Thứ nhất, vật liệu MAZL là một vật liệu kết hợp các đặc tính của LDH và cấu trúc lưới của zeolite, tạo ra một vật liệu lai có đặc tính nâng cao về khả năng trao đổi ion, khả năng hấp phụ cao. MAZL có một số đỉnh khác với zeolite (đỉnh 3460 của nhóm chức -OH, đỉnh 1369 của nhóm chức -C-O, đỉnh 860 và 553 của nhóm chức -C-H). MALZ có khác biệt zeolite với tỷ lệ Al tăng lên 6,22% và xuất hiện thêm các nguyên tố mới là Mg (10,09%) và Na (1,10%). MALZ có cấu trúc dị thể với diện tích bề mặt cao (252,6586 m²/g lớn gấp 9,66 lần so với zeolite). Tất cả những tính chất trên cho phép MAZL hấp phụ hiệu quả hơn các ion KLN và các chất ô nhiễm trong môi trường. Điều này làm cho nó trở thành vật liệu ưu việt trong việc loại bỏ các chất ô nhiễm từ môi trường.
Thứ hai, với ba thí nghiệm (nhóm 1: hấp phụ anion CrO42-, nhóm 2: hấp phụ cation Pb2+ và Cd2+, nhóm 3: CrO42-, Pb2+ và Cd2+) một số yếu tố ảnh hưởng tới hấp phụ CrO42-, Pb2+, Cd2+ của vật liệu MALZ được nghiên cứu là tỷ lệ % khối lượng vật liệu ủ với đất, pH, độ ẩm đất và thời gian ủ. Kết quả nghiên cứu cho thấy:
(1). Tỷ lệ vật liệu hấp phụ 3 % là tỷ lệ tối ưu, khi tăng tỷ lệ lên 5 % hàm lượng các KLN có khả năng trao đổi giảm không đáng kể. Ở 3% tỷ lệ vật liệu hấp phụ thí nghiệm hàm lượng Cr ở nhóm 1 là 8,27 %, nhóm 2 hàm lượng Pb và Cd lần lượt là 28,47 và 25,5 %, nhóm 3 hàm lượng Cr, Pb và Cd lần lượt là 15,1, 14,0, 39,7 %.
(2). Ở pH 5 Cr được cố định tốt nhất, Pb và Cd được cố định tốt nhất ở pH 7, hàm lượng Cr ở nhóm 1 là 19,96 %, nhóm 2 hàm lượng Pb và Cd lần lượt là 33,41 và 33,1 %, nhóm 3 hàm lượng Cr, Pb và Cd lần lượt là 10,26, 14,78 và 38,92 %.
(3). Ở độ ẩm 70 % Cr, Pb và Cd được cố định tốt nhất. Hàm lượng Cr ở nhóm 1 là 19,82 %, nhóm 2 hàm lượng Pb và Cd lần lượt là 35,24 và 26,36 %, nhóm 3 hàm lượng Cr, Pb và Cd lần lượt là 10,26, 14,77 và 30,02 %.
(4). Với thời gian 30 ngày ủ đất với vật liệu hấp phụ Cr, Pb và Cd được cố định tốt nhất. Hàm lượng Cr ở nhóm 1 là 19,5 %, nhóm 2 hàm lượng Pb và Cd lần lượt là 35,24 và 30,43 %, nhóm 3 hàm lượng Cr, Pb và Cd lần lượt là 10,26, 14,77 và 30,02 %.
So với vật liệu gốc zeolite, vật liệu lưỡng cực MAZL có khả năng hấp phụ các KLN tối ưu hơn nhiều. Mối tương quan giữa một số yếu tố môi trường ảnh hưởng đến hấp phụ (tỷ lệ vậy liệu, pH, độ ẩm và thời gian) và hàm lượng Cr, Pb và Cd khá chặt chẽ. Cơ chế hấp phụ chủ yếu quá trình đồng kết tủa, tạo phức, lực hút tĩnh điện, làm đầy các lỗ rỗng.
148 trang |
Chia sẻ: Kim Linh 2 | Ngày: 11/11/2024 | Lượt xem: 23 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu khả năng cố định một số kim loại nặng trong đất bằng vật liệu zeolite lưỡng cực, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
, Hussain. S., Abbas. F., Anjum. S. A., and Tang. X. (2020). Lead (Pb) distribution and accumulation in different plant parts and its associations with grain Pb contents in fragrant rice. Chemosphere, 248, pp. 1-31.
Azzi. V., Kanso. A., Kazpard. V., Kobeissi. A., Lartiges. B., and El Samrani. A. (2017). Lactuca sativa growth in compacted and non-compacted semi-arid alkaline soil under phosphate fertilizer treatment and cadmium contamination. Soil and tillage research, 165, pp. 1-10.
Baker. A. J. M., and Brooks. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery., 1(2), pp. 81-126.
Bashir. M. A., Naveed. M., Ahmad. Z., Gao. B., Mustafa. A., and Núñez-Delgado. A. (2020). Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. Journal of Environmental Management, 259, 110051. https://doi.org/https://doi.org/10.1016/j.jenvman.2019.110051.
Bian. C., Yang. Y., Luο. X., Zhang. W., Zhang. J., Zhu. L., and Qiu. J. (2021). Advances in the Synthesis of Crystalline Metallosilicate Zeolites via Interlayer Expansion. Molecules. https://doi.org/10.3390/molecules26195916.
Chaney. R. L., Malik. M., Li. Y. M., Brown. S. L., Brewer. E. P., Angle. J. S., and Baker. A. J. M. (1997). Phytoremediation of soil metals. Current opinion in Biotechnology, 8(3), pp. 279-284.
Chang. Y.T., Hsi. H.C., Hseu. Z.Y., and Jheng.S.L. (2013). Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products. Journal of Environmental Science and Health, Part A, 48(13), pp. 1748-1756.
Chigonum. W. J., Ikenna. O. C., and John. C. U. (2019). Dynamic impact of chromium on nutrient uptake from soil by fluted pumpkin (Telfairia occidentalis). Am. J. Biosci. Bioeng, 7, pp. 1-9.
Cygan. R. T., Greathouse. J. A., Heinz. H., & Kalinichev. A. G. (2009). Molecular models and simulations of layered materials. Journal of Materials Chemistry, 19(17), 2470-2481.
Dang. V. M., Nguyen. V. D., Van. H. T., Nguyen. V. Q., Nguyen. T. N., and Nghiem. L. D. (2022). Removal of Cr (VI) and Pb (II) from aqueous solution using Mg/Al layered double hydroxides-mordenite composite. Separation Science and Technology, 57(15), pp. 2432-2445.
Ding. G., Jin. Z., Han. Y., Sun. P., Li. G., and Li. W. (2019). Mitigation of chromium toxicity in Arabidopsis thaliana by sulfur supplementation. Ecotoxicology and Environmental Safety, https://doi.org/10.1016/j.ecoenv.2019.109379.
Ding. M., Zhang. M., Zeng. H., Hayashi. Y., Zhu. Y., and Kinoshita. T. (2021). Molecular basis of plasma membrane H+-ATPase function and potential application in the agricultural production. Plant Physiology and Biochemistry, 168, pp. 10-16.
Dung. N. T., Thao. V. D., and Huy. N. N. (2021). Decomposition of glyphosate in water by peroxymonosulfate activated with CuCoFe‐LDH material. Vietnam Journal of Chemistry, 59(6), pp. 813-822.
Elboughdiri. N. (2020). The Use of Natural Zeolite to Remove Heavy Metals Cu (II), Pb (II) and Cd (II), From Industrial Wastewater. Cogent Engineering. https://doi.org/10.1080/23311916.2020.1782623.
EPA, US. (2007). Treatment technologies for site cleanup. Annual Status Report, Washington. United States Environmental Protection Agency (EPA): Washington, DC, USA.
Evanko. C. R., and Dzombak. D. A. (1997). Remediation of metals-contaminated soils and groundwater. Ground-water remediation technologies analysis center Pittsburgh, PA, USA, pp. 5-13.
Fozia. A., Muhammad. A. Z., Muhammad. A., and Zafar. M. K. (2008). Effect of chromium on growth attributes in sunflower (Helianthus annuus L.). Journal of Environmental Sciences, 20(12), pp. 1475-1480.
Franić. M., and Galić. V. (2019). As, cd, Cr, Cu, Hg: Physiological implications and toxicity in plants. Plant Metallomics and Functional Omics: A System-Wide Perspective, pp. 209-251.
Gao. M., Yang. L., Yang. S., Jiang. T., Wu. F., and Nagasaka. T. (2022). Simple Aminated Modified Zeolite 4A Synthesized Using Fly Ash and Its Remediation of Mercury Contamination: Characteristics and Mechanism. Sustainability, 14(23), 15924, https://doi.org/10.3390/su142315924.
Genchi. G., Sinicropi. M. S., Lauria. G., Carocci. A., and Catalano. A. (2020). The effects of cadmium toxicity. International journal of environmental research and public health, 17(11), 3782, https://doi.org/10.3390/ijerph17113782.
Ghosh. K., and Indra. N. (2018). Cadmium treatment induces echinocytosis, DNA damage, inflammation, and apoptosis in cardiac tissue of albino Wistar rats. Environmental Toxicology and Pharmacology, 59, pp. 43-52.
Goix. S., Lévêque. T., Xiong. T.-T., Schreck. E., Baeza-Squiban. A., Geret. F., Uzu. G., Austruy. A., and Dumat. C. (2014). Environmental and health impacts of fine and ultrafine metallic particles: assessment of threat scores. Environmental research, 133, pp. 185-194.
Golovatyj. S. E., and Bogatyreva. E. N. (1999). Effect of levels of chromium content in a soil on its distribution in organs of corn plants, 8, pp. 197-204.
Gomes. P. C., Fontes, M. P. F., Da Silva. A. G., de S. Mendonça. E. and Netto. A. R. (2001). Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. Soil Science Society of America Journal. 65(4), pp. 1115-1121.
Gorospe. J., (2012). Growing greens and soiled soil: Trends in heavy metal contamination in vegetable gardens of San Francisco. San Jose State University, pp. 1-125.
Guo. B., Liu. B., Yang. J., and Zhang. S., (2017). The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. Journal of Environmental Management, 193, pp. 410-422. https://doi.org/https://doi.org/10.1016/j.jenvman.2017.02.026.
Guo. L., Zhang. X., Chen. Q., Ruan. C., and Leng. Y. (2016). Enhanced removal performance by the core-shell zeolites/MgFe-layered double hydroxides (LDHs) for municipal wastewater treatment. Environmental Science and Pollution Research, 23, pp. 6749-6757.
Gupta. S. K., Herren. T., Wenger. K., Krebs. R., and Hari. T. (2020). In situ gentle remediation measures for heavy metal-polluted soils. Phytoremediation of contaminated soil and water, CRC Press (pp. 303-322).
Hancock. L. M. S., Ernst. C. L., Charneskie. R., and Ruane. L. G. (2012). Effects of cadmium and mycorrhizal fungi on growth, fitness, and cadmium accumulation in flax (Linum usitatissimum; Linaceae). American Journal of Botany, 99(9), pp. 1445-1452.
Hao. W., Pudasainee. D., Gupta. R., Kashiwabara. T., Alessi. D. S., and Konhauser. K. O. (2019). Effect of Acidic Conditions on Surface Properties and Metal Binding Capacity of Clay Minerals. Acs Earth and Space Chemistry. https://doi.org/10.1021/acsearthspacechem.9b00166.
Hasanabadi. T., Shahram. L., Modhej. A., Ghafourian. H., Alavifazel. M., and Ardakani. M. R. (2019). Feasibility study on reducing lead and cadmium absorption by alfalfa (Medicago scutellata L.) in a contaminated soil using nano-activated carbon and natural based nano-zeolite. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), pp. 1185-1193.
Hassan. N. S., Jalil. A. A., Bahari. M. B., Khusnun. N. F., Aldeen. E. M. S., Mim. R. S., Firmansyah. M. L., Rajendran. S., Mukti. R. R., and Andika. R. (2022). A comprehensive review on zeolite-based mixed matrix membranes for CO2/CH4 separation. Chemosphere, 137709, https://doi.org/10.1016/j.chemosphere.2022.137709.
He. Z., Shen. J., Ni. Z., Tang. J., Song. S., Chen. J., and Zhao. L. (2015). Electrochemically created roughened lead plate for electrochemical reduction of aqueous CO2. Catalysis Communications, 72, pp. 38-42.
Hong. M., Yu. L., Wang. Y., Zhang. J., Chen. Z., Dong. L., Zan. Q., and Li. R., (2019). Heavy metal adsorption with zeolites: The role of hierarchical pore architecture. Chemical Engineering Journal, 359, pp. 363-372.
Hongbo. S., Liye. C., Gang. X., Kun. Y., Lihua. Z., and Junna. S. (2011). Progress in Phytoremediating Heavy-Metal Contaminated Soils. In: Sherameti, I., Varma, A. (eds) Detoxification of Heavy Metals. Soil Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21408-0_4.
Hu. B., Chen. S., Hu. J., Xia. F., Xu. J., Li. Y., and Shi. Z. (2017). Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. PLoS One, 12(2), e0172438.
Hu. Q., Zeng. W., Li. F., Huang. Y., Gu. S., Cai. H., Zeng. M., Li. Q., and Tan. L. (2018). Effect of Nano Zeolite on the Transformation of Cadmium Speciation and Its Uptake by Tobacco in Cadmium-contaminated Soil: Nano Zeolite impact soil Cd Speciation and Cd Uptake by Tobacco. Open Chemistry, 16(1), pp. 667-673.
Hubbard. A. T., (2002). Encyclopedia of surface and colloid science (Vol 1). ISBN: 0-8247-0757-5, CRC press. Marcel Dekker, inc, New York, pp. 1-1466.
Huy. T. Q., and Wada. S.-I. (2004). Cadmium status of some soils and sewage sludge in Red River Delta of Vietnam, J. Fac. Agr., Kyushu Univ., 49 (1), pp. 149 -155.
Igalavithana. A. D., Kwon. E. E., Vithanage. M., Rinklebe. J., Moon. D. H., Meers. E., Tsang. D. C. W., and Ok. Y. S. (2019). Soil lead immobilization by biochars in short-term laboratory incubation studies. Environment international, 127, pp. 190-198.
Iqbal. M. M., Hafeez-ur-Rehman. Murtaza. G., Naz. T., Javed. W., Mehdi. S. M., Javed. S., and Sheikh. A. A. (2016). Transformation and adsorption of lead as affected by organic matter and incubation time in different textured salt-affected soils. Journal of Agriculture and Environmental Sciences, 1(2), pp. 140-145.
Jha. B., Singh. D. N., Jha. B., and Singh. D. N. (2016). Basics of zeolites. Fly ash zeolites: Innovations, applications, and directions, 5-31.
Jiang, H., Deng. Q., Zhou. G., Hui. D., Zhang. D., Liu. S., Chu. G., and Li. J. (2013). Responses of soil respiration and its temperature/moisture sensitivity to precipitation in three subtropical forests in southern China. Biogeosciences, 10(6), pp. 3963-3982.
Jing. S., Lan. M. X., Wen. W., Jing. Z., Hao. Z., and Jun. W. Y. (2020). Adsorption characteristics of atrazine on different soils in the presence of Cd (II). Adsorption Science and Technology, 38(7-8), pp. 225-239.
Dang. V. M., Joseph. S., Van. H. T., Mai. T. L. A., Duong. T. M. H., Weldon. S., Taherymoosavi. S., (2018). Immobilization of heavy metals in contaminated soil after mining activity by using biochar and other industrial by-products: the significant role of minerals on the biochar surfaces. Environmental Technology, 40(24), 3200-3215. https://doi.org/10.1080/09593330.2018.1468487.
Dang. V. M, Van. H. T., Vinh. N. D., Duong. T. M. H., Nguyen. T. B. H., Nguyen. T. T., Tran. T. N. H., Hoang. T. K., Tran. T. P., Nguyen. L. H., and Chu. M. N. (2021). Enhancement of exchangeable Cd and Pb immobilization in contaminated soil using Mg/Al LDH-zeolite as an effective adsorbent. RSC advances, 11(28), pp. 17007-17019.
Khan. M. A., Chattha. M. R., Farooq. K., Jawed. M. A., Farooq. M., Imran. M., Iftkhar. M., and Kasana. M. I. (2015). Effect of farmyard manure levels and NPK applications on the pea plant growth, pod yield and quality. Life Sci. Int. J, 9(1), 2.
Khan. M., Rolly. N. K., Al Azzawi. T. N. I., Imran. M., Mun. B.-G., Lee. I.-J., and Yun. B.-W. (2021). Lead (Pb)-induced oxidative stress alters the morphological and physio-biochemical properties of rice (Oryza sativa L.). Agronomy, 11(3), 409; https://doi.org/10.3390/agronomy11030409.
Kicińska. A., Pomykała. R., and Izquierdo. M. (2021). Changes in Soil pH and Mobility of Heavy Metals in Contaminated Soils. European Journal of Soil Science. https://doi.org/10.1111/ejss.13203.
Komonweeraket. K., Cetin. B., Aydilek. A., Benson. C., and Edil. T. (2015). Geochemical Analysis of Leached Elements from Fly Ash Stabilized Soils. Journal of Geotechnical and Geoenvironmental Engineering, 141, 4015012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001288.
Li. Q., Jiang. W., and Lyu. J. (2024). Soil health assessment of an acidic red soil agricultural area and its restoration with biochar soil conditioners. Soil Use and Management, 40(1), e13002. https://doi.org/10.1111/sum.13002.
Liu. L., Li. J., Wu. G., Shen. H., Fu. G., and Wang. Y. (2021). Combined effects of biochar and chicken manure on maize (Zea mays L.) growth, lead uptake and soil enzyme activities under lead stress. PeerJ, 9, e11754. https://doi.org/10.7717/peerj.11754.
Lombi. E., Zhao. F.-J., Zhang. G., Sun. B., Fitz. W., Zhang. H., and McGrath. S. P. (2002). In situ fixation of metals in soils using bauxite residue: chemical assessment. Environmental pollution, 118(3), pp. 435-443.
Lu. Y., Yao. H., Shan. D., Jiang. Y., Zhang. S., and Yang. J. (2015). Heavy metal residues in soil and accumulation in maize at long-term wastewater irrigation area in Tongliao, China. Journal of Chemistry, 2015, https://doi.org/10.1155/2015/628280.
Ma. C., Lin. L., Yang. J., Liu. F., Berrettoni. M., Zhang. K., Liu. N., and Zhang. H. (2023). Mechanisms of lead uptake and accumulation in wheat grains based on atmospheric deposition-soil sources. Science of The Total Environment, 885, 163845, https://doi.org/10.1016/j.scitotenv.2023.163845.
Ma. L. Q., Komar. K. M., Tu. C., Zhang. W., Cai. Y., and Kennelley. E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409(6820). 579, https://doi.org/10.1038/35054664.
Ma. Y., Cheng. L., Zhang. D., Zhang. F., Zhou. S., Ma. Y., Guo. J., Zhang. Y., and Xing. B. (2022). Stabilization of Pb, Cd, and Zn in soil by modified-zeolite: Mechanisms and evaluation of effectiveness. Science of the Total Environment, 814, 152746, https://doi.org/10.1016/j.scitotenv.2021.152746.
Martin. T. A., and Ruby. M. V. (2004). Review of in situ remediation technologies for lead, zinc, and cadmium in soil. Remediation Journal: The Journal of Environmental Cleanup Costs, Technologies and Techniques, 14(3), pp. 35-53.
Medyńska‐Juraszek. A., and Ćwieląg-Piasecka. I. (2020). Effect of Biochar Application on Heavy Metal Mobility in Soils Impacted by Copper Smelting Processes. Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes/108928.
Morais. E. G. de, Silva. C. A., and Jindo. K. (2021). Humic acid improves zn fertilization in oxisols successively cultivated with maize-brachiaria. Molecules, 26(15), 4588, https://doi.org/10.3390/molecules26154588.
Moschandreas. D. J., Karuchit. S., Berry. M. R., O’rourke. M. K., Lo. D., Lebowitz. M. D., and Robertson. G. (2002). Exposure apportionment: ranking food items by their contribution to dietary exposure. Journal of Exposure Science and Environmental Epidemiology, 12(4), pp. 233-243.
Naidu. R., Bolan. N. S., Kookana. R. S., and Tiller. K. G. (1994). Ionic‐strength and pH effects on the sorption of cadmium and the surface charge of soils. European journal of soil science, 45(4), pp. 419-429.
Nalawade. P., Aware. B., Kadam. V. J., and Hirlekar. R. S. (2009). Layered double hydroxides: A review. Journal of Scientific & Industrial Research Vol. 68, April 2009, pp.267-272.
Ngoc. M. N., Dultz. S., and Kasbohm. J. (2009). Simulation of retention and transport of copper, lead and zinc in a paddy soil of the Red River Delta, Vietnam. Agriculture, ecosystems and environment, 129(1-3), pp. 8-16.
Nivetha. A., Mangala Devi. S., and Prabha. I. (2019). Fascinating physic-chemical properties and resourceful applications of selected cadmium nanomaterials. Journal of Inorganic and Organometallic Polymers and Materials, 29, pp. 1423-1438.
Ok. Y. S., Lim. J. E., and Moon. D. H. (2011). Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells. Environmental Geochemistry and Health, 33, pp. 83-91.
Okoronkwo. N. E., Igwe. J. C., and Onwuchekwa. E. C. (2005). Risk and health implications of polluted soils for crop production. African journal of Biotechnology, 4(13), doi 10.4314/ajfand.v4i13.71825.
Olfs. H.-W., Torres-Dorante. L. O., Eckelt. R., and Kosslick. H. (2009). Comparison of different synthesis routes for Mg-Al layered double hydroxides (LDH): Characterization of the structural phases and anion exchange properties. Applied clay science, 43(3-4), pp. 459-464.
Onireti. O. O., Lin. C., and Qin. J. (2017). Combined Effects of Low-Molecular-Weight Organic Acids on Mobilization of Arsenic and Lead From Multi-Contaminated Soils. Chemosphere. https://doi.org/10.1016/j.chemosphere. 2016.12.024.
Osu Charles. I., and Onyema. M. O. (2016). Vanadium inhibition capacity on nutrients and heavy metal uptake by Cucumis Sativus. J. Am. Sci, 12(3), pp. 139-147.
Panek. R., Medykowska. M., Szewczuk-Karpisz. K., and Wiśniewska. M. (2021). Comparison of physicochemical properties of fly ash precursor, Na-P1 (C) zeolite-carbon composite and Na-P1 zeolite—adsorption affinity to divalent Pb and Zn cations. Materials. 14(11), 3018, https://doi.org/10.3390/ma14113018.
Phuong. N. T. T., Ha. T. T. M., Han. T. N., and Santosa. S. J. (2018). Application of Magnetite Zn/Al Layered Double Hydroxide (Fe3O4 Zn/Al LDH) on the Removal of Organic Matter in Supplying Water. Science and Technology Development Journal: Science of the Earth and Environment, 2(1), pp. 5-12.
Radziemska. M. (2018). Study of applying naturally occurring mineral sorbents of Poland (dolomite halloysite, chalcedonite) for aided phytostabilization of soil polluted with heavy metals. Catena, 163, pp. 123-129.
Raskin. I., and Ensley. B. D. (2000). Phytoremediation of toxic metals. John Wiley and Sons, ISBN: 978-0-471-19254-1, 304 - pp.
Ren. C., Xiao. J.-H., Li. J.-T., Du. Q.-Q., Zhu. L.-W., Wang. H., Zhu. R.-Z., and Zhao. H.-Y. (2022). Accumulation and Transport Characteristics of Cd, Pb, Zn, and As in Different Maize Varieties. Huan Jing ke Xue= Huanjing Kexue, 43(8), pp. 4232-4252.
Riaz. M., Kamran. M., Rizwan. M., Ali. S., Parveen. A., Malik. Z., and Wang. X. (2021). Cadmium uptake and translocation: selenium and silicon roles in Cd detoxification for the production of low Cd crops: a critical review. Chemosphere, 273, 129690, https://doi.org/10.1016/j.chemosphere. 2021.129690.
Ricou-Hoeffer. P., Héquet. V., Lecuyer. I., and Le Cloirec. P. (2000). Adsorption and stabilization of nickel ions on fly ash/lime mixing. Water science and technology, 42(5-6), pp. 79-85.
Ross. S. M. (1994). Sources and forms of potentially toxic metals in soil-plant systems. Toxic metals in soil-plant systems, pp. 3-25.
Ruby. M. V., Schoof. R., Brattin. W., Goldade. M., Post. G., Harnois. M., Mosby. D. E., Casteel. S. W., Berti. W., and Carpenter. M. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental science and technology, 33(21), pp. 3697-3705.
Ruttens. A., Adriaensen. K., Meers. E., De Vocht. A., Geebelen. W., Carleer. R., Mench. M., and Vangronsveld. J. (2010). Long-term sustainability of metal immobilization by soil amendments: cyclonic ashes versus lime addition. Environmental Pollution, 158(5), pp. 1428-1434.
Saeed. Z., Naveed. M., Imran. M., Bashir. M. A., Sattar. A., Mustafa. A., Hussain. A., and Xu. M. (2019). Combined use of Enterobacter sp. MN17 and zeolite reverts the adverse effects of cadmium on growth, physiology and antioxidant activity of Brassica napus. PLoS One, 14(3), e0213016, https://doi.org/10.1371/journal.pone.0213016.
Sauvé. S., Hendershot. W. H., and Allen. H. E. (2000). Solid-Solution Partitioning of Metals in Contaminated Soils: Dependence on pH, Total Metal Burden, and Organic Matter. Environmental Science and Technology. https://doi.org/10.1021/es9907764.
Sethy. S. K., and Ghosh. S. (2013). Effect of heavy metals on germination of seeds. Journal of natural science, biology, and medicine, 4(2), 272.
Shaheen. S. M, Derbalah. A. S, and Moghanm. F. S, (2012). Removal of heavy metals from aqueous solution by zeolite in competitive sorption system. International Journal of Environmental Science and Development, 3(4), pp. 362-367.
Shahzad. B., Tanveer. M., Rehman. A., Cheema. S. A., Fahad. S., Rehman. S., and Sharma. A. (2018). Nickel; whether toxic or essential for plants and environment-A review. Plant physiology and biochemistry, 132, pp. 641-651.
Sharma. A., Kapoor. D., Wang. J., Shahzad. B., Kumar. V., Bali. A. S., Jasrotia. S., Zheng. B., Yuan. H., and Yan. D. (2020). Chromium bioaccumulation and its impacts on plants: an overview. Plants, 9(1), 100, https://doi.org/10.3390/plants9010100.
Shekari. L., Aroiee. H., Mirshekari. A., and Nemati. H. (2019). Protective role of selenium on cucumber (Cucumis sativus L.) exposed to cadmium and lead stress during reproductive stage role of selenium on heavy metals stress. Journal of Plant Nutrition, 42(5), pp. 529-542.
Shi. L., Ying. Z., Xu. A., and Cheng. Y. (2021). Unraveling the hydroxide ion transportation mechanism along the surface of two-dimensional layered double hydroxide nanosheets. The Journal of Physical Chemistry C, 125(2), pp. 1240-1248.
Shi. W., Li. H., Du. S., Wang. K., and Shao. H. (2013). Immobilization of lead by application of zeolite: Leaching column and rhizobox incubation studies. Applied Clay Science, 85, pp. 103-108.
Shiyab. S. (2019). Morphophysiological effects of chromium in sour orange (Citrus aurantium L.). HortScience, 54(5). pp. 829-834.
Singh. S., Parihar. P., Singh. R., Singh. V. P., and Prasad. S. M. (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in plant science, 6, 1143.
Smith. S., Peterson. P. J., and Kwan. K. H. M. (1989). Chromium accumulation, transport and toxicity in plants. Toxicological and Environmental Chemistry, 24(4), pp. 241-251.
Sneddon. I. R., Orueetxebarria. M., Hodson. M. E., Schofield. P. F., and Valsami-Jones. E. (2006). Use of bone meal amendments to immobilise Pb, Zn and Cd in soil: a leaching column study. Environmental pollution, 144(3), pp. 816-825.
Soldatova. N. A., and Khryanin. V. N. (2010). The effects of heavy metal salts on the phytohormonal status and sex expression in marijuana. Russian Journal of Plant Physiology, 57, pp. 96-100.
Song. Z., Zhang. Z., Luo. C., Yang. L., and Wu. J. (2022). High-efficiency stabilization of lead in contaminated soil by thermal-organic acid-activated phosphate rock. Environ Sci Pollut Res 29, 49116-49125 (2022). https://doi.org/10.1007/s11356-022-19419-0.
Souahi. H., Chebout. A., Akrout. K., Massaoud. N., and Gacem. R. (2021). Physiological responses to lead exposure in wheat, barley and oat. Environmental Challenges, 4, 100079, https://doi.org/10.1016/ j.envc.2021.100079.
Sposito. G., (1984). The surface chemistry of soils. ISBN (Hardback): 978-0-19-503421-9, Oxford University Press, New York, pp 1-234.
Srivastava. D., Tiwari. M., Dutta. P., Singh. P., Chawda. K., Kumari. M., and Chakrabarty. D. (2021). Chromium stress in plants: toxicity, tolerance and phytoremediation. Sustainability 2021, 13(9), 4629; https://doi.org/10.3390/ su13094629.
Sun. X., Tang. Z., Zheng. G., Du. H., and Li. P. (2024). Effects of different cellular and subcellular characteristics on the atmospheric Pb uptake, distribution and morphology in Tillandsia usneoides leaves. Plant Physiology and Biochemistry, 207, 108400, https://doi.org/10.1016/j.plaphy.2024.108400.
Sundaramoorthy. P., Chidambaram. A., Ganesh. K. S., Unnikannan. P., and Baskaran. L. (2010). Chromium stress in paddy:(i) nutrient status of paddy under chromium stress;(ii) phytoremediation of chromium by aquatic and terrestrial weeds. Comptes rendus biologies, 333(8), pp. 597-607.
Tatlier. M., Munz. G., and Henninger. S. K., (2018). Relation of water adsorption capacities of zeolites with their structural properties. Microporous and Mesoporous Materials, 264, pp. 70-75. https://doi.org/https://doi.org/10.1016/j.micromeso.2017.12.031.
Tessier. A., Campbell. P. G. C., and Bisson. M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), pp. 844-851. https://doi.org/10.1021/ac50043a017.
Tóth. G., Hermann. T., Da Silva. M. R., and Montanarella. L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment international, 88, pp. 299-309.
Tsai. W. T., Hsien. K. J., and Hsu. H. C., (2009). Adsorption of organic compounds from aqueous solution onto the synthesized zeolite. Journal of hazardous materials, 166(2-3), pp. 635-641.
Uchimiya. M., Wartelle. L. H., Klasson. K. T., Fortier. C. A., and Lima. I. M. (2011). Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of agricultural and food chemistry, 59(6), pp. 2501-2510.
Uraguchi. S., and Fujiwara. T. (2013). Rice breaks ground for cadmium-free cereals. Current Opinion in Plant Biology, 16(3), pp. 328-334. https://doi.org/https://doi.org/10.1016/j.pbi.2013.03.012.
Usman. A. R. A., Lee. S. S., Awad. Y. M., Lim. K. J., Yang. J. E., and Ok. Y. S. (2012). Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea. Chemosphere, 87(8), pp. 872-878.
Usman. M., Farooq. M., Wakeel. A., Nawaz. A., Cheema. S. A., ur Rehman. H., Ashraf. I., and Sanaullah. M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment, 721, 137778, https://doi.org/10.1016/j.scitotenv.2020.137778.
Wang. C., Li. W., Yang. Z., Chen. Y., Shao. W., and Ji. J. (2015). An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability. Scientific Reports, 5(November 2014), pp. 1-9. https://doi.org/10.1038/srep12735.
Wang. F., Bao. K., Huang. C., Zhao. X., Han. W., and Yin. Z. (2022). Adsorption and pH values determine the distribution of cadmium in terrestrial and marine soils in the Nansha area, Pearl River Delta. Int. J. Environ. Res. Public Health, 19(2), 793; https://doi.org/10.3390/ijerph19020793.
Wang. F., Zhang. S., Cheng. P., Zhang. S., and Sun. Y. (2020). Effects of soil amendments on heavy metal immobilization and accumulation by maize grown in a multiple-metal-contaminated soil and their potential for safe crop production. Toxics, 8(4), 102; https://doi.org/10.3390/toxics8040102.
Wang. S., Schianchi. F., Neumann. D., Wong. L.-Y., Sun. A., van Nieuwenhoven. F. A., Zeegers. M. P., Strzelecka. A., Col. U., and Glatz. J. F. C. (2021). Specific amino acid supplementation rescues the heart from lipid overload-induced insulin resistance and contractile dysfunction by targeting the endosomal mTOR-v-ATPase axis. Molecular Metabolism, 53, 101293, https://doi.org/10.1016/j.molmet.2021.101293.
Wen. B., Hu. X., Liu. Y., Wang. W., Feng. M., and Shan. X. (2004). The role of earthworms (Eisenia fetida) in influencing bioavailability of heavy metals in soils. Biology and Fertility of Soils, 40(3), pp. 181-187. https://doi.org/10.1007/s00374-004-0761-3.
Wong. C., Roberts. S. M., and Saab. I. N. (2022). Review of regulatory reference values and background levels for heavy metals in the human diet. Regulatory Toxicology and Pharmacology, 130. 105122. https://doi.org/https://doi.org/10.1016/j.yrtph.2022.105122.
Xia. Y., Liu. H., Guo. Y., Liu. Z., and Jiao. W. (2019). Immobilization of heavy metals in contaminated soils by modified hydrochar: Efficiency, risk assessment and potential mechanisms. Science of the total environment, 685, pp. 1201-1208.
Xu. Q., Wu. B., and Chai. X. (2022). In situ remediation technology for heavy metal contaminated sediment: a review. International Journal of Environmental Research and Public Health, 19(24), 16767.
Yoon. J., Cao. X., Zhou. Q., and Ma. L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the total environment, 368(2-3), pp. 456-464.
Zayed. A. M., and Terry. N. (2003). Chromium in the environment: factors affecting biological remediation. Plant and soil, 249, pp. 139-156.
Zeng. Q., Shen. L., Feng. T., and Hao. R. (2022). Investigation of the distribution of heavy metals in the soil of the Dahuangshan mining area of the southern Junggar coalfield, Xinjiang, China. Minerals, 12(10), 1332, https://doi.org/10.3390/min12101332.
Zhang. X., Lei. Y., Yuan. Y., Gao. J., Jiang. Y., Xu. Z., and Zhao. S. (2018). Enhanced removal performance of Cr(VI) by the core-shell zeolites/layered double hydroxides (LDHs) synthesized from different metal compounds in constructed rapid infiltration systems. Environmental Science and Pollution Research, 25(10), pp. 9759-9770. https://doi.org/10.1007/s11356-018-1303-0.
Zhang. Y., Sun. Y., Li. W., Li. J., Xu. R., Du. J., Li. Z., Li. G., and Yang. K. (2022). Chelator iminodisuccinic acid regulates Reactive Oxygen species accumulation and improves Maize (Zea mays L.) seed germination under Pb stress. Plants, 11(19), 2487; https://doi.org/10.3390/plants11192487.
Zheng. L., Tong. C., Gao. J., and Xiao. R. (2022). Effects of Wetland Plant Biochars on Heavy Metal Immobilization and Enzyme Activity in Soils From the Yellow River Estuary. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-18116-8.
Zheng. S., and Zhang. M. (2011). Effect of moisture regime on the redistribution of heavy metals in paddy soil. Journal of Environmental Sciences, 23(3), pp. 434-443.
Zhou. J., Zhang. C., Du. B., Cui. H., Fan. X., Zhou. D., and Zhou. J. (2020). Effects of zinc application on cadmium (Cd) accumulation and plant growth through modulation of the antioxidant system and translocation of Cd in low-and high-Cd wheat cultivars. Environmental Pollution, 265, 115045, https://doi.org/10.1016/j.envpol.2020.115045.
Zhu. Y., Ma. J., Chen. F., Yu. R., Hu. G., and Zhang. S. (2020). Remediation of soil polluted with Cd in a postmining area using thiourea-modified biochar. Int. J. Environ. Res. Public Health, 17(20), 7654; https://doi.org/10.3390/ ijerph17207654.