Luận án Nghiên cứu chế tạo vật liệu trên cơ sở Spinel Ferrite ứng dụng để xử lý kim loại nặng và chất màu hữu cơ độc hại trong môi trường nước

- Tổng hợp thành công hệ vật liệu từ tính spinel ferrite Cu-MgFe2O4 bằng phương pháp đồng kết tủa. Vật liệu spinel của 2 ion kim loại Cu0.5Mg0.5Fe2O4 có từ độ bão hòa 23,1 emu/g, cấu trúc đồng đều với kích thước hạt trung bình 29,5 nm, hình thành đơn pha spinel khi nung ở 900 oC và có diện tích bề mặt cũng như tính chất xốp cao hơn so với vật liệu spinel ferrite CuFe2O4 và MgFe2O4. - Nghiên cứu khả năng hấp phụ ion kim loại Pb2+ của vật liệu spinel ferrite Cu0.5Mg0.5Fe2O4. Khi thay thế Mg2+ vào cấu trúc của CuFe2O4 đã làm cải thiện dung lượng hấp phụ Pb2+ của CuFe2O4. Quá trình hấp phụ Pb2+ của vật liệu Cu0.5Mg0.5Fe2O4 tuân theo mô hình đẳng nhiệt Langmuir và động học biểu kiến bậc 2. Dung lượng hấp phụ Pb2+ cực đại của vật liệu Cu0.5Mg0.5Fe2O4 là 57,44 mg/g ở pH = 7 và T = 25 oC. Vật liệu Cu0.5Mg0.5Fe2O4 có tính hấp phụ chọn lọc, tương đối bền và ổn định đối với sự hấp phụ loại bỏ Pb2+, có khả năng tái sử dụng tốt và dễ dàng thu hồi sau mỗi chu kỳ sử dụng. - Tổng hợp thành công vật liệu TiO2 và vật liệu tổ hợp Cu0.5Mg0.5Fe2O4/TiO2 bằng phương pháp sol-gel. Giá trị năng lượng vùng cấm của vật liệu tổ hợp Cu0.5Mg0.5Fe2O4/TiO2 là 2,86 eV so với 3,25 eV của TiO2, sự phân tách điện tử của vật liệu Cu0.5Mg0.5Fe2O4/TiO2 tốt hơn so với vật liệu TiO2 và Cu0.5Mg0.5Fe2O4, do đó đã thể hiện hoạt tính xúc tác quang hóa tốt. Vật liệu tổ hợp Cu0.5Mg0.5Fe2O4/TiO2 có từ độ bão hòa là 11,2 emu/g , có khả năng tái sử dụng tốt và dễ dàng thu hồi sau mỗi chu kỳ sử dụng.

pdf186 trang | Chia sẻ: huydang97 | Ngày: 27/12/2022 | Lượt xem: 537 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu chế tạo vật liệu trên cơ sở Spinel Ferrite ứng dụng để xử lý kim loại nặng và chất màu hữu cơ độc hại trong môi trường nước, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Hwang T.-Y., Kim J., et al. (2014), "Barium hexaferrite nanoparticles with high magnetic properties by salt-assisted ultrasonic spray pyrolysis." Journal of alloys compounds, 583, pp.145-150. 20. Anandan S., Selvamani T., Prasad G.G., et al. (2017), "Magnetic and catalytic properties of inverse spinel CuFe2O4 nanoparticles." Journal of Magnetism Magnetic Materials, 432, pp.437-443. 21. Arifin M.N., Karim K.M.R., Abdullah H., et al. (2019), "Synthesis of titania doped copper ferrite photocatalyst and its photoactivity towards methylene blue degradation under visible light irradiation." Bulletin of Chemical Reaction Engineering Catalysis, 14 (1), p.219. 22. Arumugam S. (2015), "Structural and magnetic properties of CuFe2O4 as-prepared and thermally treated spinel nanoferrites." Indian Journal of Pure Applied Physics, 52 (2), pp.124-130. 23. Asiri S., Sertkol M., Guner S., et al. (2018), "Hydrothermal synthesis of CoyZnyMn1-2yFe2O4 nanoferrites: magneto-optical investigation." Ceramics International, 44 (5), pp.5751-5759. 130 24. Atacan K., Özacar M.Özacar M. (2018), "Investigation of antibacterial properties of novel papain immobilized on tannic acid modified Ag/CuFe2O4 magnetic nanoparticles." International journal of biological macromolecules, 109, pp.720-731. 25. Bakbolat B., Daulbayev C., Sultanov F., et al. (2020), "Recent developments of TiO2-based photocatalysis in the hydrogen evolution and photodegradation: a review." Nanomaterials, 10 (9), p.1790. 26. Bao S., Yang W., Wang Y., et al. (2020), "PEI grafted amino- functionalized graphene oxide nanosheets for ultrafast and high selectivity removal of Cr(VI) from aqueous solutions by adsorption combined with reduction: Behaviors and mechanisms." Chemical Engineering Journal, 399, p.125762. 27. Bessekhouad Y., Robert D.Weber J.-V. (2005), "Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions." Catalysis today, 101 (3-4), pp.315-321. 28. Bharti D., Mukherjee K.Majumder S. (2010), "Wet chemical synthesis and gas sensing properties of magnesium zinc ferrite nano-particles." Materials Chemistry physics, 120 (2-3), pp.509-517. 29. Blöcher C., Dorda J., Mavrov V., et al. (2003), "Hybrid flotation- membrane filtration process for the removal of heavy metal ions from wastewater." Water Research, 37 (16), pp.4018-4026. 30. Burakov A.E., Galunin E.V., Burakova I.V., et al. (2018), "Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review." Ecotoxicology environmental safety, 148, pp.702-712. 31. Caddeo F., Loche D., Casula M.F., et al. (2018), "Evidence of a cubic iron sub-lattice in t-CuFe2O4 demonstrated by X-ray Absorption Fine 131 Structure." Scientific reports, 8 (1), pp.1-12. 32. Camacho-González M.A., Quezada-Cruz M., Cerón-Montes G.I., et al. (2019), "Synthesis and characterization of magnetic zinc-copper ferrites: Antibacterial activity, photodegradation study and heavy metals removal evaluation." Materials Chemistry Physics, 236, p.121808. 33. Cao C., Xia A., Liu S., et al. (2013), "Synthesis and magnetic properties of hydrothermal magnesium–zinc spinel ferrite powders." Journal of Materials Science: Materials in Electronics, 24 (12), pp.4901-4905. 34. Carolin C.F., Kumar P.S., Saravanan A., et al. (2017), "Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review." Journal of environmental chemical engineering, 5 (3), pp.2782-2799. 35. Casbeer E., Sharma V.K.Li X.-Z. (2012), "Synthesis and photocatalytic activity of ferrites under visible light: a review." Separation Purification Technology, 87, pp.1-14. 36. Chakradhary V.K., Ansari A.Akhtar M.J. (2019), "Design, synthesis, and testing of high coercivity cobalt doped nickel ferrite nanoparticles for magnetic applications." Journal of Magnetism Magnetic Materials, 469, pp.674-680. 37. Cheung C., Porter J.McKay G. (2001), "Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char." Water research, 35 (3), pp.605-612. 38. Ciocarlan R.-G., Seftel E.M., Mertens M., et al. (2018), "Novel magnetic nanocomposites containing quaternary ferrites systems Co0.5Zn0. 25M0.25Fe2O4 (M = Ni, Cu, Mn, Mg) and TiO2-anatase phase 132 as photocatalysts for wastewater remediation under solar light irradiation." Materials Science Engineering: B, 230, pp.1-7. 39. Da Silva F., Depeyrot J., Campos A., et al. (2019), "Structural and magnetic properties of spinel ferrite nanoparticles." Journal of nanoscience nanotechnology, 19 (8), pp.4888-4902. 40. Deng S., Yang Z., Lv G., et al. (2019), "WO3 nanosheets/gC3N4 nanosheets’ nanocomposite as an effective photocatalyst for degradation of rhodamine B." Applied Physics A, 125 (1), p.44. 41. Desore A.Narula S.A. (2018), "An overview on corporate response towards sustainability issues in textile industry." Environment, development sustainability, 20 (4), pp.1439-1459. 42. Dong L., Zhu Z., Qiu Y., et al. (2010), "Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent." Chemical Engineering Journal, 165 (3), pp.827-834. 43. Dong Y., Fei X., Zhang H., et al. (2015), "Effects of calcination process on photocatalytic activity of TiO2/MCM-41 Photocatalyst." Journal of Advanced Oxidation Technologies, 18 (2), pp.322-330. 44. Drmota A., Drofenik M.Ţnidaršič A. (2012), "Synthesis and characterization of nano-crystalline strontium hexaferrite using the co- precipitation and microemulsion methods with nitrate precursors." Ceramics International, 38 (2), pp.973-979. 45. Duan S., Tang R., Xue Z., et al. (2015), "Effective removal of Pb(II) using magnetic Co0.6Fe2.4O4 micro-particles as the adsorbent: Synthesis and study on the kinetic and thermodynamic behaviors for its adsorption." Colloids Surfaces A: Physicochemical Engineering Aspects, 469, pp.211-223. 46. Escobedo-Morales A., Ruiz-López I., Ruiz-Peralta M.d., et al. (2019), 133 "Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy." Heliyon, 5 (4), p.e01505. 47. Fadlallah M.M. (2017), "Magnetic, electronic, optical, and photocatalytic properties of nonmetal-and halogen-doped anatase TiO2 nanotubes." Physica E: Low-dimensional Systems Nanostructures, 89, pp.50-56. 48. Falsafi F., Hashemi B., Mirzaei A., et al. (2017), "Sm-doped cobalt ferrite nanoparticles: A novel sensing material for conductometric hydrogen leak sensor." Ceramics International, 43 (1), pp.1029-1037. 49. Fang B., Yan Y., Yang Y., et al. (2016), "Adsorption of Pb 2+ from aqueous solution using spinel ferrite prepared from steel pickling sludge." Water Science Technology, 73 (5), pp.1112-1121. 50. Fonseca-Cervantes O.R., Pérez-Larios A., Romero Arellano V.H., et al. (2020), "Effects in Band Gap for Photocatalysis in TiO2 Support by Adding Gold and Ruthenium." Processes, 8 (9), p.1032. 51. Gao Q.Sun Z. (2018), "Facile fabrication of uniform MFe2O4 (M = Co, Ni, Cu) hollow spheres and their recyclable superior catalytic activity towards 4-nitrophenol reduction." Journal of Nanoscience Nanotechnology, 18 (8), pp.5645-5653. 52. Gobara H.M., Nassar I.M., El Naggar A.M., et al. (2017), "Nanocrystalline spinel ferrite for an enriched production of hydrogen through a solar energy stimulated water splitting process." Energy 118, pp.1234-1242. 53. Golshan M., Kakavandi B., Ahmadi M., et al. (2018), "Photocatalytic activation of peroxymonosulfate by TiO2 anchored on cupper ferrite (TiO2@CuFe2O4) into 2,4-D degradation: Process feasibility, 134 mechanism and pathway." Journal of hazardous materials, 359, pp.325-337. 54. Gonzalez-Munoz M.J., Rodríguez M.A., Luque S., et al. (2006), "Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration." Desalination, 200 (1-3), pp.742-744. 55. Guayaquil-Sosa J., Serrano-Rosales B., Valadés-Pelayo P., et al. (2017), "Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt." Applied Catalysis B: Environmental, 211, pp.337-348. 56. Guijarro N., Bornoz P., Prévot M., et al. (2018), "Evaluating spinel ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: prospects and limitations." Sustainable Energy, 2 (1), pp.103-117. 57. Guo S., Chi L., Zhao T., et al. (2021), "Construction of MOF/TiO2 nanocomposites with efficient visible-light-driven photocathodic protection." Journal of Electroanalytical Chemistry, 880, p.114915. 58. Gupta N.K., Ghaffari Y., Kim S., et al. (2020), "Photocatalytic Degradation of Organic Pollutants over MFe2O4 (M = Co, Ni, Cu, Zn) Nanoparticles at Neutral pH." Scientific reports, 10 (1), pp.1-11. 59. Hafeez H.Y., Lakhera S.K., Karthik P., et al. (2018), "Facile construction of ternary CuFe2O4-TiO2 nanocomposite supported reduced graphene oxide (rGO) photocatalysts for the efficient hydrogen production." Applied surface science, 449, pp.772-779. 60. Hafeez H.Y., Lakhera S.K., Narayanan N., et al. (2019), "Environmentally sustainable synthesis of a CoFe2O4-TiO2/rGO ternary photocatalyst: a highly efficient and stable photocatalyst for high production of hydrogen (solar fuel)." ACS omega, 4 (1), pp.880-891. 135 61. Haija M.A., Abu-Hani A.F., Hamdan N., et al. (2017), "Characterization of H2S gas sensor based on CuFe2O4 nanoparticles." Journal of Alloys Compounds, 690, pp.461-468. 62. Hall K.R., Eagleton L.C., Acrivos A., et al. (1966), "Pore-and solid- diffusion kinetics in fixed-bed adsorption under constant-pattern conditions." Industrial Engineering Chemistry Fundamentals, 5 (2), pp.212-223. 63. Hammad T.M., Salem J.K., Amsha A.A., et al. (2018), "Optical and magnetic characterizations of zinc substituted copper ferrite synthesized by a co-precipitation chemical method." Journal of Alloys, 741, pp.123-130. 64. Hasan R., Bukhari S., Jusoh R., et al. (2018), "Adsorption of Pb(II) onto KCC-1 from aqueous solution: Isotherm and kinetic study." Materials Today: Proceedings, 5 (10), pp.21574-21583. 65. Hashim M.A., Mukhopadhyay S., Sahu J.N., et al. (2011), "Remediation technologies for heavy metal contaminated groundwater." Journal of environmental management, 92 (10), pp.2355-2388. 66. Hayati B., Maleki A., Najafi F., et al. (2018), "Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems." Chemical Engineering Journal, 346, pp.258-270. 67. He Z., Sun C., Yang S., et al. (2009), "Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: mechanism and pathway." Journal of Hazardous Materials, 162 (2-3), pp.1477-1486. 68. Helmy E.T., El Nemr A., Mousa M., et al. (2018), "Photocatalytic 136 degradation of organic dyes pollutants in the industrial textile wastewater by using synthesized TiO2, C-doped TiO2, S-doped TiO2 and C, S co-doped TiO2 nanoparticles." Journal of Water Environmental Nanotechnology, 3 (2), pp.116-127. 69. Ho Y.-S.Wang C.-C. (2004), "Pseudo-isotherms for the sorption of cadmium ion onto tree fern." Process Biochemistry, 39 (6), pp.761-765. 70. Hossain M.A., Elias M., Sarker D.R., et al. (2018), "Synthesis of Fe-or Ag-doped TiO2–MWCNT nanocomposite thin films and their visible- light-induced catalysis of dye degradation and antibacterial activity." Research on Chemical Intermediates, 44 (4), pp.2667-2683. 71. Hsu H.-C., Shown I., Wei H.-Y., et al. (2013), "Graphene oxide as a promising photocatalyst for CO2 to methanol conversion." Nanoscale, 5 (1), pp.262-268. 72. Huang H., Li D., Lin Q., et al. (2009), "Efficient degradation of benzene over LaVO4/TiO2 nanocrystalline heterojunction photocatalyst under visible light irradiation." Environmental science technology, 43 (11), pp.4164-4168. 73. Iakovleva E.Sillanpää M. (2013), "The use of low-cost adsorbents for wastewater purification in mining industries." Environmental Science Pollution Research, 20 (11), pp.7878-7899. 74. Ibrahim I., Ali I.O., Salama T.M., et al. (2016), "Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M = Zn, Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: High catalytic performances for nitroarenes reduction." Applied Catalysis B: Environmental, 181, pp.389-402. 75. Ignat M., Rotaru R., Samoila P., et al. (2018), "Relationship between the component synthesis order of zinc ferrite–titania nanocomposites 137 and their performances as visible light-driven photocatalysts for relevant organic pollutant degradation." Comptes Rendus Chimie, 21 (3-4), pp.263-269. 76. Inyinbor A.A., Adekola F.A.Olatunji G.A. (2015), "Adsorption of Rhodamine B dye from aqueous solution on Irvingia gabonensis biomass: kinetics and thermodynamics studies." South African journal of chemistry, 68, pp.115-125. 77. Ivanets A., Prozorovich V., Roshchina M., et al. (2021), "A comparative study on the synthesis of magnesium ferrite for the adsorption of metal ions: Insights into the essential role of crystallite size and surface hydroxyl groups." Chemical Engineering Journal, 411, p.128523. 78. Jadhav S.A., Somvanshi S.B., Khedkar M.V., et al. (2020), "Magneto- structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B." Journal of Materials Science: Materials in Electronics, 31, pp.11352- 11365. 79. Jaiswal R., Bharambe J., Patel N., et al. (2015), "Copper and Nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity." Applied Catalysis B: Environmental, 168, pp.333- 341. 80. Jang J.t., Nah H., Lee J.H., et al. (2009), "Critical enhancements of MRI contrast and hyperthermic effects by dopant‐ controlled magnetic nanoparticles." Angewandte Chemie International Edition, 48 (7), pp.1234-1238. 81. Japandeep Kaur M.K. (2019), "Facile fabrication of ternary nanocomposite of MgFe2O4/TiO2@GO for synergistic adsorption and 138 photocatalytic degradation studies." Ceramics International, 45 (7), pp.8646-8659. 82. Jasso-Terán R.A., Cortés-Hernández D.A., Sánchez-Fuentes H.J., et al. (2017), "Synthesis, characterization and hemolysis studies of Zn(1-x)CaxFe2O4 ferrites synthesized by sol-gel for hyperthermia treatment applications." Journal of Magnetism Magnetic Materials, 427, pp.241-244. 83. Ji L., Zhang Y., Miao S., et al. (2017), "In situ synthesis of carbon doped TiO2 nanotubes with an enhanced photocatalytic performance under UV and visible light." Carbon, 125, pp.544-550. 84. Jia T., Fu F., Yu D., et al. (2018), "Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible-light photocatalytic performance." Applied Surface Science, 430, pp.438-447. 85. Jia Z., Peng K.Xu L. (2012), "Preparation, characterization and enhanced adsorption performance for Cr(VI) of mesoporous NiFe2O4 by twice pore-forming method." Materials Chemistry Physics, 136 (2- 3), pp.512-519. 86. Jin C., Dai Y., Wei W., et al. (2017), "Effects of single metal atom (Pt, Pd, Rh and Ru) adsorption on the photocatalytic properties of anatase TiO2." Applied Surface Science, 426, pp.639-646. 87. Jin Z., Liu C., Qi K., et al. (2017), "Photo-reduced Cu/CuO nanoclusters on TiO 2 nanotube arrays as highly efficient and reusable catalyst." Scientific reports, 7 (1), pp.1-9. 88. Kang D., Yu X., Ge M., et al. (2015), "One-step fabrication and characterization of hierarchical MgFe2O4 microspheres and their application for lead removal." Microporous Mesoporous Materials, 207, pp.170-178. 139 89. Kaur N., Kaur M.Singh D. (2019), "Fabrication of mesoporous nanocomposite of graphene oxide with magnesium ferrite for efficient sequestration of Ni(II) and Pb(II) ions: Adsorption, thermodynamic and kinetic studies." Environmental pollution, 253, pp.111-119. 90. Kayestha R.Hajela K. (1995), "ESR studies on the effect of ionic radii on displacement of Mn 2+ bound to a soluble β-galactoside binding hepatic lectin." FEBS letters, 368 (2), pp.285-288. 91. Kaygili O., Bulut N., Tatar C., et al. (2017), "Sol-gel synthesis and characterization of TiO2 powder." Uluslararası Yenilikçi Mühendislik Uygulamaları Dergisi, 1 (2), pp.38-40. 92. Kefeni K.K., Mamba B.B.Msagati T.A. (2017), "Application of spinel ferrite nanoparticles in water and wastewater treatment: a review." Separation Purification Technology, 188, pp.399-422. 93. Kefeni K.K., Msagati T.A.Mamba B.B. (2017), "Ferrite nanoparticles: synthesis, characterisation and applications in electronic device." Materials Science Engineering: B, 215, pp.37-55. 94. Kennaz H., Harat A., Guellati O., et al. (2018), "Synthesis and electrochemical investigation of spinel cobalt ferrite magnetic nanoparticles for supercapacitor application." Journal of Solid State Electrochemistry, 22 (3), pp.835-847. 95. Khishigdemberel I., Uyanga E., Hirazawa H., et al. (2018), "Influence of Cu dope on the structural behavior of MgFe2O4 at various temperatures." Physica B: Condensed Matter, 544, pp.73-78. 96. Kim H.G., Borse P.H., Jang J.S., et al. (2009), "Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis." Chemical Communications, (39), pp.5889-5891. 97. Kim H.S., Kim D., Kwak B.S., et al. (2014), "Synthesis of magnetically 140 separable core@shell structured NiFe2O4@TiO2 nanomaterial and its use for photocatalytic hydrogen production by methanol/water splitting." Chemical Engineering Journal, 243, pp.272-279. 98. Kim M.G., Kang J.M., Lee J.E., et al. (2021), "Effects of calcination temperature on the phase composition, photocatalytic degradation, and virucidal activities of TiO2 nanoparticles." ACS omega, 6 (16), pp.10668-10678. 99. Kim S.-R., Ali I.Kim J.-O. (2019), "Phenol degradation using an anodized graphene-doped TiO2 nanotube composite under visible light." Applied Surface Science, 477, pp.71-78. 100. Köferstein R., Walther T., Hesse D., et al. (2013), "Preparation and characterization of nanosized magnesium ferrite powders by a starch- gel process and corresponding ceramics." Journal of materials science, 48 (19), pp.6509-6518. 101. Kong Q., Shi X., Ma W., et al. (2021), "Strategies to improve the adsorption properties of graphene-based adsorbent towards heavy metal ions and their compound pollutants: A review." Journal of Hazardous Materials, p.125690. 102. Konstantinou I.K.Albanis T.A. (2004), "TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review." Applied Catalysis B: Environmental, 49 (1), pp.1-14. 103. Köseoğlu Y. (2013), "Structural, magnetic, electrical and dielectric properties of MnxNi1-xFe2O4 spinel nanoferrites prepared by PEG assisted hydrothermal method." Ceramics International, 39 (4), pp.4221-4230. 104. Kumar M., Dosanjh H.S., Singh J., et al. (2020), "Review on magnetic 141 nanoferrites and their composites as alternatives in waste water treatment: synthesis, modifications and applications." Environmental Science: Water Research Technology, 6 (3), pp.491-514. 105. Kumbhar V., Jagadale A., Shinde N., et al. (2012), "Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application." Applied Surface Science, 259, pp.39-43. 106. Kurian J.Mathew M.J. (2018), "Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method." Journal of Magnetism Magnetic Materials, 451, pp.121-130. 107. Kuvarega A.T.Mamba B.B. (2017), "TiO2-based photocatalysis: toward visible light-responsive photocatalysts through doping and fabrication of carbon-based nanocomposites." Critical Reviews in Solid State Materials Sciences, 42 (4), pp.295-346. 108. Lagergren S.K. (1898), "About the theory of so-called adsorption of soluble substances." Sven. Vetenskapsakad. Handingarl, 24, pp.1-39. 109. Lavorato C., Argurio P., Mastropietro T.F., et al. (2017), "Pd/TiO2 doped faujasite photocatalysts for acetophenone transfer hydrogenation in a photocatalytic membrane reactor." Journal of Catalysis, 353, pp.152-161. 110. Li B., Yue Z.-X., Qi X.-W., et al. (2003), "High Mn content NiCuZn ferrite for multiplayer chip inductor application." Materials Science Engineering: B, 99 (1-3), pp.252-254. 111. Liang L., Cheng L., Zhang Y., et al. (2020), "Efficiency and mechanisms of rhodamine B degradation in Fenton-like systems based on zero-valent iron." Rsc Advances, 10 (48), pp.28509-28515. 112. Liu T., Wang L., Lu X., et al. (2017), "Comparative study of the 142 photocatalytic performance for the degradation of different dyes by ZnIn 2 S 4: adsorption, active species, and pathways." RSC advances, 7 (20), pp.12292-12300. 113. Lofrano G., Carotenuto M., Libralato G., et al. (2016), "Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview." Water research, 92, pp.22-37. 114. Luo H., Yu S., He F., et al. (2021), "An important phenomenon in Fe2O3-TiO2 photocatalyst: Ion-inter-doping." Solid State Sciences, 113, p.106538. 115. Mahmoud Z.H., AL-Bayati R.A.Khadom A.A. (2021), "The Efficacy of Samarium Loaded Titanium Dioxide (Sm:TiO2) for Enhanced Photocatalytic Removal of Rhodamine B Dye in Natural Sunlight Exposure." Journal of Molecular Structure, p.132267. 116. Manikandan A., Vijaya J.J., Kennedy L.J., et al. (2013), "Structural, optical and magnetic properties of Zn1-xCuxFe2O4 nanoparticles prepared by microwave combustion method." Journal of molecular structure, 1035, pp.332-340. 117. Manikandan V., Vanitha A., Kumar E.R., et al. (2017), "Effect of In substitution on structural, dielectric and magnetic properties of CuFe2O4 nanoparticles." Journal of Magnetism Magnetic Materials, 432, pp.477-483. 118. Manimozhi V., Partha N., Sivakumar E., et al. (2016), "Preparation and characterization of ferrite nanoparticles for the treatment of industrial waste water." Digest Journal of Nanomaterials Biostructures, 11 (3), pp.1017-1027. 119. Manju G., Krishnan K.A., Vinod V., et al. (2002), "An investigation into the sorption of heavy metals from wastewaters by polyacrylamide- 143 grafted iron (III) oxide." Journal of hazardous materials, 91 (1-3), pp.221-238. 120. Marinca T.F., Chicinaş I.Isnard O. (2013), "Structural and magnetic properties of the copper ferrite obtained by reactive milling and heat treatment." Ceramics International, 39 (4), pp.4179-4186. 121. Martins M.L., Florentino A.O., Cavalheiro A.A., et al. (2014), "Mechanisms of phase formation along the synthesis of Mn–Zn ferrites by the polymeric precursor method." Ceramics International, 40 (10), pp.16023-16031. 122. Masoumi S., Nabiyouni G.Ghanbari D. (2016), "Photo-degradation of azo dyes: photo catalyst and magnetic investigation of CuFe2O4-TiO2 nanoparticles and nanocomposites." Journal of Materials Science: Materials in Electronics, 27 (9), pp.9962-9975. 123. Masunga N., Mmelesi O.K., Kefeni K.K., et al. (2019), "Recent advances in copper ferrite nanoparticles and nanocomposites synthesis, magnetic properties and application in water treatment." Journal of Environmental Chemical Engineering, 7 (3), p.103179. 124. Mathew D.S.Juang R.-S. (2007), "An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions." Chemical engineering journal, 129 (1-3), pp.51-65. 125. Mavrov V., Erwe T., Blöcher C., et al. (2003), "Study of new integrated processes combining adsorption, membrane separation and flotation for heavy metal removal from wastewater." Desalination, 157 (1-3), pp.97-104. 126. Mbu E.E., Ntwampe S.K., Nyembwe K.J., et al.(2018), "Photocatalytic degradation of azo and rhodamine dyes using copper (ii) oxide nanoparticles", in 10th Int'l Conference on Advances in Science, Engineering, Technology & Healthcare. 144 127. Moeinpour F., Alimoradi A.Kazemi M. (2014), "Efficient removal of Eriochrome black-T from aqueous solution using NiFe2O4 magnetic nanoparticles." Journal of environmental health science engineering, 12 (1), p.112. 128. Mohapatra J., Mitra A., Bahadur D., et al. (2013), "Surface controlled synthesis of MFe2O4 (M = Mn, Fe, Co, Ni and Zn) nanoparticles and their magnetic characteristics." CrystEngComm, 15 (3), pp.524-532. 129. Moma J.Baloyi J. (2019), "Modified titanium dioxide for photocatalytic applications." Photocatalysts-Applications Attributes, 18. 130. Morales G.d.V., Sham E.L., Cornejo R., et al. (2012), "Kinetic studies of the photocatalytic degradation of tartrazine." Latin American Applied Research. 131. Nakhate A.V.Yadav G.D. (2017), "Hydrothermal synthesis of CuFe2O4 magnetic nanoparticles as active and robust catalyst for N‐ arylation of indole and imidazole with aryl halide." ChemistrySelect, 2 (8), pp.2395-2405. 132. Nasrollahi Z., Pirbazari A.E., Hasan-Zadeh A., et al. (2019), "One-pot hydrothermal synthesis and characterization of magnetic nanocomposite of titania-deposited copper ferrite/ferrite oxide for photocatalytic decomposition of methylene blue dye." International Nano Letters, 9 (4), pp.327-338. 133. Neris A., Schreiner W., Salvador C., et al. (2018), "Photocatalytic evaluation of the magnetic core@shell system (Co,Mn)Fe2O4@TiO2 obtained by the modified Pechini method." Materials Science Engineering: B, 229, pp.218-226. 134. Neyaz N.Siddiqui W.A. (2015), "Removal of Cu(II) by modified magnetite nanocomposite as a nanosorbent." Int. J. Sci. Res, 4 (2), 145 pp.1868-1873. 135. Nguyen T.B.Doong R.-a. (2017), "Heterostructured ZnFe2O4/TiO2 nanocomposites with a highly recyclable visible-light-response for bisphenol A degradation." RSC Advances, 7 (79), pp.50006-50016. 136. Nguyen T.M.H.Bark C.W. (2020), "Synthesis of cobalt-doped TiO2 based on metal–organic frameworks as an effective electron transport material in perovskite solar cells." ACS omega, 5 (5), pp.2280-2286. 137. Novoselov K.S., Geim A.K., Morozov S.V., et al. (2004), "Electric field effect in atomically thin carbon films." Science of Advanced Materials, 306 (5696), pp.666-669. 138. Organization W.H., WHO World Water Day Report. 3 March 2019. 139. Panchal N.Jotania R. (2010), "Cobalt ferrite nano particles by microemulsion route." International Journal of Systems Biology, 2. 140. Park J.-Y., Kim C.-S., Okuyama K., et al. (2016), "Copper and nitrogen doping on TiO2 photoelectrodes and their functions in dye-sensitized solar cells." Journal of Power Sources, 306, pp.764-771. 141. Perez T., Pasquini D., de Faria Lima A., et al. (2019), "Efficient removal of lead ions from water by magnetic nanosorbents based on manganese ferrite nanoparticles capped with thin layers of modified biopolymers." Journal of Environmental Chemical Engineering, 7 (1), p.102892. 142. Podporska-Carroll J., Panaitescu E., Quilty B., et al. (2015), "Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes." Applied Catalysis B: Environmental, 176, pp.70-75. 143. Pradeep A., Priyadharsini P.Chandrasekaran G. (2008), "Sol-gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study." Journal of Magnetism Magnetic Materials 320 (21), pp.2774-2779. 146 144. Praveena K., Chen H.-W., Liu H.-L., et al. (2016), "Enhanced magnetic domain relaxation frequency and low power losses in Zn 2+ substituted manganese ferrites potential for high frequency applications." Journal of Magnetism Magnetic Materials, 420, pp.129-142. 145. Pubby K., Babu K.V.Narang S.B. (2020), "Magnetic, elastic, dielectric, microwave absorption and optical characterization of cobalt-substituted nickel spinel ferrites." Materials Science Engineering B, 255, p.114513. 146. Qin P., Yang Y., Zhang X., et al. (2018), "Highly efficient, rapid, and simultaneous removal of cationic dyes from aqueous solution using monodispersed mesoporous silica nanoparticles as the adsorbent." Nanomaterials, 8 (1), p.4. 147. Qin Q., Liu Y., Li X., et al. (2018), "Enhanced heterogeneous Fenton- like degradation of methylene blue by reduced CuFe2O4." RSC advances, 8 (2), pp.1071-1077. 148. Rajput S., Singh L.P., Pittman Jr C.U., et al. (2017), "Lead (Pb 2+ ) and copper (Cu 2+ ) remediation from water using superparamagnetic maghemite (γ-Fe2O3) nanoparticles synthesized by Flame Spray Pyrolysis (FSP)." Journal of colloid interface science, 492, pp.176-190. 149. Raju M.K. (2015), "FT-IR studies of Cu substituted Ni-Zn ferrites for structural and vibrational investigations." Chem. Sci. Trans., 4 (1), pp.137-142. 150. Ramadevi P., Sangeetha A., Kousi F., et al. (2020), "Structural and electrochemical investigation on pure and aluminium doped nickel ferrite nanoparticles for supercapacitor application." Materials Today: Proceedings, 33, pp.2116-2121. 151. Reddy D.H.K.Lee S.-M. (2013), "Three-dimensional porous spinel 147 ferrite as an adsorbent for Pb(II) removal from aqueous solutions." Industrial Engineering Chemistry Research, 52 (45), pp.15789-15800. 152. Reddy N.R., Ramana M.V., Rajitha G., et al. (2009), "Stress insensitive NiCuZn ferrite compositions for microinductor applications." Current Applied Physics, 9 (2), pp.317-323. 153. Reitz C., Suchomski C., Haetge J., et al. (2012), "Soft-templating synthesis of mesoporous magnetic CuFe2O4 thin films with ordered 3D honeycomb structure and partially inverted nanocrystalline spinel domains." Chemical communications, 48 (37), pp.4471-4473. 154. Ren G., Yang L., Zhang Z., et al. (2017), "A new green synthesis of porous magnetite nanoparticles from waste ferrous sulfate by solid- phase reduction reaction." Journal of Alloys Compounds, 710, pp.875-879. 155. Ren Y., Abbood H.A., He F., et al. (2013), "Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption." Chemical Engineering Journal, 226, pp.300-311. 156. Ren Y., Li N., Feng J., et al. (2012), "Adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous ferrospinel MnFe2O4." Journal of colloid interface science, 367 (1), pp.415-421. 157. Rijsberman F.R. (2006), "Water scarcity: fact or fiction?", Agricultural water management, 80 (1-3), pp.5-22. 158. Rodríguez-Rodríguez A.A., Martínez-Montemayor S., Leyva-Porras C.C., et al. (2017), "CoFe2O4-TiO2 hybrid nanomaterials: synthesis approaches based on the oil-in-water microemulsion reaction method." Journal of Nanomaterials, 2017. 159. Rus S., Vlazan P., Novaconi S., et al. (2012), "Synthesis and characterization CuFe2O4 nanoparticles prepared by the hydrothermal 148 ultrasonic assisted method." Journal of Optoelectronics Advanced Materials, 14 (March-April 2012), pp.293-297. 160. Sagadevan S., Chowdhury Z.Z.Rafique R.F. (2018), "Preparation and characterization of nickel ferrite nanoparticles via co-precipitation method." Materials Research, 21 (2). 161. Sahoo T.R.Prelot B. (2020), "Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology", in Nanomaterials for the Detection and Removal of Wastewater Pollutants, Elsevier. p. 161-222. 162. Sakar M., Balakumar S., Saravanan P., et al. (2013), "Annealing temperature mediated physical properties of bismuth ferrite (BiFeO3) nanostructures synthesized by a novel wet chemical method." Materials Research Bulletin, 48 (8), pp.2878-2885. 163. Salam M.A., Makki M.S.Abdelaal M.Y. (2011), "Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution." Journal of Alloys Compounds, 509 (5), pp.2582-2587. 164. Samsudin E.M., Goh S.N., Wu T.Y., et al. (2015), "Evaluation on the photocatalytic degradation activity of reactive blue 4 using pure anatase nano-TiO2." Sains Malaysiana, 44 (7), pp.1011-1019. 165. Sandu I., Presmanes L., Alphonse P., et al. (2006), "Nanostructured cobalt manganese ferrite thin films for gas sensor application." Thin Solid Films, 495 (1-2), pp.130-133. 166. Saqib H., Rahman S., Susilo R., et al. (2019), "Structural, vibrational, electrical, and magnetic properties of mixed spinel ferrites Mg1-xZnxFe2O4 nanoparticles prepared by co-precipitation." AIP 149 Advances, 9 (5), p.055306. 167. Sarangi P.P., Vadera S., Patra M., et al. (2010), "Synthesis and characterization of pure single phase Ni-Zn ferrite nanopowders by oxalate based precursor method." Powder Technology, 203 (2), pp.348-353. 168. Sarma G.K., Gupta S.S.Bhattacharyya K.G. (2019), "Nanomaterials as versatile adsorbents for heavy metal ions in water: a review." Environmental Science Pollution Research, 26 (7), pp.6245-6278. 169. Scarpelli F., Mastropietro T.F., Poerio T., et al. (2018), "Mesoporous TiO2 thin films: State of the art." Titanium Dioxide-Material for a Sustainable Environment, 508 (1), pp.135-142. 170. Selima S., Khairy M.Mousa M. (2019), "Comparative studies on the impact of synthesis methods on structural, optical, magnetic and catalytic properties of CuFe2O4." Ceramics International, 45 (5), pp.6535-6540. 171. Sezgin N., Sahin M., Yalcin A., et al. (2013), "Synthesis, characterization and, the heavy metal removal efficiency of MFe2O4 (M = Ni, Cu) nanoparticles." Ekoloji, 22 (89), pp.89-96. 172. Shah A.H.Rather M.A. (2021), "Effect of calcination temperature on the crystallite size, particle size and zeta potential of TiO2 nanoparticles synthesized via polyol-mediated method." Materials Today: Proceedings, 44, pp.482-488. 173. Shannon R.D. (1976), "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides." Acta crystallographica section A: crystal physics, diffraction, theoretical general crystallography, 32 (5), pp.751-767. 174. Sharma R., Kumar V., Bansal S., et al. (2015), "Assortment of magnetic nanospinels for activation of distinct inorganic oxidants in 150 photo-Fenton’s process." Journal of Molecular Catalysis A: Chemical, 402, pp.53-63. 175. Shen Y., Wu Y., Li X., et al. (2013), "One-pot synthesis of MgFe2O4 nanospheres by solvothermal method." Materials Letters, 96, pp.85-88. 176. Shrestha D. (2021), "Efficiency of Wood-Dust of Dalbergia sisoo as Low-Cost Adsorbent for Rhodamine-B Dye Removal." Nanomaterials, 11 (9), p.2217. 177. Simsek E.B. (2017), "Solvothermal synthesized boron doped TiO2 catalysts: photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation." Applied Catalysis B: Environmental, 200, pp.309-322. 178. Skjolding L.M., Dyhr K., Köppl C., et al. (2021), "Assessing the aquatic toxicity and environmental safety of tracer compounds Rhodamine B and Rhodamine WT." Water Research, 197, p.117109. 179. Soares M.d.C.B., Barbosa F.F., Torres M.A.M., et al. (2019), "Oxidative dehydrogenation of ethylbenzene to styrene over the CoFe2O4-MCM-41 catalyst: preferential adsorption on the O 2- Fe 3+ O 2- sites located at octahedral positions." Catalysis Science Technology, 9 (10), pp.2469-2484. 180. Song E., Kim Y.-T.Choi J. (2019), "Anion additives in rapid breakdown anodization for nonmetal-doped TiO2 nanotube powders." Electrochemistry Communications, 109, p.106610. 181. Sonia M.M.L., Anand S., Blessi S., et al. (2018), "Effect of surfactants (PVB/EDTA/CTAB) assisted sol-gel synthesis on structural, magnetic and dielectric properties of NiFe2O4 nanoparticles." Ceramics International, 44 (18), pp.22068-22079. 182. Sotomayor F.J., Cychosz K.A.Thommes M. (2018), "Characterization 151 of micro/mesoporous materials by physisorption: concepts and case studies." Acc. Mater. Surf. Res, 3 (2), pp.34-50. 183. Sreekala G., Beevi A.F., Resmi R., et al. (2020), "Removal of lead (II) ions from water using copper ferrite nanoparticles synthesized by green method." Materials Today: Proceedings. 184. Srivastava V., Sharma Y.Sillanpää M. (2015), "Application of nano- magnesso ferrite (n-MgFe2O4) for the removal of Co 2+ ions from synthetic wastewater: Kinetic, equilibrium and thermodynamic studies." Applied Surface Science, 338, pp.42-54. 185. Sudilovskiy P., Kagramanov G., Trushin A., et al. (2007), "Use of membranes for heavy metal cationic wastewater treatment: flotation and membrane filtration." Clean Technologies Environmental Policy, 9 (3), pp.189-198. 186. Sun W., Pan W., Wang F., et al. (2015), "Removal of Se (IV) and Se (VI) by MFe2O4 nanoparticles from aqueous solution." Chemical Engineering Journal, 273, pp.353-362. 187. Sun Z., Liu L., zeng Jia D., et al. (2007), "Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials." Sensors Actuators B: Chemical, 125 (1), pp.144-148. 188. Sundararajan M., Sailaja V., Kennedy L.J., et al. (2017), "Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: kinetics and mechanism." Ceramics International, 43 (1), pp.540-548. 189. Šutka A., Käämbre T., Pärna R., et al. (2016), "Ag sensitized TiO2 and NiFe2O4 three-component nanoheterostructures: synthesis, electronic structure and strongly enhanced visible light photocatalytic activity." RSC Advances, 6 (23), pp.18834-18842. 152 190. Taffa D.H., Dillert R., Ulpe A.C., et al. (2016), "Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3-xO4) for water splitting: a mini-review." Journal of Photonics for Energy, 7 (1), p.012009. 191. Tan Y., Chen M.Hao Y. (2012), "High efficient removal of Pb (II) by amino-functionalized Fe3O4 magnetic nano-particles." Chemical Engineering Journal, 191, pp.104-111. 192. Tanaka T., Shimazu R., Nagai H., et al. (2009), "Preparation of spherical and uniform-sized ferrite nanoparticles with diameters between 50 and 150 nm for biomedical applications." Journal of magnetism magnetic materials, 321 (10), pp.1417-1420. 193. Tang H., Zhang D., Tang G., et al. (2014), "Low temperature synthesis and photocatalytic properties of mesoporous TiO2 nanospheres." Journal of alloys compounds, 591, pp.52-57. 194. Tang W., Su Y., Li Q., et al. (2013), "Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III,V) removal and easy magnetic separation." Water research, 47 (11), pp.3624-3634. 195. Tatarchuk T., Bououdina M., Paliychuk N., et al. (2017), "Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites." Journal of Alloys Compounds, 694, pp.777-791. 196. Tatarchuk T., Bououdina M., Vijaya J.J., et al. Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications. in International Conference on Nanotechnology and Nanomaterials. 2016. Springer. 197. Tatarchuk T., Shyichuk A., Sojka Z., et al. (2021), "Green synthesis, structure, cations distribution and bonding characteristics of superparamagnetic cobalt-zinc ferrites nanoparticles for Pb(II) 153 adsorption and magnetic hyperthermia applications." Journal of Molecular Liquids, 328, p.115375. 198. Thanh N.K. (2011), "Preparation of NiFe2O4-TiO2 nanoparticles and study of their photocatalytic activity." Journal of Science: Mathematics-Physics, 27 (4). 199. Thankachan S., Xavier S., Jacob B., et al. (2013), "A comparative study of structural, electrical and magnetic properties of magnesium ferrite nanoparticles synthesised by sol-gel and co-precipitation techniques." Journal of experimental Nanoscienc, 8 (3), pp.347-357. 200. Tounsadi H., Khalidi A., Abdennouri M., et al. (2016), "Activated carbon from Diplotaxis Harra biomass: Optimization of preparation conditions and heavy metal removal." Journal of the Taiwan Institute of Chemical Engineers, 59, pp.348-358. 201. Tran T.K., Leu H.J., Chiu K.F., et al. (2017), "Electrochemical Treatment of Heavy Metal‐ containing Wastewater with the Removal of COD and Heavy Metal Ions." Journal of the Chinese Chemical Society, 64 (5), pp.493-502. 202. Tsay C.-Y., Chiu Y.-C.Lei C.-M. (2018), "Hydrothermally synthesized Mg-based spinel nanoferrites: phase formation and study on magnetic features and microwave characteristics." Materials, 11 (11), p.2274. 203. Tu Y.-J., You C.-F.Chang C.-K. (2012), "Kinetics and thermodynamics of adsorption for Cd on green manufactured nano-particles." Journal of hazardous materials, 235, pp.116-122. 204. Tu Y.-J., You C.-F., Chen M.-H., et al. (2017), "Efficient removal/recovery of Pb onto environmentally friendly fabricated copper ferrite nanoparticles." Journal of The Taiwan Institute of Chemical Engineers, 71, pp.197-205. 154 205. Tyagi I., Gupta V., Sadegh H., et al. (2017), "Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review." Science Technology Development, 34 (3), pp.195-214. 206. Tzvetkov M., Milanova M., Cherkezova-Zheleva Z., et al. (2017), "Mixed metal oxides of the type CoxZn1-xFe2O4 as photocatalysts for malachite green degradation under UV light irradiation." Acta Chimica Slovenica, 64 (2), pp.299-311. 207. Ummer R.P., Gopinath P., Kalarikkal N., et al. "Photocatalytic degradation of methyl orange using MgFe2O4@TiO2 core-shell nanoparticles." in AIP Conference Proceedings. 2019. AIP Publishing LLC. 208. Uskoković V., Drofenik M.J.C., Physicochemical S.A., et al. (2005), "A mechanism for the formation of nanostructured NiZn ferrites via a microemulsion-assisted precipitation method." Physicochemical Engineering Aspects, 266 (1-3), pp.168-174. 209. Verbych S., Hilal N., Sorokin G., et al. (2005), "Ion exchange extraction of heavy metal ions from wastewater." Separation science technology, 39 (9), pp.2031-2040. 210. Verma K., Kumar A.Varshney D. (2013), "Effect of Zn and Mg doping on structural, dielectric and magnetic properties of tetragonal CuFe2O4." Current Applied Physics, 13 (3), pp.467-473. 211. Verma S.Pravarthana D. (2011), "One-pot synthesis of highly monodispersed ferrite nanocrystals: surface characterization and magnetic properties." Langmuir, 27 (21), pp.13189-13197. 212. Wang D. (2016), "Environmental protection in clothing industry. in Sustainable Development": Proceedings of the 2015 International Conference on Sustainable Development (ICSD2015). World Scientific. 213. Wang F., Ma Z., Ban P., et al. (2017), "C, N and S codoped rutile TiO2 155 nanorods for enhanced visible-light photocatalytic activity." Materials Letters, 195, pp.143-146. 214. Wang W., Shu Y., Xiang H., et al. (2020), "Magnetic properties of Cu0.5Mg0.5Fe2O4 nanoparticles synthesized with waste ferrous sulfate." Materials Today Communications, 25, p.101516. 215. Wang Y.-Y., Chai L.-Y., Chang H., et al. (2009), "Equilibrium of hydroxyl complex ions in Pb 2+ -H2O system." Transactions of nonferrous metals society of China, 19 (2), pp.458-462. 216. Wang Y., Yang W., Chen X., et al. (2018), "Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer." Applied Catalysis B: Environmental, 220, pp.337-347. 217. Weber Jr W.J.Morris J.C. (1963), "Kinetics of adsorption on carbon from solution." Journal of the sanitary engineering division, 89 (2), pp.31-59. 218. Wu Q., Liu Y., Jing H., et al. (2020), "Peculiar synergetic effect of γ- Fe2O3 nanoparticles and graphene oxide on MIL-53 (Fe) for boosting photocatalysis." Chemical Engineering Journal, 390, p.124615. 219. Wu W., Jiang C.Roy V.A. (2015), "Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts." Nanoscale, 7 (1), pp.38-58. 220. Xian G., Kong S., Li Q., et al. (2020), "Synthesis of Spinel Ferrite MFe2O4 (M = Co, Cu, Mn, and Zn) for Persulfate Activation to Remove Aqueous Organics: Effects of M-Site Metal and Synthetic Method." Frontiers in chemistry, 8, p.177. 221. Xu D., Sun X., Zhao X., et al. (2018), "Heterogeneous Fenton degradation of rhodamine B in aqueous solution using Fe-loaded 156 mesoporous MCM-41 as catalyst." Water, Air, Soil Pollution 229 (10), pp.1-9. 222. Xu D., Tan X., Chen C., et al. (2008), "Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes." Journal of hazardous materials, 154 (1-3), pp.407-416. 223. Yang M.-Q., Zhang N.Xu Y.-J. (2013), "Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study." ACS applied materials interfaces, 5 (3), pp.1156-1164. 224. Yang Q., Zhang H., Liu Y., et al. (2009), "Microstructure and magnetic properties of microwave sintered M-type barium ferrite for application in LTCC devices." Materials Letters, 63 (3-4), pp.406-408. 225. Yu K., Yang S., He H., et al. (2009), "Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism." The Journal of Physical Chemistry A, 113 (37), pp.10024- 10032. 226. Yu W., Liu X., Pan L., et al. (2014), "Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO2." Applied Surface Science, 319, pp.107-112. 227. Zamouche M.Hamdaoui O. (2012), "Sorption of Rhodamine B by cedar cone: effect of pH and ionic strength." Energy Procedia, 18, pp.1228- 1239. 228. Zand A.D.Abyaneh M.R. (2020), "Adsorption of Lead, manganese, and copper onto biochar in landfill leachate: implication of non-linear regression analysis." Sustainable Environment Research, 30 (1), pp.1-16. 229. Zeng L., Lu Z., Li M., et al. (2016), "A modular calcination method to prepare modified N-doped TiO2 nanoparticle with high photocatalytic 157 activity." Applied Catalysis B: Environmental, 183, pp.308-316. 230. Zhang G.-Y., Sun Y.-Q., Gao D.-Z., et al. (2010), "Quasi-cube ZnFe2O4 nanocrystals: hydrothermal synthesis and photocatalytic activity with TiO2 (Degussa P25) as nanocomposite." Materials Research Bulletin, 45 (7), pp.755-760. 231. Zhang L., He Y., Wu Y., et al. (2011), "Photocatalytic degradation of RhB over MgFe2O4/TiO2 composite materials." Materials Science Engineering: B, 176 (18), pp.1497-1504. 232. Zhang L., Qingrui S.Hongxiao Y. (2017), "Method for preparing iodine-doped TiO2 nano-catalyst and use thereof in heterogeneously catalyzing configuration transformation of trans-carotenoids". Google Patents. 233. Zhang Y., Han C., Zhang G., et al. (2015), "PEG-assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine." Chemical Engineering Journal, 268, pp.170-179. 234. Zhang Y., Yan L., Xu W., et al. (2014), "Adsorption of Pb(II) and Hg(II) from aqueous solution using magnetic CoFe2O4-reduced graphene oxide." Journal of Molecular Liquids, 191, pp.177-182. 235. Zhang Y., Yang X., Zhang Y., et al. (2019), "High-performance electrochemical sensor based on Mn1-xZnxFe2O4 nanoparticle/nafion- modified glassy carbon electrode for Pb 2+ detection." Journal of The Electrochemical Society, 166 (6), p.B341. 236. Zhao Q., Wang M., Yang H., et al. (2018), "Preparation, characterization and the antimicrobial properties of metal ion-doped TiO2 nano-powders." Ceramics International, 44 (5), pp.5145-5154. 237. Zhong Z., Li Q., Zhang Y., et al. (2005), "Synthesis of nanocrystalline 158 Ni–Zn ferrite powders by refluxing method." Powder technology, 155 (3), pp.193-195. 238. Zhou L., Ji L., Ma P.-C., et al. (2014), "Development of carbon nanotubes/CoFe2O4 magnetic hybrid material for removal of tetrabromobisphenol A and Pb (II)." Journal of hazardous materials, 265, pp.104-114. 239. Zhou X., Liu N.Schmuki P.J.A.C. (2017), "Photocatalysis with TiO2 nanotubes:“colorful” reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes." ACS Catalysis, 7 (5), pp.3210-3235. 240. Zhu Y., Murali S., Cai W., et al. (2010), "Graphene and graphene oxide: synthesis, properties, and applications." Advanced materials, 22 (35), pp.3906-3924. 241. Zollinger H. (2003), Color chemistry: syntheses, properties, and applications of organic dyes and pigments. 2003: John Wiley & Sons. 242. Zou Z., Zhou Z., Wang H., et al. (2017), "Effect of Au clustering on ferromagnetism in Au doped TiO2 films: theory and experiments investigation." Journal of Physics Chemistry of Solids, 100, pp.71-77. 159 PHỤ LỤC Phụ lục 1: Phổ XRD lần lượt của các mẫu Cu0.5Mg0.5Fe2O4 nung ở 400÷1000 o C trong 2 giờ; MgFe2O4; CuFe2O4; TiO2 và Cu0.5Mg0.5Fe2O4/TiO2. 160 161 162 163 164 Phụ lục 2: Phổ khối MS và sắc ký đồ của các mẫu RhB tại các thời điểm khác nhau: 0 phút; 60 phút, 120 phút, 180 phút. RhB: 443 165 DER: 415 166 EER, DR: 387 167 ER: 359 168 Phụ lục 3: Sắc đồ đo TOC của các mẫu RhB tại các thời điểm khác nhau (a) 0 phút; (b) 30 phút; (c) 60 phút; (d) 90 phút; (e) 120 phút; (f) 150 phút và (g) 180 phút. 169 170 171 Phụ lục 4: Đường chuẩn phân tích Pb2+

Các file đính kèm theo tài liệu này:

  • pdfluan_an_nghien_cuu_che_tao_vat_lieu_tren_co_so_spinel_ferrit.pdf
  • docThongTin KetLuanMoi LuanAn NCS TranVanChinh.doc
  • pdfTomTat LuanAn NCS TranVanChinh_English.pdf
  • pdfTomTat LuanAn NCS TranVanChinh_TiengViet.pdf
  • docTrichYeu LuanAn NCS TranVanChinh.doc
Luận văn liên quan