Sau 5 năm nghiên cứu và thực hiện, Luận án đã xây dựng được quy trình nghiên
cứu triển khai công nghệ khí hóa sinh học than ngầm quy mô phòng thí nghiệm từ
quá trình lấy mẫu, bảo quản và gia công phân tích mẫu cho đến xác lập các điều
kiện thí nghiệm phù hợp với đối tượng là than Sông Hồng và quần xã vi sinh vật
bản địa kị khí nghiêm ngặt. Kết quả của Luận án là cơ sở khoa học để triển khai
công nghệ khí hóa sinh học than ngầm tại bể than Sông Hồng, Việt Nam. Các kết
quả nghiên cứu chính đã hoàn thành được hai mục tiêu đề ra trong Luận án, được
trình bày dưới đây:
1. Các đặc điểm địa chất và hóa địa thủy văn của bể than Sông Hồng tại khu
vực nghiên cứu khẳng định tính khả dụng sinh học để khí hóa than ngầm bằng vi
sinh vật: tồn tại 05 vỉa than tương ứng 5 vị trí lấy mẫu (C1 đến C5; chiều sâu vỉa từ
396,04 m đến 853,82 m) có bề dày vỉa khoảng từ 3 ̶ 5 m; các vỉa than có thành phần
chất bốc cao (40,29 ̶ 47,19%); kích thước lỗ rỗng phù hợp cho vi sinh vật xâm nhập
trong than (> 400 nm, chiếm 11,98 ̶ 36,08% tổng thể tích lỗ) cùng tính liên thông lỗ
rỗng tốt; nước ngầm liên kết bể than mang đặc trưng của một bể than có khả năng
sinh khí.
2. Đã chứng minh được sự tồn tại của quần xã vi sinh vật bản địa có khả năng
chuyển hóa than thành khí trong bể than sông Hồng tại khu vực nghiên cứu. Ngành
Proteobacteria chiếm ưu thế trong các vỉa than, với chi phổ biến nhất thuộc
Burkholderia-Caballeronia-Paraburkholderia. Các ngành Proteobacteria –
Archaea – Firmicutes – Actinobacteria – Bacteroidete là các ngành phổ biến theo
mức độ giảm dần trong mẫu nước liên kết bể than, với chi phổ biến nhất là
Shewanella. Con đường chuyển hóa sinh khí methane dinh dưỡng methyl với nhóm
cổ khuẩn Methanolobus chiếm ưu thế. Quần xã vi sinh vật bản địa đáp ứng với việc
bổ sung dinh dưỡng, cho hiệu suất sinh khí cao hơn trong thời gian ngắn hơn, dao
động từ 1,14 đến 4,96 mL CH4/g than.
Bằng các nghiên cứu đã nêu trong Luận án, đã xác định được tính khả thi và
phạm vi áp dụng phù hợp của giải pháp khí hóa sinh học than ngầm trong bể than
Sông Hồng tại vùng nghiên cứu là các vỉa than có chiều sâu vỉa tới 745,25 m.
146 trang |
Chia sẻ: huydang97 | Ngày: 27/12/2022 | Lượt xem: 313 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu khả năng khí hóa than của hệ vi sinh vật từ bể than sông Hồng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
. A. (2012),
"Palaeoclimate reconstruction from biomarker geochemistry and stable isotopes of
n-alkanes from Carboniferous and Early Permian humic coals and limnic
sediments in western and eastern Europe", Organic Geochemistry, Vol. 43, pp.
125-149.
[74] Mallants, D, Bekele E, Schmid W, Miotlinski K and , Bristow K (2017), "Literature
review: Identification of potential pathways to shallow groundwater of fluids
associated with hydraulic fracturing, Project report prepared by the
Commonwealth Scientific and Industrial Research Organisation (CSIRO) as part of
the National Assessment of Chemicals Associated with Coal Seam Gas Extraction
in Australia, Commonwealth of Australia, Canberra.".
[75] Kerst, M., Andersson J. T. (2001), "Microwave-assisted extraction of polycyclic
aromatic compounds from coal", Fresenius J Anal Chem, Vol. 370, No. 7, pp. 970-
2.
[76] Stout, Scott A., Emsbo-Mattingly Stephen D. (2008), "Concentration and character of
121
PAHs and other hydrocarbons in coals of varying rank@ Implications for
environmental studies of soils and sediments containing particulate coal", Organic
Geochemistry, Vol. 39, pp. 801-819.
[77] Wang, Ruwei, Liu Guijian, Zhang Jiamei, Chou Chen-Lin, Liu Jingjing (2010),
"Abundances of Polycyclic Aromatic Hydrocarbons (PAHs) in 14 Chinese and
American Coals and Their Relation to Coal Rank and Weathering", Energy &
Fuels, Vol. 24, No. 11, pp. 6061-6066.
[78] Ahmed, Manzur , Smith J. W. , George Simon C. (1999), "Effects of biodegradation on
Australian Permian coals", n: Organic Geochemistry, Vol. 30, No. 10, pp. 1311-
1322.
[79] Zong, Yingxia, Zong Zhi-Min, Ding Ming-jie, Zhou Lei, Huang Yao-Guo, Zheng
Yuxuan, Jin Xin, Ma Yumiao, Wei Xian-Yong (2009), "Separation and analysis of
organic compounds in an Erdos coal", Fuel, Vol. 88, pp. 469-474.
[80] Schulz, H. M. (1997), "Coal mine workers' pneumoconiosis (CWP): in vitro study of
the release of organic compounds from coal mine dust in the presence of
physiological fluids", Environ Res, Vol. 74, No. 1, pp. 74-83.
[81] Piedad-Sanchez, Noe, Suárez-Ruiz Isabel, Martı́nez Luis, Izart Alain, Elie Mutombo,
Keravis Didier (2004), "Organic petrology and geochemistry of the Carboniferous
coal seams from the Central Asturian Coal Basin (NW Spain)", International
Journal of Coal Geology - INT J COAL GEOL, Vol. 57, pp. 211-242.
[82] Miranda, Ana Cristina Macêdo L., Loureiro Maria Regina B., Cardoso Jari N. (1999),
"Aliphatic and aromatic hydrocarbons in Candiota coal samples: novel series of
bicyclic compounds", Organic Geochemistry, Vol. 30, No. 9, pp. 1027-1038.
[83] Chen, Tianyu, Zheng Hang, Hamilton Stephanie, Rodrigues Sandra, Golding Suzanne
D., Rudolph Victor (2017), "Characterisation of bioavailability of Surat Basin
Walloon coals for biogenic methane production using environmental microbial
consortia", International Journal of Coal Geology, Vol. 179, pp. 92-112.
[84] Guo, Hongguang, Zhang Yiwen, Zhang Jinlong, Huang Zaixing, Urynowicz Michael
A., Liang Weiguo, Han Zuoying, Liu Jian (2019), "Characterization of an
anthracite-degrading methanogenic microflora enriched from Qinshui Basin in
China", Energy & Fuels, Vol. 33, No. 7, pp. 6380-6389.
[85] Yen, T. F., Chapter 7 Structural Aspects of Organic Components in Oil Shales, in
Developments in Petroleum Science, Yen, Teh FuandGeorge V. Chilingarian,
Editors. 1976, Elsevier. p. 129-148.
[86] Behar, F., Vandenbroucke M. (1988), "Characterization and quantification of
saturates trapped inside kerogen: Implications for pyrolysate composition",
Organic Geochemistry, Vol. 13, No. 4, pp. 927-938.
[87] Yang, Yongliang, Sun Jiaji, Li Zenghua, Li Jinhu, Zhang Xiaoyan, Liu Liwei, Yan
Daocheng, Zhou Yinbo (2018), "Influence of soluble organic matter on mechanical
properties of coal and occurrence of coal and gas outburst", Powder Technology,
Vol. 332, pp. 8-17.
[88] Ehrlich, Henry Lutz, Newman Dianne K., Kappler Andreas, Geomicrobiology. 2009,
Taylor & Francis Group: CRC Press.
[89] Mastalerz, Maria, Schimmelmann Arndt, Drobniak Agnieszka, Chen Yanyan (2013),
"Porosity of Devonian and Mississippian New Albany Shale across a maturation
gradient: Insights from organic petrology, gas adsorption, and mercury intrusion",
AAPG Bulletin, Vol. 97, pp. 1621-1643.
122
[90] Bouska, Vladimir, Geochemistry of Coal 1981: Elsevier Scientific Pub Co.
[91] Flores, Romeo, Origin of Coal as Gas Source and Reservoir Rocks. 2014. p. 97-165.
[92] Rice, Dudley D., Law Ben E., Rice Dudley D., Composition and Origins of Coalbed
Gas, in Hydrocarbons from Coal. 1993, American Association of Petroleum
Geologists. p. 159-184.
[93] Faiz, Mohinudeen, Hendry Philip (2006), "Significance of microbial activity in
Australian coal bed methane reservoirs — a review", Bulletin of Canadian
Petroleum Geology, Vol. 54, No. 3, pp. 261-272.
[94] Moore, Tim A. (2012), "Coalbed methane: A review", International Journal of Coal
Geology, Vol. 101, pp. 36-81.
[95] Chen, Kevin, Pachter Lior (2005), "Bioinformatics for Whole-Genome Shotgun
Sequencing of Microbial Communities", PLOS Computational Biology, Vol. 1, No.
2, pp. 24.
[96] Margulies, Marcel (2005), "Genome sequencing in microfabricated high-density
picolitre reactors", Nature, Vol. 437, No. 7057, pp. 376-380.
[97] Bi, Zheting, Zhang Ji, Park Stephen, Harpalani Satya, Liang Yanna (2017), "A
formation water-based nutrient recipe for potentially increasing methane release
from coal in situ", Fuel, Vol. 209, pp. 498–508.
[98] Vick, Silas H. W., Greenfield Paul, Tran-Dinh Nai, Tetu Sasha G., Midgley David J.,
Paulsen Ian T. (2018), "The Coal Seam Microbiome (CSMB) reference set, a lingua
franca for the microbial coal-to-methane community", International Journal of Coal
Geology, Vol. 186, pp. 41-50.
[99] Whittaker, R. H. (1972), "Evolution and Measurement of Species Diversity", Taxon,
Vol. 21, No. 2/3, pp. 213-251.
[100] Thukral, Ashwani (2017), "A review on measurement of Alpha diversity in biology",
Agricultural Research Journal, Vol. 54, pp. 1.
[101] Gotelli, Nicholas, Chao Anne, Measuring and Estimating Species Richness, Species
Diversity, and Biotic Similarity from Sampling Data. 2013. p. 195-211.
[102] Gorby, Yuri A., Yanina Svetlana, McLean Jeffrey S., Rosso Kevin M., Moyles
Dianne, Dohnalkova Alice, Beveridge Terry J., Chang In Seop, Kim Byung Hong,
Kim Kyung Shik, Culley David E., Reed Samantha B., Romine Margaret F.,
Saffarini Daad A., Hill Eric A., Shi Liang, Elias Dwayne A., Kennedy David W.,
Pinchuk Grigoriy, Watanabe Kazuya, Ishii Shun’ichi, Logan Bruce, Nealson
Kenneth H., Fredrickson Jim K. (2006), "Electrically conductive bacterial
nanowires produced by Shewanella oneidensis strain MR-1 and other
microorganisms", Proceedings of the National Academy of Sciences, Vol. 103, No.
30, pp. 11358.
[103] Stams, A. J., Plugge C. M., de Bok F. A., van Houten B. H., Lens P., Dijkman H.,
Weijma J. (2005), "Metabolic Interactions in Methanogenic and Sulfate-Reducing
Bioreactors", Water Sci Technol, Vol. 52, No. 1-2, pp. 13-20.
[104] Schink, B. (1997), "Energetics of syntrophic cooperation in methanogenic
degradation", Microbiol Mol Biol Rev, Vol. 61, No. 2, pp. 262-80.
[105] Richard, Schinteie, Kaydy L Pinetown, Jim R.Underschultz, Sue Vink , Carl A.
Peters, David J. Midgley (2018), Occurrence and fate of natural hydrocarbons and
other organic compounds in groundwater from coalbearing basins in Queensland,
Australia, CSIRO, Australia.
[106] Iram, Attia, Akhtar Kalsoom, Ghauri Muhammad Afzal (2017), "Coal
123
methanogenesis: a review of the need of complex microbial consortia and culture
conditions for the effective bioconversion of coal into methane", Ann Microbiol,
Vol. 67, No. 3, pp. 275-286.
[107] Liu, Y., Whitman W. B. (2008), "Metabolic, phylogenetic, and ecological diversity of
the methanogenic archaea", Ann N Y Acad Sci, Vol. 1125, pp. 171-89.
[108] McInerney, M. J., Sieber J. R., Gunsalus R. P. (2009), "Syntrophy in anaerobic global
carbon cycles", Curr Opin Biotechnol, Vol. 20, No. 6, pp. 623-32.
[109] Morris, B. E., Henneberger R., Huber H., Moissl-Eichinger C. (2013), "Microbial
syntrophy: interaction for the common good", FEMS Microbiol Rev, Vol. 37, No.
3, pp. 384-406.
[110] Nozhevnikova, A. N., Russkova Yu I., Litti Yu V., Parshina S. N., Zhuravleva E. A.,
Nikitina A. A. (2020), "Syntrophy and Interspecies Electron Transfer in
Methanogenic Microbial Communities", Microbiology, Vol. 89, No. 2, pp. 129-
147.
[111] Gieg, L. M., Fowler S. J., Berdugo-Clavijo C. (2014), "Syntrophic biodegradation of
hydrocarbon contaminants", Curr Opin Biotechnol, Vol. 27, pp. 21-9.
[112] Kato, Souichiro, Hashimoto Kazuhito, Watanabe Kazuya (2012), "Methanogenesis
facilitated by electric syntrophy via (semi)conductive iron-oxide minerals",
Environmental Microbiology, Vol. 14, No. 7, pp. 1646-1654.
[113] Shimoyama, Takefumi, Kato Souichiro, Ishii Shun'ichi, Watanabe Kazuya (2009),
"Flagellum Mediates Symbiosis", Science, Vol. 323, No. 5921, pp. 1574-1574.
[114] Tang, Yue-Qin, Ji Pan, Lai Guo-Li, Chi Chang-Qiao, Liu Ze-Shen, Wu Xiao-Lei
(2012), "Diverse microbial community from the coalbeds of the Ordos Basin,
China", International Journal of Coal Geology, Vol. 90-91, pp. 21-33.
[115] Gründger, Friederike, Jiménez Núria, Thielemann Thomas, Straaten Nontje, Lüders
Tillmann, Richnow Hans-Hermann, Krüger Martin (2015), "Microbial methane
formation in deep aquifers of a coal-bearing sedimentary basin, Germany",
Frontiers in Microbiology, Vol. 6, pp. 200-200.
[116] Doanh, Vũ Xuân (1986), "Báo cáo Độ chứa than miền võng Hà Nội (Hưng Yên-Thái
Bình)", Lưu trữ Địa chất, Viện NC ĐC & KS.
[117] Hiệp, Nguyễn (chủ biên), Địa chất và tài nguyên dầu khí Việt Nam. 2007, Tập đoàn
Dầu khí Việt Nam: Nhà xuất bản Khoa học và kỹ thuật.
[118] Chính, Ngô Tất (1985), "Báo cáo Kết quả thăm dò sơ bộ than khu Bình Minh-Châu
Giang-Hải Hưng", Lưu trữ Địa chất.
[119] Chính, Ngô Tất (1987), "Báo cáo Kết quả tìm kiếm tỷ than khu Khoái Châu-Châu
Giang-Hải Hưng", Lưu trữ Địa chất.
[120] Tiến, Vũ Văn , Sang Bùi Văn (2006), "Báo cáo kết quả khảo sát than đồng bằng Sông
Hồng", Lưu trữ TTTLĐC.
[121] Giap, Van Dong, Phi Chi Thien, Le Duy Nguyen, Dinh Duc Anh, Nguyen Van Thu
(2020), "Geological characteristics and coal resources in the mainland of Sông
Hông basin according to new research results", Journal of Geology, Vol. 371-372,
pp. 141-153.
[122] Nielsen, L. H., Mathiesen A., Bidstrup T., Vejbæk O. V., Dien P. T., Tiem P. V.
(1999), "Modelling of hydrocarbon generation in the Cenozoic Song Hong Basin,
Vietnam: a highly prospective basin", Journal of Asian Earth Sciences, Vol. 17, No.
1, pp. 269-294.
[123] Lê, Trần, Tiến Ngọc (1987), "Kết quả nghiên cứu khai thác các băng chấn để liên kết
124
các tập chứa than vùng Tây bắc sông Luộc MVHN", Lưu trữ TTTLĐC.
[124] Tiến, Vũ Ngọc (1987), "Khai thác các băng ghi địa chấn để liên kết các tập chứa
than vùng Tây Bắc sông Luộc, miền võng Hà Nội", Lưu trữ Địa chất.
[125] Doanh, Vũ Xuân (1975), "Thông tin Triển vọng Than trong trầm tích Neogen dải
Khoái Châu (Hưng Yên)- Tiền Hải (Thái Bình)", Lưu trữ Viện NC Địa chất và
Khoáng Sản.
[126] Trụ, Vũ (2011), "Đánh giá tiềm năng và khả năng khai thác khí than (CBM) tại dải
trung tâm miền võng Hà Nội (Phù Cư-Tiên Hưng-Kiến Xương-Tiền Hải)", Đề tài
nghiên cứu khoa học cấp ngành, Viện Dầu Khí Việt Nam.
[127] Tanner, Ralph S., Cultivation of Bacteria and Fungi, in Manual of Environmental
Microbiology, Third Edition. 2007, American Society of Microbiology.
[128] Brunauer, Stephen, Emmett P. H., Teller Edward (1938), "Adsorption of Gases in
Multimolecular Layers", Journal of the American Chemical Society, Vol. 60, No. 2,
pp. 309-319.
[129] Barrett, Elliott P., Joyner Leslie G., Halenda Paul P. (1951), "The Determination of
Pore Volume and Area Distributions in Porous Substances. I. Computations from
Nitrogen Isotherms", Journal of the American Chemical Society, Vol. 73, No. 1,
pp. 373-380.
[130] Clarkson, C. R., Bustin R. M. (1999), "The effect of pore structure and gas pressure
upon the transport properties of coal: a laboratory and modeling study. 1.
Isotherms and pore volume distributions", Fuel, Vol. 78, No. 11, pp. 1333-1344.
[131] Rouquerol, Jean, Rouquerol François, Sing Kenneth, Adsorption by Powders and
Porous Solids, Principles, Methodology and Applications. 1999.
[132] Thomson, William (1872), "4. On the Equilibrium of Vapour at a Curved Surface of
Liquid", Proceedings of the Royal Society of Edinburgh, Vol. 7, pp. 63-68.
[133] Qi, Lingling, Tang Xu, Wang Zhaofeng, Peng Xinshan (2017), "Pore
characterization of different types of coal from coal and gas outburst disaster sites
using low temperature nitrogen adsorption approach", International Journal of
Mining Science and Technology, Vol. 27, No. 2, pp. 371-377.
[134] Kadlec, Ondřej (2001), "The History and Present State of Dubinin's Theory of
Adsorption of Vapours and Gases on Microporous Solids", Adsorption Science &
Technology, Vol. 19, No. 1, pp. 1-24.
[135] Wang, Guochang, Ju Yiwen, Yan Zhifeng, Li Qingguang (2015), "Pore structure
characteristics of coal–bearing shale using fluid invasion methods: A case study in
the Huainan–Huaibei Coalfield in China", Marine and Petroleum Geology, Vol.
62.
[136] Washburn, Edward W. (1921), "The Dynamics of Capillary Flow", Physical Review,
Vol. 17, No. 3, pp. 273-283.
[137] Swanson, B. F. (1981), "A Simple Correlation Between Permeabilities and Mercury
Capillary Pressures", Journal of Petroleum Technology, Vol. 33, No. 12, pp. 2498-
2504.
[138] Bharanidharan, Rajaraman, Arokiyaraj Selvaraj, Kim Eun Bae, Lee Chang Hyun,
Woo Yang Won, Na Youngjun, Kim Danil, Kim Kyoung Hoon (2018), "Ruminal
methane emissions, metabolic, and microbial profile of Holstein steers fed forage
and concentrate, separately or as a total mixed ration", PLoS One, Vol. 13, No. 8,
pp. e0202446.
[139] Caporaso, J. Gregory, Lauber Christian L., Walters William A., Berg-Lyons Donna,
125
Lozupone Catherine A., Turnbaugh Peter J., Fierer Noah, Knight Rob (2011),
"Global patterns of 16S rRNA diversity at a depth of millions of sequences per
sample", Proc. Natl. Acad. Sci., Vol. 108, No. Supplement 1, pp. 4516-4522.
[140] Caporaso, J. G., Bittinger K., Bushman F. D., DeSantis T. Z., Andersen G. L., Knight
R. (2010), "PyNAST: a flexible tool for aligning sequences to a template
alignment", Bioinformatics, Vol. 26, No. 2, pp. 266-7.
[141] Quast, Christian, Pruesse Elmar, Yilmaz Pelin, Gerken Jan, Schweer Timmy, Yarza
Pablo, Peplies Jörg, Glöckner Frank Oliver (2013), "The SILVA ribosomal RNA
gene database project: improved data processing and web-based tools", Nucleic
Acids Research, Vol. 41, No. D1, pp. D590-D596.
[142] Yilmaz, Pelin, Parfrey Laura Wegener, Yarza Pablo, Gerken Jan, Pruesse Elmar,
Quast Christian, Schweer Timmy, Peplies Jörg, Ludwig Wolfgang, Glöckner Frank
Oliver (2014), "The SILVA and “All-species Living Tree Project (LTP)” taxonomic
frameworks", Nucleic Acids Research, Vol. 42, No. D1, pp. D643-D648.
[143] Chao, Anne (1984), "Nonparametric Estimation of the Number of Classes in a
Population", Scandinavian Journal of Statistics, Vol. 11, No. 4, pp. 265-270.
[144] Chao, Anne, Lee Shen-Ming (1992), "Estimating the Number of Classes via Sample
Coverage", Journal of the American Statistical Association, Vol. 87, No. 417, pp.
210-217.
[145] Shannon, C. E. (1948), "A Mathematical Theory of Communication", Bell System
Technical Journal, Vol. 27, No. 3, pp. 379-423.
[146] Simpson, E. H. (1949), "Measurement of Diversity", Nature, Vol. 163, No. 4148, pp.
688-688.
[147] Paliy, O., Shankar V. (2016), "Application of multivariate statistical techniques in
microbial ecology", Mol Ecol, Vol. 25, No. 5, pp. 1032-1057.
[148] Ramette, Alban (2007), "Multivariate analyses in microbial ecology", FEMS
Microbiology Ecology, Vol. 62, No. 2, pp. 142-160.
[149] Bray, J. Roger, Curtis J. T. (1957), "An Ordination of the Upland Forest Communities
of Southern Wisconsin", Ecological Monographs, Vol. 27, No. 4, pp. 325-349.
[150] Puntanen, Simo (2013), "Methods of Multivariate Analysis, Third Edition by Alvin C.
Rencher, William F. Christensen", International Statistical Review, Vol. 81, pp.
328-329.
[151] ter Braak, Cajo J. F., Verdonschot Piet F. M. (1995), "Canonical correspondence
analysis and related multivariate methods in aquatic ecology", Aquatic Sciences,
Vol. 57, No. 3, pp. 255-289.
[152] Robbins, Steven J., Evans Paul N., Esterle Joan S., Golding Suzanne D., Tyson Gene
W. (2016), "The effect of coal rank on biogenic methane potential and microbial
composition", International Journal of Coal Geology, Vol. 154-155, pp. 205-212.
[153] Bao, Yuan, Huang Haiping, He Dashuang, Ju Yiwen, Qi Yu (2016), "Microbial
enhancing coal-bed methane generation potential, constraints and mechanism: A
mini-review", Journal of Natural Gas Science and Engineering, Vol. 35, pp. 68-78.
[154] Suárez-Ruiz, Isabel, Flores Deolinda, Mendonça Filho João Graciano, Hackley Paul
C. (2012), "Review and update of the applications of organic petrology: Part 1,
geological applications", International Journal of Coal Geology, Vol. 99, pp. 54-
112.
[155] Voast, Wayne, Montana Voast (2003), "Geochemical signature of formation waters
associated with coalbed methane", AAPG Bulletin, Vol. 87, No. 4, pp. 667-676.
126
[156] Barnhart, Elliott P., Davis Katherine J., Varonka Matthew S., Orem William H.,
Cunningham Alfred B., Ramsay Bradley D., Fields Matthew W. (2017), "Enhanced
coal-dependent methanogenesis coupled with algal biofuels: Potential water
recycle and carbon capture", International Journal of Coal Geology, Vol. 171, pp.
69-75.
[157] Raudsepp, M. J., Gagen E. J., Evans P., Tyson G. W., Golding S. D., Southam G.
(2016), "The influence of hydrogeological disturbance and mining on coal seam
microbial communities", Geobiology, Vol. 14, No. 2, pp. 163-175.
[158] Zhang, Ji, Bi Zheting, Liang Yanna (2018), "Development of a nutrient recipe for
enhancing methane release from coal in the Illinois basin", International Journal of
Coal Geology, Vol. 187.
[159] Weber, K. A., Achenbach L. A., Coates J. D. (2006), "Microorganisms pumping iron:
anaerobic microbial iron oxidation and reduction", Nat Rev Microbiol, Vol. 4, No.
10, pp. 752-64.
[160] Detmers, J., Schulte U., Strauss H., Kuever J. (2001), "Sulfate Reduction at a Lignite
Seam: Microbial Abundance and Activity", Microb Ecol, Vol. 42, No. 3, pp. 238-
247.
[161] Sivan, O., Schrag D. P., Murray R. W. (2007), "Rates of methanogenesis and
methanotrophy in deep-sea sediments", Geobiology, Vol. 5, pp. 141-151.
[162] Ferry, James G. (1993), Methanogenesis: Ecology, Physiology, Biochemistry &
Genetics, Springer Science.
[163] Patricia J. Waldron, Steven T. Petsch, Anna M. Martini, Klaus Nüsslein (2007),
"Salinity Constraints on Subsurface Archaeal Diversity and Methanogenesis in
Sedimentary Rock Rich in Organic Matter", Appl. Environ. Microbiol., Vol. 73,
No. 13, pp. 4171-4179.
[164] Wang, Anmin, Wei Yingchun, Yuan Yuan, Li Changfeng, Li Yong, Cao Daiyong
(2017), "Coalbed methane reservoirs’ pore-structure characterization of different
macrolithotypes in the southern Junggar Basin of Northwest China", Marine and
Petroleum Geology, Vol. 86, pp. 675-688.
[165] Yao, Yanbin, Liu Dameng, Tang Dazhen, Tang Shuheng, Huang Wenhui (2008),
"Fractal characterization of adsorption-pores of coals from North China: An
investigation on CH4 adsorption capacity of coals", International Journal of Coal
Geology, Vol. 73, pp. 27-42.
[166] Gu, Yang, Ding Wenlong, Yin Shuai, Wang Ruyue, Mei Yonggui, Liu Jianjun
(2017), "Analytical modeling of mercury injection in high-rank coalbed methane
reservoirs based on pores and microfractures: a case study of the upper
carboniferous Taiyuan Formation in the Heshun block of the Qinshui Basin,
central China", Journal of Geophysics and Engineering, Vol. 14, pp. 197-211.
[167] Thommes, Matthias, Kaneko Katsumi, Neimark Alexander, Olivier James,
Rodriguez-Reinoso Francisco, Rouquerol Jean, Sing Kenneth (2015),
"Physisorption of gases, with special reference to the evaluation of surface area
and pore size distribution (IUPAC Technical Report)", Pure and Applied
Chemistry, Vol. 87, No. 9-10, pp. 1051.
[168] Klomkliang, Nikom, Do D. D., Nicholson D. (2013), "On the hysteresis loop and
equilibrium transition in slit-shaped ink-bottle pores", Adsorption, Vol. 19, No. 6,
pp. 1273-1290.
[169] Tanev, Peter T., Vlaev Lyubomir T. (1993), "An Attempt at a More Precise
127
Evaluation of the Approach to Mesopore Size Distribution Calculations Depending
on the Degree of Pore Blocking", Journal of Colloid and Interface Science, Vol.
160, No. 1, pp. 110-116.
[170] Fu, Haijiao, Tang Dazhen, Xu Ting, Xu Hao, Tao Shu, Li Song, Yin ZhenYong, Chen
Baoli, Zhang Cheng, Wang Linlin (2017), "Characteristics of pore structure and
fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal
in the southern Junggar Basin, NW China", Fuel, Vol. 193, pp. 254-264.
[171] Rodrigues, C. F., Lemos de Sousa M. J. (2002), "The measurement of coal porosity
with different gases", International Journal of Coal Geology, Vol. 48, No. 3, pp.
245-251.
[172] Pant, Lalit M., Huang Haiping, Secanell Marc, Larter Steve, Mitra Sushanta K.
(2015), "Multi Scale Characterization of Coal Structure for Mass Transport", Fuel,
Vol. 159.
[173] Laubach, S. E., Marrett R. A., Olson J. E., Scott A. R. (1998), "Characteristics and
origins of coal cleat: A review", International Journal of Coal Geology, Vol. 35,
No. 1, pp. 175-207.
[174] Swanson, Sharon M., Mastalerz Maria D., Engle Mark A., Valentine Brett J.,
Warwick Peter D., Hackley Paul C., Belkin Harvey E. (2015), "Pore
characteristics of Wilcox Group Coal, U.S. Gulf Coast Region: Implications for the
occurrence of coalbed gas", International Journal of Coal Geology, Vol. 139, pp.
80-94.
[175] Zhou, Sandong, Liu Dameng, Cai Yidong, Yao Yanbin (2016), "Gas sorption and
flow capabilities of lignite, subbituminous and high-volatile bituminous coals in the
Southern Junggar Basin, NW China", Journal of Natural Gas Science and
Engineering, Vol. 34, pp. 6-21.
[176] Cai, Yidong, Liu Dameng, Pan Zhejun, Che Yao, Liu Zhihua (2016), "Investigating
the Effects of Seepage-Pores and Fractures on Coal Permeability by Fractal
Analysis", Transport in Porous Media, Vol. 111, No. 2, pp. 479-497.
[177] Sang, Guijie, Liu Shimin, Zhang Rui, Elsworth Derek, He Lilin (2018), "Nanopore
characterization of mine roof shales by SANS, nitrogen adsorption, and mercury
intrusion: Impact on water adsorption/retention behavior", International Journal of
Coal Geology, Vol. 200, pp. 173-185.
[178] Shan, C. A., Zhang T. S., Guo J. J., Zhang Z., Yang Y. (2015), "Characterization of
the micropore systems in high-rank coal reservoirs of the southern Sichuan Basin,
China", AAPG Bulletin, Vol. 99, No. 11, pp. 2099-2119.
[179] Hamilton, S. K., Golding S. D., Baublys K. A., Esterle J. S. (2015), "Conceptual
exploration targeting for microbially enhanced coal bed methane (MECoM) in the
Walloon Subgroup, eastern Surat Basin, Australia", International Journal of Coal
Geology, Vol. 138, pp. 68–82.
[180] Bao, Yuan, Wei Chongtao, Neupane Bhupati (2016), "Generation and accumulation
characteristics of mixed coalbed methane controlled by tectonic evolution in Liulin
CBM field, eastern Ordos Basin, China", Journal of Natural Gas Science and
Engineering, Vol. 28, pp. 262-270.
[181] Lawson, Christopher E., Strachan Cameron R., Williams Dominique D., Koziel
Susan, Hallam Steven J., Budwill Karen (2015), "Patterns of Endemism and
Habitat Selection in Coalbed Microbial Communities", Appl Environ Microbiol,
Vol. 81, No. 22, pp. 7924–7937.
128
[182] Barnhart, Elliott P., De León Kara Bowen, Ramsay Bradley D., Cunningham Alfred
B., Fields Matthew W. (2013), "Investigation of coal-associated bacterial and
archaeal populations from a diffusive microbial sampler (DMS)", International
Journal of Coal Geology, Vol. 115, pp. 64-70.
[183] Zhang, Ji, Liang Yanna (2017), "Evaluating approaches for sustaining methane
production from coal through biogasification", Fuel, Vol. 202, pp. 233-240.
[184] Ren, Jianhua, Zhang Liang, Ren Shaoran, Lin Jingde, Meng Shangzhi, Ren Guangjun,
Gentzis Thomas (2014), "Multi-branched horizontal wells for coalbed methane
production: Field performance and well structure analysis", International Journal
of Coal Geology, Vol. 131, pp. 52-64.
[185] Zhang, Ji, Yip Catherine, Xia Chunjie, Liang Yanna (2019), "Evaluation of methane
release from coals from the San Juan basin and Powder River basin", Fuel, Vol.
244, pp. 388-394.
[186] Colosimo, Fabrizio, Thomas Russell, Lloyd Jonathan R., Taylor Kevin G., Boothman
Christopher, Smith Anthony D., Lord Richard, Kalin Robert M. (2016), "Biogenic
methane in shale gas and coal bed methane: A review of current knowledge and
gaps", International Journal of Coal Geology, Vol. 165, pp. 106-120.
[187] Michael S. Green, Keith C. Flanegan, Patrick C. Gilcrease (2008), "Characterization
of a methanogenic consortium enriched from a coalbed methane well in the Powder
River Basin, U.S.A", International Journal of Coal Geology, Vol. 76, pp. 34-45.
[188] Vincent, Salom Gnana Thanga, Jennerjahn Tim, Ramasamy Kumarasamy, Chapter 3
- Environmental variables and factors regulating microbial structure and functions,
in Microbial Communities in Coastal Sediments, Vincent, Salom Gnana Thanga,
Tim JennerjahnandKumarasamy Ramasamy, Editors. 2021, Elsevier. p. 79-117.
[189] Kempes, C. P., van Bodegom P. M., Wolpert D., Libby E., Amend J., Hoehler T.
(2017), "Drivers of Bacterial Maintenance and Minimal Energy Requirements",
Front Microbiol, Vol. 8, pp. 31.
[190] Petro, Caitlin, Starnawski P., Schramm Andreas, Kjeldsen K. U. (2017), "Microbial
community assembly in marine sediments", Aquatic Microbial Ecology, Vol. 79.
[191] Wawrik, Boris, Mendivelso Margarita, Parisi Victoria A., Suflita Joseph M.,
Davidova Irene A., Marks Christopher R., Van Nostrand Joy D., Liang Yuting,
Zhou Jizhong, Huizinga Brad J., Strąpoć Dariusz, Callaghan Amy V. (2012), "Field
and laboratory studies on the bioconversion of coal to methane in the San Juan
Basin", FEMS Microbiol. Ecol., Vol. 81, No. 1, pp. 26-42.
[192] Strąpoć, Dariusz, Picardal Flynn W., Turich Courtney, Schaperdoth Irene, Macalady
Jennifer L., Lipp Julius S., Lin Yu-Shih, Ertefai Tobias F., Schubotz Florence,
Hinrichs Kai-Uwe, Mastalerz Maria, Schimmelmann Arndt (2008), "Methane-
Producing Microbial Community in a Coal Bed of the Illinois Basin", Appl.
Environ. Microbiol., Vol. 74, No. 8, pp. 2424-2432.
[193] Fry, John C., Horsfield Brian, Sykes Richard, Cragg Barry A., Heywood Chloe, Kim
Gwang Tae, Mangelsdorf Kai, Mildenhall Dallas C., Rinna Joachim, Vieth Andrea,
Zink Klaus- G., Sass Henrik, Weightman Andrew J., Parkes R. John (2009),
"Prokaryotic Populations and Activities in an Interbedded Coal Deposit, Including
a Previously Deeply Buried Section (1.6–2.3 km) Above ∼ 150 Ma Basement
Rock", Geomicrobiology Journal, Vol. 26, No. 3, pp. 163-178.
[194] Singh, Durgesh Narain, Kumar Ashok, Sarbhai Munish Prasad, Tripathi Anil Kumar
(2012), "Cultivation-independent analysis of archaeal and bacterial communities of
the formation water in an Indian coal bed to enhance biotransformation of coal
129
into methane", Applied Microbiology and Biotechnology, Vol. 93, No. 3, pp. 1337-
1350.
[195] Vick, Silas H. W., Tetu Sasha G., Sherwood Neil, Pinetown Kaydy, Sestak Stephen,
Vallotton Pascal, Elbourne Liam D. H., Greenfield Paul, Johnson Errin, Barton
Deborah, Midgley David J., Paulsen Ian T. (2016), "Revealing colonisation and
biofilm formation of an adherent coal seam associated microbial community on a
coal surface", International Journal of Coal Geology, Vol. 160-161, pp. 42-50.
[196] Teng, Y., Luo Y., Sun M., Liu Z., Li Z., Christie P. (2010), "Effect of
bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community
and removal of polycyclic aromatic hydrocarbons from an aged contaminated
soil", Bioresour Technol, Vol. 101, No. 10, pp. 3437-43.
[197] Musat, Florin, Widdel Friedrich (2008), "Anaerobic degradation of benzene by a
marine sulfate-reducing enrichment culture, and cell hybridization of the dominant
phylotype", Environmental Microbiology, Vol. 10, No. 1, pp. 10-19.
[198] Alain, Karine, Harder Jens, Widdel Friedrich, Zengler Karsten (2012), "Anaerobic
utilization of toluene by marine alpha- and gammaproteobacteria reducing
nitrate", Microbiology, Vol. 158, No. 12, pp. 2946-2957.
[199] Key, Blake D., Howell Robert D., Criddle Craig S. (1998), "Defluorination of
organofluorine sulfur compounds by Pseudomonas Sp. strain D2", Environ. Sci.
Technol., Vol. 32, No. 15, pp. 2283-2287.
[200] Yin, Tingru, Tran Ngoc Han, Huiting Chen, He Yiliang, Gin Karina Yew-Hoong
(2019), "Biotransformation of polyfluoroalkyl substances by microbial consortia
from constructed wetlands under aerobic and anoxic conditions", Chemosphere,
Vol. 233, pp. 101-109.
[201] Fredrickson, James K., Romine Margaret F., Beliaev Alexander S., Auchtung Jennifer
M., Driscoll Michael E., Gardner Timothy S., Nealson Kenneth H., Osterman
Andrei L., Pinchuk Grigoriy, Reed Jennifer L., Rodionov Dmitry A., Rodrigues
Jorge L. M., Saffarini Daad A., Serres Margrethe H., Spormann Alfred M., Zhulin
Igor B., Tiedje James M. (2008), "Towards environmental systems biology of
Shewanella", Nature Reviews Microbiology, Vol. 6, No. 8, pp. 592-603.
[202] Serres, Margrethe H., Riley Monica (2006), "Genomic Analysis of Carbon Source
Metabolism of Shewanella oneidensis MR-1: Predictions versus Experiments",
Journal of Bacteriology, Vol. 188, No. 13, pp. 4601-4609.
[203] Driscoll, Michael E., Romine Margie F., Juhn Frank S., Serres Margrethe H., McCue
Lee Anne, Beliaev Alex S., Fredrickson James K., Gardner Timothy S. (2007),
"Identification of diverse carbon utilization pathways in Shewanella oneidensis
MR-1 via expression profiling", Genome Informatics, Vol. 18, pp. 287-307.
[204] Bowman, J.P., McMeekin T.A., Order X. Alteromonadales, in Bergey's Manual of
Systematic Bacteriology, Volume 2 : The Proteobacteria, Part B The
Gammaproteobacteria. 2005, Springer US. p. 443-480.
[205] Reyes-Ramirez, F., Dobbin P., Sawers G., Richardson D. J. (2003), "Characterization
of transcriptional regulation of Shewanella frigidimarina Fe(III)-induced
flavocytochrome c reveals a novel iron-responsive gene regulation system", J
Bacteriol, Vol. 185, No. 15, pp. 4564-71.
[206] Coates, J. D., Ellis D. J., Blunt-Harris E. L., Gaw C. V., Roden E. E., Lovley D. R.
(1998), "Recovery of humic-reducing bacteria from a diversity of environments",
Appl Environ Microbiol, Vol. 64, No. 4, pp. 1504-9.
130
[207] Lovley, Derek R., Coates John D., Blunt-Harris Elizabeth L., Phillips Elizabeth J. P.,
Woodward Joan C. (1996), "Humic substances as electron acceptors for microbial
respiration", Nature, Vol. 382, No. 6590, pp. 445-448.
[208] Wartell, Brian, Boufadel Michel, Rodriguez-Freire Lucia (2021), "An effort to
understand and improve the anaerobic biodegradation of petroleum hydrocarbons:
A literature review", International Biodeterioration & Biodegradation, Vol. 157, pp.
105156.
[209] Klüpfel, Laura, Piepenbrock Annette, Kappler Andreas, Sander Michael (2014),
"Humic substances as fully regenerable electron acceptors in recurrently anoxic
environments", Nature Geoscience, Vol. 7, No. 3, pp. 195-200.
[210] Kulikova, Natalia A., Perminova Irina V. (2021), "Interactions between Humic
Substances and Microorganisms and Their Implications for Nature-like
Bioremediation Technologies", Molecules, Vol. 26, No. 9.
[211] Wang, Guowei, Chen Tianhu, Yue Zheng-Bo, Zhou Yue-Fei, Wang Jin (2014),
"Isolation and Characterization of Pseudomonas stutzeri Capable of Reducing
Fe(III) and Nitrate from Skarn-type Copper Mine Tailings", Geomicrobiology
Journal, Vol. 31.
[212] Toyofuku, Masanori, Uchiyama Hiroo, Nomura Nobuhiko (2012), "Social Behaviours
under Anaerobic Conditions in Pseudomonas aeruginosa", International journal of
microbiology, Vol. 2012, pp. 405191-405191.
[213] Hazrin-Chong, N. H., Marjo C. E., Das T., Rich A. M., Manefield M. (2014),
"Surface analysis reveals biogenic oxidation of sub-bituminous coal by
Pseudomonas fluorescens", Appl Microbiol Biotechnol, Vol. 98, No. 14, pp. 6443-
6452.
[214] Mehboob, F., Oosterkamp M. J., Koehorst J. J., Farrakh S., Veuskens T., Plugge C.
M., Boeren S., de Vos W. M., Schraa G., Stams A. J., Schaap P. J. (2016),
"Genome and proteome analysis of Pseudomonas chloritidismutans AW-1(T) that
grows on n-decane with chlorate or oxygen as electron acceptor", Environ
Microbiol, Vol. 18, No. 10, pp. 3247-3257.
[215] Mehboob, Farrakh, Junca Howard, Schraa Gosse, J M Stams Alfons, Growth of
Pseudomonas chloritidismutans AW-1(T) on n-alkanes with chlorate as electron
acceptor. Vol. 83. 2009. 739-47.
[216] Davis, Katherine J., Gerlach Robin (2018), "Transition of biogenic coal-to-methane
conversion from the laboratory to the field: A review of important parameters and
studies", International Journal of Coal Geology, Vol. 185, pp. 33-43.
[217] Singh, Durgesh Narain, Tripathi Anil Kumar (2013), "Coal induced production of a
rhamnolipid biosurfactant by Pseudomonas stutzeri, isolated from the formation
water of Jharia coalbed", Bioresource Technology, Vol. 128, pp. 215-221.
[218] Garrity, G.M., Bell J.A. , and Lilburn T. , Family I. Rhodobacteraceae, in Bergey's
Manual of Systematics of Archaea and Bacteria, Volume 2 : The Proteobacteria,
Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. 2005. p. 161-228.
[219] Vick, Silas H. W., Greenfield Paul, Pinetown Kaydy L., Sherwood Neil, Gong Se,
Tetu Sasha G., Midgley David J., Paulsen Ian T. (2019), "Succession Patterns and
Physical Niche Partitioning in Microbial Communities from Subsurface Coal
Seams", iScience, Vol. 12, pp. 152-167.
[220] Aullo, Thomas, Ranchou-Peyruse Anthony, Ollivier Bernard, Magot Michel (2013),
"Desulfotomaculum spp. and related gram-positive sulfate-reducing bacteria in
131
deep subsurface environments", Frontiers in Microbiology, Vol. 4, No. 362.
[221] Tebo, Bradley M, Obraztsova Anna Ya (1998), "Sulfate-reducing bacterium grows
with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors", FEMS
Microbiology Letters, Vol. 162, No. 1, pp. 193-198.
[222] Nazina, Tamara, Rozanova E., Belyakova Elena, Lysenko A., Poltaraus A. B.,
Tourova Tatyana, Osipov George, Belyaev S. (2005), "Description of
“Desulfotomaculum nigrificans subsp. salinus” as a New Species,
Desulfotomaculum salinum sp. nov", Microbiology, Vol. 74, pp. 567-574.
[223] Berlendis, S., Lascourreges J. F., Schraauwers B., Sivadon P., Magot M. (2010),
"Anaerobic biodegradation of BTEX by original bacterial communities from an
underground gas storage aquifer", Environ Sci Technol, Vol. 44, No. 9, pp. 3621-
8.
[224] He, Huan, Zhan Di, Chen Fan, Huang Zaixing, Huang Hua-Zhou, Wang Ai-Kuan,
Huang Guan-Hua, Muhammad Ishtiaq Ali, Tao Xiu-Xiang (2020), "Microbial
community succession between coal matrix and culture solution in a simulated
methanogenic system with lignite", Fuel, Vol. 264.
[225] Li, Xiaomin, Zhang Wei, Liu Tongxu, Chen Linxing, Chen Pengcheng, Li Fangbai
(2016), "Changes in the composition and diversity of microbial communities during
anaerobic nitrate reduction and Fe(II) oxidation at circumneutral pH in paddy
soil", Soil Biology and Biochemistry, Vol. 94, pp. 70-79.
[226] Doerfert, Sebastian, Reichlen Matthew, Iyer Parameshwar, Wang Mingyu, Ferry
James (2009), "Methanolobus zinderi sp. nov., a methylotrophic methanogen
isolated from a deep subsurface coal seam", International Journal of Systematic
and Evolutionary Microbiology, Vol. 59, No. 5, pp. 1064-1069.
[227] Ezaki, Takayuki, Family VI. Peptococcaceae in Bergey's Manual of Systematic
Bacteriology, Volume Three: The Firmicutes. 2009, Springer-Verlag New York. p.
969-1001.
[228] Wiegel, Juergen, Family I. Clostridiaceae, in Bergey's Manual of Systematics of
Archaea and Bacteria, Volume Three: The Firmicutes. 2009. p. 736-851.
[229] Parameswaran, Prathap, Bry Tyson, Popat Sudeep C., Lusk Bradley G., Rittmann
Bruce E., Torres César I. (2013), "Kinetic, Electrochemical, and Microscopic
Characterization of the Thermophilic, Anode-Respiring Bacterium Thermincola
ferriacetica", Environmental Science & Technology, Vol. 47, No. 9, pp. 4934-
4940.
[230] Toth, Courtney R. A., Luo Fei, Bawa Nancy, Webb Jennifer, Guo Shen, Dworatzek
Sandra, Edwards Elizabeth A. (2021), "Anaerobic Benzene Biodegradation Linked
to the Growth of Highly Specific Bacterial Clades", Environmental Science &
Technology, Vol. 55, No. 12, pp. 7970-7980.
[231] Mochimaru, Hanako, Tamaki Hideyuki, Hanada Satoshi, Imachi Hiroyuki, Nakamura
Kohei, Sakata Susumu, Kamagata Yoichi (2009), "Methanolobus profundi sp. nov.,
a methylotrophic methanogen isolated from deep subsurface sediments in a natural
gas field", International Journal of Systematic and Evolutionary Microbiology, Vol.
59, No. 4, pp. 714-718.
[232] Grech-Mora, I., Fardeau Marie-Laure, Patel B., Ollivier Bernard, Rimbault A.,
Prensier Gérard, Garcia Jean-Louis, Garnier-Zarli Evelyne (1996), "Isolation and
Characterization of Sporobacter termitidis gen. nov., sp. nov., from the Digestive
Tract of the Wood-Feeding Termite Nasutitermes lujae", International Journal of
Systematic Bacteriology, Vol. 46.
132
[233] Mechichi, T., Labat M., Garcia J. L., Thomas P., Patel B. K. (1999), "Sporobacterium
olearium gen. nov., sp. nov., a new methanethiol-producing bacterium that
degrades aromatic compounds, isolated from an olive mill wastewater treatment
digester", Int J Syst Bacteriol, Vol. 49 Pt 4, pp. 1741-8.
[234] Lomans, B. P., Leijdekkers P., Wesselink J. J., Bakkes P., Pol A., van der Drift C.,
den Camp H. J. (2001), "Obligate sulfide-dependent degradation of methoxylated
aromatic compounds and formation of methanethiol and dimethyl sulfide by a
freshwater sediment isolate, Parasporobacterium paucivorans gen. nov., sp. nov",
Appl Environ Microbiol, Vol. 67, No. 9, pp. 4017-23.
[235] Venkatesagowda, Balaji, Dekker Robert F. H. (2021), "Microbial demethylation of
lignin: Evidence of enzymes participating in the removal of methyl/methoxyl
groups", Enzyme and Microbial Technology, Vol. 147, pp. 109780.
[236] Deangelis, K. M., Sharma D., Varney R., Simmons B., Isern N. G., Markilllie L. M.,
Nicora C., Norbeck A. D., Taylor R. C., Aldrich J. T., Robinson E. W. (2013),
"Evidence supporting dissimilatory and assimilatory lignin degradation in
Enterobacter lignolyticus SCF1", Front Microbiol, Vol. 4, pp. 280.
[237] Weng, Caihong, Peng Xiaowei, Han Yejun (2021), "Depolymerization and
conversion of lignin to value-added bioproducts by microbial and enzymatic
catalysis", Biotechnology for Biofuels, Vol. 14, No. 1, pp. 84.
[238] Ahring, Birgitte K., Biswas Rajib, Ahamed Aftab, Teller Philip J., Uellendahl Hinrich
(2015), "Making lignin accessible for anaerobic digestion by wet-explosion
pretreatment", Bioresource Technology, Vol. 175, pp. 182-188.
[239] Doerfert, Sebastian N, Reichlen Matthew, Iyer Prabha, Wang Mingyu, Ferry James G
(2009), "Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated
from a deep subsurface coal seam", International Journal of Systematic and
Evolutionary Microbiology, Vol. 59, No. 5, pp. 1064-1069.
[240] Jones, Elizabeth J. P., Harris Steve H., Barnhart Elliott P., Orem William H., Clark
Arthur C., Corum Margo D., Kirshtein Julie D., Varonka Matthew S., Voytek Mary
A. (2013), "The effect of coal bed dewatering and partial oxidation on biogenic
methane potential", International Journal of Coal Geology, Vol. 115, pp. 54-63.
[241] Jones, Elizabeth J. P., Voytek Mary A., Warwick Peter D., Corum Margo D., Cohn
Alexander, Bunnell Joseph E., Clark Arthur C., Orem William H. (2008),
"Bioassay for estimating the biogenic methane-generating potential of coal
samples", International Journal of Coal Geology, Vol. 76, No. 1, pp. 138-150.
[242] Meslé, Margaux, Périot Charlotte, Dromart Gilles, Oger Philippe (2015),
"Methanogenic microbial community of the Eastern Paris Basin: Potential for
energy production from organic-rich shales", International Journal of Coal
Geology, Vol. 149, pp. 67-76.
[243] Liu, Bingjun, Yuan Liang, Shi Xianyang, Li Yang, Jiang Chunlu, Ren Bo, Sun
Qingye (2019), "Variations in Microbiota Communities with the Ranks of Coals
from Three Permian Mining Areas", Energy & Fuels, Vol. 33, No. 6, pp. 5243-
5252.
[244] Quast, Christian, Pruesse Elmar, Yilmaz Pelin, Gerken Jan, Schweer Timmy, Yarza
Pablo, Peplies Jörg, Glöckner Frank Oliver (2012), "The SILVA ribosomal RNA
gene database project: improved data processing and web-based tools", Nucleic
Acids Research, Vol. 41, No. D1, pp. D590-D596.
[245] Sawana, Amandeep, Adeolu Mobolaji, Gupta Radhey S. (2014), "Molecular
signatures and phylogenomic analysis of the genus Burkholderia: proposal for
133
division of this genus into the emended genus Burkholderia containing pathogenic
organisms and a new genus Paraburkholderia gen. nov. harboring environmental
species", Frontiers in genetics, Vol. 5, pp. 429-429.
[246] Gyaneshwar, Prasad, Hirsch Ann, Moulin Lionel, Chen Wen-Ming, Elliott Geoff,
Bontemps Cyril, Estrada-de los Santos Paulina, Gross Eduardo, Reis Junior Fábio,
Sprent Janet, Young J. Peter, James Euan (2011), "Legume-Nodulating
Betaproteobacteria: Diversity, Host Range, and Future Prospects", Molecular
plant-microbe interactions : MPMI, Vol. 24, pp. 1276-88.
[247] Dobritsa, Anatoly P., Samadpour Mansour (2016), "Transfer of eleven species of the
genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia
gen. nov. to accommodate twelve species of the genera Burkholderia and
Paraburkholderia", International Journal of Systematic and Evolutionary
Microbiology, Vol. 66, No. 8, pp. 2836-2846.
[248] Gao, Z., Yuan Y., Xu L., Liu R., Chen M., Zhang C. (2016), "Paraburkholderia
caffeinilytica sp. nov., isolated from the soil of a tea plantation", Int J Syst Evol
Microbiol, Vol. 66, No. 10, pp. 4185-4190.
[249] Lee, Yunho, Lee Yunhee, Jeon Che Ok (2019), "Biodegradation of naphthalene,
BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5
isolated from petroleum-contaminated soil", Scientific Reports, Vol. 9, No. 1, pp.
860.
[250] Vanwijnsberghe, Sarah, Peeters Charlotte, De Ridder Emmelie, Dumolin Charles,
Wieme Anneleen D., Boon Nico, Vandamme Peter (2021), "Genomic Aromatic
Compound Degradation Potential of Novel Paraburkholderia Species:
Paraburkholderia domus sp. nov., Paraburkholderia haematera sp. nov. and
Paraburkholderia nemoris sp. nov", International Journal of Molecular Sciences,
Vol. 22, No. 13.
[251] Revathy, T., Jayasri M. A., Suthindhiran K. (2015), "Biodegradation of PAHs by
Burkholderia sp. VITRSB1 Isolated from Marine Sediments", Scientifica, Vol.
2015, pp. 867586-867586.
[252] Singh, Alok, Kumar Aniruddha, Singh Prakash, Singh Asha, Kumar Alok, Bacterial
desulphurization of low-rank coal: A case study of Eocene Lignite of Western
Rajasthan, India. 2018. 1-10.
[253] Seo, Jong-Su, Keum Young-Soo, Li Qing X. (2009), "Bacterial degradation of
aromatic compounds", International journal of environmental research and public
health, Vol. 6, No. 1, pp. 278-309.
[254] Morya, Raj, Salvachúa Davinia, Thakur Indu Shekhar (2020), "Burkholderia: An
Untapped but Promising Bacterial Genus for the Conversion of Aromatic
Compounds", Trends in Biotechnology, Vol. 38, No. 9, pp. 963-975.
[255] Piochon, M., Coulon P. M. L., Caulet A., Groleau M. C., Déziel E., Gauthier C.
(2020), "Synthesis and Antimicrobial Activity of Burkholderia-Related 4-Hydroxy-
3-methyl-2-alkenylquinolines (HMAQs) and Their N-Oxide Counterparts", J Nat
Prod, Vol. 83, No. 7, pp. 2145-2154.
[256] David J. Midgley, Philip Hendry, Kaydy L. Pinetown, David Fuentes, Se Gong,
Danielle L. Mitchell, Faiz Mohinudeen (2010), "Characterisation of a microbial
community associated with a deep, coal seam methane reservoir in the Gippsland
Basin, Australia", International Journal of Coal Geology, Vol. 82, pp. 232–239.
[257] An, Dongshan (2013), "Metagenomics of Hydrocarbon Resource Environments
Indicates Aerobic Taxa and Genes to be Unexpectedly Common", Environmental
134
Science & Technology, Vol. 47, No. 18, pp. 10708−10717.
[258] Barnhart, Elliott P., Weeks Edwin P., Jones Elizabeth J. P., Ritter Daniel J., McIntosh
Jennifer C., Clark Arthur C., Ruppert Leslie F., Cunningham Alfred B., Vinson
David S., Orem William, Fields Matthew W. (2016), "Hydrogeochemistry and
coal-associated bacterial populations from a methanogenic coal bed", International
Journal of Coal Geology, Vol. 162, pp. 14-26.
[259] Hidalgo, Kelly J., Sierra-Garcia Isabel N., Dellagnezze Bruna M., de Oliveira Valéria
Maia (2020), "Metagenomic Insights Into the Mechanisms for Biodegradation of
Polycyclic Aromatic Hydrocarbons in the Oil Supply Chain", Frontiers in
Microbiology, Vol. 11, pp. 561506-561506.
[260] Margesin, Rosa, Volgger Georg, Wagner Andreas O., Zhang Dechao, Poyntner
Caroline (2021), "Biodegradation of lignin monomers and bioconversion of ferulic
acid to vanillic acid by Paraburkholderia aromaticivorans AR20-38 isolated from
Alpine forest soil", Applied Microbiology and Biotechnology, Vol. 105, No. 7, pp.
2967-2977.
[261] Kirk, M. F., Wilson B. H., Marquart K. A., Zeglin L. H., Vinson D. S., Flynn T. M.
(2015), "Solute Concentrations Influence Microbial Methanogenesis in Coal-
bearing Strata of the Cherokee Basin, USA", Front Microbiol, Vol. 6, pp. 1287.
[262] Guo, Hongyu, Dong Zhiwei, Liu Xile, Bai Yang, Gao Zhixiang, Xia Daping (2019),
"Analysis of methanogens adsorption and biogas production characteristics from
different coal surfaces", Environmental Science and Pollution Research, Vol. 26,
No. 14, pp. 13825-13832.
[263] Wang, Bobo, Yu Zhisheng, Zhang Yiming, Zhang Hongxun (2019), "Microbial
communities from the Huaibei Coalfield alter the physicochemical properties of
coal in methanogenic bioconversion", International Journal of Coal Geology, Vol.
202, pp. 85-94.
[264] Guo, H., Dong Z., Liu X., Bai Y., Gao Z., Xia D. (2018), "Analysis of methanogens
adsorption and biogas production characteristics from different coal surfaces",
Environ Sci Pollut Res Int.
[265] Lever, M. A., Rogers K. L., Lloyd K. G., Overmann J., Schink B., Thauer R. K.,
Hoehler T. M., Jørgensen B. B. (2015), "Life under extreme energy limitation: a
synthesis of laboratory- and field-based investigations", FEMS Microbiol Rev,
Vol. 39, No. 5, pp. 688-728.
[266] Haynes, Matthew, Metagenomics, in Encyclopedia of Ecology (Second Edition), Fath,
Brian, Editor. 2008, Elsevier: Oxford. p. 153-156.
[267] Garrity, George, Brenner Don, Kreig Noel, Staley James, Bergey’s Manual of
Systematic Bacteriology, Volume 2 Part B The Gammaproteobacteria. 2005.
[268] Zhang, K., Song L., Dong X. (2010), "Proteiniclasticum ruminis gen. nov., sp. nov., a
strictly anaerobic proteolytic bacterium isolated from yak rumen", Int J Syst Evol
Microbiol, Vol. 60, No. Pt 9, pp. 2221-2225.
[269] Vick, S. H. W., Gong S., Sestak S., Vergara T. J., Pinetown K. L., Li Z., Greenfield
P., Tetu S. G., Midgley D. J., Paulsen I. T. (2019), "Who eats what? Unravelling
microbial conversion of coal to methane", FEMS Microbiol Ecol, Vol. 95, No. 7.
[270] Wang, L., Nie Y., Tang Y. Q., Song X. M., Cao K., Sun L. Z., Wang Z. J., Wu X. L.
(2016), "Diverse Bacteria with Lignin Degrading Potentials Isolated from Two
Ranks of Coal", Frontiers in Microbiology, Vol. 7, No. 1428.
[271] Dawson, Katherine S., Strąpoć Dariusz, Huizinga Brad, Lidstrom Ulrika, Ashby Matt,
135
Macalady Jennifer L. (2012), "Quantitative fluorescence in situ hybridization
analysis of microbial consortia from a biogenic gas field in Alaska's Cook Inlet
basin", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Vol. 78, No. 10,
pp. 3599-3605.
[272] Bouanane-Darenfed, A., Ben Hania W., Hacene H., Cayol J. L., Ollivier B., Fardeau
M. L. (2013), "Caldicoprobacter guelmensis sp. nov., a thermophilic, anaerobic,
xylanolytic bacterium isolated from a hot spring", Int J Syst Evol Microbiol, Vol.
63, No. Pt 6, pp. 2049-2053.
[273] Yokoyama, H., Wagner I. D., Wiegel J. (2010), "Caldicoprobacter oshimai gen. nov.,
sp. nov., an anaerobic, xylanolytic, extremely thermophilic bacterium isolated from
sheep faeces, and proposal of Caldicoprobacteraceae fam. nov", Int J Syst Evol
Microbiol, Vol. 60, No. Pt 1, pp. 67-71.
[274] Kruskal, J. B. (1964), "Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis", Psychometrika, Vol. 29, No. 1, pp. 1-27.
[275] Paliy, O., Shankar V. (2016), "Application of multivariate statistical techniques in
microbial ecology", Mol Ecol, Vol. 25, No. 5, pp. 1032-57.