Selective separation of Congo Red from a mixture of anionic and cationic dyes using magnetic-MOF: Experimental and DFT study", Journal of Molecular Liquids. 318, pp. 114051. 177. Vasconcelos I. B., da Silva T. G., Militão G. C. et al. (2012), "Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8", RSC advances. 2, pp. 9437-9442. 178. Vehrenberg J., Vepsäläinen M., Macedo D. S. et al. (2020), "Steady-state electrochemical synthesis of HKUST-1 with polarity reversal", Microporous Mesoporous Materials. 303, pp. 110218. 153 179. Velásquez-Hernández M. d. J., Linares-Moreau M., Astria E. et al. (2020), "Towards applications of bioentities@ MOFs in biomedicine", Coordination chemistry reviews, pp. 213651. 180. Vergote V., Laenen L., Mols R. et al. (2021), "Chloroquine, an anti- malaria drug as effective prevention for hantavirus infections", Frontiers in Cellular Infection Microbiology. 11, pp. 580532. 181. Viswanathan V. P., Divya K., Dubal D. P. et al. (2021), "Ag/AgCl@ MIL- 88A (Fe) heterojunction ternary composites: towards the photocatalytic degradation of organic pollutants", Dalton Transactions. 50, pp. 2891- 2902. 182. Vlahopoulos S., Critselis E., F Voutsas I. et al. (2014), "New use for old drugs? Prospective targets of chloroquines in cancer therapy", Current Drug Targets. 15, pp. 843-851. 183. Vu A Tuan, Le H Giang, Vu T Hoa et al. (2017), "Highly photocatalytic activity of novel Fe-MIL-88B/GO nanocomposite in the degradation of reactive dye from aqueous solution", Materials Research Express. 4, pp. 035038. 184. Wang J., Chen D., Li B. et al. (2016), "Fe-MIL-101 exhibits selective cytotoxicity and inhibition of angiogenesis in ovarian cancer cells via downregulation of MMP", Scientific reports. 6, pp. 26126. 185. Wang Q.-S., Gao L.-N., Zhu X.-N. et al. (2019), "Co-delivery of glycyrrhizin and doxorubicin by alginate nanogel particles attenuates the activation of macrophage and enhances the therapeutic efficacy for hepatocellular carcinoma", Theranostics. 9, pp. 6239. 186. Wang S., Wu H., Sun K. et al. (2021), "A novel pH-responsive Fe-MOF system for enhanced cancer treatment mediated by the Fenton reaction", New Journal of Chemistry. 45, pp. 3271-3279. 187. Wang X.-G., Dong Z.-Y., Cheng H. et al. (2015), "A multifunctional 154 metal–organic framework based tumor targeting drug delivery system for cancer therapy", Nanoscale. 7, pp. 16061-16070. 188. Wong-Foy A. G., Matzger A. J. và Yaghi O. M. (2006), "Exceptional H2 saturation uptake in microporous metal− organic frameworks", Journal of the American Chemical Society. 128, pp. 3494-3495. 189. Wu X., Bao Z., Yuan B. et al. (2013), "Microwave synthesis and characterization of MOF-74 (M= Ni, Mg) for gas separation", JMicroporous mesoporous materials. 180, pp. 114-122. 190. Xie L., Liu D., Huang H. et al. (2014), "Efficient capture of nitrobenzene from waste water using metal–organic frameworks", Chemical Engineering Journal. 246, pp. 142-149. 191. Xinxing G., Jianguo L., Peng W. et al. (2020), "Electrochemical Synthesis of ZIF-8 for Adsorption of Tetracycline", Environmental Chemistry, pp. 581-592. 192. Xue Z., Zhu M., Dong Y. et al. (2019), "An integrated targeting drug delivery system based on the hybridization of graphdiyne and MOFs for visualized cancer therapy", Nanoscale. 11, pp. 11709-11718. 193. Yang K., Sun Q., Xue F. et al. (2011), "Adsorption of volatile organic compounds by metal–organic frameworks MIL-101: Influence of molecular size and shape", Journal of hazardous materials. 195, pp. 124- 131. 194. Yang Y., Ren G., Yang W. et al. (2021), "Single-Crystal to Single-Crystal Transformation of Metal–Organic Framework Nanoparticles for Encapsulation and pH-Stimulated Release of Camptothecin", ACS Applied Nano Materials. 4, pp. 7191-7198. 195. Yin Y., Hu B., Yuan X. et al. (2020), "Nanogel: A versatile nano-delivery system for biomedical applications", Pharmaceutics. 12, pp. 290. 196. Yoon J. W., Lee J. S., Lee S. et al. (2015), "Adsorptive separation of 155 acetylene from light hydrocarbons by mesoporous iron trimesate MIL‐100 (Fe)", Chemistry–A European Journal. 21, pp. 18431-18438. 197. Yoskamtorn T., Zhao P., Wu X.-P. et al. (2021), "Responses of defect-rich Zr-based metal–organic frameworks toward NH3 adsorption", Journal of the American Chemical Society. 143, pp. 3205-3218. 198. Yuan B., Wang X., Zhou X. et al. (2019), "Novel room-temperature synthesis of MIL-100 (Fe) and its excellent adsorption performances for separation of light hydrocarbons", Chemical Engineering Journal. 355, pp. 679-686. 199. Zhang F.-M., Dong H., Zhang X. et al. (2017), "Postsynthetic modification of ZIF-90 for potential targeted codelivery of two anticancer drugs", ACS applied materials. 9, pp. 27332-27337. 200. Zhang H., Hu X., Li T. et al. (2022), "MIL series of metal organic frameworks (MOFs) as novel adsorbents for heavy metals in water: A review", Journal of hazardous materials. 429, pp. 128271. 201. Zhang W., Ma Y.-B., Li Y.-A. et al. (2019), "A low cytotoxic porous zinc- adeninate metal-organic framework carrier: pH-triggered drug release and anti-breast cancer study", Journal of the Iranian Chemical Society. 16, pp. 65-71. 202. Zhang Y., Wang L., Liu L. et al. (2018), "Engineering metal–organic frameworks for photoacoustic imaging-guided chemo-/photothermal combinational tumor therapy", ACS applied materials interfaces. 10, pp. 41035-41045. 203. Zheng X., Rehman S. và Zhang P. (2023), "Room temperature synthesis of monolithic MIL-100 (Fe) in aqueous solution for energy-efficient removal and recovery of aromatic volatile organic compounds", Journal of Hazardous Materials. 442, pp. 129998. 204. Zhong G., Liu D., Zhang J. et al. (2018), "Applications of Porous Metal– 156 Organic Framework MIL-100 (M)(M= Cr, Fe, Sc, Al, V)", Crystal Growth. 18, pp. 7730-7744. 205. Zhou X., Xu L., Xu J. et al. (2018), "Construction of a high-efficiency drug and gene co-delivery system for cancer therapy from a pH-sensitive supramolecular inclusion between oligoethylenimine-graft-β- cyclodextrin and hyperbranched polyglycerol derivative", ACS applied materials. 10, pp. 35812-35829. 206. Zorainy M. Y., Kaliaguine S., Gobara M. et al. (2022), "Microwave- Assisted Synthesis of the Flexible Iron-based MIL-88B Metal–Organic Framework for Advanced Energetic Systems", Journal of Inorganic Organometallic Polymers Materials, pp. 1-19.

Các file đính kèm theo tài liệu này:

  • pdfluan_an_nghien_cuu_che_tao_he_vat_lieu_khung_co_kim_tren_co.pdf
  • pdfQĐ cấp Viện NCS Lê Thanh Bắc.pdf
  • docxThongTin KetLuanMoi LuanAn NCS LeThanhBac.doc.docx
  • pdfTomTat LuanAn NCS LeThanhBac_TiengViet.pdf
  • pdfTomTat LuanAn NCS LeThanhBac-TiengAnh.pdf
  • docxTrichYeu LuanAn NCS LeThanhBac.doc.docx
Luận văn liên quan