Việc phân lập các chủng vi sinh vật tại những vị trí ô nhiễm sẽ thuận lợi hơn
cho ứng dụng sau nàytrong việc xử lý ô nhiễm hydrocarbon thơm vì những chủng vi
sinh vật đó dễ dàng thích nghi với môi trường ô nhiễmtrong thực tế. Do vậy,nhóm
nghiên cứu đã thu thập các mẫu nước tại các vị trí ô nhiễm dầu từ Bắc vào Nam
gồm:Hà Nội, Hải Phòng, Quảng Ninh, Thanh Hóa, Quảng Ngãi và Vũng Tàu. Các
mẫu thu thập được làm giàu trong môi trường khoáng Gost dịch có bổ sung các
ydrocarbon thơm như: phenol/naphthalene/anthracene/pyrene/iso-pentylbenzene là
nguồn carbon và năng lượng duy nhất để tích lũy các nhóm vi sinh vật mong muốn.
Trong nghiên cứu ngày, bên cạnh vi khuẩn sinh trưởng tốt ở dải pH trung tính và
kiềm (7-9), chúng tôi cũng quan tâm tới đối tượng nấm men do các đặc tính như: an
toàn, sinh trưởng được trong khoảng pH hơi acid (từ 4-6). Điều này có ý nghĩa đặc
biệt quan trọng khi ứng dụng những chủng vi sinh vật này để xử lý ở nhiều nguồn
nước ô nhiễm khác nhau với các giá trị pH khác nhau.
Sau khi làm giàu trên những nguồn hydrocarbon thơm, chúng tôi đã phân lập
được 25 chủng vi khuẩn từ cả 6 vị trí ô nhiễm dầuvới màu sắc, hình thái khuẩn lạc
và hình dạng tế bào khác nhau nhưng chỉ phân lập được 10 chủng nấm men ở 3 địa
điểm ô nhiễm dầu đó là: Kho xăng dầu Đỗ Xá, Thường Tín, Hà Nội; mẫu ô nhiễm
dầu Quảng Ninh và Thanh Hóa. Kết quả này cho thấy trong các điều kiện làm giàu
thì nhóm vi khuẩn đa dạng hơn nhóm nấm men
142 trang |
Chia sẻ: tueminh09 | Ngày: 22/01/2022 | Lượt xem: 542 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu khả năng phân hủy hợp chất vòng thơm của các chủng vi sinh vật tạo màng sinh học phân lập tại một số địa điểm ô nhiễm dầu ở Việt Nam nghiên cứu khả năng phân hủy hợp chất vòng thơm của các chủng vi sinh vật tạo màng sinh học phân lập tạ, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ntylbenzene bởi chủng nấm men Candida viswanathii TH1.
101
NHỮNG CÔNG TRÌNH CỦA TÁC GIẢ ĐÃ CÔNG BỐ
LIÊN QUAN ĐẾN LUẬN ÁN
1. Cung Thị Ngọc Mai, Lê Thị Nhi Công, Nghiêm Ngọc Minh (2013).
Degradation of naphthalene by biofilm forming Rhodococcus sp. BQN11
isolated from petroleum-polluted water samples in Quang Ninh coastal zone,
Vietnam. Proceedings of VAST-IRD symposium on marine science, Hai Phong,
Vietnam: 125-133.
2. Cung Thị Ngọc Mai, Lê Thị Nhi Công, Nghiêm Ngọc Minh (2013). Khả năng
phân hủy các hợp chất hydrocarbon có trong dầu diesel bởi màng sinh học của
chủng Rhodococcus sp. BN5 phân lập từ nước thải của bể chứa kho xăng dầu
Đỗ Xá, Thường Tín, Hà Nội. Báo cáo khoa học hội nghị khoa học công nghệ
sinh học toàn quốc 2013: 355-359.
3. Cung Thị Ngọc Mai, Lê Thị Nhi Công, Lê Thành Công, Nghiêm Ngọc Minh
(2014). Khả năng chuyển hóa và phân hủy phenol do màng sinh học tạo thành
từ các chủng vi khuẩn phân lập tại kho xăng dầu Đức Giang, Gia Lâm, Hà Nội.
Tạp chí Công nghệ sinh học 12(2): 381-386.
4. Le Thi Nhi Cong, Cung Thi Ngoc Mai, Masaaki Morikawa, Nghiem Ngoc
Minh (2014). Transformation of iso-pentylbenzene by a biofilm - forming strain
of Candida viswanathii TH1 isolated from oil-polluted sediments collected in
coastal zones in Vietnam. Journal of Environmental Science and Health, part A
49: 777-786.
5. Le Thi Nhi Cong, Cung Thi Ngoc Mai, Vu Thi Thanh, Le Phi Nga and
Nghiem Ngoc Minh (2014). Application of a biofilm formed by a mixture of
yeasts isolated in Vietnam to degrade aromatic hydrocarbon polluted
wastewater collected from petroleum storage. Water Science & Technology
70(2): 329-336.
6. Le Thi Nhi Cong, Cung Thi Ngoc Mai, Vu Thi Thanh, Nghiem Ngoc Minh,
Hoang Phuong Ha, Do Thi Lien, Do Thi To Uyen (2014). Pyrene degradation
of biofilm-forming Paracoccus sp. DG25 isolated from oil polluted samples
collected in petroleum storage Duc Giang, Hanoi. Journal of Vietnamese
environment, special issue 6(2): 178-183.
7. Cung Thị Ngọc Mai, Vũ Thị Thanh, Nghiêm Ngọc Minh, Lê Thị Nhi Công
(2015). Hiệu suất phân hủy dầu diesel của chủng vi khuẩn có khả năng tạo
màng tốt phân lập từ mẫu nước ô nhiễm dầu ở Quảng Ngãi. Tạp chí Khoa học
ĐHQGHN: Khoa học Tự nhiên và Công nghệ 31(4S): 214-219.
102
SUMMARY
BIODEGRADATION OF AROMATIC HYDROCARBONS BY BIOFILM
FORMING MICROORGARNISMS ISOLATED FROM SEVERAL OIL-
POLLUTED AREAS IN VIET NAM
Aromatic hydrocarbons such as naphthalene, anthracene, etc (named
polycylic aromatic hydrocarbons - PAHs) and phenol are persistant compounds in
natural. They are available in oil; synthetic resin of resin, pesticides, herbicide,
textile dyeing, TNT, detergens or in coffee production industry, additive of other
industries. These compounds are insoluble in water but soluble in grease, therefore
they are easy accumulated in soil, sand and sediment. Hence, they cause many
diseases to health of human and ecosystem. Therefore, removal of these organic
components in polluted-areas is necessary.
To treat these compounds, many approaches such as physics, physical
chemistry are used and has obtained positive results. These methods have fast
processing; but the process is not thoroughly and create many secondary byproducts
that affect the surrounding environment. Therefore, using biological agenets in
bioremediation by microorganisms will overcome above mentioned disadvantages.
Recently, scientists have proposed a method using biofilm formed by
microorganisms to treat persistent organic compounds in oil polluted samples. A
biofilm is any group of microorganisms in which cells are attached in any substrate
that maining polysaccharide and protein. These characteristics help the
microorganisms cell resistant to extreme environment conditions such as the decline
of nutrition and changing of physical factors (pH, temperature, absorption or water
loss of cells, etc) thereby improving the efficiency polluted-compound degradations
in the field. However, in Vietnam, there are not many researches on biofilm forming
microorgamisms to treat aromatic hydrocarbon compounds. From this fact, we have
conducted investigation on thesis: “Study on biodegradation of aromatic
103
hydrocarbons by biofilm forming microorganisms isolated from several oil-
polluted areas in Vietnam”.
MAIN OBJECT
Detection of microorganisms are not only forming biofilm but also degrading
aromatic hydrocarbon compounds for application in environmental pollution
treatment.
RESEARCH CONTENT:
1. Enrich and isolate microorganisms on medium supplemented with
aromatic hydrocarbons as a source and energy;
2. Screen the possibility of biofilm formation on the possibility of aromatic
compound utilization;
3. Study on some biological characteristics, classification and identification
of some represent microorganisms;
4. Estimate antagonistic and safe of selected microorganisms;
5. Study on some factors affecting on biofilm formation of some represent
microorganisms;
6. Study on degradation of several aromatic hydrocarbons of some selected
microorganisms;
7. Evaluate the effectiveness treatment of aromatic organic compounds in oil
polluted water of forming biofilm microorganisms.
NEW CONTRIBUTIONS OF THESIS:
(1) This is the systematic study of the isolation, screening the strain of
bacteria, yeasts with high abilitiesof biofilm formation and degradation of
aromatic compounds.
(2) It is the first time to establish in Vietnam a transformation pathway of iso-
pentylbenzene by Candida viswanathii TH1.
RESULTS
In this study, some oil-polluted sediment and water samples were collected
in Hanoi, Quang Ninh, Thanh Hoa, Quang Ngai and Vung Tau. After three-time
104
enrichment, 25 bacterial and 10 yeast strains were isolated. The colonies of these
strainswere observed. As a result, the colonies of thesebacterial strainsoften have
round shape, convex, white or orange colour with 0.3-3 mm in diameter. And yeast
strains have round, rough colonies with 3-5 mm in diameter.
There are seven bacterial strains (BQN11, VTPG5, ĐGP2, ĐGP4, ĐGP8,
DG25, QND10) and two yeast strains (TH1, TH4) could form biofilm and grow on
all tested aromatic hydrocarbons (such as anthracene, iso-pentylbenzene,
naphthalene, phenol, pyrene). BQN11, VTPG5 strains were Gram positive and the
others were Gram negative. Under Scanning Electron Microscope (SEM) with
amplification of 5,000-10,000 times, these bacterial cells have short- rod shape and
these yeasts have spherical cells. By analysis of 16S rRNA and ITS1-5.8S rRNA-
ITS2 region sequence, these bacterial strains were named and registered at NCBI.
They are Rhodococcus sp. BQN11 (KC151262), Rhodococcus sp. VTPG5
(LC057207), Ochrobactrum sp. DGP2 (KJ700308), Pseudomonas sp. DGP4
(KJ748401), Pseudomonas sp. DGP8 (KJ700307), Paracoccus sp. DG25
(KJ608354), Acinetobacter sp. QND10 (LC033904); two yeast strains were
Candida sp. TH1 (JX129175) and Candida sp. TH4 (JX129176).
Several factors affecting the biofilm formation such as pH values,
temperature, NaCl concentrations, carbon and nitrogen sources were investigated.
The results showed that six bacterial strains could form biofilm at pH 7 except the
strain of BQN11; the yeast strain of TH1 at pH 5 and TH4 at pH 4. Two strains of
BQN11 and QND10 form biofilm at 30
o
C, the other bacterial strains and two yeast
strains are at 37
o
C. The strains of VTPG5, QND10, TH1 and TH4 form biofilm at
1.5% of NaCl and the others at 1%. Saccharose is a carbon source for the most
effective biofilm forming of ĐGP8 and DG25 strains; maltose is for QND10 strain
and for other strains are glucose. Beside, five bacterial and two yeast strains using
KNO3 asnitrogen source, except VTPG5 strain uses (NH4)2SO4 and QND10 strain
uses peptone.
When using aromatic cyclic hydrocarbons, BQN11 could degrade 61.1% of
105
naphthalene (with initial concentration of 200 ppm); three strains of VTPG5, ĐGP2,
ĐGP4 and ĐGP8 degraded phenol with 99.8% (with initial concentration of 200
ppm), 78.5%, 85.2% and 77.1%, respectively (with initial concentration of 100
ppm). And two strains of DG25 and TH4 could use pyrene up to 76.1% (with initial
concentration of 300 ppm) and 64.2% (with initial concentration of 100 ppm).
Moreover, QND10 strain could degrade 65.4% anthracene (with initial
concentration of 100 ppm). Beside we studied the transformation pathway of iso-
pentylbenzene by biofilm formed by TH1 strain. As a result, 7 intermediate
products were identified by using gas chromatography/mass spectra and high
performance liquid chromatography analysis. They were phenylacetic acid, benzoic
acid, 2-methyl-4-phenyl-butan-1-ol, iso-valerophenone, succinic acid, 2-hydroxy
phenylacetic acid and 2-methyl-4-phenylbutyric acid.
In order to form a biofilm from a group of bacteria and a biofilm from many
yeasts, the general biofilm-forming conditions for them were chosen. Specically, the
conditions for bacteria are pH 7, 37
o
C, 1% NaCl, saccharose, KNO3; and for yeasts
are pH 5, 30
o
C, 1.5% NaCl, saccharose, KNO3. Next, seven bacterial and two yeast
strains were estimated their safe and antagonistic among them. As a result, all
bacterial strains and two yeast strains were safe and not antagonistic between each
others. Under Scanning Electron Microscope (SEM), cells in biofilm adhered more
closely to each others than planktonic. Moreover, cell density of bacteria after
treatment decreases from 14±0,1 x10
9
to 9±0,2 x 10
6
CFU/ml; and yeast cell
decreases from 4,1±0,1 x10
8
to 2,1±0,1 x 10
5
by CFU method after 14 days at
incubation. In addition, using PCR-DGGE technique, the number of bacteria strains
after 7 and 14 days fluctuate slightly when compere with initial samples. Three
represent bands were cut, purified and sequenced. The result showed that all these
bands were similar 100% with strains Rhodococcus sp. BQN11, Acinetobactersp.
QND10 and Ochrobactrum sp. DGP2. Moreover, mixed-species biofilm formed by
bacteria and mixed-species biofilm formed by yeasts degraded 99% and 87%
phenol (wih initial concentration of 202 mg/l phenol) after 7 days incubation. And,
106
these biofilm completely degraded many aromatic compounds, which were from
wastewater collected from petroleum tanks in Do Xa, Hanoi in the scale of 5 liters
laboratory after 14 days of incubation based on gas chromatography mass
spectromety analysis.
In conclusion, these results give a new sight for application ofbiofilm
formedby bacterial and yeast strains in cyclic aromatic hydrocarbon treatment from
petroleum polluted water and similar polluted sources in Vietnam.
107
TÀI LIỆU THAM KHẢO
1. Agarry SE, Solomon B (2013). Estimation of the energetic parameters
associated with the continuous aerobic biodegradation of phenol by
monoculture of Pseudomonas aeruginosa and Pseudomonas fluorescence.
Intern J Environ Eng 5: 161–178.
2. Al-Khalid T, El-Nass MH (2012) Aerobic biodegradation of phenols, a
comprehensive review. Crit Rev Environ Sci Technol 42:1631–1690.
3. Al-Nasrawi H (2012) Biodegradation of crude oil by fungi isolated from Gulf
of Mexico. J Bioremed Biodegrad 3: 147.
4. Andersson S, Dalhammar G, Land CJ, Kuttuva RG (2009) Characterization of
extracellular polymeric substances from denitrifying organism Comamonas
denitrificans. Appl Microbiol Biotechnol 82(3): 535-543.
5. Arif NM, Ahmad SA, Syed MA, Shukor MY (2012) Isolation and
characterization of phenoldegrading Rhodococcus sp. strain AQ5NOL 2
KCTC 11961BP. J Basic Microbiol 52: 1–10.
6. Atlas RM (1981) Microbial degradation of petroleum hydrocarbon an
environment perspective. Microb Rev 145(1): 180-209.
7. Atlas RM (1995) Bioremediation of petroleum pollutants. Int Biodeter
Biodegr 35(1-3): 317-327.
8. Awe S, Mikolasch A, Hammer E, Schauer F (2008) Degradation of
phenylalkanes and characterization of aromatic intermediates acting as growth
inhibiting substances in hydrocarbon utilizing yeast Candida maltosa. Int
Biodeterior Biodegr 62: 408–414.
9. Bao M, Wang L, Sun P, Cao L, Zou J, Li Y (2012) Biodegradation of crude
oil using an efficient microbial consortium in a simulated marine environment.
Mar Pollut Bull 64:1177–1185.
10. Barken KB,Pamp SJ, Yang L, Gjermansen M, Bertrand JJ, Klausen M,
Givskov M, Whitchurch CB, Engel JN, Tolker-Nieslsen T (2008) Roles of
108
type IV pili, flagellum - mediated motility and extracellular DNA in the
formation of mature multicellular structures in Pseudomonas aeruginosa
biofilms. Environ Microbiol10(9): 233-243.
11. Bayat Z, Hassanshahian M, Cappello S (2017) Immobilization of microbes for
bioremediation of crude oil polluted environments: a mini review. The Open
Microbiol J 11: 48-54.
12. Bộ Y tế (2009) Dược Điển Học Việt. Nhà xuất bản Y học.
13. Brezna B, Kweon O, Stingley RL, Freeman JP, Khan AA, Polek B, Jones RC,
Cerniglia CE (2005) Molecular characterization of cytochrome P450 genes in
the polycyclic aromatic hydrocarbon degrading Mycobacterium vanbaalenii
PYR-1. Appl Microbiol Biot 72(6): 1340.
14. Burmolle M, Webb SJ, Rao D, Lars H, Soren JS, Kjelleberg S (2006)
Enhanced biofilm formation and increased resistance to antimicrobial agents
and bacterial invasion are caused by synergistic interactions in multispecies
biofilms. Appl Environ Microbiol 72: 3916-3923.
15. Burne RA, Chen Y-YM, Penders JEC (1997) Analysis of gene expression
inStreptococcus mutans in biofilms in vitro.Adv Detal 11(1):100–109.
16. Bustamante M, Duran N, Diez M (2012) Biosurfactants are useful tools for the
bioremediationof contaminated soil: a review. J Soil Sci Plant Nutr 12: 667-
687.
17. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons.
Biodegradation 3: 351-368.
18. Chandran P, Das N (2011) Degradation of diesel oil by immobilized Candida
tropicalis and biofilm formed on gravels. Biodegradation 22(6): 1181-1189.
19. Chauhan A, Oakeshott JG, Jain RK (2008) Bacterial metabolism of polycyclic
aromatic hydrocarbons: strategies for bioremediation. Indian J Microbiol 48:
95-113.
20. Cheng KC, Demirci A, Catchmark JM (2010) Advances in biofilm reactors for
production of value - added products. Appl Microbiol Biotech 87: 445-456.
109
21. Cung Thị Ngọc Mai, Trần Thị Khánh Vân, Nghiêm Ngọc Minh (2010) Hình
thái tế bào và khả năng phân hủy PAH và phenol của chủng vi khuẩn BTL6
phân lập từ nước thải công nghiệp. Tạp chí Khoa học và Công nghệ - Đại học
Thái Nguyên 6(68): 101-106.
22. Đăng Hưng (2013) Màng sinh học. Tạp chí STINDO – Thông tin khoa học và
công nghệ: 30-35.
23. Davey ME, O’Toole GA (2000) Microbial Biofilms: from Ecology to
Molecular Genetics. Microbiol Mol Biol R 64(4): 847-867.
24. Deborah D, Moody J, Cerniglia CE (2002) Utilization of mixtures of
polycyclic aromatic hydrocarbon by bacteria isolated from contaminated
sediment. FEMS Microbial Ecol 41: 1-7.
25. Deighton M, Borland R (1993) Regulation of slime production in
Staphylococcus epidermidis by iron limitation. Infect Immun 61: 4473-4479.
26. Dewanti R,Wong ACL (1995) Influence ofculture conditions on biofilm
formation byEscherichia coli 0157:H7. Int J Food Microbiol 26:147–164.
27. Đỗ Khắc Uẩn, Rajesh Banu, Kaliappan S, Ick-Tae Yeom (2009) Ứng dụng
công nghệ lọc màng trong xử lý nitơ, phốt pho và các chất hữu cơ trong nước
thải đô thị bằng phương pháp sinh học yếm khí - thiếu khí – hiếu khí. Hội nghị
Công nghệ Sinh học toàn quốc: 950-958.
28. Donlan RM (2002) Biofilm: microbial life on surfaces. Emerg Infect Dis 8(9):
881-890.
29. Dutta TK, Harayama S (2001) Biodegradation of n-Alkylcycloalkanes and n-
Alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Appl
Environ Biotechnol 67: 1970– 1974.
30. Đặng Thị Cẩm Hà, Phạm Hữu Lý, Nguyễn Bá Hữu, Nguyễn Thị Đệ,Nghiêm
Ngọc Minh, Nguyễn Đương Nhã, Mai Anh Tuấn, La Thanh Phương,Nguyễn
Thị Sánh, Nguyễn Thu Thủy, Đỗ Bích Thanh, Đỗ Ngọc Tuyên,Nguyễn
Văn Minh, Nguyễn Văn Hồng (2005) Nghiên cứu phát triển côngnghệ
phân hủy sinh học và kỹ thuật nhả chậm làm sạch chất độc hóa
110
họctrong đất.Báo cáo nghiệm thu đề tài nhà nước thuộc chương trình
33, HàNội.
31. El-Masry MH, El-Bestaway E, El-Adl NI (2004) Bioremediation of vegetable
oil and grease from polluted wastewater using a sand biofilm system. W J
Microb Biotech 20: 551-557.
32. Eriksson E, Auffarth K, Eilersen A-M, Henze M, Ledin A (2003) Household
chemicals and personal care products as sources for xenobiotic organic
compounds in grey wastewater. Water SA 29(2): 135–146.
33. Feist C, Hegeman GD (1969) Phenol and benzoate metabolism by
Pseudomonas putida: Regulation of tangential pathways.J Bacterial 100: 869–
877.
34. Gami AA, Shukor YM, Khalil AK, Dahalan AF, Khalid A, Ahmad AS (2014)
Phenol and phenolic compounds toxicity. J Environ Microbiol Toxicol 2(1):
11-23.
35. Garrett RT, Bhakoo M, Zhang Z (2008) Review: Bacterial adhesion and
biofilms on surfaces. Prog Nat Sci 18: 1049-1056.
36. Guiraud P, Kadri M, Blake G, Steiman S, (2001) Biodegradation of
phenanthrene and fluoranthene by fungi isolated from an experimental
constructed wetland for wastewater treatment. Water Res 35(17): 4126-4136.
37. Harju S, FedosyukH , PetersonK R (2004)Rapidisolation of yeast genomic
DNA: Bust n' Gra. BioMedCentralBiotechnology.4 : 8
38. Heitkamp MA, Cerniglia CE (1987) The effects of chemical structure and
exposure on the microbial degradation of polycyclic aromatic hydrocarbons in
freshwater and stuarine ecosystems. Environ Toxicol Chem 6: 535–546
39. Herald PJ, Zottola EA (1988) Attachment of Listeria monocytogenes to
stainless steel surfaces at various temperatures and pH values. J Food Sci 53:
1549-52.
40. Hettige GEG, Sheridan JE (1989) Interactions of fungi contaminating diesel
fuel. Int Biodeterior 25(4): 299-309.
111
41. Jiang L, Ruan Q, Li R, Li T (2013) Biodegradation of phenol by using free
and immobilized cells of Acinetobacter sp. BS8Y. J Basic Microbiol 53: 224–
230.
42. Katayama-Hirayama K, Tobita S, Hirayama K (1991) Metabolic pathway of
phenol in Rhodotorula rubra. J Gen Appl Microbiol 37: 379–388.
43. Kensa V.Mary (2011) Bioremediation – An overview. J ind con pollut 27(2):
161-168.
44. Khusnuryani A, Martni E, Wibawa T, Widada J (2014) Molecular
indentification of phenol-degrading and biofilm-forming bacteria from
wastewater and peat soil. I J Biotech 19(2): 99-110.
45. Kim SJ, Kweon O, Jones RC, Freeman JP, Edmondson RD, Cerniglia CE
(2007) Complete and integrated pyrene degradation pathway in
Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol
189: 464–472.
46. Kokare CR, Chakraborty S, Khopade AN, Mahadik KR (2009) Biofilm:
Importance and applications. Indian J Biotechnol 8: 159-168.
47. Komarkova E, Paca J, Klapkova E, Stiborova M, Socco CR, Sobotka M
(2003) Physiological changes of Candida tropicalis population degrading
phenol in fed batch reactor. Brazilian Arch Biol Technol 46(4): 375-421.
48. Krallish I, Gonta S, Savenkova L, Bergauer P, Margesin R (2006) Phenol
degradation by immobilized cold-adapted yeast strains of Cryptococcus
terreus and Rhodotorula creatinivora. Extremophiles 10: 441-449.
49. KrastanovA, Alexieva Z, and Yemendzhiev H (2013) Microbial degradation
of phenol and phenolic derivatives. Eng Life Sci13: 76–87.
50. Kumar S, Mishra VK, Kumar U, Kumar A, Varghese S (2013) Biodegradation
of phenol by bacterial strains and their catalytic ability. Intl J Agric Env
Biotech 6(1): 115-108.
51. Kumari M, Abraham J (2011) Biodegradation of diesel oil using yeast
Rhodosporidium toruloides. Res J Environ Toxicol 5(6): 369-377.
112
52. Kumari S, Chetty D, Ramdhani N, Bux F (2013) Phenol degrading ability of
Rhodococcus pyrinidivorans and Pseudomonas aeruginosa isolated from
activated sludge plants in South Africa. J Environ Sci Health A. Tox Hazard
Subst Environ Eng 48(8): 947– 953.
53. La Thị Thanh Phương, Nguyễn Bá Hữu, Đặng Thị Cẩm Hà (2003) Phân hủy
sinh học hydrocarbon thơm đa nhân (PAH) bởi chủng vi khuẩn MLX-9 phân
lập từ cặn dầu thô của mỏ Bạch Hổ, Vũng Tàu. Tạp chí Công nghệ sinh học
1(1): 109-117.
54. Labinskaia AC (1978) Microbiological methods. Medinski : 108-110.
55. Lại Thúy Hiền, Nguyễn Thị Thu Huyền, Đỗ Thu Phương, Phạm Thị Hằng,
Vương Thị Nga, Lê Thị Nhi Công, Nguyễn Thị Yên, Nguyễn Bá Tú, Hoàng
Văn Thắng (2010) Nghiên cứu tạo chất hoạt hóa blaề mặt sinh học từ vi sinh
vật nhằm ứng dụng trong các ngành công nghiệp và xử lý môi trường. Hội
nghị Khoa học kỷ niệm 35 năm Viện Khoa học và Công nghệ Việt Nam: 199-
209.
56. Lane DJ (1991) 16S-23S rRNA sequencing.Nucleic acid tech bacterial syst:
125-175.
57. Lemos JA, Abranches J, Koo H, Marquis RB, Burne RA (2010) Protocol to
study the physiology of oral biofilms. Methods Mol Biol 666: 87-102.
58. Lim Y, Jana M, Luong TT, Lee CY (2004) Control of glucose - and NaCl -
induced biofilm formation by rbf in Staphylococcus aureus. J Bacteriol
186(3): 722-729
59. Lin M, Liu Y, Chen W, Wang H, Hu X (2014) Use of bacteria-immobilized
cotton fibers to absorb and degrade crude oil. Int Biodeterior Biodegrad 88: 8-
12.
60. Liu YJ, Nikolausz M, Wang XC (2009) Biodegradation and detoxication of
phenol by using free and immobilized cells of Acinetobacter sp. XA05 and
Sphingomonas sp. FG03. J Environ Sci, Health A Tox Hazard Subst Environ
Eng 44(2) : 130-136.
113
61. Liu Z, XIe W, Li D, Peng Y, LI Z, Liu S (2016) Biodegradation of phenol by
bacteria strain Acinetobacter calcoaceticus PA isolated from phenolic
wastewater. Int J Environ Res Publ Hea 13(3): 300-308.
62. Lu DB, Zhang Y, Niu SQ, Wang LT, Lin SX, Wang CM, Ye WC, Yan CL
(2012) Study of phenol biodegradation using Bacillus amyloliquefaciens strain
WJDB-1 immobilized in alginate–chitosan–alginate (ACA) microcapsules by
electrochemical method. Biodegradation 23:209–219
63. Luo Q, Zhang JQ, Shen XR, Fan ZQ, He Y, Hou DY (2013) Isolation and
characterization of marine diesel oil-degrading Acinetobacter sp. strain Y2,
Ann Microbiol 63(2): 633.
64. Magdalena PP, Grazyna AP, Zofia PS, Swaranjit SC (2011) Environmental
applications of biosurfactants: Recent Advances. Int J Mol Sci 12: 633-654.
65. Mahiudddin Md, Fakhruddin ANM, Abdullah-Al-Mahin (2012) Degradation
of phenol via meta cleavage pathway by Pseudomonas fluorescens PU1. ISRN
Microbiol: 1-6.
66. Mahjoubi M, Jaouani A, Guesmi A, Ben Amor S, Jouini A, Cherif H, Najjari
A, Boudabous A, Koubaa N, Cherif A (2013) Hydrocarbonoclastic bacteria
isolated from petroleum contaminated sites in Tunisia: isolation, identification
and characterization of the biotechnological potential. New Biotechnol
30(6):723–733.
67. Mangwani N, Dash HR, Chauhan A, Das S (2012) Bacterial quorum sensing:
functionalfeatures and potential applications in biotechnology. J Mol
Microbiol Biotechnol 22: 215-227.
68. Massol-DeyaAA, Whallon J, Hickey RF, Tiedje JM (1995) Channel structures
in aerobic biofilms of fixed-film reactors treating contaminated groundwater.
Appl Environ Microbiol 61: 769–777.
69. Meliani A, Bensoltane (2014) Enhancement of hydrocarbons degradation by
use of Pseudomonas biosurfactants and biofilms. J Petrol Environ Eng 5(1):
168.
114
70. Mendoca E, Anselmo AM, Martins A (2004) Biodegradation of natural
phenolic compounds as single and mixed substrates by Fusarium
flocciferum.Electron J Biotechnol 6( 2): 1–8.
71. Michałowicz J, Duda W (2007) Phenols – Sources and Toxicity.Polish
Journal of Environmental Studies16(3): 347-362.
72. Morikawa M, Kagihiro S, Haruki M, Takano K, Branda S, Kolter R and
Kanaya S (2006) Biofilm formation by a Bacillus subtilis strain that produces
gamma - polyglutamate. Microbiology 152: 2801-2807.
73. Mrinalini K, Jayanthi A (2011) Biodegradation of diesel oil using yeast
Rhodosporidium toruloides. Res J Environ Toxicol 5: 369-377.
74. Muller E, Hubner J, Gutierrez N, TakedaS, Goldmann DA, Pier GB (1993)
Isolationand characterization of transposonmutants of Staphylococcus
epidermidisdeficient in capsular polysaccharide/adhesin and slime. Infect
Immun61(2):551–558.
75. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, and Erlich H (1986) Specific
enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold
Spring Harb Symp Quant Biol 51 (1): 263-273.
76. Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic
relationships of Thiomicrospira species and their identification in deep-sea
hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S
rDNA fragments. Arch Microbiol 164:165-172.
77. Neria-Gonzalez I, Wang ET, Ramirez F, Romero JM, Hernandez-Rodriguez C
(2006) Characterization of bacterial community associated to biofilms of
corroded oil pipelines from the southeast of Mexico. Anaerobe 12:122-33.
78. Nester EW, Roberts CE, Pearsall NN, McCarthy BJ (1978) Microbiology.
Holt, Rnehart and Winston, New York.
79. Nguyễn Lân Dũng và cộng sự (1981) Giáo trình Vi sinh vật học. Nhà xuất bản
Khoa học và kỹ thuật.
80. Nguyễn Ngọc Bảo, Phan Thị Hoàng Hảo, Nguyễn Bá Hữu, Đặng Thị Cẩm Hà
115
(2007) Nghiên cứu khả năng phân hủy sinh học hydrocarbon thơm đa vòng
của 1 số chủng vi khuẩn phân lập từ bioreactor xử lý đất nhiễm chất độc hóa
học. Tạp chí Công nghệ sinh học 1(7): 117-124.
81. Nguyễn Quang Huy, Ngô Thị Kim Toán (2014) Khả năng tích lũy photpho và
tạo biofilm của chủng Bacillus licheniformis A4.2 phân lập tại Việt Nam. Tạp
chí Khoa học ĐHQGHN, Khoa học Tự nhiên và Công nghệ 30(1): 43-50.
82. Nhi-Cong LT, Morikawa M and Hien LT (2011) Ability of hydrocarbon
degradation by several biofilm – forming microorganisms isolated from
Vietnam coastal zone. The analytica Vietnam conference.
83. Nor Suhaila Y, Ariff A, Rosfarizan M, Abdul Latif I, Ahmad SA, Norazah M
N and Shukor MYA (2010) Optimization of Parameters for Phenol
Degradation by Rhodococcus UKM-P in Shake Flask Culture.P the World
Congress on Engineering 1: 601-604.
84. Nwanyannwu CE, Abu GO (2013) Biodegradation of phenol at low and high
doses by bacterial strains indigenous to Okrika River in the Niger Delta of
Nigeria. J ResBiol 3(3): 911–921.
85. O’Toole GA, Kaplan HB, Kolter R (2000) Biofilm formation as microbial
development. Annu Rev Microbiol 54: 49-79
86. O’Toole GA, Kolter R (1998) The initiationof biofilm formation in
Pseudomonasaeruginosa WCS365 proceeds via multiple,convergent signaling
pathways: agenetic analysis. Mol Microbiol 28:449– 461.
87. O’Toole GA, Kolter R (1998a) Flagellar and twitching motility are necessary
for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30(2):295–
304.
88. Paisio CE, Talano MA, González PS, PajueloDomínguez E, Agostini E (2013)
Characterization of a phenol-degrading bacterium isolated from an industrial
effluent and its potential application for bioremediation. Environ Technol
(UK) 34(4): 485–493.
89. Paller G, Hommel RK, Kleber HP (1995) Phenol degradation by
116
Acinetobacter calcoaceticus NCIB 8250. J Basic Microb 35: 325–335.
90. Pathak AK, Sharman S, Shrivasta P (2012) Multi-species biofilm of Candida
albicans and non-CandidaalbicansCandida species on acrylic substrate. J Appl
Oral Sci 20(1): 70-75.
91. Perelo LW (2010) Review: in situ and bioremediation of organic pollutants in
aquatic sediments.J Hazard Mater 177: 81-89.
92. Phạm Thị Hồng Đức, Lê Văn Cát (2010) Phát triển kỹ thuật xử lý nước thải
nuôi giống thuỷ sản bằng phương pháp màng sinh học nhằm tái sử dụng. Hội
nghị Khoa học kỷ niệm 35 năm Viện Khoa học và Công nghệ Việt Nam: 187-
192.
93. Rastogi G, Sani KR (2011) Molecular techniques to assess microbial
community structure, function, and dynamics in the environment. Springer
NY: 29-57.
94. Rontani JF, Giusti G (l986) Study of the biodegradation of poly-branched
alkanes by a marine bacterial community. Mar Chem 20(2): 197-205.
95. Rozánki L (1998)The tranformations of pesticides in living organism and the
environment. Agra-Enviro Lab Poznan.
96. Safont B, Vitas AI, Peñas FJ (2012) Isolation and characterization of phenol
degrading bacteria immobilized onto cyclodextrin-hydrogel particles within a
draft tube spouted bed bioreactor. Biochem Eng J 64: 69–75.
97. Sariaslani FS, Harper DB, Higgins IJ (1974) Microbial degradation of
hydrocarbons. Catabolism of 1-phenylalkanes by Nocardia salmonicolor.
BiochemJ 140: 31–45.
98. Shimada K, Itoh Y, Washio K, Morikawa M (2012) Efficacy of forming
biofilms by naphthalene degrading Pseudomonas stutzeri T102 toward
bioremediation technology and its molecular mechanisms. Chemosphere 87:
226-233.
117
99. Shukla KS, Mangwani N, Rao TS, Das S (2014) Biofilm-Mediated
bioremediation of polycyclic aromatic hydrocarbons. Microb Biodegrad
Bioremediat: 203-232.
100. Shuttleworth KL, Cerniglia CE (1995) Environmental aspects of PAH
biodegradation. Appl Biochem Biotech 54: 291–302.
101. Singh R, Paul D, Rakesh JK (2006) Review, Biofilms: implications in
bioremediation. Trends Microbiol 14(9): 389-97.
102. Smith CA and Hussey AM (2005) Gram Stain Protocols. Am Soc Microbiol
Conf Undergrad Educ– American
103. Sood N, Lal B (2009) Isolation of a novel yeast strain Candida digboiensis
TERI ASN6 capable of degrading petroleum hydrocarbons in acidic
conditions. J Environ Manage 90(5): 1728-1736.
104. Suhaila Y.N, Rosfarizan M, Ahmad SA, Latif IA, Ariff A (2013) Nutrients
and culture conditions requirements for the degradation of phenol by
Rhodococcus UKMP-5M. J Environ Biol 34: 1– 8.
105. Sutherland JB, Rafii F, Khan AA, Cerniglia CE (1995) Mechanics of polycylic
aromatic hydrocarbon degradation. In Microbial transformation and
degradation of toxic organic chemicals, ed L.Y.Young &C.E. Cerniglia. New
York: Wiley-Lis: 269-306.
106. Taghreed AK, Muftah HE (2012) Aerobic biodegradation of phenols: A
comprehensive review. Crit Rev Enviro Sci Tec 42: 1631–1690.
107. Todoroviê V (2003) Acute phenol poisoning. Medicinski Pregled 1: 37-41.
108. Ullah MA, Kadhim H, Rastall RA, Evans CS (2000) Evaluation of solid
substrates for enzyme production by Coriolus versicolor, for use in
bioremediation of chlorophenols in aqueous effluents. Appl Microbiol
Biotechnol 54: 832–837.
109. US Department of health and human services (1995) Toxicological profile for
polycyclic aromatic hydrocarbons. Public Health Service – Agency for toxic
substances and disease registy.
118
110. US.EPA (1980). Ambient Water Quality Criteria DOC: Phenol, US EPA-
440/5-80-066 (PB 81-117772): 1100-1156
111. Vanysacker L, Denis C, Declerck P, Piasecka A, Vankelecom FJI (2013)
Microbial adhesion and biofilm formation on microfiltration membranes: A
detailed characterization using model organisms with increasing complexity.
Biomed Res Int: 1-12.
112. Viggiani A, Olivieri G, Siani L, Donato DA, Marzocchella A, Salatino P,
Barbieri P, Galli E (2006) An airlift biofilm reactor for the biodegadation of
phenol by Pseudomonas stutzeri OX1. J Biotechnol 123(4): 464-477.
113. Wasi S, Tabrez S, Ahmad M (2013) Toxicological effect of major
environmental pollutants: An overview. Environ Monit Assess 185: 2585–
2593.
114. Watnick PI, Kolter R (1999) Steps in thedevelopment of a Vibrio cholerae El
forbiofilm. Mol Microbiol 34(3):586–595.
115. White TJ, Burns T, Lee S, Taylor J (1990) Amplification and sequencing of
fungal ribosomal RNA genes for phylogenetics. In PCR protocols. Aguide to
methods and applications. Academic Press, Inc, San Diego, California: 315-
322.
116. Xue-Jing Z, Blais JF, Mercier G, Bergeron M, Drogui P (2007) PAH removal
from spiked municipal wastewater sewage sludge using biological, chemical
and electrochemical treatments. Chemosphere68(6): 1143-1152.
117. Yamaga F, Washio K and Morikawa M (2010) Sustainable biodegradation of
phenol by Acinetobacter calcoacetius P23 isolated from the rhizosphere of
Duckweed Lenma aoukikusa. Environ Sci Technol 44: 6470-6474.
118. Yu L, Han M, He F (2013) A review of treating oily wastewater. Arab J Chem.
119. Zheng C, Zhao L, Zhou X, Fu Z, Li A (2013) Treatment technologies for
organic wastewater. Intech: 249-286.
120. Zhou B, Chen T (2013) Optimization and characterization of simultaneous
phenol degradation with Cr(VI) reduction by Pseudomonas sp. JF122. Acta
119
Sci Circum 33(9): 2482–2490.
121. Zhou J, Bruns MA and Tiedje JM (1996) DNA Recovery from soils of diverse
compostion. Appl Eviron Microbiol 62(2): 316-322.
122. Zhou J, Yu X, Ding C, Wang Z, Zhou Q, Pao H, Cai W (2011) Optimization
of phenol degradation by Candida tropicalis Z-04 using placket-burman
design and response surface methodology. J Environ Sci 23(1): 22-30.
Website tham khảo:
123.
1
PHẦN PHỤ LỤC
Phụ lục 1: KHẢ NĂNG TẠO BIOFILM CỦA CÁC CHỦNG VI SINH VẬT
Hình 1. Khả năng bắt giữ tím tinh thể của biofilm do các chủng vi khuẩn tạo thành (K: đối chứng không có vsv)
Hình 2. Khả năng bắt giữ tím tinh thể của biofilm do các chủng nấm men tạo thành (K: đối chứng không có vsv)
2
Phụ lục 2: PHÂN LOẠI VI SINH VẬT BẰNG KIT CHUẨN SINH HÓA
Bảng 1. Kết quả phân loại bằng Kit chuẩn sinh hóa API 20E của các chủng vi
khuẩn Gram âm
TT Kít thử DGP2 DGP4 DG25 DGP8 QND10
1 ONPG - + - + -
2 ADH + - + - -
3 LDC - + - - +
4 ODC - - - - -
5 CIT + - + - +
6 H2S - - - + -
7 URE - - - - -
8 TDA - - - + -
9 IND - + - + +
10 VP + + + + -
11 GEL - - - - -
12 GLU + + + + +
13 MAN - + - - -
14 INO - - + - +
15 SOR - - - + -
16 RHA - - - - -
17 SAC - - + - +
18 MEL - + - - +
19 AMY - - - - -
20 ARA + + - - -
21 OX - - - - -
(-, âm tính; +, dương tính)
Bảng 2. Kết quả phân loại bằng Kit chuẩn sinh hóa API 20NE của các chủng vi
khuẩn Gram âm
TT Kít thử DGP2 DGP4 DG25 DGP8 QND10
1 NO3 - + + + -
2 TRP + + + - -
3
3 GLU + + + + +
4 ADH - + + + -
5 URE - - - - -
6 ESC - + + + -
7 GEL + + + + -
8 PNPG + + - + +
9 GLU + + + - -
10 ARA - + + + -
11 MNE - + + + -
12 MAN - + - + -
13 NAG + + + - -
14 MAL + + + + -
15 GNT + + + + -
16 CAP + + + + +
17 ADI - - - - -
18 MLT + + + + +
19 CIT - - - - +
20 PAC - - - - +
21 OX + + + + +
(-, âm tính; +, dương tính)
Bảng 3. Kết quả phân loại bằng Kit chuẩn sinh hóa API 50CH của các chủng
vi khuẩn Gram dương
TT Kit thử VTPG5 BQN11 TT Kit thử VTPG5 BQN11
0 0 - - 25 ESC - -
1 GLY - + 26 SAL + +
2 ERY - - 27 CEL - -
3 DARA - + 28 MAL - -
4 LARA + + 29 LAC - +
5 RIB - - 30 MEL - +
6 DXYL - + 31 SAC - +
7 LXYL - - 32 TRE - +
8 ADO - - 33 INU - -
4
TT Kit thử VTPG5 BQN11 TT Kit thử VTPG5 BQN11
9 MDX - + 34 MLZ - -
10 GAL - + 35 RAF - -
11 GLU - + 36 AMD + +
12 FRU - - 37 GLYG - +
13 MNE - + 38 XLT - +
14 SBE - + 39 GENE - +
15 RHA - - 40 TUR - +
16 DUL - - 41 LYX - -
17 INO + + 42 TAG + +
18 MAN - - 43 DFUC + -
19 SOR - - 44 LFUC + -
20 MDM - - 45 DARL - +
21 MDG - + 46 LARL - +
22 NAG - + 47 GNT - +
23 AMY - + 48 2KG - +
24 ARB + - 49 5KG - +
(-, âm tính; +, dương tính)
Bảng 4. Kết quả phân loại bằng Kit chuẩn sinh hóa API 20 C AUX của các chủng
nấm men
TT Kít thử B1 TH1 TH4 TT Kít thử B1 TH1 TH4
1 O - - - 12 MDG - + +
2 GLU + + + 13 NAG - + +
3 GLY -+ + + 14 CEL - + +
4 2KG + + + 15 LAL - + +
5 ARA - + - 16 MAL + + +
6 XYL - + + 17 SAC + + +
7 ADO - + + 18 TRE + + +
8 XLT - - - 19 MLZ + + +
9 GAL +- + + 20 RAF + - +
10 INO - - - 21 H/PH
+
- - -
11 SOR + + +
(-, âm tính; -+, đổi màu khoảng 15-25%; +-, đổi màu khoảng 25-35%; +, dương tính)
5
Phụ lục 3: KHẢ NĂNG SINH TRƢỞNG CỦA CÁC CHỦNG VI SINH VẬT TRÊN CÁC NGUỒN HYDROCARBON KHÁC NHAU
Hình 3(A).Khả năng sinh trưởng của chủng BQN11 trong MT có
bổ sung naphthalene ở các nồng độ khác nhau
Hình 3(B).Khả năng sinh trưởng của chủng VTPG5 trong MT có
bổ sung phenol ở các nồng độ khác nhau
Hình 3(C).Khả năng sinh trưởng của chủng DGP2 trong MT có
bổ sung phenol ở các nồng độ khác nhau
Hình 3(D).Khả năng sinh trưởng của chủng DGP4 trong MT có
bổ sung phenol ở các nồng độ khác nhau
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
0 24 48 72 96 120 144 168
O
D
6
0
0
n
m
Thời gian (giờ)
100 ppm
200 ppm
300 ppm
0
1
2
3
4
5
6
0 24 48 72 96 120 144 168
O
D
6
0
0
n
m
Thời gian (giờ)
50 ppm
100 ppm
150 ppm
200 ppm
250 ppm
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
0 24 48 72 96 120 144 168
O
D
6
0
0
n
m
Thời gian (giờ)
50 ppm
100 ppm
150 ppm
200 ppm
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0 24 48 72 96 120 144 168
O
D
6
0
0
n
m
Thời gian (giờ)
50 ppm
100 ppm
150 ppm
200 ppm
6
Hình 3(E). Khả năng sinh trưởng của chủng DGP8 trong MT
có bổ sung phenol ở các nồng độ khác nhau
Hình 3(F).Khả năng sinh trưởng của chủng DG25 trong môi
trường có bổ sung pyrene ở các nồng độ khác nhau
Hình 3(G).Khả năng sinh trưởng của chủng TH4 trong MT
có bổ sung pyrene ở các nồng độ khác nhau
Hình 3(H).Khả năng sinh trưởng của chủng QND10 trong
MT có bổ sung anthracene ở các nồng độ khác nhau
0
0.5
1
1.5
2
2.5
3
3.5
0 24 48 72 96 120 144 168
O
D
6
0
0
n
m
Thời gian (giờ)
50 ppm
100 ppm
150 ppm
200 ppm
0
0.5
1
1.5
2
2.5
0 24 48 72 96 120 144 168
O
D
6
0
0
n
m
Thời gian (giờ)
100 ppm
200 ppm
300 ppm
400 ppm
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
0 24 48 72 96 120 144 168
O
D
6
0
0
n
m
Thời gian (giờ)
50 ppm
100 ppm
150 ppm
0
0.5
1
1.5
2
2.5
3
0 24 48 72 96 120 144 168
O
D
6
0
0
n
m
Thời gian (giờ)
50 ppm
150 ppm
100 ppm
7
Phụ lục 4: KẾT QUẢ PHÂN TÍCH GCMS DO BIOFILM ĐA CHỦNG TẠO THÀNH
(A)
(B)
(C)
Hình 4. Sắc ký đồ các thành phần hydrocarbon có trong các mẫu thí nghiệm do
biofilm đa chủng vi sinh vật tạo thành; (A)- đối chứng; (B) - thí nghiệm biofilm đa
chủng vi khuẩn; (C)- thí nghiệm biofilm đa chủng nấm men sau 14 ngày
1 0 .0 0 1 2 .0 0 1 4 .0 0 1 6 .0 0 1 8 .0 0 2 0 .0 0 2 2 .0 0 2 4 .0 0 2 6 .0 0 2 8 .0 0 3 0 .0 0 3 2 .0 0
0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0
8 0 0 0 0 0
9 0 0 0 0 0
1 0 0 0 0 0 0
T im e -->
A b u n d a n c e
T IC : N T -1 7 8 -1 .D
1 6 .6 0
1 8 .0 3
2 0 .1 9
2 3 .8 4
2 4 .7 2 2 6 .1 4
2 7 .0 6
2 7 .1 8
2 8 .1 1
2 8 .9 2
2 9 .7 3
12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00
0
5000
10000
15000
20000
25000
T ime-->
Abundanc e
T IC: N T 193-12-M 1.D
11.32 11.43
11.70
13.21
13.27
13.48
13.70
13.80
14.09
15.02
15.26 15.58 15.70
15.95 16.04
16.52
16.74
16.85
17.16 17.50
18.36 18. 1
18.76
19.92
20.29
21.40 21.55
21.65
21.89
21.97 22.81 23.44 24.16
1 0 .0 0 1 2 .0 0 1 4 .0 0 1 6 .0 0 1 8 .0 0 2 0 .0 0 2 2 .0 0 2 4 .0 0 2 6 .0 0 2 8 .0 0 3 0 .0 0 3 2 .0 0 3 4 .0 0
0
5 0 0 0
1 0 0 0 0
1 5 0 0 0
2 0 0 0 0
2 5 0 0 0
3 0 0 0 0
T im e -->
A b u n d a n c e
T IC : N T 1 9 3 -1 2 -M 3 .D
9 .8 3
1 0 .9 0
1 1 .2 4
1 1 .8 1
1 1 .8 9
1 2 .1 8
1 3 .0 3
1 3 .2 4
1 3 .7 0
1 3 .9 8
1 4 .2 0
1 4 .2 8
1 4 .5 8
1 5 .5 1
1 5 .5 9
1 5 .7 5 1 6 .0 8 1 6 .1 9
1 6 .4 3 1 6 .5 4
1 6 .7 4
1 7 .2 3
1 7 .3 4
1 7 .6 4 1 8 .0 0
1 8 .8 7
1 9 .1 3
1 9 .5 2
2 0 .3 8
2 0 .4 2
2 0 .7 9 2 1 .4 5 2 1 .7 3
2 1 .9 0 2 2 .0 3 2 2 .1 3
2 2 .3 9
2 2 .4 7
2 3 .3 1
2 3 .6 0
2 3 .6 9
2 3 .9 3
2 4 .0 3
2 4 .6 6
2 5 .1 4
2 5 .3 9
2 5 .5 0
2 5 .9 5
2 6 .6 5
2 7 .2 0
2 8 .2 7
2 8 .4 5
2 9 .9 1
3 1 .7 2
3 4 .0 2
8
Bảng 5. Kết quả phân tích GCMS của mẫu đối chứng
P
K
RT
Area
Pct
Library/ID Ref CAS Qual
1 3.8045 0.6612 p-Dimethylbenzene 10754 000106-42-3 95
2 4.1377 0.3531 Benzene, 1,3-dimethyl- 10741 000108-38-3 93
3 4.1694 0.4409 n-Nonane 25155 000111-84-2 95
4 5.2324 1.0395 Benzene, 1-ethyl-3-methyl- 18927 000620-14-4 93
5 5.2906 0.3828 Benzene, 1-ethyl-2-methyl- 18922 000611-14-3 90
6 5.3752 0.5199 Benzene, 1,2,3-trimethyl- 18949 000526-73-8 95
7 5.5445 0.4305 1-Methyl-2-ethylbenzene 18919 000611-14-3 94
8 5.8353 1.4916 Benzene, 1,2,4-trimethyl- 18964 000095-63-6 94
9 5.8724 1.1898 Decane 38801 000124-18-5 93
10 6.2849 0.3323 4-Methyldecane 56256 002847-72-5 74
11 6.3536 0.5914 Benzene, 1,2,3-trimethyl- 18949 000526-73-8 95
12 6.6286 0.6889 1-Phenyl-2-propene 18044 000300-57-2 86
13 6.8349 0.3778 1,2-Diethylbenzene 29901 000135-01-3 81
14 6.9036 0.5733 Benzene, (1-methylpropyl)- 29853 000135-98-8 83
15 7.02 1.3973 Benzene, 4-ethyl-1,2-dimethyl- 29941 000934-80-5 93
16 7.1099 0.5334 Decane, 2-methyl- 56250 006975-98-0 94
17 7.2315 0.4433 Decane, 3-methyl- 56253 013151-34-3 97
18 7.3849 0.5739 1-Methyl-3-isopropylbenzene 29878 000535-77-3 95
19 7.4484 0.6059 1,3-Dimethyl-4-ethylbenzene 29930 000874-41-9 91
20 7.57 1.2029 1-Ethyl-2,4-dimethylbenzene 29930 000874-41-9 94
21 7.6176 0.7666 1-ethenyl-3-ethyl-Benzene 28328 055319-72-7 87
22 7.8239 1.6116 n-Undecane 56237 001120-21-4 95
23 7.9614 0.2841 1,3-Dimethyl-4-ethylbenzene 29930 000874-41-9 94
24 8.2152 0.5048 1,2,3,4-Tetramethylbenzene 29955 000488-23-3 94
25 8.284 0.761 Benzene, 1,2,4,5-tetramethyl- 29967 000095-93-2 95
26 8.5748 0.5385
Benzene, 1-methyl-4-(1-
methylpropyl)-
44859 001595-16-0 76
27 8.6542 0.6662 1-Methyl-3,5-diethylbenzene 44749 002050-24-0 83
28 8.7124 1.5659
1H-Indene, 2,3-dihydro-5-
methyl-
28364 000874-35-1 81
29 8.8869 1.5618
1H-Indene, 2,3-dihydro-4-
methyl-
28361 000824-22-6 91
30 8.9186 1.7691 Benzene, 1,2,4,5-tetramethyl- 29963 000095-93-2 90
31 9.0032 0.6161 Undecane, 4-methyl- 74420 002980-69-0 89
32 9.0614 0.9075 trans-1-methyl-2-indanol 44525 102330-13-2 68
33 9.109 0.5921 Undecane, 2-methyl- 74411 007045-71-8 89
34 9.1672 0.7209
Benzene, 1-methyl-4-(1-
methylpropyl)-
44859 001595-16-0 68
35 9.2359 0.7002 5-Ethyldecane 74465 017302-36-2 52
9
P
K
RT
Area
Pct
Library/ID Ref CAS Qual
36 9.3629 0.5394
Benzene, 1-methyl-4-(1-
methylpropyl)-
44859 001595-16-0 90
37 9.5956 0.6248 Benzene, (1-methyl-1-butenyl)- 42930 053172-84-2 92
38 9.6802 3.6543 Naphthalene 25268 000091-20-3 76
39 9.7331 0.8703 1-Cyclopropyl-1-methylspiro 42943 000000-00-0 83
40 9.8336 4.5694 n-Dodecane 74405 000112-40-3 64
41 10.0239 0.4522 Benzene, ethyl-1,2,4-trimethyl- 44754 054120-62-6 87
42 10.0874 0.7175 2,6-Dimethylundecene 93403 017301-23-4 87
43 10.3413 0.7044 4-Cyclopentylphenol 62534 001518-83-8 72
44 10.5528 1.1952
Bicyclo[4.2.1]nona-2,4,7-triene,
7-ethyl-
42920 000000-00-0 76
45 10.8966 1.7468
1H-Indene, 2,3-dihydro-4,7-
dimethyl-
42832 006682-71-9 96
46 11.1028 0.5913 Nonadecane, 9-methyl- 229004 013287-24-6 46
47 11.1398 1.069
1H-Indene, 2,3-dihydro-4,7-
dimethyl-
42832 006682-71-9 93
48 11.2509 1.7751 3-p-Tolylprop-2-enal 42713 000000-00-0 42
49 11.4202 0.6083
Naphthalene, 1,2,3,4-tetrahydro-
6,7-dimethyl-
60409 001076-61-5 64
50 11.4572 0.3766
1-Isopropyl-3,5-
dimethylbenzene
44748 004706-90-5 62
51 11.5153 0.4104
1H-Indene, 2,3-dihydro-4,7-
dimethyl-
42832 006682-71-9 96
52 11.6846 0.3318
Benzene, 4-(2-butenyl)-1,2-
dimethyl-, (E)-
60335 054340-86-2 86
53 11.7375 0.9212
1H-Indene, 2,3-dihydro-1,1,3-
trimethyl-
60371 002613-76-5 64
54 11.8115 1.5277 n-Tridecane 93376 000629-50-5 97
55 11.8803 5.23 1-Methylnaphthalene 38907 000090-12-0 93
56 12.1235 0.4861 Benzo[b]thiophene, 4-methyl- 44168 014315-11-8 53
57 12.1764 2.8148 1-methyl naphthalene 38907 000090-12-0 93
58 13.0279 0.9302 n-Tetratriacontane 363627 014167-59-0 46
59 13.1548 0.5149 Nonadecane, 9-methyl- 229004 013287-24-6 43
60 13.2447 0.5186 5-ethyl-1,3-dimethylindan 79301 116384-72-6 80
61 13.6149 0.9572
Benzene, 4-(2-butenyl)-1,2-
dimethyl-
60335 054340-86-2 91
62 13.7154 3.6954 n-Tetradecane 113303 000629-59-4 96
63 13.9587 1.7551 Naphthalene, 1,6-dimethyl- 56327 000575-43-9 95
64 13.9799 2.602 Naphthalene, 2,7-dimethyl- 56360 000582-16-1 95
65 14.1967 3.2892 Naphthalene, 1,6-dimethyl- 56327 000575-43-9 97
66 14.2813 3.0812 Naphthalene, 1,6-dimethyl- 56327 000575-43-9 96
67 14.588 1.3848 Naphthalene, 1,4-dimethyl- 56318 000571-58-4 96
10
P
K
RT
Area
Pct
Library/ID Ref CAS Qual
68 14.6462 0.5819 1,6-Dimethylnaphthalene 56328 000575-43-9 90
69 14.8419 1.1114 1,4-Dimethylnapthalene 56317 000571-58-4 96
70 15.3813 0.5146 Pyrene 71665 001855-47-6 95
71 15.4554 0.511 Naphthalene, 1-propyl- 74519 002765-18-6 46
72 15.5189 1.6761 Pentadecane 134012 000629-62-9 96
73 15.741 2.0611 Naphthalene, 1,4,6-trimethyl- 74494 002131-42-2 91
74 16.0689 1.3449 Naphthalene, 1,6,7-trimethyl- 74497 002245-38-7 97
75 16.1958 1.1564 Naphthalene, 2,3,6-trimethyl- 74500 000829-26-5 97
76 16.4338 0.8456 Naphthalene, 1,6,7-trimethyl- 74497 002245-38-7 98
77 16.5343 0.9724 Naphthalene, 1,6,7-trimethyl- 74497 002245-38-7 96
78 16.6352 0.7768 Phenanthrene 74503 000829-26-5 97
79 17.2324 0.8345 Hexadecane 154901 000544-76-3 97
80 17.3276 1.2146 Naphthalene, 1-(2-propenyl)- 71647 002489-86-3 64
81 17.4175 0.6661 2-Methyl-1,1'-biphenyl 71617 000643-58-3 89
82 17.9992 0.4212 1-Acetyl-3-methylazulene 93351 000000-00-0 50
83 18.0386 0.8314 Fluorene 174552 000629-78-7 98
84 20.1998 0.746 Anthracene 87532 002523-37-7 95
85 20.3632 0.4319 Naphthalene, 2,3,6-trimethyl- 84482 000085-01-8 81
86 20.4161 0.7515 n-Octadecane 193185 000593-45-3 98
87 21.897 0.6009 Nonadecane 211481 000629-92-5 98
88 22.0345 0.6055
1H-
Cyclopropa[l]phenanthrene,1a,9
b-dihydro-
103941 000949-41-7 96
89 22.1191 0.7698 Phenanthrene, 2-methyl- 103929 002531-84-2 96
90 23.3143 0.6147 Eicosane 228992 000112-95-8 98
91 23.8484 0.5192 Naphthalene 125000 001576-69-8 94
92 24.6629 0.5644 Acenaphthalene 134048 000629-62-9 95
93 25.9586 0.3558 Hexadecane 154904 000544-76-3 97
94 27.1962 0.3928 Tricosane 275686 000638-67-5 98
95 28.9243 0.7859 Benzo(k)fluoranthene 154914 000544-76-3 95
Bảng 6. Kết quả phân tích GCMS của biofilm đa chủng vi khuẩn tạo thành
P
K
RT
Area
Pct
Library/ID Ref CAS Qual
1 13.48 5.5839 Naphthalene 38929 000091-57-6 96
2 13.7101 5.0129 Acenaphthylene 113301 000629-59-4 94
3 13.9904 11.4563 1,5-Dimethylnaphthalene 56324 000571-61-9 90
4 14.2072 11.3701 Naphthalene, 1,7-dimethyl- 56332 000575-37-1 96
5 14.2866 7.4606 2,7-Dimethylnaphthalene 56361 000582-16-1 87
6 15.5135 5.4875 n-Pentadecane 134011 000629-62-9 74
11
P
K
RT
Area
Pct
Library/ID Ref CAS Qual
7 15.7515 8.4094 Anthracene 74506 018242-86-9 87
8 16.0088 4.8038 Naphthalene, 2,3,6-trimethyl- 74500 000829-26-5 91
9 16.0485 5.3377 Fluorene 74500 000829-26-5 91
10 17.227 5.8372 n-Tridecane 93372 000629-50-5 68
11 19.9251 5.5728 Benzo(k)fluoranthene 90602 055836-29-8 93
12 20.2914 7.8182 Pyrene 244391 004292-19-7 95
13 21.945 5.1168 Phenanthrene 103905 007151-64-6 98
14 22.1243 5.1788 Anthracene, 2-methyl- 103918 000613-12-7 80
15 23.9436 5.5539 2,7-Dimethylphenanthrene 124999 001576-69-8 80
Bảng 7. Kết quả phân tích GCMS của biofilm đa chủng nấm men tạo thành
P
K
RT
Area
Pct
Library/ID Ref CAS Qual
1 9.8334 1.8119 Dodecane 74406 000112-40-3 47
2 10.8964 1.0733
1H-Indene, 2,3-dihydro-4,7-
dimethyl-
42830 006682-71-9 76
3 11.8113 1.8647 Phenanthrene 93366 000629-50-5 95
4 11.8907 5.1625 Naphthalene 38933 000091-57-6 97
5 12.1869 3.4642 1-Methylnaphthalene 38918 000090-12-0 91
6 13.2446 0.6147 Hexacosane 311166 000630-01-3 43
7 13.71 2.7969 Tetradecane 113289 000629-59-4 95
8 13.7476 2.0884 Anthracene 56296 000939-27-5 93
9 13.9903 6.3202 Naphthalene, 1,7-dimethyl- 56332 000575-37-1 95
10 14.2018 5.3006 Benzo(k)fluoranthene 56315 000571-58-4 96
11 14.2864 5.3188 2,7-Dimethylnaphthalene 56361 000582-16-1 96
12 14.7038 0.7186 Fluorene 56314 000571-58-4 94
13 15.5187 3.0978 Pentadecane 134049 000629-62-9 94
14 15.7567 3.9871 1,4,6-Trimethylnaphthalene 74495 002131-42-2 93
15 16.074 3.2925 2,3,6-Trimethylnaphthalene 74504 000829-26-5 97
16 16.1956 3.2339 Naphthalene, 1,6,7-trimethyl- 74497 002245-38-7 97
17 16.4336 1.8333 4,6,8-Trimethylazulene 74479 000941-81-1 91
18 16.5394 1.7511 2,3,6-Trimethylnaphthalene 74501 000829-26-5 91
19 16.7351 0.6124 2,3,6-Trimethylnaphthalene 74501 000829-26-5 87
20 17.2322 1.7423 Hexadecane 154908 000544-76-3 93
21 17.3433 2.7081 1-Isopropenylnaphthalene 71665 001855-47-6 45
22 17.4279 2.061 2-Methylbiphenyl 71617 000643-58-3 50
23 18.8664 1.8798 Heptadecane 174548 000629-78-7 93
24 19.1256 2.4333 4,4'-Dimethylbiphenyl 90542 000613-33-2 43
25 21.8968 1.5435 n-Tetradecane 113297 000629-59-4 86
26 22.0396 2.0087 METHYL-ANTHRACENE 103909 000610-48-0 58
12
P
K
RT
Area
Pct
Library/ID Ref CAS Qual
27 22.1348 2.9698 Anthracene, 9-methyl- 103921 000779-02-2 81
28 23.3142 1.2577 n-Eicosane 228993 000112-95-8 94
29 23.9329 3.2792 Pyrene 125000 001576-69-8 95
30 24.0334 2.0898 3,6-Dimethylphenanthrene 125004 001576-67-6 76
31 24.6628 2.5805 n-Hexadecane 154914 000544-76-3 90
32 25.144 1.8888
11-Methylene-2-oxa-4,4,7-
trimethyltricyclo(1,6)]dodecane
145347 000000-00-0 59
33 25.5089 1.4153 Phenanthrene, 2,3,5-trimethyl- 145448 003674-73-5 91
34 25.9532 1.1889 n-Docosane 261311 000629-97-0 95
35 27.196 1.3854 n-Octadecane 193184 000593-45-3 83
36 28.2749 5.7557 Acenaphthylene 313828 000123-79-5 98
37 28.4442 3.406 Hexadecane 154901 000544-76-3 38
38 29.9144 1.7846 Eicosane 228988 000112-95-8 38
Các file đính kèm theo tài liệu này:
- luan_an_nghien_cuu_kha_nang_phan_huy_hop_chat_vong_thom_cua.pdf