Luận án Nghiên cứu khả năng khí hóa than của hệ vi sinh vật từ bể than sông Hồng

Sau 5 năm nghiên cứu và thực hiện, Luận án đã xây dựng được quy trình nghiên cứu triển khai công nghệ khí hóa sinh học than ngầm quy mô phòng thí nghiệm từ quá trình lấy mẫu, bảo quản và gia công phân tích mẫu cho đến xác lập các điều kiện thí nghiệm phù hợp với đối tượng là than Sông Hồng và quần xã vi sinh vật bản địa kị khí nghiêm ngặt. Kết quả của Luận án là cơ sở khoa học để triển khai công nghệ khí hóa sinh học than ngầm tại bể than Sông Hồng, Việt Nam. Các kết quả nghiên cứu chính đã hoàn thành được hai mục tiêu đề ra trong Luận án, được trình bày dưới đây: 1. Các đặc điểm địa chất và hóa địa thủy văn của bể than Sông Hồng tại khu vực nghiên cứu khẳng định tính khả dụng sinh học để khí hóa than ngầm bằng vi sinh vật: tồn tại 05 vỉa than tương ứng 5 vị trí lấy mẫu (C1 đến C5; chiều sâu vỉa từ 396,04 m đến 853,82 m) có bề dày vỉa khoảng từ 3 ̶ 5 m; các vỉa than có thành phần chất bốc cao (40,29 ̶ 47,19%); kích thước lỗ rỗng phù hợp cho vi sinh vật xâm nhập trong than (> 400 nm, chiếm 11,98 ̶ 36,08% tổng thể tích lỗ) cùng tính liên thông lỗ rỗng tốt; nước ngầm liên kết bể than mang đặc trưng của một bể than có khả năng sinh khí. 2. Đã chứng minh được sự tồn tại của quần xã vi sinh vật bản địa có khả năng chuyển hóa than thành khí trong bể than sông Hồng tại khu vực nghiên cứu. Ngành Proteobacteria chiếm ưu thế trong các vỉa than, với chi phổ biến nhất thuộc Burkholderia-Caballeronia-Paraburkholderia. Các ngành Proteobacteria – Archaea – Firmicutes – Actinobacteria – Bacteroidete là các ngành phổ biến theo mức độ giảm dần trong mẫu nước liên kết bể than, với chi phổ biến nhất là Shewanella. Con đường chuyển hóa sinh khí methane dinh dưỡng methyl với nhóm cổ khuẩn Methanolobus chiếm ưu thế. Quần xã vi sinh vật bản địa đáp ứng với việc bổ sung dinh dưỡng, cho hiệu suất sinh khí cao hơn trong thời gian ngắn hơn, dao động từ 1,14 đến 4,96 mL CH4/g than. Bằng các nghiên cứu đã nêu trong Luận án, đã xác định được tính khả thi và phạm vi áp dụng phù hợp của giải pháp khí hóa sinh học than ngầm trong bể than Sông Hồng tại vùng nghiên cứu là các vỉa than có chiều sâu vỉa tới 745,25 m.

pdf146 trang | Chia sẻ: huydang97 | Lượt xem: 325 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu khả năng khí hóa than của hệ vi sinh vật từ bể than sông Hồng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
. A. (2012), "Palaeoclimate reconstruction from biomarker geochemistry and stable isotopes of n-alkanes from Carboniferous and Early Permian humic coals and limnic sediments in western and eastern Europe", Organic Geochemistry, Vol. 43, pp. 125-149. [74] Mallants, D, Bekele E, Schmid W, Miotlinski K and , Bristow K (2017), "Literature review: Identification of potential pathways to shallow groundwater of fluids associated with hydraulic fracturing, Project report prepared by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) as part of the National Assessment of Chemicals Associated with Coal Seam Gas Extraction in Australia, Commonwealth of Australia, Canberra.". [75] Kerst, M., Andersson J. T. (2001), "Microwave-assisted extraction of polycyclic aromatic compounds from coal", Fresenius J Anal Chem, Vol. 370, No. 7, pp. 970- 2. [76] Stout, Scott A., Emsbo-Mattingly Stephen D. (2008), "Concentration and character of 121 PAHs and other hydrocarbons in coals of varying rank@ Implications for environmental studies of soils and sediments containing particulate coal", Organic Geochemistry, Vol. 39, pp. 801-819. [77] Wang, Ruwei, Liu Guijian, Zhang Jiamei, Chou Chen-Lin, Liu Jingjing (2010), "Abundances of Polycyclic Aromatic Hydrocarbons (PAHs) in 14 Chinese and American Coals and Their Relation to Coal Rank and Weathering", Energy & Fuels, Vol. 24, No. 11, pp. 6061-6066. [78] Ahmed, Manzur , Smith J. W. , George Simon C. (1999), "Effects of biodegradation on Australian Permian coals", n: Organic Geochemistry, Vol. 30, No. 10, pp. 1311- 1322. [79] Zong, Yingxia, Zong Zhi-Min, Ding Ming-jie, Zhou Lei, Huang Yao-Guo, Zheng Yuxuan, Jin Xin, Ma Yumiao, Wei Xian-Yong (2009), "Separation and analysis of organic compounds in an Erdos coal", Fuel, Vol. 88, pp. 469-474. [80] Schulz, H. M. (1997), "Coal mine workers' pneumoconiosis (CWP): in vitro study of the release of organic compounds from coal mine dust in the presence of physiological fluids", Environ Res, Vol. 74, No. 1, pp. 74-83. [81] Piedad-Sanchez, Noe, Suárez-Ruiz Isabel, Martı́nez Luis, Izart Alain, Elie Mutombo, Keravis Didier (2004), "Organic petrology and geochemistry of the Carboniferous coal seams from the Central Asturian Coal Basin (NW Spain)", International Journal of Coal Geology - INT J COAL GEOL, Vol. 57, pp. 211-242. [82] Miranda, Ana Cristina Macêdo L., Loureiro Maria Regina B., Cardoso Jari N. (1999), "Aliphatic and aromatic hydrocarbons in Candiota coal samples: novel series of bicyclic compounds", Organic Geochemistry, Vol. 30, No. 9, pp. 1027-1038. [83] Chen, Tianyu, Zheng Hang, Hamilton Stephanie, Rodrigues Sandra, Golding Suzanne D., Rudolph Victor (2017), "Characterisation of bioavailability of Surat Basin Walloon coals for biogenic methane production using environmental microbial consortia", International Journal of Coal Geology, Vol. 179, pp. 92-112. [84] Guo, Hongguang, Zhang Yiwen, Zhang Jinlong, Huang Zaixing, Urynowicz Michael A., Liang Weiguo, Han Zuoying, Liu Jian (2019), "Characterization of an anthracite-degrading methanogenic microflora enriched from Qinshui Basin in China", Energy & Fuels, Vol. 33, No. 7, pp. 6380-6389. [85] Yen, T. F., Chapter 7 Structural Aspects of Organic Components in Oil Shales, in Developments in Petroleum Science, Yen, Teh FuandGeorge V. Chilingarian, Editors. 1976, Elsevier. p. 129-148. [86] Behar, F., Vandenbroucke M. (1988), "Characterization and quantification of saturates trapped inside kerogen: Implications for pyrolysate composition", Organic Geochemistry, Vol. 13, No. 4, pp. 927-938. [87] Yang, Yongliang, Sun Jiaji, Li Zenghua, Li Jinhu, Zhang Xiaoyan, Liu Liwei, Yan Daocheng, Zhou Yinbo (2018), "Influence of soluble organic matter on mechanical properties of coal and occurrence of coal and gas outburst", Powder Technology, Vol. 332, pp. 8-17. [88] Ehrlich, Henry Lutz, Newman Dianne K., Kappler Andreas, Geomicrobiology. 2009, Taylor & Francis Group: CRC Press. [89] Mastalerz, Maria, Schimmelmann Arndt, Drobniak Agnieszka, Chen Yanyan (2013), "Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion", AAPG Bulletin, Vol. 97, pp. 1621-1643. 122 [90] Bouska, Vladimir, Geochemistry of Coal 1981: Elsevier Scientific Pub Co. [91] Flores, Romeo, Origin of Coal as Gas Source and Reservoir Rocks. 2014. p. 97-165. [92] Rice, Dudley D., Law Ben E., Rice Dudley D., Composition and Origins of Coalbed Gas, in Hydrocarbons from Coal. 1993, American Association of Petroleum Geologists. p. 159-184. [93] Faiz, Mohinudeen, Hendry Philip (2006), "Significance of microbial activity in Australian coal bed methane reservoirs — a review", Bulletin of Canadian Petroleum Geology, Vol. 54, No. 3, pp. 261-272. [94] Moore, Tim A. (2012), "Coalbed methane: A review", International Journal of Coal Geology, Vol. 101, pp. 36-81. [95] Chen, Kevin, Pachter Lior (2005), "Bioinformatics for Whole-Genome Shotgun Sequencing of Microbial Communities", PLOS Computational Biology, Vol. 1, No. 2, pp. 24. [96] Margulies, Marcel (2005), "Genome sequencing in microfabricated high-density picolitre reactors", Nature, Vol. 437, No. 7057, pp. 376-380. [97] Bi, Zheting, Zhang Ji, Park Stephen, Harpalani Satya, Liang Yanna (2017), "A formation water-based nutrient recipe for potentially increasing methane release from coal in situ", Fuel, Vol. 209, pp. 498–508. [98] Vick, Silas H. W., Greenfield Paul, Tran-Dinh Nai, Tetu Sasha G., Midgley David J., Paulsen Ian T. (2018), "The Coal Seam Microbiome (CSMB) reference set, a lingua franca for the microbial coal-to-methane community", International Journal of Coal Geology, Vol. 186, pp. 41-50. [99] Whittaker, R. H. (1972), "Evolution and Measurement of Species Diversity", Taxon, Vol. 21, No. 2/3, pp. 213-251. [100] Thukral, Ashwani (2017), "A review on measurement of Alpha diversity in biology", Agricultural Research Journal, Vol. 54, pp. 1. [101] Gotelli, Nicholas, Chao Anne, Measuring and Estimating Species Richness, Species Diversity, and Biotic Similarity from Sampling Data. 2013. p. 195-211. [102] Gorby, Yuri A., Yanina Svetlana, McLean Jeffrey S., Rosso Kevin M., Moyles Dianne, Dohnalkova Alice, Beveridge Terry J., Chang In Seop, Kim Byung Hong, Kim Kyung Shik, Culley David E., Reed Samantha B., Romine Margaret F., Saffarini Daad A., Hill Eric A., Shi Liang, Elias Dwayne A., Kennedy David W., Pinchuk Grigoriy, Watanabe Kazuya, Ishii Shun’ichi, Logan Bruce, Nealson Kenneth H., Fredrickson Jim K. (2006), "Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms", Proceedings of the National Academy of Sciences, Vol. 103, No. 30, pp. 11358. [103] Stams, A. J., Plugge C. M., de Bok F. A., van Houten B. H., Lens P., Dijkman H., Weijma J. (2005), "Metabolic Interactions in Methanogenic and Sulfate-Reducing Bioreactors", Water Sci Technol, Vol. 52, No. 1-2, pp. 13-20. [104] Schink, B. (1997), "Energetics of syntrophic cooperation in methanogenic degradation", Microbiol Mol Biol Rev, Vol. 61, No. 2, pp. 262-80. [105] Richard, Schinteie, Kaydy L Pinetown, Jim R.Underschultz, Sue Vink , Carl A. Peters, David J. Midgley (2018), Occurrence and fate of natural hydrocarbons and other organic compounds in groundwater from coalbearing basins in Queensland, Australia, CSIRO, Australia. [106] Iram, Attia, Akhtar Kalsoom, Ghauri Muhammad Afzal (2017), "Coal 123 methanogenesis: a review of the need of complex microbial consortia and culture conditions for the effective bioconversion of coal into methane", Ann Microbiol, Vol. 67, No. 3, pp. 275-286. [107] Liu, Y., Whitman W. B. (2008), "Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea", Ann N Y Acad Sci, Vol. 1125, pp. 171-89. [108] McInerney, M. J., Sieber J. R., Gunsalus R. P. (2009), "Syntrophy in anaerobic global carbon cycles", Curr Opin Biotechnol, Vol. 20, No. 6, pp. 623-32. [109] Morris, B. E., Henneberger R., Huber H., Moissl-Eichinger C. (2013), "Microbial syntrophy: interaction for the common good", FEMS Microbiol Rev, Vol. 37, No. 3, pp. 384-406. [110] Nozhevnikova, A. N., Russkova Yu I., Litti Yu V., Parshina S. N., Zhuravleva E. A., Nikitina A. A. (2020), "Syntrophy and Interspecies Electron Transfer in Methanogenic Microbial Communities", Microbiology, Vol. 89, No. 2, pp. 129- 147. [111] Gieg, L. M., Fowler S. J., Berdugo-Clavijo C. (2014), "Syntrophic biodegradation of hydrocarbon contaminants", Curr Opin Biotechnol, Vol. 27, pp. 21-9. [112] Kato, Souichiro, Hashimoto Kazuhito, Watanabe Kazuya (2012), "Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals", Environmental Microbiology, Vol. 14, No. 7, pp. 1646-1654. [113] Shimoyama, Takefumi, Kato Souichiro, Ishii Shun'ichi, Watanabe Kazuya (2009), "Flagellum Mediates Symbiosis", Science, Vol. 323, No. 5921, pp. 1574-1574. [114] Tang, Yue-Qin, Ji Pan, Lai Guo-Li, Chi Chang-Qiao, Liu Ze-Shen, Wu Xiao-Lei (2012), "Diverse microbial community from the coalbeds of the Ordos Basin, China", International Journal of Coal Geology, Vol. 90-91, pp. 21-33. [115] Gründger, Friederike, Jiménez Núria, Thielemann Thomas, Straaten Nontje, Lüders Tillmann, Richnow Hans-Hermann, Krüger Martin (2015), "Microbial methane formation in deep aquifers of a coal-bearing sedimentary basin, Germany", Frontiers in Microbiology, Vol. 6, pp. 200-200. [116] Doanh, Vũ Xuân (1986), "Báo cáo Độ chứa than miền võng Hà Nội (Hưng Yên-Thái Bình)", Lưu trữ Địa chất, Viện NC ĐC & KS. [117] Hiệp, Nguyễn (chủ biên), Địa chất và tài nguyên dầu khí Việt Nam. 2007, Tập đoàn Dầu khí Việt Nam: Nhà xuất bản Khoa học và kỹ thuật. [118] Chính, Ngô Tất (1985), "Báo cáo Kết quả thăm dò sơ bộ than khu Bình Minh-Châu Giang-Hải Hưng", Lưu trữ Địa chất. [119] Chính, Ngô Tất (1987), "Báo cáo Kết quả tìm kiếm tỷ than khu Khoái Châu-Châu Giang-Hải Hưng", Lưu trữ Địa chất. [120] Tiến, Vũ Văn , Sang Bùi Văn (2006), "Báo cáo kết quả khảo sát than đồng bằng Sông Hồng", Lưu trữ TTTLĐC. [121] Giap, Van Dong, Phi Chi Thien, Le Duy Nguyen, Dinh Duc Anh, Nguyen Van Thu (2020), "Geological characteristics and coal resources in the mainland of Sông Hông basin according to new research results", Journal of Geology, Vol. 371-372, pp. 141-153. [122] Nielsen, L. H., Mathiesen A., Bidstrup T., Vejbæk O. V., Dien P. T., Tiem P. V. (1999), "Modelling of hydrocarbon generation in the Cenozoic Song Hong Basin, Vietnam: a highly prospective basin", Journal of Asian Earth Sciences, Vol. 17, No. 1, pp. 269-294. [123] Lê, Trần, Tiến Ngọc (1987), "Kết quả nghiên cứu khai thác các băng chấn để liên kết 124 các tập chứa than vùng Tây bắc sông Luộc MVHN", Lưu trữ TTTLĐC. [124] Tiến, Vũ Ngọc (1987), "Khai thác các băng ghi địa chấn để liên kết các tập chứa than vùng Tây Bắc sông Luộc, miền võng Hà Nội", Lưu trữ Địa chất. [125] Doanh, Vũ Xuân (1975), "Thông tin Triển vọng Than trong trầm tích Neogen dải Khoái Châu (Hưng Yên)- Tiền Hải (Thái Bình)", Lưu trữ Viện NC Địa chất và Khoáng Sản. [126] Trụ, Vũ (2011), "Đánh giá tiềm năng và khả năng khai thác khí than (CBM) tại dải trung tâm miền võng Hà Nội (Phù Cư-Tiên Hưng-Kiến Xương-Tiền Hải)", Đề tài nghiên cứu khoa học cấp ngành, Viện Dầu Khí Việt Nam. [127] Tanner, Ralph S., Cultivation of Bacteria and Fungi, in Manual of Environmental Microbiology, Third Edition. 2007, American Society of Microbiology. [128] Brunauer, Stephen, Emmett P. H., Teller Edward (1938), "Adsorption of Gases in Multimolecular Layers", Journal of the American Chemical Society, Vol. 60, No. 2, pp. 309-319. [129] Barrett, Elliott P., Joyner Leslie G., Halenda Paul P. (1951), "The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms", Journal of the American Chemical Society, Vol. 73, No. 1, pp. 373-380. [130] Clarkson, C. R., Bustin R. M. (1999), "The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study. 1. Isotherms and pore volume distributions", Fuel, Vol. 78, No. 11, pp. 1333-1344. [131] Rouquerol, Jean, Rouquerol François, Sing Kenneth, Adsorption by Powders and Porous Solids, Principles, Methodology and Applications. 1999. [132] Thomson, William (1872), "4. On the Equilibrium of Vapour at a Curved Surface of Liquid", Proceedings of the Royal Society of Edinburgh, Vol. 7, pp. 63-68. [133] Qi, Lingling, Tang Xu, Wang Zhaofeng, Peng Xinshan (2017), "Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach", International Journal of Mining Science and Technology, Vol. 27, No. 2, pp. 371-377. [134] Kadlec, Ondřej (2001), "The History and Present State of Dubinin's Theory of Adsorption of Vapours and Gases on Microporous Solids", Adsorption Science & Technology, Vol. 19, No. 1, pp. 1-24. [135] Wang, Guochang, Ju Yiwen, Yan Zhifeng, Li Qingguang (2015), "Pore structure characteristics of coal–bearing shale using fluid invasion methods: A case study in the Huainan–Huaibei Coalfield in China", Marine and Petroleum Geology, Vol. 62. [136] Washburn, Edward W. (1921), "The Dynamics of Capillary Flow", Physical Review, Vol. 17, No. 3, pp. 273-283. [137] Swanson, B. F. (1981), "A Simple Correlation Between Permeabilities and Mercury Capillary Pressures", Journal of Petroleum Technology, Vol. 33, No. 12, pp. 2498- 2504. [138] Bharanidharan, Rajaraman, Arokiyaraj Selvaraj, Kim Eun Bae, Lee Chang Hyun, Woo Yang Won, Na Youngjun, Kim Danil, Kim Kyoung Hoon (2018), "Ruminal methane emissions, metabolic, and microbial profile of Holstein steers fed forage and concentrate, separately or as a total mixed ration", PLoS One, Vol. 13, No. 8, pp. e0202446. [139] Caporaso, J. Gregory, Lauber Christian L., Walters William A., Berg-Lyons Donna, 125 Lozupone Catherine A., Turnbaugh Peter J., Fierer Noah, Knight Rob (2011), "Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample", Proc. Natl. Acad. Sci., Vol. 108, No. Supplement 1, pp. 4516-4522. [140] Caporaso, J. G., Bittinger K., Bushman F. D., DeSantis T. Z., Andersen G. L., Knight R. (2010), "PyNAST: a flexible tool for aligning sequences to a template alignment", Bioinformatics, Vol. 26, No. 2, pp. 266-7. [141] Quast, Christian, Pruesse Elmar, Yilmaz Pelin, Gerken Jan, Schweer Timmy, Yarza Pablo, Peplies Jörg, Glöckner Frank Oliver (2013), "The SILVA ribosomal RNA gene database project: improved data processing and web-based tools", Nucleic Acids Research, Vol. 41, No. D1, pp. D590-D596. [142] Yilmaz, Pelin, Parfrey Laura Wegener, Yarza Pablo, Gerken Jan, Pruesse Elmar, Quast Christian, Schweer Timmy, Peplies Jörg, Ludwig Wolfgang, Glöckner Frank Oliver (2014), "The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks", Nucleic Acids Research, Vol. 42, No. D1, pp. D643-D648. [143] Chao, Anne (1984), "Nonparametric Estimation of the Number of Classes in a Population", Scandinavian Journal of Statistics, Vol. 11, No. 4, pp. 265-270. [144] Chao, Anne, Lee Shen-Ming (1992), "Estimating the Number of Classes via Sample Coverage", Journal of the American Statistical Association, Vol. 87, No. 417, pp. 210-217. [145] Shannon, C. E. (1948), "A Mathematical Theory of Communication", Bell System Technical Journal, Vol. 27, No. 3, pp. 379-423. [146] Simpson, E. H. (1949), "Measurement of Diversity", Nature, Vol. 163, No. 4148, pp. 688-688. [147] Paliy, O., Shankar V. (2016), "Application of multivariate statistical techniques in microbial ecology", Mol Ecol, Vol. 25, No. 5, pp. 1032-1057. [148] Ramette, Alban (2007), "Multivariate analyses in microbial ecology", FEMS Microbiology Ecology, Vol. 62, No. 2, pp. 142-160. [149] Bray, J. Roger, Curtis J. T. (1957), "An Ordination of the Upland Forest Communities of Southern Wisconsin", Ecological Monographs, Vol. 27, No. 4, pp. 325-349. [150] Puntanen, Simo (2013), "Methods of Multivariate Analysis, Third Edition by Alvin C. Rencher, William F. Christensen", International Statistical Review, Vol. 81, pp. 328-329. [151] ter Braak, Cajo J. F., Verdonschot Piet F. M. (1995), "Canonical correspondence analysis and related multivariate methods in aquatic ecology", Aquatic Sciences, Vol. 57, No. 3, pp. 255-289. [152] Robbins, Steven J., Evans Paul N., Esterle Joan S., Golding Suzanne D., Tyson Gene W. (2016), "The effect of coal rank on biogenic methane potential and microbial composition", International Journal of Coal Geology, Vol. 154-155, pp. 205-212. [153] Bao, Yuan, Huang Haiping, He Dashuang, Ju Yiwen, Qi Yu (2016), "Microbial enhancing coal-bed methane generation potential, constraints and mechanism: A mini-review", Journal of Natural Gas Science and Engineering, Vol. 35, pp. 68-78. [154] Suárez-Ruiz, Isabel, Flores Deolinda, Mendonça Filho João Graciano, Hackley Paul C. (2012), "Review and update of the applications of organic petrology: Part 1, geological applications", International Journal of Coal Geology, Vol. 99, pp. 54- 112. [155] Voast, Wayne, Montana Voast (2003), "Geochemical signature of formation waters associated with coalbed methane", AAPG Bulletin, Vol. 87, No. 4, pp. 667-676. 126 [156] Barnhart, Elliott P., Davis Katherine J., Varonka Matthew S., Orem William H., Cunningham Alfred B., Ramsay Bradley D., Fields Matthew W. (2017), "Enhanced coal-dependent methanogenesis coupled with algal biofuels: Potential water recycle and carbon capture", International Journal of Coal Geology, Vol. 171, pp. 69-75. [157] Raudsepp, M. J., Gagen E. J., Evans P., Tyson G. W., Golding S. D., Southam G. (2016), "The influence of hydrogeological disturbance and mining on coal seam microbial communities", Geobiology, Vol. 14, No. 2, pp. 163-175. [158] Zhang, Ji, Bi Zheting, Liang Yanna (2018), "Development of a nutrient recipe for enhancing methane release from coal in the Illinois basin", International Journal of Coal Geology, Vol. 187. [159] Weber, K. A., Achenbach L. A., Coates J. D. (2006), "Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction", Nat Rev Microbiol, Vol. 4, No. 10, pp. 752-64. [160] Detmers, J., Schulte U., Strauss H., Kuever J. (2001), "Sulfate Reduction at a Lignite Seam: Microbial Abundance and Activity", Microb Ecol, Vol. 42, No. 3, pp. 238- 247. [161] Sivan, O., Schrag D. P., Murray R. W. (2007), "Rates of methanogenesis and methanotrophy in deep-sea sediments", Geobiology, Vol. 5, pp. 141-151. [162] Ferry, James G. (1993), Methanogenesis: Ecology, Physiology, Biochemistry & Genetics, Springer Science. [163] Patricia J. Waldron, Steven T. Petsch, Anna M. Martini, Klaus Nüsslein (2007), "Salinity Constraints on Subsurface Archaeal Diversity and Methanogenesis in Sedimentary Rock Rich in Organic Matter", Appl. Environ. Microbiol., Vol. 73, No. 13, pp. 4171-4179. [164] Wang, Anmin, Wei Yingchun, Yuan Yuan, Li Changfeng, Li Yong, Cao Daiyong (2017), "Coalbed methane reservoirs’ pore-structure characterization of different macrolithotypes in the southern Junggar Basin of Northwest China", Marine and Petroleum Geology, Vol. 86, pp. 675-688. [165] Yao, Yanbin, Liu Dameng, Tang Dazhen, Tang Shuheng, Huang Wenhui (2008), "Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals", International Journal of Coal Geology, Vol. 73, pp. 27-42. [166] Gu, Yang, Ding Wenlong, Yin Shuai, Wang Ruyue, Mei Yonggui, Liu Jianjun (2017), "Analytical modeling of mercury injection in high-rank coalbed methane reservoirs based on pores and microfractures: a case study of the upper carboniferous Taiyuan Formation in the Heshun block of the Qinshui Basin, central China", Journal of Geophysics and Engineering, Vol. 14, pp. 197-211. [167] Thommes, Matthias, Kaneko Katsumi, Neimark Alexander, Olivier James, Rodriguez-Reinoso Francisco, Rouquerol Jean, Sing Kenneth (2015), "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)", Pure and Applied Chemistry, Vol. 87, No. 9-10, pp. 1051. [168] Klomkliang, Nikom, Do D. D., Nicholson D. (2013), "On the hysteresis loop and equilibrium transition in slit-shaped ink-bottle pores", Adsorption, Vol. 19, No. 6, pp. 1273-1290. [169] Tanev, Peter T., Vlaev Lyubomir T. (1993), "An Attempt at a More Precise 127 Evaluation of the Approach to Mesopore Size Distribution Calculations Depending on the Degree of Pore Blocking", Journal of Colloid and Interface Science, Vol. 160, No. 1, pp. 110-116. [170] Fu, Haijiao, Tang Dazhen, Xu Ting, Xu Hao, Tao Shu, Li Song, Yin ZhenYong, Chen Baoli, Zhang Cheng, Wang Linlin (2017), "Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China", Fuel, Vol. 193, pp. 254-264. [171] Rodrigues, C. F., Lemos de Sousa M. J. (2002), "The measurement of coal porosity with different gases", International Journal of Coal Geology, Vol. 48, No. 3, pp. 245-251. [172] Pant, Lalit M., Huang Haiping, Secanell Marc, Larter Steve, Mitra Sushanta K. (2015), "Multi Scale Characterization of Coal Structure for Mass Transport", Fuel, Vol. 159. [173] Laubach, S. E., Marrett R. A., Olson J. E., Scott A. R. (1998), "Characteristics and origins of coal cleat: A review", International Journal of Coal Geology, Vol. 35, No. 1, pp. 175-207. [174] Swanson, Sharon M., Mastalerz Maria D., Engle Mark A., Valentine Brett J., Warwick Peter D., Hackley Paul C., Belkin Harvey E. (2015), "Pore characteristics of Wilcox Group Coal, U.S. Gulf Coast Region: Implications for the occurrence of coalbed gas", International Journal of Coal Geology, Vol. 139, pp. 80-94. [175] Zhou, Sandong, Liu Dameng, Cai Yidong, Yao Yanbin (2016), "Gas sorption and flow capabilities of lignite, subbituminous and high-volatile bituminous coals in the Southern Junggar Basin, NW China", Journal of Natural Gas Science and Engineering, Vol. 34, pp. 6-21. [176] Cai, Yidong, Liu Dameng, Pan Zhejun, Che Yao, Liu Zhihua (2016), "Investigating the Effects of Seepage-Pores and Fractures on Coal Permeability by Fractal Analysis", Transport in Porous Media, Vol. 111, No. 2, pp. 479-497. [177] Sang, Guijie, Liu Shimin, Zhang Rui, Elsworth Derek, He Lilin (2018), "Nanopore characterization of mine roof shales by SANS, nitrogen adsorption, and mercury intrusion: Impact on water adsorption/retention behavior", International Journal of Coal Geology, Vol. 200, pp. 173-185. [178] Shan, C. A., Zhang T. S., Guo J. J., Zhang Z., Yang Y. (2015), "Characterization of the micropore systems in high-rank coal reservoirs of the southern Sichuan Basin, China", AAPG Bulletin, Vol. 99, No. 11, pp. 2099-2119. [179] Hamilton, S. K., Golding S. D., Baublys K. A., Esterle J. S. (2015), "Conceptual exploration targeting for microbially enhanced coal bed methane (MECoM) in the Walloon Subgroup, eastern Surat Basin, Australia", International Journal of Coal Geology, Vol. 138, pp. 68–82. [180] Bao, Yuan, Wei Chongtao, Neupane Bhupati (2016), "Generation and accumulation characteristics of mixed coalbed methane controlled by tectonic evolution in Liulin CBM field, eastern Ordos Basin, China", Journal of Natural Gas Science and Engineering, Vol. 28, pp. 262-270. [181] Lawson, Christopher E., Strachan Cameron R., Williams Dominique D., Koziel Susan, Hallam Steven J., Budwill Karen (2015), "Patterns of Endemism and Habitat Selection in Coalbed Microbial Communities", Appl Environ Microbiol, Vol. 81, No. 22, pp. 7924–7937. 128 [182] Barnhart, Elliott P., De León Kara Bowen, Ramsay Bradley D., Cunningham Alfred B., Fields Matthew W. (2013), "Investigation of coal-associated bacterial and archaeal populations from a diffusive microbial sampler (DMS)", International Journal of Coal Geology, Vol. 115, pp. 64-70. [183] Zhang, Ji, Liang Yanna (2017), "Evaluating approaches for sustaining methane production from coal through biogasification", Fuel, Vol. 202, pp. 233-240. [184] Ren, Jianhua, Zhang Liang, Ren Shaoran, Lin Jingde, Meng Shangzhi, Ren Guangjun, Gentzis Thomas (2014), "Multi-branched horizontal wells for coalbed methane production: Field performance and well structure analysis", International Journal of Coal Geology, Vol. 131, pp. 52-64. [185] Zhang, Ji, Yip Catherine, Xia Chunjie, Liang Yanna (2019), "Evaluation of methane release from coals from the San Juan basin and Powder River basin", Fuel, Vol. 244, pp. 388-394. [186] Colosimo, Fabrizio, Thomas Russell, Lloyd Jonathan R., Taylor Kevin G., Boothman Christopher, Smith Anthony D., Lord Richard, Kalin Robert M. (2016), "Biogenic methane in shale gas and coal bed methane: A review of current knowledge and gaps", International Journal of Coal Geology, Vol. 165, pp. 106-120. [187] Michael S. Green, Keith C. Flanegan, Patrick C. Gilcrease (2008), "Characterization of a methanogenic consortium enriched from a coalbed methane well in the Powder River Basin, U.S.A", International Journal of Coal Geology, Vol. 76, pp. 34-45. [188] Vincent, Salom Gnana Thanga, Jennerjahn Tim, Ramasamy Kumarasamy, Chapter 3 - Environmental variables and factors regulating microbial structure and functions, in Microbial Communities in Coastal Sediments, Vincent, Salom Gnana Thanga, Tim JennerjahnandKumarasamy Ramasamy, Editors. 2021, Elsevier. p. 79-117. [189] Kempes, C. P., van Bodegom P. M., Wolpert D., Libby E., Amend J., Hoehler T. (2017), "Drivers of Bacterial Maintenance and Minimal Energy Requirements", Front Microbiol, Vol. 8, pp. 31. [190] Petro, Caitlin, Starnawski P., Schramm Andreas, Kjeldsen K. U. (2017), "Microbial community assembly in marine sediments", Aquatic Microbial Ecology, Vol. 79. [191] Wawrik, Boris, Mendivelso Margarita, Parisi Victoria A., Suflita Joseph M., Davidova Irene A., Marks Christopher R., Van Nostrand Joy D., Liang Yuting, Zhou Jizhong, Huizinga Brad J., Strąpoć Dariusz, Callaghan Amy V. (2012), "Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin", FEMS Microbiol. Ecol., Vol. 81, No. 1, pp. 26-42. [192] Strąpoć, Dariusz, Picardal Flynn W., Turich Courtney, Schaperdoth Irene, Macalady Jennifer L., Lipp Julius S., Lin Yu-Shih, Ertefai Tobias F., Schubotz Florence, Hinrichs Kai-Uwe, Mastalerz Maria, Schimmelmann Arndt (2008), "Methane- Producing Microbial Community in a Coal Bed of the Illinois Basin", Appl. Environ. Microbiol., Vol. 74, No. 8, pp. 2424-2432. [193] Fry, John C., Horsfield Brian, Sykes Richard, Cragg Barry A., Heywood Chloe, Kim Gwang Tae, Mangelsdorf Kai, Mildenhall Dallas C., Rinna Joachim, Vieth Andrea, Zink Klaus- G., Sass Henrik, Weightman Andrew J., Parkes R. John (2009), "Prokaryotic Populations and Activities in an Interbedded Coal Deposit, Including a Previously Deeply Buried Section (1.6–2.3 km) Above ∼ 150 Ma Basement Rock", Geomicrobiology Journal, Vol. 26, No. 3, pp. 163-178. [194] Singh, Durgesh Narain, Kumar Ashok, Sarbhai Munish Prasad, Tripathi Anil Kumar (2012), "Cultivation-independent analysis of archaeal and bacterial communities of the formation water in an Indian coal bed to enhance biotransformation of coal 129 into methane", Applied Microbiology and Biotechnology, Vol. 93, No. 3, pp. 1337- 1350. [195] Vick, Silas H. W., Tetu Sasha G., Sherwood Neil, Pinetown Kaydy, Sestak Stephen, Vallotton Pascal, Elbourne Liam D. H., Greenfield Paul, Johnson Errin, Barton Deborah, Midgley David J., Paulsen Ian T. (2016), "Revealing colonisation and biofilm formation of an adherent coal seam associated microbial community on a coal surface", International Journal of Coal Geology, Vol. 160-161, pp. 42-50. [196] Teng, Y., Luo Y., Sun M., Liu Z., Li Z., Christie P. (2010), "Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil", Bioresour Technol, Vol. 101, No. 10, pp. 3437-43. [197] Musat, Florin, Widdel Friedrich (2008), "Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype", Environmental Microbiology, Vol. 10, No. 1, pp. 10-19. [198] Alain, Karine, Harder Jens, Widdel Friedrich, Zengler Karsten (2012), "Anaerobic utilization of toluene by marine alpha- and gammaproteobacteria reducing nitrate", Microbiology, Vol. 158, No. 12, pp. 2946-2957. [199] Key, Blake D., Howell Robert D., Criddle Craig S. (1998), "Defluorination of organofluorine sulfur compounds by Pseudomonas Sp. strain D2", Environ. Sci. Technol., Vol. 32, No. 15, pp. 2283-2287. [200] Yin, Tingru, Tran Ngoc Han, Huiting Chen, He Yiliang, Gin Karina Yew-Hoong (2019), "Biotransformation of polyfluoroalkyl substances by microbial consortia from constructed wetlands under aerobic and anoxic conditions", Chemosphere, Vol. 233, pp. 101-109. [201] Fredrickson, James K., Romine Margaret F., Beliaev Alexander S., Auchtung Jennifer M., Driscoll Michael E., Gardner Timothy S., Nealson Kenneth H., Osterman Andrei L., Pinchuk Grigoriy, Reed Jennifer L., Rodionov Dmitry A., Rodrigues Jorge L. M., Saffarini Daad A., Serres Margrethe H., Spormann Alfred M., Zhulin Igor B., Tiedje James M. (2008), "Towards environmental systems biology of Shewanella", Nature Reviews Microbiology, Vol. 6, No. 8, pp. 592-603. [202] Serres, Margrethe H., Riley Monica (2006), "Genomic Analysis of Carbon Source Metabolism of Shewanella oneidensis MR-1: Predictions versus Experiments", Journal of Bacteriology, Vol. 188, No. 13, pp. 4601-4609. [203] Driscoll, Michael E., Romine Margie F., Juhn Frank S., Serres Margrethe H., McCue Lee Anne, Beliaev Alex S., Fredrickson James K., Gardner Timothy S. (2007), "Identification of diverse carbon utilization pathways in Shewanella oneidensis MR-1 via expression profiling", Genome Informatics, Vol. 18, pp. 287-307. [204] Bowman, J.P., McMeekin T.A., Order X. Alteromonadales, in Bergey's Manual of Systematic Bacteriology, Volume 2 : The Proteobacteria, Part B The Gammaproteobacteria. 2005, Springer US. p. 443-480. [205] Reyes-Ramirez, F., Dobbin P., Sawers G., Richardson D. J. (2003), "Characterization of transcriptional regulation of Shewanella frigidimarina Fe(III)-induced flavocytochrome c reveals a novel iron-responsive gene regulation system", J Bacteriol, Vol. 185, No. 15, pp. 4564-71. [206] Coates, J. D., Ellis D. J., Blunt-Harris E. L., Gaw C. V., Roden E. E., Lovley D. R. (1998), "Recovery of humic-reducing bacteria from a diversity of environments", Appl Environ Microbiol, Vol. 64, No. 4, pp. 1504-9. 130 [207] Lovley, Derek R., Coates John D., Blunt-Harris Elizabeth L., Phillips Elizabeth J. P., Woodward Joan C. (1996), "Humic substances as electron acceptors for microbial respiration", Nature, Vol. 382, No. 6590, pp. 445-448. [208] Wartell, Brian, Boufadel Michel, Rodriguez-Freire Lucia (2021), "An effort to understand and improve the anaerobic biodegradation of petroleum hydrocarbons: A literature review", International Biodeterioration & Biodegradation, Vol. 157, pp. 105156. [209] Klüpfel, Laura, Piepenbrock Annette, Kappler Andreas, Sander Michael (2014), "Humic substances as fully regenerable electron acceptors in recurrently anoxic environments", Nature Geoscience, Vol. 7, No. 3, pp. 195-200. [210] Kulikova, Natalia A., Perminova Irina V. (2021), "Interactions between Humic Substances and Microorganisms and Their Implications for Nature-like Bioremediation Technologies", Molecules, Vol. 26, No. 9. [211] Wang, Guowei, Chen Tianhu, Yue Zheng-Bo, Zhou Yue-Fei, Wang Jin (2014), "Isolation and Characterization of Pseudomonas stutzeri Capable of Reducing Fe(III) and Nitrate from Skarn-type Copper Mine Tailings", Geomicrobiology Journal, Vol. 31. [212] Toyofuku, Masanori, Uchiyama Hiroo, Nomura Nobuhiko (2012), "Social Behaviours under Anaerobic Conditions in Pseudomonas aeruginosa", International journal of microbiology, Vol. 2012, pp. 405191-405191. [213] Hazrin-Chong, N. H., Marjo C. E., Das T., Rich A. M., Manefield M. (2014), "Surface analysis reveals biogenic oxidation of sub-bituminous coal by Pseudomonas fluorescens", Appl Microbiol Biotechnol, Vol. 98, No. 14, pp. 6443- 6452. [214] Mehboob, F., Oosterkamp M. J., Koehorst J. J., Farrakh S., Veuskens T., Plugge C. M., Boeren S., de Vos W. M., Schraa G., Stams A. J., Schaap P. J. (2016), "Genome and proteome analysis of Pseudomonas chloritidismutans AW-1(T) that grows on n-decane with chlorate or oxygen as electron acceptor", Environ Microbiol, Vol. 18, No. 10, pp. 3247-3257. [215] Mehboob, Farrakh, Junca Howard, Schraa Gosse, J M Stams Alfons, Growth of Pseudomonas chloritidismutans AW-1(T) on n-alkanes with chlorate as electron acceptor. Vol. 83. 2009. 739-47. [216] Davis, Katherine J., Gerlach Robin (2018), "Transition of biogenic coal-to-methane conversion from the laboratory to the field: A review of important parameters and studies", International Journal of Coal Geology, Vol. 185, pp. 33-43. [217] Singh, Durgesh Narain, Tripathi Anil Kumar (2013), "Coal induced production of a rhamnolipid biosurfactant by Pseudomonas stutzeri, isolated from the formation water of Jharia coalbed", Bioresource Technology, Vol. 128, pp. 215-221. [218] Garrity, G.M., Bell J.A. , and Lilburn T. , Family I. Rhodobacteraceae, in Bergey's Manual of Systematics of Archaea and Bacteria, Volume 2 : The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. 2005. p. 161-228. [219] Vick, Silas H. W., Greenfield Paul, Pinetown Kaydy L., Sherwood Neil, Gong Se, Tetu Sasha G., Midgley David J., Paulsen Ian T. (2019), "Succession Patterns and Physical Niche Partitioning in Microbial Communities from Subsurface Coal Seams", iScience, Vol. 12, pp. 152-167. [220] Aullo, Thomas, Ranchou-Peyruse Anthony, Ollivier Bernard, Magot Michel (2013), "Desulfotomaculum spp. and related gram-positive sulfate-reducing bacteria in 131 deep subsurface environments", Frontiers in Microbiology, Vol. 4, No. 362. [221] Tebo, Bradley M, Obraztsova Anna Ya (1998), "Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors", FEMS Microbiology Letters, Vol. 162, No. 1, pp. 193-198. [222] Nazina, Tamara, Rozanova E., Belyakova Elena, Lysenko A., Poltaraus A. B., Tourova Tatyana, Osipov George, Belyaev S. (2005), "Description of “Desulfotomaculum nigrificans subsp. salinus” as a New Species, Desulfotomaculum salinum sp. nov", Microbiology, Vol. 74, pp. 567-574. [223] Berlendis, S., Lascourreges J. F., Schraauwers B., Sivadon P., Magot M. (2010), "Anaerobic biodegradation of BTEX by original bacterial communities from an underground gas storage aquifer", Environ Sci Technol, Vol. 44, No. 9, pp. 3621- 8. [224] He, Huan, Zhan Di, Chen Fan, Huang Zaixing, Huang Hua-Zhou, Wang Ai-Kuan, Huang Guan-Hua, Muhammad Ishtiaq Ali, Tao Xiu-Xiang (2020), "Microbial community succession between coal matrix and culture solution in a simulated methanogenic system with lignite", Fuel, Vol. 264. [225] Li, Xiaomin, Zhang Wei, Liu Tongxu, Chen Linxing, Chen Pengcheng, Li Fangbai (2016), "Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe(II) oxidation at circumneutral pH in paddy soil", Soil Biology and Biochemistry, Vol. 94, pp. 70-79. [226] Doerfert, Sebastian, Reichlen Matthew, Iyer Parameshwar, Wang Mingyu, Ferry James (2009), "Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam", International Journal of Systematic and Evolutionary Microbiology, Vol. 59, No. 5, pp. 1064-1069. [227] Ezaki, Takayuki, Family VI. Peptococcaceae in Bergey's Manual of Systematic Bacteriology, Volume Three: The Firmicutes. 2009, Springer-Verlag New York. p. 969-1001. [228] Wiegel, Juergen, Family I. Clostridiaceae, in Bergey's Manual of Systematics of Archaea and Bacteria, Volume Three: The Firmicutes. 2009. p. 736-851. [229] Parameswaran, Prathap, Bry Tyson, Popat Sudeep C., Lusk Bradley G., Rittmann Bruce E., Torres César I. (2013), "Kinetic, Electrochemical, and Microscopic Characterization of the Thermophilic, Anode-Respiring Bacterium Thermincola ferriacetica", Environmental Science & Technology, Vol. 47, No. 9, pp. 4934- 4940. [230] Toth, Courtney R. A., Luo Fei, Bawa Nancy, Webb Jennifer, Guo Shen, Dworatzek Sandra, Edwards Elizabeth A. (2021), "Anaerobic Benzene Biodegradation Linked to the Growth of Highly Specific Bacterial Clades", Environmental Science & Technology, Vol. 55, No. 12, pp. 7970-7980. [231] Mochimaru, Hanako, Tamaki Hideyuki, Hanada Satoshi, Imachi Hiroyuki, Nakamura Kohei, Sakata Susumu, Kamagata Yoichi (2009), "Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field", International Journal of Systematic and Evolutionary Microbiology, Vol. 59, No. 4, pp. 714-718. [232] Grech-Mora, I., Fardeau Marie-Laure, Patel B., Ollivier Bernard, Rimbault A., Prensier Gérard, Garcia Jean-Louis, Garnier-Zarli Evelyne (1996), "Isolation and Characterization of Sporobacter termitidis gen. nov., sp. nov., from the Digestive Tract of the Wood-Feeding Termite Nasutitermes lujae", International Journal of Systematic Bacteriology, Vol. 46. 132 [233] Mechichi, T., Labat M., Garcia J. L., Thomas P., Patel B. K. (1999), "Sporobacterium olearium gen. nov., sp. nov., a new methanethiol-producing bacterium that degrades aromatic compounds, isolated from an olive mill wastewater treatment digester", Int J Syst Bacteriol, Vol. 49 Pt 4, pp. 1741-8. [234] Lomans, B. P., Leijdekkers P., Wesselink J. J., Bakkes P., Pol A., van der Drift C., den Camp H. J. (2001), "Obligate sulfide-dependent degradation of methoxylated aromatic compounds and formation of methanethiol and dimethyl sulfide by a freshwater sediment isolate, Parasporobacterium paucivorans gen. nov., sp. nov", Appl Environ Microbiol, Vol. 67, No. 9, pp. 4017-23. [235] Venkatesagowda, Balaji, Dekker Robert F. H. (2021), "Microbial demethylation of lignin: Evidence of enzymes participating in the removal of methyl/methoxyl groups", Enzyme and Microbial Technology, Vol. 147, pp. 109780. [236] Deangelis, K. M., Sharma D., Varney R., Simmons B., Isern N. G., Markilllie L. M., Nicora C., Norbeck A. D., Taylor R. C., Aldrich J. T., Robinson E. W. (2013), "Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1", Front Microbiol, Vol. 4, pp. 280. [237] Weng, Caihong, Peng Xiaowei, Han Yejun (2021), "Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis", Biotechnology for Biofuels, Vol. 14, No. 1, pp. 84. [238] Ahring, Birgitte K., Biswas Rajib, Ahamed Aftab, Teller Philip J., Uellendahl Hinrich (2015), "Making lignin accessible for anaerobic digestion by wet-explosion pretreatment", Bioresource Technology, Vol. 175, pp. 182-188. [239] Doerfert, Sebastian N, Reichlen Matthew, Iyer Prabha, Wang Mingyu, Ferry James G (2009), "Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam", International Journal of Systematic and Evolutionary Microbiology, Vol. 59, No. 5, pp. 1064-1069. [240] Jones, Elizabeth J. P., Harris Steve H., Barnhart Elliott P., Orem William H., Clark Arthur C., Corum Margo D., Kirshtein Julie D., Varonka Matthew S., Voytek Mary A. (2013), "The effect of coal bed dewatering and partial oxidation on biogenic methane potential", International Journal of Coal Geology, Vol. 115, pp. 54-63. [241] Jones, Elizabeth J. P., Voytek Mary A., Warwick Peter D., Corum Margo D., Cohn Alexander, Bunnell Joseph E., Clark Arthur C., Orem William H. (2008), "Bioassay for estimating the biogenic methane-generating potential of coal samples", International Journal of Coal Geology, Vol. 76, No. 1, pp. 138-150. [242] Meslé, Margaux, Périot Charlotte, Dromart Gilles, Oger Philippe (2015), "Methanogenic microbial community of the Eastern Paris Basin: Potential for energy production from organic-rich shales", International Journal of Coal Geology, Vol. 149, pp. 67-76. [243] Liu, Bingjun, Yuan Liang, Shi Xianyang, Li Yang, Jiang Chunlu, Ren Bo, Sun Qingye (2019), "Variations in Microbiota Communities with the Ranks of Coals from Three Permian Mining Areas", Energy & Fuels, Vol. 33, No. 6, pp. 5243- 5252. [244] Quast, Christian, Pruesse Elmar, Yilmaz Pelin, Gerken Jan, Schweer Timmy, Yarza Pablo, Peplies Jörg, Glöckner Frank Oliver (2012), "The SILVA ribosomal RNA gene database project: improved data processing and web-based tools", Nucleic Acids Research, Vol. 41, No. D1, pp. D590-D596. [245] Sawana, Amandeep, Adeolu Mobolaji, Gupta Radhey S. (2014), "Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for 133 division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species", Frontiers in genetics, Vol. 5, pp. 429-429. [246] Gyaneshwar, Prasad, Hirsch Ann, Moulin Lionel, Chen Wen-Ming, Elliott Geoff, Bontemps Cyril, Estrada-de los Santos Paulina, Gross Eduardo, Reis Junior Fábio, Sprent Janet, Young J. Peter, James Euan (2011), "Legume-Nodulating Betaproteobacteria: Diversity, Host Range, and Future Prospects", Molecular plant-microbe interactions : MPMI, Vol. 24, pp. 1276-88. [247] Dobritsa, Anatoly P., Samadpour Mansour (2016), "Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia", International Journal of Systematic and Evolutionary Microbiology, Vol. 66, No. 8, pp. 2836-2846. [248] Gao, Z., Yuan Y., Xu L., Liu R., Chen M., Zhang C. (2016), "Paraburkholderia caffeinilytica sp. nov., isolated from the soil of a tea plantation", Int J Syst Evol Microbiol, Vol. 66, No. 10, pp. 4185-4190. [249] Lee, Yunho, Lee Yunhee, Jeon Che Ok (2019), "Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil", Scientific Reports, Vol. 9, No. 1, pp. 860. [250] Vanwijnsberghe, Sarah, Peeters Charlotte, De Ridder Emmelie, Dumolin Charles, Wieme Anneleen D., Boon Nico, Vandamme Peter (2021), "Genomic Aromatic Compound Degradation Potential of Novel Paraburkholderia Species: Paraburkholderia domus sp. nov., Paraburkholderia haematera sp. nov. and Paraburkholderia nemoris sp. nov", International Journal of Molecular Sciences, Vol. 22, No. 13. [251] Revathy, T., Jayasri M. A., Suthindhiran K. (2015), "Biodegradation of PAHs by Burkholderia sp. VITRSB1 Isolated from Marine Sediments", Scientifica, Vol. 2015, pp. 867586-867586. [252] Singh, Alok, Kumar Aniruddha, Singh Prakash, Singh Asha, Kumar Alok, Bacterial desulphurization of low-rank coal: A case study of Eocene Lignite of Western Rajasthan, India. 2018. 1-10. [253] Seo, Jong-Su, Keum Young-Soo, Li Qing X. (2009), "Bacterial degradation of aromatic compounds", International journal of environmental research and public health, Vol. 6, No. 1, pp. 278-309. [254] Morya, Raj, Salvachúa Davinia, Thakur Indu Shekhar (2020), "Burkholderia: An Untapped but Promising Bacterial Genus for the Conversion of Aromatic Compounds", Trends in Biotechnology, Vol. 38, No. 9, pp. 963-975. [255] Piochon, M., Coulon P. M. L., Caulet A., Groleau M. C., Déziel E., Gauthier C. (2020), "Synthesis and Antimicrobial Activity of Burkholderia-Related 4-Hydroxy- 3-methyl-2-alkenylquinolines (HMAQs) and Their N-Oxide Counterparts", J Nat Prod, Vol. 83, No. 7, pp. 2145-2154. [256] David J. Midgley, Philip Hendry, Kaydy L. Pinetown, David Fuentes, Se Gong, Danielle L. Mitchell, Faiz Mohinudeen (2010), "Characterisation of a microbial community associated with a deep, coal seam methane reservoir in the Gippsland Basin, Australia", International Journal of Coal Geology, Vol. 82, pp. 232–239. [257] An, Dongshan (2013), "Metagenomics of Hydrocarbon Resource Environments Indicates Aerobic Taxa and Genes to be Unexpectedly Common", Environmental 134 Science & Technology, Vol. 47, No. 18, pp. 10708−10717. [258] Barnhart, Elliott P., Weeks Edwin P., Jones Elizabeth J. P., Ritter Daniel J., McIntosh Jennifer C., Clark Arthur C., Ruppert Leslie F., Cunningham Alfred B., Vinson David S., Orem William, Fields Matthew W. (2016), "Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed", International Journal of Coal Geology, Vol. 162, pp. 14-26. [259] Hidalgo, Kelly J., Sierra-Garcia Isabel N., Dellagnezze Bruna M., de Oliveira Valéria Maia (2020), "Metagenomic Insights Into the Mechanisms for Biodegradation of Polycyclic Aromatic Hydrocarbons in the Oil Supply Chain", Frontiers in Microbiology, Vol. 11, pp. 561506-561506. [260] Margesin, Rosa, Volgger Georg, Wagner Andreas O., Zhang Dechao, Poyntner Caroline (2021), "Biodegradation of lignin monomers and bioconversion of ferulic acid to vanillic acid by Paraburkholderia aromaticivorans AR20-38 isolated from Alpine forest soil", Applied Microbiology and Biotechnology, Vol. 105, No. 7, pp. 2967-2977. [261] Kirk, M. F., Wilson B. H., Marquart K. A., Zeglin L. H., Vinson D. S., Flynn T. M. (2015), "Solute Concentrations Influence Microbial Methanogenesis in Coal- bearing Strata of the Cherokee Basin, USA", Front Microbiol, Vol. 6, pp. 1287. [262] Guo, Hongyu, Dong Zhiwei, Liu Xile, Bai Yang, Gao Zhixiang, Xia Daping (2019), "Analysis of methanogens adsorption and biogas production characteristics from different coal surfaces", Environmental Science and Pollution Research, Vol. 26, No. 14, pp. 13825-13832. [263] Wang, Bobo, Yu Zhisheng, Zhang Yiming, Zhang Hongxun (2019), "Microbial communities from the Huaibei Coalfield alter the physicochemical properties of coal in methanogenic bioconversion", International Journal of Coal Geology, Vol. 202, pp. 85-94. [264] Guo, H., Dong Z., Liu X., Bai Y., Gao Z., Xia D. (2018), "Analysis of methanogens adsorption and biogas production characteristics from different coal surfaces", Environ Sci Pollut Res Int. [265] Lever, M. A., Rogers K. L., Lloyd K. G., Overmann J., Schink B., Thauer R. K., Hoehler T. M., Jørgensen B. B. (2015), "Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations", FEMS Microbiol Rev, Vol. 39, No. 5, pp. 688-728. [266] Haynes, Matthew, Metagenomics, in Encyclopedia of Ecology (Second Edition), Fath, Brian, Editor. 2008, Elsevier: Oxford. p. 153-156. [267] Garrity, George, Brenner Don, Kreig Noel, Staley James, Bergey’s Manual of Systematic Bacteriology, Volume 2 Part B The Gammaproteobacteria. 2005. [268] Zhang, K., Song L., Dong X. (2010), "Proteiniclasticum ruminis gen. nov., sp. nov., a strictly anaerobic proteolytic bacterium isolated from yak rumen", Int J Syst Evol Microbiol, Vol. 60, No. Pt 9, pp. 2221-2225. [269] Vick, S. H. W., Gong S., Sestak S., Vergara T. J., Pinetown K. L., Li Z., Greenfield P., Tetu S. G., Midgley D. J., Paulsen I. T. (2019), "Who eats what? Unravelling microbial conversion of coal to methane", FEMS Microbiol Ecol, Vol. 95, No. 7. [270] Wang, L., Nie Y., Tang Y. Q., Song X. M., Cao K., Sun L. Z., Wang Z. J., Wu X. L. (2016), "Diverse Bacteria with Lignin Degrading Potentials Isolated from Two Ranks of Coal", Frontiers in Microbiology, Vol. 7, No. 1428. [271] Dawson, Katherine S., Strąpoć Dariusz, Huizinga Brad, Lidstrom Ulrika, Ashby Matt, 135 Macalady Jennifer L. (2012), "Quantitative fluorescence in situ hybridization analysis of microbial consortia from a biogenic gas field in Alaska's Cook Inlet basin", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Vol. 78, No. 10, pp. 3599-3605. [272] Bouanane-Darenfed, A., Ben Hania W., Hacene H., Cayol J. L., Ollivier B., Fardeau M. L. (2013), "Caldicoprobacter guelmensis sp. nov., a thermophilic, anaerobic, xylanolytic bacterium isolated from a hot spring", Int J Syst Evol Microbiol, Vol. 63, No. Pt 6, pp. 2049-2053. [273] Yokoyama, H., Wagner I. D., Wiegel J. (2010), "Caldicoprobacter oshimai gen. nov., sp. nov., an anaerobic, xylanolytic, extremely thermophilic bacterium isolated from sheep faeces, and proposal of Caldicoprobacteraceae fam. nov", Int J Syst Evol Microbiol, Vol. 60, No. Pt 1, pp. 67-71. [274] Kruskal, J. B. (1964), "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis", Psychometrika, Vol. 29, No. 1, pp. 1-27. [275] Paliy, O., Shankar V. (2016), "Application of multivariate statistical techniques in microbial ecology", Mol Ecol, Vol. 25, No. 5, pp. 1032-57.

Các file đính kèm theo tài liệu này:

  • pdfluan_an_nghien_cuu_kha_nang_khi_hoa_than_cua_he_vi_sinh_vat.pdf
  • pdf3- Trích yếu LA - HOÀNG LAN NCS2015.pdf
  • pdf4- Thông tin TV và TA đưa Web - HOÀNG LAN NCS2015.pdf
Luận văn liên quan