- Tổng hợp thành công hệ vật liệu từ tính spinel ferrite Cu-MgFe2O4
bằng phương pháp đồng kết tủa. Vật liệu spinel của 2 ion kim loại
Cu0.5Mg0.5Fe2O4 có từ độ bão hòa 23,1 emu/g, cấu trúc đồng đều với kích
thước hạt trung bình 29,5 nm, hình thành đơn pha spinel khi nung ở 900 oC và
có diện tích bề mặt cũng như tính chất xốp cao hơn so với vật liệu spinel
ferrite CuFe2O4 và MgFe2O4.
- Nghiên cứu khả năng hấp phụ ion kim loại Pb2+ của vật liệu spinel
ferrite Cu0.5Mg0.5Fe2O4. Khi thay thế Mg2+ vào cấu trúc của CuFe2O4 đã làm
cải thiện dung lượng hấp phụ Pb2+ của CuFe2O4. Quá trình hấp phụ Pb2+ của
vật liệu Cu0.5Mg0.5Fe2O4 tuân theo mô hình đẳng nhiệt Langmuir và động học
biểu kiến bậc 2. Dung lượng hấp phụ Pb2+ cực đại của vật liệu
Cu0.5Mg0.5Fe2O4 là 57,44 mg/g ở pH = 7 và T = 25 oC. Vật liệu
Cu0.5Mg0.5Fe2O4 có tính hấp phụ chọn lọc, tương đối bền và ổn định đối với
sự hấp phụ loại bỏ Pb2+, có khả năng tái sử dụng tốt và dễ dàng thu hồi sau
mỗi chu kỳ sử dụng.
- Tổng hợp thành công vật liệu TiO2 và vật liệu tổ hợp
Cu0.5Mg0.5Fe2O4/TiO2 bằng phương pháp sol-gel. Giá trị năng lượng vùng
cấm của vật liệu tổ hợp Cu0.5Mg0.5Fe2O4/TiO2 là 2,86 eV so với 3,25 eV của
TiO2, sự phân tách điện tử của vật liệu Cu0.5Mg0.5Fe2O4/TiO2 tốt hơn so với
vật liệu TiO2 và Cu0.5Mg0.5Fe2O4, do đó đã thể hiện hoạt tính xúc tác quang
hóa tốt. Vật liệu tổ hợp Cu0.5Mg0.5Fe2O4/TiO2 có từ độ bão hòa là 11,2 emu/g ,
có khả năng tái sử dụng tốt và dễ dàng thu hồi sau mỗi chu kỳ sử dụng.
186 trang |
Chia sẻ: huydang97 | Ngày: 27/12/2022 | Lượt xem: 537 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu chế tạo vật liệu trên cơ sở Spinel Ferrite ứng dụng để xử lý kim loại nặng và chất màu hữu cơ độc hại trong môi trường nước, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Hwang T.-Y., Kim J., et al. (2014), "Barium hexaferrite
nanoparticles with high magnetic properties by salt-assisted ultrasonic
spray pyrolysis." Journal of alloys compounds, 583, pp.145-150.
20. Anandan S., Selvamani T., Prasad G.G., et al. (2017), "Magnetic and
catalytic properties of inverse spinel CuFe2O4 nanoparticles." Journal
of Magnetism Magnetic Materials, 432, pp.437-443.
21. Arifin M.N., Karim K.M.R., Abdullah H., et al. (2019), "Synthesis of
titania doped copper ferrite photocatalyst and its photoactivity towards
methylene blue degradation under visible light irradiation." Bulletin of
Chemical Reaction Engineering Catalysis, 14 (1), p.219.
22. Arumugam S. (2015), "Structural and magnetic properties of CuFe2O4
as-prepared and thermally treated spinel nanoferrites." Indian Journal
of Pure Applied Physics, 52 (2), pp.124-130.
23. Asiri S., Sertkol M., Guner S., et al. (2018), "Hydrothermal synthesis of
CoyZnyMn1-2yFe2O4 nanoferrites: magneto-optical investigation."
Ceramics International, 44 (5), pp.5751-5759.
130
24. Atacan K., Özacar M.Özacar M. (2018), "Investigation of antibacterial
properties of novel papain immobilized on tannic acid modified
Ag/CuFe2O4 magnetic nanoparticles." International journal of
biological macromolecules, 109, pp.720-731.
25. Bakbolat B., Daulbayev C., Sultanov F., et al. (2020), "Recent
developments of TiO2-based photocatalysis in the hydrogen evolution
and photodegradation: a review." Nanomaterials, 10 (9), p.1790.
26. Bao S., Yang W., Wang Y., et al. (2020), "PEI grafted amino-
functionalized graphene oxide nanosheets for ultrafast and high
selectivity removal of Cr(VI) from aqueous solutions by adsorption
combined with reduction: Behaviors and mechanisms." Chemical
Engineering Journal, 399, p.125762.
27. Bessekhouad Y., Robert D.Weber J.-V. (2005), "Photocatalytic activity
of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions."
Catalysis today, 101 (3-4), pp.315-321.
28. Bharti D., Mukherjee K.Majumder S. (2010), "Wet chemical synthesis
and gas sensing properties of magnesium zinc ferrite nano-particles."
Materials Chemistry physics, 120 (2-3), pp.509-517.
29. Blöcher C., Dorda J., Mavrov V., et al. (2003), "Hybrid flotation-
membrane filtration process for the removal of heavy metal ions from
wastewater." Water Research, 37 (16), pp.4018-4026.
30. Burakov A.E., Galunin E.V., Burakova I.V., et al. (2018), "Adsorption
of heavy metals on conventional and nanostructured materials for
wastewater treatment purposes: A review." Ecotoxicology
environmental safety, 148, pp.702-712.
31. Caddeo F., Loche D., Casula M.F., et al. (2018), "Evidence of a cubic
iron sub-lattice in t-CuFe2O4 demonstrated by X-ray Absorption Fine
131
Structure." Scientific reports, 8 (1), pp.1-12.
32. Camacho-González M.A., Quezada-Cruz M., Cerón-Montes G.I., et al.
(2019), "Synthesis and characterization of magnetic zinc-copper
ferrites: Antibacterial activity, photodegradation study and heavy
metals removal evaluation." Materials Chemistry Physics, 236,
p.121808.
33. Cao C., Xia A., Liu S., et al. (2013), "Synthesis and magnetic
properties of hydrothermal magnesium–zinc spinel ferrite powders."
Journal of Materials Science: Materials in Electronics, 24 (12),
pp.4901-4905.
34. Carolin C.F., Kumar P.S., Saravanan A., et al. (2017), "Efficient
techniques for the removal of toxic heavy metals from aquatic
environment: A review." Journal of environmental chemical
engineering, 5 (3), pp.2782-2799.
35. Casbeer E., Sharma V.K.Li X.-Z. (2012), "Synthesis and photocatalytic
activity of ferrites under visible light: a review." Separation
Purification Technology, 87, pp.1-14.
36. Chakradhary V.K., Ansari A.Akhtar M.J. (2019), "Design, synthesis,
and testing of high coercivity cobalt doped nickel ferrite nanoparticles
for magnetic applications." Journal of Magnetism Magnetic Materials,
469, pp.674-680.
37. Cheung C., Porter J.McKay G. (2001), "Sorption kinetic analysis for
the removal of cadmium ions from effluents using bone char." Water
research, 35 (3), pp.605-612.
38. Ciocarlan R.-G., Seftel E.M., Mertens M., et al. (2018), "Novel
magnetic nanocomposites containing quaternary ferrites systems
Co0.5Zn0. 25M0.25Fe2O4 (M = Ni, Cu, Mn, Mg) and TiO2-anatase phase
132
as photocatalysts for wastewater remediation under solar light
irradiation." Materials Science Engineering: B, 230, pp.1-7.
39. Da Silva F., Depeyrot J., Campos A., et al. (2019), "Structural and
magnetic properties of spinel ferrite nanoparticles." Journal of
nanoscience nanotechnology, 19 (8), pp.4888-4902.
40. Deng S., Yang Z., Lv G., et al. (2019), "WO3 nanosheets/gC3N4
nanosheets’ nanocomposite as an effective photocatalyst for
degradation of rhodamine B." Applied Physics A, 125 (1), p.44.
41. Desore A.Narula S.A. (2018), "An overview on corporate response
towards sustainability issues in textile industry." Environment,
development sustainability, 20 (4), pp.1439-1459.
42. Dong L., Zhu Z., Qiu Y., et al. (2010), "Removal of lead from aqueous
solution by hydroxyapatite/magnetite composite adsorbent." Chemical
Engineering Journal, 165 (3), pp.827-834.
43. Dong Y., Fei X., Zhang H., et al. (2015), "Effects of calcination process
on photocatalytic activity of TiO2/MCM-41 Photocatalyst." Journal of
Advanced Oxidation Technologies, 18 (2), pp.322-330.
44. Drmota A., Drofenik M.Ţnidaršič A. (2012), "Synthesis and
characterization of nano-crystalline strontium hexaferrite using the co-
precipitation and microemulsion methods with nitrate precursors."
Ceramics International, 38 (2), pp.973-979.
45. Duan S., Tang R., Xue Z., et al. (2015), "Effective removal of Pb(II)
using magnetic Co0.6Fe2.4O4 micro-particles as the adsorbent: Synthesis
and study on the kinetic and thermodynamic behaviors for its
adsorption." Colloids Surfaces A: Physicochemical Engineering
Aspects, 469, pp.211-223.
46. Escobedo-Morales A., Ruiz-López I., Ruiz-Peralta M.d., et al. (2019),
133
"Automated method for the determination of the band gap energy of
pure and mixed powder samples using diffuse reflectance
spectroscopy." Heliyon, 5 (4), p.e01505.
47. Fadlallah M.M. (2017), "Magnetic, electronic, optical, and
photocatalytic properties of nonmetal-and halogen-doped anatase TiO2
nanotubes." Physica E: Low-dimensional Systems Nanostructures, 89,
pp.50-56.
48. Falsafi F., Hashemi B., Mirzaei A., et al. (2017), "Sm-doped cobalt
ferrite nanoparticles: A novel sensing material for conductometric
hydrogen leak sensor." Ceramics International, 43 (1), pp.1029-1037.
49. Fang B., Yan Y., Yang Y., et al. (2016), "Adsorption of Pb
2+
from
aqueous solution using spinel ferrite prepared from steel pickling
sludge." Water Science Technology, 73 (5), pp.1112-1121.
50. Fonseca-Cervantes O.R., Pérez-Larios A., Romero Arellano V.H., et al.
(2020), "Effects in Band Gap for Photocatalysis in TiO2 Support by
Adding Gold and Ruthenium." Processes, 8 (9), p.1032.
51. Gao Q.Sun Z. (2018), "Facile fabrication of uniform MFe2O4 (M = Co,
Ni, Cu) hollow spheres and their recyclable superior catalytic activity
towards 4-nitrophenol reduction." Journal of Nanoscience
Nanotechnology, 18 (8), pp.5645-5653.
52. Gobara H.M., Nassar I.M., El Naggar A.M., et al. (2017),
"Nanocrystalline spinel ferrite for an enriched production of hydrogen
through a solar energy stimulated water splitting process." Energy 118,
pp.1234-1242.
53. Golshan M., Kakavandi B., Ahmadi M., et al. (2018), "Photocatalytic
activation of peroxymonosulfate by TiO2 anchored on cupper ferrite
(TiO2@CuFe2O4) into 2,4-D degradation: Process feasibility,
134
mechanism and pathway." Journal of hazardous materials, 359,
pp.325-337.
54. Gonzalez-Munoz M.J., Rodríguez M.A., Luque S., et al. (2006),
"Recovery of heavy metals from metal industry waste waters by
chemical precipitation and nanofiltration." Desalination, 200 (1-3),
pp.742-744.
55. Guayaquil-Sosa J., Serrano-Rosales B., Valadés-Pelayo P., et al.
(2017), "Photocatalytic hydrogen production using mesoporous TiO2
doped with Pt." Applied Catalysis B: Environmental, 211, pp.337-348.
56. Guijarro N., Bornoz P., Prévot M., et al. (2018), "Evaluating spinel
ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water
oxidation: prospects and limitations." Sustainable Energy, 2 (1),
pp.103-117.
57. Guo S., Chi L., Zhao T., et al. (2021), "Construction of MOF/TiO2
nanocomposites with efficient visible-light-driven photocathodic
protection." Journal of Electroanalytical Chemistry, 880, p.114915.
58. Gupta N.K., Ghaffari Y., Kim S., et al. (2020), "Photocatalytic
Degradation of Organic Pollutants over MFe2O4 (M = Co, Ni, Cu, Zn)
Nanoparticles at Neutral pH." Scientific reports, 10 (1), pp.1-11.
59. Hafeez H.Y., Lakhera S.K., Karthik P., et al. (2018), "Facile
construction of ternary CuFe2O4-TiO2 nanocomposite supported
reduced graphene oxide (rGO) photocatalysts for the efficient hydrogen
production." Applied surface science, 449, pp.772-779.
60. Hafeez H.Y., Lakhera S.K., Narayanan N., et al. (2019),
"Environmentally sustainable synthesis of a CoFe2O4-TiO2/rGO ternary
photocatalyst: a highly efficient and stable photocatalyst for high
production of hydrogen (solar fuel)." ACS omega, 4 (1), pp.880-891.
135
61. Haija M.A., Abu-Hani A.F., Hamdan N., et al. (2017),
"Characterization of H2S gas sensor based on CuFe2O4 nanoparticles."
Journal of Alloys Compounds, 690, pp.461-468.
62. Hall K.R., Eagleton L.C., Acrivos A., et al. (1966), "Pore-and solid-
diffusion kinetics in fixed-bed adsorption under constant-pattern
conditions." Industrial Engineering Chemistry Fundamentals, 5 (2),
pp.212-223.
63. Hammad T.M., Salem J.K., Amsha A.A., et al. (2018), "Optical and
magnetic characterizations of zinc substituted copper ferrite
synthesized by a co-precipitation chemical method." Journal of Alloys,
741, pp.123-130.
64. Hasan R., Bukhari S., Jusoh R., et al. (2018), "Adsorption of Pb(II)
onto KCC-1 from aqueous solution: Isotherm and kinetic study."
Materials Today: Proceedings, 5 (10), pp.21574-21583.
65. Hashim M.A., Mukhopadhyay S., Sahu J.N., et al. (2011),
"Remediation technologies for heavy metal contaminated
groundwater." Journal of environmental management, 92 (10),
pp.2355-2388.
66. Hayati B., Maleki A., Najafi F., et al. (2018), "Heavy metal adsorption
using PAMAM/CNT nanocomposite from aqueous solution in batch
and continuous fixed bed systems." Chemical Engineering Journal,
346, pp.258-270.
67. He Z., Sun C., Yang S., et al. (2009), "Photocatalytic degradation of
rhodamine B by Bi2WO6 with electron accepting agent under
microwave irradiation: mechanism and pathway." Journal of
Hazardous Materials, 162 (2-3), pp.1477-1486.
68. Helmy E.T., El Nemr A., Mousa M., et al. (2018), "Photocatalytic
136
degradation of organic dyes pollutants in the industrial textile
wastewater by using synthesized TiO2, C-doped TiO2, S-doped TiO2
and C, S co-doped TiO2 nanoparticles." Journal of Water
Environmental Nanotechnology, 3 (2), pp.116-127.
69. Ho Y.-S.Wang C.-C. (2004), "Pseudo-isotherms for the sorption of
cadmium ion onto tree fern." Process Biochemistry, 39 (6), pp.761-765.
70. Hossain M.A., Elias M., Sarker D.R., et al. (2018), "Synthesis of Fe-or
Ag-doped TiO2–MWCNT nanocomposite thin films and their visible-
light-induced catalysis of dye degradation and antibacterial activity."
Research on Chemical Intermediates, 44 (4), pp.2667-2683.
71. Hsu H.-C., Shown I., Wei H.-Y., et al. (2013), "Graphene oxide as a
promising photocatalyst for CO2 to methanol conversion." Nanoscale, 5
(1), pp.262-268.
72. Huang H., Li D., Lin Q., et al. (2009), "Efficient degradation of
benzene over LaVO4/TiO2 nanocrystalline heterojunction photocatalyst
under visible light irradiation." Environmental science technology, 43
(11), pp.4164-4168.
73. Iakovleva E.Sillanpää M. (2013), "The use of low-cost adsorbents for
wastewater purification in mining industries." Environmental Science
Pollution Research, 20 (11), pp.7878-7899.
74. Ibrahim I., Ali I.O., Salama T.M., et al. (2016), "Synthesis of
magnetically recyclable spinel ferrite (MFe2O4, M = Zn, Co, Mn)
nanocrystals engineered by sol gel-hydrothermal technology: High
catalytic performances for nitroarenes reduction." Applied Catalysis B:
Environmental, 181, pp.389-402.
75. Ignat M., Rotaru R., Samoila P., et al. (2018), "Relationship between
the component synthesis order of zinc ferrite–titania nanocomposites
137
and their performances as visible light-driven photocatalysts for
relevant organic pollutant degradation." Comptes Rendus Chimie, 21
(3-4), pp.263-269.
76. Inyinbor A.A., Adekola F.A.Olatunji G.A. (2015), "Adsorption of
Rhodamine B dye from aqueous solution on Irvingia gabonensis
biomass: kinetics and thermodynamics studies." South African journal
of chemistry, 68, pp.115-125.
77. Ivanets A., Prozorovich V., Roshchina M., et al. (2021), "A
comparative study on the synthesis of magnesium ferrite for the
adsorption of metal ions: Insights into the essential role of crystallite
size and surface hydroxyl groups." Chemical Engineering Journal, 411,
p.128523.
78. Jadhav S.A., Somvanshi S.B., Khedkar M.V., et al. (2020), "Magneto-
structural and photocatalytic behavior of mixed Ni–Zn nano-spinel
ferrites: visible light-enabled active photodegradation of rhodamine B."
Journal of Materials Science: Materials in Electronics, 31, pp.11352-
11365.
79. Jaiswal R., Bharambe J., Patel N., et al. (2015), "Copper and Nitrogen
co-doped TiO2 photocatalyst with enhanced optical absorption and
catalytic activity." Applied Catalysis B: Environmental, 168, pp.333-
341.
80. Jang J.t., Nah H., Lee J.H., et al. (2009), "Critical enhancements of
MRI contrast and hyperthermic effects by dopant‐ controlled magnetic
nanoparticles." Angewandte Chemie International Edition, 48 (7),
pp.1234-1238.
81. Japandeep Kaur M.K. (2019), "Facile fabrication of ternary
nanocomposite of MgFe2O4/TiO2@GO for synergistic adsorption and
138
photocatalytic degradation studies." Ceramics International, 45 (7),
pp.8646-8659.
82. Jasso-Terán R.A., Cortés-Hernández D.A., Sánchez-Fuentes H.J., et al.
(2017), "Synthesis, characterization and hemolysis studies of
Zn(1-x)CaxFe2O4 ferrites synthesized by sol-gel for hyperthermia
treatment applications." Journal of Magnetism Magnetic Materials,
427, pp.241-244.
83. Ji L., Zhang Y., Miao S., et al. (2017), "In situ synthesis of carbon
doped TiO2 nanotubes with an enhanced photocatalytic performance
under UV and visible light." Carbon, 125, pp.544-550.
84. Jia T., Fu F., Yu D., et al. (2018), "Facile synthesis and characterization
of N-doped TiO2/C nanocomposites with enhanced visible-light
photocatalytic performance." Applied Surface Science, 430, pp.438-447.
85. Jia Z., Peng K.Xu L. (2012), "Preparation, characterization and
enhanced adsorption performance for Cr(VI) of mesoporous NiFe2O4
by twice pore-forming method." Materials Chemistry Physics, 136 (2-
3), pp.512-519.
86. Jin C., Dai Y., Wei W., et al. (2017), "Effects of single metal atom (Pt,
Pd, Rh and Ru) adsorption on the photocatalytic properties of anatase
TiO2." Applied Surface Science, 426, pp.639-646.
87. Jin Z., Liu C., Qi K., et al. (2017), "Photo-reduced Cu/CuO
nanoclusters on TiO 2 nanotube arrays as highly efficient and reusable
catalyst." Scientific reports, 7 (1), pp.1-9.
88. Kang D., Yu X., Ge M., et al. (2015), "One-step fabrication and
characterization of hierarchical MgFe2O4 microspheres and their
application for lead removal." Microporous Mesoporous Materials,
207, pp.170-178.
139
89. Kaur N., Kaur M.Singh D. (2019), "Fabrication of mesoporous
nanocomposite of graphene oxide with magnesium ferrite for efficient
sequestration of Ni(II) and Pb(II) ions: Adsorption, thermodynamic and
kinetic studies." Environmental pollution, 253, pp.111-119.
90. Kayestha R.Hajela K. (1995), "ESR studies on the effect of ionic radii
on displacement of Mn
2+
bound to a soluble β-galactoside binding
hepatic lectin." FEBS letters, 368 (2), pp.285-288.
91. Kaygili O., Bulut N., Tatar C., et al. (2017), "Sol-gel synthesis and
characterization of TiO2 powder." Uluslararası Yenilikçi Mühendislik
Uygulamaları Dergisi, 1 (2), pp.38-40.
92. Kefeni K.K., Mamba B.B.Msagati T.A. (2017), "Application of spinel
ferrite nanoparticles in water and wastewater treatment: a review."
Separation Purification Technology, 188, pp.399-422.
93. Kefeni K.K., Msagati T.A.Mamba B.B. (2017), "Ferrite nanoparticles:
synthesis, characterisation and applications in electronic device."
Materials Science Engineering: B, 215, pp.37-55.
94. Kennaz H., Harat A., Guellati O., et al. (2018), "Synthesis and
electrochemical investigation of spinel cobalt ferrite magnetic
nanoparticles for supercapacitor application." Journal of Solid State
Electrochemistry, 22 (3), pp.835-847.
95. Khishigdemberel I., Uyanga E., Hirazawa H., et al. (2018), "Influence
of Cu dope on the structural behavior of MgFe2O4 at various
temperatures." Physica B: Condensed Matter, 544, pp.73-78.
96. Kim H.G., Borse P.H., Jang J.S., et al. (2009), "Fabrication of
CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light
photocatalysis." Chemical Communications, (39), pp.5889-5891.
97. Kim H.S., Kim D., Kwak B.S., et al. (2014), "Synthesis of magnetically
140
separable core@shell structured NiFe2O4@TiO2 nanomaterial and its
use for photocatalytic hydrogen production by methanol/water
splitting." Chemical Engineering Journal, 243, pp.272-279.
98. Kim M.G., Kang J.M., Lee J.E., et al. (2021), "Effects of calcination
temperature on the phase composition, photocatalytic degradation, and
virucidal activities of TiO2 nanoparticles." ACS omega, 6 (16),
pp.10668-10678.
99. Kim S.-R., Ali I.Kim J.-O. (2019), "Phenol degradation using an
anodized graphene-doped TiO2 nanotube composite under visible
light." Applied Surface Science, 477, pp.71-78.
100. Köferstein R., Walther T., Hesse D., et al. (2013), "Preparation and
characterization of nanosized magnesium ferrite powders by a starch-
gel process and corresponding ceramics." Journal of materials science,
48 (19), pp.6509-6518.
101. Kong Q., Shi X., Ma W., et al. (2021), "Strategies to improve the
adsorption properties of graphene-based adsorbent towards heavy metal
ions and their compound pollutants: A review." Journal of Hazardous
Materials, p.125690.
102. Konstantinou I.K.Albanis T.A. (2004), "TiO2-assisted photocatalytic
degradation of azo dyes in aqueous solution: kinetic and mechanistic
investigations: a review." Applied Catalysis B: Environmental, 49 (1),
pp.1-14.
103. Köseoğlu Y. (2013), "Structural, magnetic, electrical and dielectric
properties of MnxNi1-xFe2O4 spinel nanoferrites prepared by PEG
assisted hydrothermal method." Ceramics International, 39 (4),
pp.4221-4230.
104. Kumar M., Dosanjh H.S., Singh J., et al. (2020), "Review on magnetic
141
nanoferrites and their composites as alternatives in waste water
treatment: synthesis, modifications and applications." Environmental
Science: Water Research Technology, 6 (3), pp.491-514.
105. Kumbhar V., Jagadale A., Shinde N., et al. (2012), "Chemical synthesis
of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor
application." Applied Surface Science, 259, pp.39-43.
106. Kurian J.Mathew M.J. (2018), "Structural, optical and magnetic studies
of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by
hydrothermal/solvothermal method." Journal of Magnetism Magnetic
Materials, 451, pp.121-130.
107. Kuvarega A.T.Mamba B.B. (2017), "TiO2-based photocatalysis: toward
visible light-responsive photocatalysts through doping and fabrication
of carbon-based nanocomposites." Critical Reviews in Solid State
Materials Sciences, 42 (4), pp.295-346.
108. Lagergren S.K. (1898), "About the theory of so-called adsorption of
soluble substances." Sven. Vetenskapsakad. Handingarl, 24, pp.1-39.
109. Lavorato C., Argurio P., Mastropietro T.F., et al. (2017), "Pd/TiO2
doped faujasite photocatalysts for acetophenone transfer hydrogenation
in a photocatalytic membrane reactor." Journal of Catalysis, 353,
pp.152-161.
110. Li B., Yue Z.-X., Qi X.-W., et al. (2003), "High Mn content NiCuZn
ferrite for multiplayer chip inductor application." Materials Science
Engineering: B, 99 (1-3), pp.252-254.
111. Liang L., Cheng L., Zhang Y., et al. (2020), "Efficiency and
mechanisms of rhodamine B degradation in Fenton-like systems based
on zero-valent iron." Rsc Advances, 10 (48), pp.28509-28515.
112. Liu T., Wang L., Lu X., et al. (2017), "Comparative study of the
142
photocatalytic performance for the degradation of different dyes by
ZnIn 2 S 4: adsorption, active species, and pathways." RSC advances, 7
(20), pp.12292-12300.
113. Lofrano G., Carotenuto M., Libralato G., et al. (2016), "Polymer
functionalized nanocomposites for metals removal from water and
wastewater: an overview." Water research, 92, pp.22-37.
114. Luo H., Yu S., He F., et al. (2021), "An important phenomenon in
Fe2O3-TiO2 photocatalyst: Ion-inter-doping." Solid State Sciences, 113,
p.106538.
115. Mahmoud Z.H., AL-Bayati R.A.Khadom A.A. (2021), "The Efficacy
of Samarium Loaded Titanium Dioxide (Sm:TiO2) for Enhanced
Photocatalytic Removal of Rhodamine B Dye in Natural Sunlight
Exposure." Journal of Molecular Structure, p.132267.
116. Manikandan A., Vijaya J.J., Kennedy L.J., et al. (2013), "Structural,
optical and magnetic properties of Zn1-xCuxFe2O4 nanoparticles
prepared by microwave combustion method." Journal of molecular
structure, 1035, pp.332-340.
117. Manikandan V., Vanitha A., Kumar E.R., et al. (2017), "Effect of In
substitution on structural, dielectric and magnetic properties of
CuFe2O4 nanoparticles." Journal of Magnetism Magnetic Materials,
432, pp.477-483.
118. Manimozhi V., Partha N., Sivakumar E., et al. (2016), "Preparation and
characterization of ferrite nanoparticles for the treatment of industrial
waste water." Digest Journal of Nanomaterials Biostructures, 11 (3),
pp.1017-1027.
119. Manju G., Krishnan K.A., Vinod V., et al. (2002), "An investigation
into the sorption of heavy metals from wastewaters by polyacrylamide-
143
grafted iron (III) oxide." Journal of hazardous materials, 91 (1-3),
pp.221-238.
120. Marinca T.F., Chicinaş I.Isnard O. (2013), "Structural and magnetic
properties of the copper ferrite obtained by reactive milling and heat
treatment." Ceramics International, 39 (4), pp.4179-4186.
121. Martins M.L., Florentino A.O., Cavalheiro A.A., et al. (2014),
"Mechanisms of phase formation along the synthesis of Mn–Zn ferrites
by the polymeric precursor method." Ceramics International, 40 (10),
pp.16023-16031.
122. Masoumi S., Nabiyouni G.Ghanbari D. (2016), "Photo-degradation of
azo dyes: photo catalyst and magnetic investigation of CuFe2O4-TiO2
nanoparticles and nanocomposites." Journal of Materials Science:
Materials in Electronics, 27 (9), pp.9962-9975.
123. Masunga N., Mmelesi O.K., Kefeni K.K., et al. (2019), "Recent
advances in copper ferrite nanoparticles and nanocomposites synthesis,
magnetic properties and application in water treatment." Journal of
Environmental Chemical Engineering, 7 (3), p.103179.
124. Mathew D.S.Juang R.-S. (2007), "An overview of the structure and
magnetism of spinel ferrite nanoparticles and their synthesis in
microemulsions." Chemical engineering journal, 129 (1-3), pp.51-65.
125. Mavrov V., Erwe T., Blöcher C., et al. (2003), "Study of new integrated
processes combining adsorption, membrane separation and flotation for
heavy metal removal from wastewater." Desalination, 157 (1-3), pp.97-104.
126. Mbu E.E., Ntwampe S.K., Nyembwe K.J., et al.(2018), "Photocatalytic
degradation of azo and rhodamine dyes using copper (ii) oxide
nanoparticles", in 10th Int'l Conference on Advances in Science,
Engineering, Technology & Healthcare.
144
127. Moeinpour F., Alimoradi A.Kazemi M. (2014), "Efficient removal of
Eriochrome black-T from aqueous solution using NiFe2O4 magnetic
nanoparticles." Journal of environmental health science engineering,
12 (1), p.112.
128. Mohapatra J., Mitra A., Bahadur D., et al. (2013), "Surface controlled
synthesis of MFe2O4 (M = Mn, Fe, Co, Ni and Zn) nanoparticles and
their magnetic characteristics." CrystEngComm, 15 (3), pp.524-532.
129. Moma J.Baloyi J. (2019), "Modified titanium dioxide for photocatalytic
applications." Photocatalysts-Applications Attributes, 18.
130. Morales G.d.V., Sham E.L., Cornejo R., et al. (2012), "Kinetic studies
of the photocatalytic degradation of tartrazine." Latin American
Applied Research.
131. Nakhate A.V.Yadav G.D. (2017), "Hydrothermal synthesis of CuFe2O4
magnetic nanoparticles as active and robust catalyst for N‐ arylation of
indole and imidazole with aryl halide." ChemistrySelect, 2 (8),
pp.2395-2405.
132. Nasrollahi Z., Pirbazari A.E., Hasan-Zadeh A., et al. (2019), "One-pot
hydrothermal synthesis and characterization of magnetic
nanocomposite of titania-deposited copper ferrite/ferrite oxide for
photocatalytic decomposition of methylene blue dye." International
Nano Letters, 9 (4), pp.327-338.
133. Neris A., Schreiner W., Salvador C., et al. (2018), "Photocatalytic
evaluation of the magnetic core@shell system (Co,Mn)Fe2O4@TiO2
obtained by the modified Pechini method." Materials Science
Engineering: B, 229, pp.218-226.
134. Neyaz N.Siddiqui W.A. (2015), "Removal of Cu(II) by modified
magnetite nanocomposite as a nanosorbent." Int. J. Sci. Res, 4 (2),
145
pp.1868-1873.
135. Nguyen T.B.Doong R.-a. (2017), "Heterostructured ZnFe2O4/TiO2
nanocomposites with a highly recyclable visible-light-response for
bisphenol A degradation." RSC Advances, 7 (79), pp.50006-50016.
136. Nguyen T.M.H.Bark C.W. (2020), "Synthesis of cobalt-doped TiO2
based on metal–organic frameworks as an effective electron transport
material in perovskite solar cells." ACS omega, 5 (5), pp.2280-2286.
137. Novoselov K.S., Geim A.K., Morozov S.V., et al. (2004), "Electric
field effect in atomically thin carbon films." Science of Advanced
Materials, 306 (5696), pp.666-669.
138. Organization W.H., WHO World Water Day Report. 3 March 2019.
139. Panchal N.Jotania R. (2010), "Cobalt ferrite nano particles by
microemulsion route." International Journal of Systems Biology, 2.
140. Park J.-Y., Kim C.-S., Okuyama K., et al. (2016), "Copper and nitrogen
doping on TiO2 photoelectrodes and their functions in dye-sensitized
solar cells." Journal of Power Sources, 306, pp.764-771.
141. Perez T., Pasquini D., de Faria Lima A., et al. (2019), "Efficient
removal of lead ions from water by magnetic nanosorbents based on
manganese ferrite nanoparticles capped with thin layers of modified
biopolymers." Journal of Environmental Chemical Engineering, 7 (1),
p.102892.
142. Podporska-Carroll J., Panaitescu E., Quilty B., et al. (2015),
"Antimicrobial properties of highly efficient photocatalytic TiO2
nanotubes." Applied Catalysis B: Environmental, 176, pp.70-75.
143. Pradeep A., Priyadharsini P.Chandrasekaran G. (2008), "Sol-gel route
of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM
study." Journal of Magnetism Magnetic Materials 320 (21), pp.2774-2779.
146
144. Praveena K., Chen H.-W., Liu H.-L., et al. (2016), "Enhanced magnetic
domain relaxation frequency and low power losses in Zn
2+
substituted
manganese ferrites potential for high frequency applications." Journal
of Magnetism Magnetic Materials, 420, pp.129-142.
145. Pubby K., Babu K.V.Narang S.B. (2020), "Magnetic, elastic, dielectric,
microwave absorption and optical characterization of cobalt-substituted
nickel spinel ferrites." Materials Science Engineering B, 255,
p.114513.
146. Qin P., Yang Y., Zhang X., et al. (2018), "Highly efficient, rapid, and
simultaneous removal of cationic dyes from aqueous solution using
monodispersed mesoporous silica nanoparticles as the adsorbent."
Nanomaterials, 8 (1), p.4.
147. Qin Q., Liu Y., Li X., et al. (2018), "Enhanced heterogeneous Fenton-
like degradation of methylene blue by reduced CuFe2O4." RSC
advances, 8 (2), pp.1071-1077.
148. Rajput S., Singh L.P., Pittman Jr C.U., et al. (2017), "Lead (Pb
2+
) and
copper (Cu
2+
) remediation from water using superparamagnetic
maghemite (γ-Fe2O3) nanoparticles synthesized by Flame Spray
Pyrolysis (FSP)." Journal of colloid interface science, 492, pp.176-190.
149. Raju M.K. (2015), "FT-IR studies of Cu substituted Ni-Zn ferrites for
structural and vibrational investigations." Chem. Sci. Trans., 4 (1),
pp.137-142.
150. Ramadevi P., Sangeetha A., Kousi F., et al. (2020), "Structural and
electrochemical investigation on pure and aluminium doped nickel
ferrite nanoparticles for supercapacitor application." Materials Today:
Proceedings, 33, pp.2116-2121.
151. Reddy D.H.K.Lee S.-M. (2013), "Three-dimensional porous spinel
147
ferrite as an adsorbent for Pb(II) removal from aqueous solutions."
Industrial Engineering Chemistry Research, 52 (45), pp.15789-15800.
152. Reddy N.R., Ramana M.V., Rajitha G., et al. (2009), "Stress insensitive
NiCuZn ferrite compositions for microinductor applications." Current
Applied Physics, 9 (2), pp.317-323.
153. Reitz C., Suchomski C., Haetge J., et al. (2012), "Soft-templating
synthesis of mesoporous magnetic CuFe2O4 thin films with ordered 3D
honeycomb structure and partially inverted nanocrystalline spinel
domains." Chemical communications, 48 (37), pp.4471-4473.
154. Ren G., Yang L., Zhang Z., et al. (2017), "A new green synthesis of
porous magnetite nanoparticles from waste ferrous sulfate by solid-
phase reduction reaction." Journal of Alloys Compounds, 710, pp.875-879.
155. Ren Y., Abbood H.A., He F., et al. (2013), "Magnetic EDTA-modified
chitosan/SiO2/Fe3O4 adsorbent: preparation, characterization, and
application in heavy metal adsorption." Chemical Engineering Journal,
226, pp.300-311.
156. Ren Y., Li N., Feng J., et al. (2012), "Adsorption of Pb(II) and Cu(II)
from aqueous solution on magnetic porous ferrospinel MnFe2O4."
Journal of colloid interface science, 367 (1), pp.415-421.
157. Rijsberman F.R. (2006), "Water scarcity: fact or fiction?", Agricultural
water management, 80 (1-3), pp.5-22.
158. Rodríguez-Rodríguez A.A., Martínez-Montemayor S., Leyva-Porras
C.C., et al. (2017), "CoFe2O4-TiO2 hybrid nanomaterials: synthesis
approaches based on the oil-in-water microemulsion reaction method."
Journal of Nanomaterials, 2017.
159. Rus S., Vlazan P., Novaconi S., et al. (2012), "Synthesis and
characterization CuFe2O4 nanoparticles prepared by the hydrothermal
148
ultrasonic assisted method." Journal of Optoelectronics Advanced
Materials, 14 (March-April 2012), pp.293-297.
160. Sagadevan S., Chowdhury Z.Z.Rafique R.F. (2018), "Preparation and
characterization of nickel ferrite nanoparticles via co-precipitation
method." Materials Research, 21 (2).
161. Sahoo T.R.Prelot B. (2020), "Adsorption processes for the removal of
contaminants from wastewater: the perspective role of nanomaterials
and nanotechnology", in Nanomaterials for the Detection and Removal
of Wastewater Pollutants, Elsevier. p. 161-222.
162. Sakar M., Balakumar S., Saravanan P., et al. (2013), "Annealing
temperature mediated physical properties of bismuth ferrite (BiFeO3)
nanostructures synthesized by a novel wet chemical method." Materials
Research Bulletin, 48 (8), pp.2878-2885.
163. Salam M.A., Makki M.S.Abdelaal M.Y. (2011), "Preparation and
characterization of multi-walled carbon nanotubes/chitosan
nanocomposite and its application for the removal of heavy metals
from aqueous solution." Journal of Alloys Compounds, 509 (5),
pp.2582-2587.
164. Samsudin E.M., Goh S.N., Wu T.Y., et al. (2015), "Evaluation on the
photocatalytic degradation activity of reactive blue 4 using pure anatase
nano-TiO2." Sains Malaysiana, 44 (7), pp.1011-1019.
165. Sandu I., Presmanes L., Alphonse P., et al. (2006), "Nanostructured
cobalt manganese ferrite thin films for gas sensor application." Thin
Solid Films, 495 (1-2), pp.130-133.
166. Saqib H., Rahman S., Susilo R., et al. (2019), "Structural, vibrational,
electrical, and magnetic properties of mixed spinel ferrites
Mg1-xZnxFe2O4 nanoparticles prepared by co-precipitation." AIP
149
Advances, 9 (5), p.055306.
167. Sarangi P.P., Vadera S., Patra M., et al. (2010), "Synthesis and
characterization of pure single phase Ni-Zn ferrite nanopowders by
oxalate based precursor method." Powder Technology, 203 (2), pp.348-353.
168. Sarma G.K., Gupta S.S.Bhattacharyya K.G. (2019), "Nanomaterials as
versatile adsorbents for heavy metal ions in water: a review."
Environmental Science Pollution Research, 26 (7), pp.6245-6278.
169. Scarpelli F., Mastropietro T.F., Poerio T., et al. (2018), "Mesoporous
TiO2 thin films: State of the art." Titanium Dioxide-Material for a
Sustainable Environment, 508 (1), pp.135-142.
170. Selima S., Khairy M.Mousa M. (2019), "Comparative studies on the
impact of synthesis methods on structural, optical, magnetic and
catalytic properties of CuFe2O4." Ceramics International, 45 (5),
pp.6535-6540.
171. Sezgin N., Sahin M., Yalcin A., et al. (2013), "Synthesis,
characterization and, the heavy metal removal efficiency of MFe2O4 (M
= Ni, Cu) nanoparticles." Ekoloji, 22 (89), pp.89-96.
172. Shah A.H.Rather M.A. (2021), "Effect of calcination temperature on
the crystallite size, particle size and zeta potential of TiO2 nanoparticles
synthesized via polyol-mediated method." Materials Today:
Proceedings, 44, pp.482-488.
173. Shannon R.D. (1976), "Revised effective ionic radii and systematic
studies of interatomic distances in halides and chalcogenides." Acta
crystallographica section A: crystal physics, diffraction, theoretical
general crystallography, 32 (5), pp.751-767.
174. Sharma R., Kumar V., Bansal S., et al. (2015), "Assortment of
magnetic nanospinels for activation of distinct inorganic oxidants in
150
photo-Fenton’s process." Journal of Molecular Catalysis A: Chemical,
402, pp.53-63.
175. Shen Y., Wu Y., Li X., et al. (2013), "One-pot synthesis of MgFe2O4
nanospheres by solvothermal method." Materials Letters, 96, pp.85-88.
176. Shrestha D. (2021), "Efficiency of Wood-Dust of Dalbergia sisoo as
Low-Cost Adsorbent for Rhodamine-B Dye Removal." Nanomaterials,
11 (9), p.2217.
177. Simsek E.B. (2017), "Solvothermal synthesized boron doped TiO2
catalysts: photocatalytic degradation of endocrine disrupting
compounds and pharmaceuticals under visible light irradiation."
Applied Catalysis B: Environmental, 200, pp.309-322.
178. Skjolding L.M., Dyhr K., Köppl C., et al. (2021), "Assessing the
aquatic toxicity and environmental safety of tracer compounds
Rhodamine B and Rhodamine WT." Water Research, 197, p.117109.
179. Soares M.d.C.B., Barbosa F.F., Torres M.A.M., et al. (2019),
"Oxidative dehydrogenation of ethylbenzene to styrene over the
CoFe2O4-MCM-41 catalyst: preferential adsorption on the O
2-
Fe
3+
O
2-
sites located at octahedral positions." Catalysis Science Technology, 9
(10), pp.2469-2484.
180. Song E., Kim Y.-T.Choi J. (2019), "Anion additives in rapid
breakdown anodization for nonmetal-doped TiO2 nanotube powders."
Electrochemistry Communications, 109, p.106610.
181. Sonia M.M.L., Anand S., Blessi S., et al. (2018), "Effect of surfactants
(PVB/EDTA/CTAB) assisted sol-gel synthesis on structural, magnetic
and dielectric properties of NiFe2O4 nanoparticles." Ceramics
International, 44 (18), pp.22068-22079.
182. Sotomayor F.J., Cychosz K.A.Thommes M. (2018), "Characterization
151
of micro/mesoporous materials by physisorption: concepts and case
studies." Acc. Mater. Surf. Res, 3 (2), pp.34-50.
183. Sreekala G., Beevi A.F., Resmi R., et al. (2020), "Removal of lead (II)
ions from water using copper ferrite nanoparticles synthesized by green
method." Materials Today: Proceedings.
184. Srivastava V., Sharma Y.Sillanpää M. (2015), "Application of nano-
magnesso ferrite (n-MgFe2O4) for the removal of Co
2+
ions from
synthetic wastewater: Kinetic, equilibrium and thermodynamic
studies." Applied Surface Science, 338, pp.42-54.
185. Sudilovskiy P., Kagramanov G., Trushin A., et al. (2007), "Use of
membranes for heavy metal cationic wastewater treatment: flotation
and membrane filtration." Clean Technologies Environmental Policy, 9
(3), pp.189-198.
186. Sun W., Pan W., Wang F., et al. (2015), "Removal of Se (IV) and Se
(VI) by MFe2O4 nanoparticles from aqueous solution." Chemical
Engineering Journal, 273, pp.353-362.
187. Sun Z., Liu L., zeng Jia D., et al. (2007), "Simple synthesis of
CuFe2O4 nanoparticles as gas-sensing materials." Sensors Actuators B:
Chemical, 125 (1), pp.144-148.
188. Sundararajan M., Sailaja V., Kennedy L.J., et al. (2017),
"Photocatalytic degradation of rhodamine B under visible light using
nanostructured zinc doped cobalt ferrite: kinetics and mechanism."
Ceramics International, 43 (1), pp.540-548.
189. Šutka A., Käämbre T., Pärna R., et al. (2016), "Ag sensitized TiO2 and
NiFe2O4 three-component nanoheterostructures: synthesis, electronic
structure and strongly enhanced visible light photocatalytic activity."
RSC Advances, 6 (23), pp.18834-18842.
152
190. Taffa D.H., Dillert R., Ulpe A.C., et al. (2016), "Photoelectrochemical
and theoretical investigations of spinel type ferrites (MxFe3-xO4) for
water splitting: a mini-review." Journal of Photonics for Energy, 7 (1),
p.012009.
191. Tan Y., Chen M.Hao Y. (2012), "High efficient removal of Pb (II) by
amino-functionalized Fe3O4 magnetic nano-particles." Chemical
Engineering Journal, 191, pp.104-111.
192. Tanaka T., Shimazu R., Nagai H., et al. (2009), "Preparation of
spherical and uniform-sized ferrite nanoparticles with diameters
between 50 and 150 nm for biomedical applications." Journal of
magnetism magnetic materials, 321 (10), pp.1417-1420.
193. Tang H., Zhang D., Tang G., et al. (2014), "Low temperature synthesis
and photocatalytic properties of mesoporous TiO2 nanospheres."
Journal of alloys compounds, 591, pp.52-57.
194. Tang W., Su Y., Li Q., et al. (2013), "Superparamagnetic magnesium
ferrite nanoadsorbent for effective arsenic (III,V) removal and easy
magnetic separation." Water research, 47 (11), pp.3624-3634.
195. Tatarchuk T., Bououdina M., Paliychuk N., et al. (2017), "Structural
characterization and antistructure modeling of cobalt-substituted zinc
ferrites." Journal of Alloys Compounds, 694, pp.777-791.
196. Tatarchuk T., Bououdina M., Vijaya J.J., et al. Spinel ferrite
nanoparticles: synthesis, crystal structure, properties, and perspective
applications. in International Conference on Nanotechnology and
Nanomaterials. 2016. Springer.
197. Tatarchuk T., Shyichuk A., Sojka Z., et al. (2021), "Green synthesis,
structure, cations distribution and bonding characteristics of
superparamagnetic cobalt-zinc ferrites nanoparticles for Pb(II)
153
adsorption and magnetic hyperthermia applications." Journal of
Molecular Liquids, 328, p.115375.
198. Thanh N.K. (2011), "Preparation of NiFe2O4-TiO2 nanoparticles and
study of their photocatalytic activity." Journal of Science:
Mathematics-Physics, 27 (4).
199. Thankachan S., Xavier S., Jacob B., et al. (2013), "A comparative study
of structural, electrical and magnetic properties of magnesium ferrite
nanoparticles synthesised by sol-gel and co-precipitation techniques."
Journal of experimental Nanoscienc, 8 (3), pp.347-357.
200. Tounsadi H., Khalidi A., Abdennouri M., et al. (2016), "Activated
carbon from Diplotaxis Harra biomass: Optimization of preparation
conditions and heavy metal removal." Journal of the Taiwan Institute
of Chemical Engineers, 59, pp.348-358.
201. Tran T.K., Leu H.J., Chiu K.F., et al. (2017), "Electrochemical
Treatment of Heavy Metal‐ containing Wastewater with the Removal
of COD and Heavy Metal Ions." Journal of the Chinese Chemical
Society, 64 (5), pp.493-502.
202. Tsay C.-Y., Chiu Y.-C.Lei C.-M. (2018), "Hydrothermally synthesized
Mg-based spinel nanoferrites: phase formation and study on magnetic
features and microwave characteristics." Materials, 11 (11), p.2274.
203. Tu Y.-J., You C.-F.Chang C.-K. (2012), "Kinetics and thermodynamics
of adsorption for Cd on green manufactured nano-particles." Journal of
hazardous materials, 235, pp.116-122.
204. Tu Y.-J., You C.-F., Chen M.-H., et al. (2017), "Efficient
removal/recovery of Pb onto environmentally friendly fabricated
copper ferrite nanoparticles." Journal of The Taiwan Institute of
Chemical Engineers, 71, pp.197-205.
154
205. Tyagi I., Gupta V., Sadegh H., et al. (2017), "Nanoparticles as
adsorbent; a positive approach for removal of noxious metal ions: a
review." Science Technology Development, 34 (3), pp.195-214.
206. Tzvetkov M., Milanova M., Cherkezova-Zheleva Z., et al. (2017),
"Mixed metal oxides of the type CoxZn1-xFe2O4 as photocatalysts for
malachite green degradation under UV light irradiation." Acta Chimica
Slovenica, 64 (2), pp.299-311.
207. Ummer R.P., Gopinath P., Kalarikkal N., et al. "Photocatalytic
degradation of methyl orange using MgFe2O4@TiO2 core-shell
nanoparticles." in AIP Conference Proceedings. 2019. AIP Publishing LLC.
208. Uskoković V., Drofenik M.J.C., Physicochemical S.A., et al. (2005),
"A mechanism for the formation of nanostructured NiZn ferrites via a
microemulsion-assisted precipitation method." Physicochemical
Engineering Aspects, 266 (1-3), pp.168-174.
209. Verbych S., Hilal N., Sorokin G., et al. (2005), "Ion exchange
extraction of heavy metal ions from wastewater." Separation science
technology, 39 (9), pp.2031-2040.
210. Verma K., Kumar A.Varshney D. (2013), "Effect of Zn and Mg doping
on structural, dielectric and magnetic properties of tetragonal
CuFe2O4." Current Applied Physics, 13 (3), pp.467-473.
211. Verma S.Pravarthana D. (2011), "One-pot synthesis of highly
monodispersed ferrite nanocrystals: surface characterization and
magnetic properties." Langmuir, 27 (21), pp.13189-13197.
212. Wang D. (2016), "Environmental protection in clothing industry. in
Sustainable Development": Proceedings of the 2015 International
Conference on Sustainable Development (ICSD2015). World Scientific.
213. Wang F., Ma Z., Ban P., et al. (2017), "C, N and S codoped rutile TiO2
155
nanorods for enhanced visible-light photocatalytic activity." Materials
Letters, 195, pp.143-146.
214. Wang W., Shu Y., Xiang H., et al. (2020), "Magnetic properties of
Cu0.5Mg0.5Fe2O4 nanoparticles synthesized with waste ferrous sulfate."
Materials Today Communications, 25, p.101516.
215. Wang Y.-Y., Chai L.-Y., Chang H., et al. (2009), "Equilibrium of
hydroxyl complex ions in Pb
2+
-H2O system." Transactions of
nonferrous metals society of China, 19 (2), pp.458-462.
216. Wang Y., Yang W., Chen X., et al. (2018), "Photocatalytic activity
enhancement of core-shell structure g-C3N4@TiO2 via controlled
ultrathin g-C3N4 layer." Applied Catalysis B: Environmental, 220,
pp.337-347.
217. Weber Jr W.J.Morris J.C. (1963), "Kinetics of adsorption on carbon
from solution." Journal of the sanitary engineering division, 89 (2),
pp.31-59.
218. Wu Q., Liu Y., Jing H., et al. (2020), "Peculiar synergetic effect of γ-
Fe2O3 nanoparticles and graphene oxide on MIL-53 (Fe) for boosting
photocatalysis." Chemical Engineering Journal, 390, p.124615.
219. Wu W., Jiang C.Roy V.A. (2015), "Recent progress in magnetic iron
oxide–semiconductor composite nanomaterials as promising
photocatalysts." Nanoscale, 7 (1), pp.38-58.
220. Xian G., Kong S., Li Q., et al. (2020), "Synthesis of Spinel Ferrite
MFe2O4 (M = Co, Cu, Mn, and Zn) for Persulfate Activation to
Remove Aqueous Organics: Effects of M-Site Metal and Synthetic
Method." Frontiers in chemistry, 8, p.177.
221. Xu D., Sun X., Zhao X., et al. (2018), "Heterogeneous Fenton
degradation of rhodamine B in aqueous solution using Fe-loaded
156
mesoporous MCM-41 as catalyst." Water, Air, Soil Pollution 229 (10),
pp.1-9.
222. Xu D., Tan X., Chen C., et al. (2008), "Removal of Pb(II) from
aqueous solution by oxidized multiwalled carbon nanotubes." Journal
of hazardous materials, 154 (1-3), pp.407-416.
223. Yang M.-Q., Zhang N.Xu Y.-J. (2013), "Synthesis of fullerene-, carbon
nanotube-, and graphene-TiO2 nanocomposite photocatalysts for
selective oxidation: a comparative study." ACS applied materials
interfaces, 5 (3), pp.1156-1164.
224. Yang Q., Zhang H., Liu Y., et al. (2009), "Microstructure and magnetic
properties of microwave sintered M-type barium ferrite for application
in LTCC devices." Materials Letters, 63 (3-4), pp.406-408.
225. Yu K., Yang S., He H., et al. (2009), "Visible light-driven
photocatalytic degradation of rhodamine B over NaBiO3: pathways and
mechanism." The Journal of Physical Chemistry A, 113 (37), pp.10024-
10032.
226. Yu W., Liu X., Pan L., et al. (2014), "Enhanced visible light
photocatalytic degradation of methylene blue by F-doped TiO2."
Applied Surface Science, 319, pp.107-112.
227. Zamouche M.Hamdaoui O. (2012), "Sorption of Rhodamine B by cedar
cone: effect of pH and ionic strength." Energy Procedia, 18, pp.1228-
1239.
228. Zand A.D.Abyaneh M.R. (2020), "Adsorption of Lead, manganese, and
copper onto biochar in landfill leachate: implication of non-linear
regression analysis." Sustainable Environment Research, 30 (1), pp.1-16.
229. Zeng L., Lu Z., Li M., et al. (2016), "A modular calcination method to
prepare modified N-doped TiO2 nanoparticle with high photocatalytic
157
activity." Applied Catalysis B: Environmental, 183, pp.308-316.
230. Zhang G.-Y., Sun Y.-Q., Gao D.-Z., et al. (2010), "Quasi-cube
ZnFe2O4 nanocrystals: hydrothermal synthesis and photocatalytic
activity with TiO2 (Degussa P25) as nanocomposite." Materials
Research Bulletin, 45 (7), pp.755-760.
231. Zhang L., He Y., Wu Y., et al. (2011), "Photocatalytic degradation of
RhB over MgFe2O4/TiO2 composite materials." Materials Science
Engineering: B, 176 (18), pp.1497-1504.
232. Zhang L., Qingrui S.Hongxiao Y. (2017), "Method for preparing
iodine-doped TiO2 nano-catalyst and use thereof in heterogeneously
catalyzing configuration transformation of trans-carotenoids". Google
Patents.
233. Zhang Y., Han C., Zhang G., et al. (2015), "PEG-assisted synthesis of
crystal TiO2 nanowires with high specific surface area for enhanced
photocatalytic degradation of atrazine." Chemical Engineering Journal,
268, pp.170-179.
234. Zhang Y., Yan L., Xu W., et al. (2014), "Adsorption of Pb(II) and
Hg(II) from aqueous solution using magnetic CoFe2O4-reduced
graphene oxide." Journal of Molecular Liquids, 191, pp.177-182.
235. Zhang Y., Yang X., Zhang Y., et al. (2019), "High-performance
electrochemical sensor based on Mn1-xZnxFe2O4 nanoparticle/nafion-
modified glassy carbon electrode for Pb
2+
detection." Journal of The
Electrochemical Society, 166 (6), p.B341.
236. Zhao Q., Wang M., Yang H., et al. (2018), "Preparation,
characterization and the antimicrobial properties of metal ion-doped
TiO2 nano-powders." Ceramics International, 44 (5), pp.5145-5154.
237. Zhong Z., Li Q., Zhang Y., et al. (2005), "Synthesis of nanocrystalline
158
Ni–Zn ferrite powders by refluxing method." Powder technology, 155
(3), pp.193-195.
238. Zhou L., Ji L., Ma P.-C., et al. (2014), "Development of carbon
nanotubes/CoFe2O4 magnetic hybrid material for removal of
tetrabromobisphenol A and Pb (II)." Journal of hazardous materials,
265, pp.104-114.
239. Zhou X., Liu N.Schmuki P.J.A.C. (2017), "Photocatalysis with TiO2
nanotubes:“colorful” reactivity and designing site-specific
photocatalytic centers into TiO2 nanotubes." ACS Catalysis, 7 (5),
pp.3210-3235.
240. Zhu Y., Murali S., Cai W., et al. (2010), "Graphene and graphene
oxide: synthesis, properties, and applications." Advanced materials, 22
(35), pp.3906-3924.
241. Zollinger H. (2003), Color chemistry: syntheses, properties, and
applications of organic dyes and pigments. 2003: John Wiley & Sons.
242. Zou Z., Zhou Z., Wang H., et al. (2017), "Effect of Au clustering on
ferromagnetism in Au doped TiO2 films: theory and experiments
investigation." Journal of Physics Chemistry of Solids, 100, pp.71-77.
159
PHỤ LỤC
Phụ lục 1: Phổ XRD lần lượt của các mẫu Cu0.5Mg0.5Fe2O4 nung ở
400÷1000
o
C trong 2 giờ; MgFe2O4; CuFe2O4; TiO2 và Cu0.5Mg0.5Fe2O4/TiO2.
160
161
162
163
164
Phụ lục 2: Phổ khối MS và sắc ký đồ của các mẫu RhB tại các thời
điểm khác nhau: 0 phút; 60 phút, 120 phút, 180 phút.
RhB: 443
165
DER: 415
166
EER, DR: 387
167
ER: 359
168
Phụ lục 3: Sắc đồ đo TOC của các mẫu RhB tại các thời điểm khác
nhau (a) 0 phút; (b) 30 phút; (c) 60 phút; (d) 90 phút; (e) 120 phút; (f) 150
phút và (g) 180 phút.
169
170
171
Phụ lục 4: Đường chuẩn phân tích Pb2+