Trong quá trình phát triển phôi: Độ mặn nƣớc từ 32,0 - 35,0 ppt (± 0,5) và nhiệt
độ nƣớc (28,0 ± 0,5)ºC là điều kiện thích hợp nhất để phôi cá Song vua phát triển, trứng
cá Song vua nở ra ấu trùng đạt tỷ lệ cao nhất và tỷ lệ ấu trùng dị hình thấp nhất.
 Ấu trùng cá Song vua đƣợc chia làm 5 giai đoạn, khi mới nở ấu trùng có kích
thƣớc 1,72 ± 0,04 mm, đƣờng kính của khối noãn hoàng là 0,91 ± 0,1 mm, ấu trùng có
một giọt dầu nằm ở phía lƣng của khối noãn hoàng với đƣờng kính giọt dầu là 0,16 ±
0,05 mm. Ấu trùng cá Song vua thƣờng mở miệng sau 60 giờ kể từ khi trứng nở (độ mặn
28 ppt và nhiệt độ 28ºC) với kích thƣớc mở miệng là 130,5  20,0 m. Gai cứng xuất
hiện trên vây lung và vây ngực của ấu trùng từ ngày tuổi thứ 9, gai cứng dài tối đa vào
ngày tuổi thứ 21 và các gai cứng này biến mất vào ngày tuổi thứ 35, ấu trùng cá Song
vua hoàn thành biến thái thành cá hƣơng ở ngày tuổi thứ 42 khi đó kích thƣớc ấu trùng
đạt 35,02 ± 0,51 mm. Khi mới nở ống tiêu hóa của ấu trùng cá Song vua là một ống
thẳng, mầm dạ dày xuất hiện vào ngày thứ 3 và phát triển hoàn thiện ở giai đoạn hoàn
thành biến thái. Đặc trƣng ống tiêu hóa của ấu trùng cá Song vua là to và ngắn. Điều kiện
độ mặn nƣớc thích hợp nhất cho ấu trùng phát triển là 28 - 32 ppt và nhiệt độ nƣớc thích
hợp (từ khi nở đến khi ấu trùng 20 ngày tuổi) là 28oC, khoảng nhiệt độ nƣớc thích hợp
(từ khi ấu trùng 20 ngày tuổi đến ấu trùng hoàn thiện biến thái) là 28 - 31oC
                
              
                                            
                                
            
 
            
                 151 trang
151 trang | 
Chia sẻ: tueminh09 | Lượt xem: 935 | Lượt tải: 0 
              
            Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu một số đặc điểm sinh học cá song vua epinephelus lanceolatus (bloch, 1790) ở giai đoạn phát triển ban đầu (phôi, ấu trùng và cá hương), để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
g density, salinity, and light intensity on growth and survival of 
southern flounder (Paralichthys lethostigma) larvae. Journal of the World aquaculture 
society, 27(2), 153-159. 
24. Das, T., Pal, A., Manush, S. K., Dalvi, R. S., Sarma, K., Mukherjee, S. C. (2006). 
Thermal dependence of embryonic development and hatching rate in (Labeo rohita 
Hamilton, 1822). Aquaculture 255: 536-541. 
25. Dhert, P., Lavens, P., Duray, M., and Sorgeloos, P. (1990). Improved larval 
survival at metamorphosis of Asian seabass (Lates calcarifer) using ω3-HUFA - 
enriched live food. Aquaculture, 90(1), 63-74. 
26. Doi, M., Munir, M. N., Nik Razali, N. L., and Zulkifli, T. (1991). Artificial 
propagation of the grouper, Epinephelus suillus at the marine finfish hatchery in Tanjong 
Demong, Terengganu, Malaysia. Kerta Pengembangan Bil, 167. 
27. Doi, M., Ohno, A., Taki, Y., Singhagraiwan, T., and Kohno, H. (1997). Nauplii of 
the calanoid copepod, Acartia sinjiensis as an initial food organism for larval red snapper 
(Lutjanus argentimaculatus). Suisanzoshoku (Japan), 45(1), 31-40. 
28. Doi, M., Toledo, J. D., Golez, M. S. N., de los Santos, M., and Ohno, A. (1997). 
Preliminary investigation of feeding performance of larvae of early red-spotted grouper 
(Epinephelus coioides), reared with mixed zooplankton. Live Food in Aquaculture (pp. 
259-263): Springer. 
29. Duray, M. N., Estudillo, C. B., and Alpasan, L. G. (1997). Larval rearing of the 
grouper (Epinephelus suillus) under laboratory conditions. Aquaculture, 150(1), 63-76. 
107 
30. Fan, B., Liu, X. C., Meng, Z. N., Tan, B., Wang, L., Zhang, H. F., Lin, H. R. 
(2013). Cryopreservation of giant grouper (Epinephelus lanceolatus Bloch, 1790) 
sperm. Journal of Applied Ichthyology. 
31. Fielder, D. S., and Bardsley, W. (1999). A preliminary study on the effects of 
salinity on growth and survival of mulloway (Argyrosomus japonicus) larvae and 
juveniles. Journal of the World Aquaculture Society, 30(3), 380-387. 
32. Fielder, D. S., Bardsley, W. J., Allan, G. L., and Pankhurst, P. M. (2005). The 
effects of salinity and temperature on growth and survival of Australian snapper (Pagrus 
auratus) larvae. Aquaculture, 250(1), 201-214. 
33. Forrester, C. and Alderdice, D. (1966). Effects of salinity and temperature on 
embryonic development of the Pacific cod (Gadus macrocephalus). Journal of the 
Fisheries Board of Canada, 23(3), 319-340. 
34. Fourmanoir, P., and P. Laboute. (1976). Poissons de Nouvelle Calédonie et des 
Nouvelles Hébrides. Les Éditions du Pacifique, Papeete, Tahiti. 376 p. 
35. Freese, D., Kreibich, T., and Niehoff, B. (2012). Characteristics of digestive 
enzymes of calanoid copepod species from different latitudes in relation to temperature, 
pH and food. Comparative Biochemistry and Physiology Part B: Biochemistry and 
Molecular Biology, 162(4), 66-72. 
36. Fukuhaka. O. (1986). Morphological and functional development of Japanese 
flounder in early life stage. Bulletin of the Japanese Society of Scientific Fisherie, 52(1), 
81-91. 
37. Fukuhaka. O. (1987). Larval development and behavior in early life stages of 
black sea bream reared in the laboratory. Nippon Suisan Gakkaishi, 53(3), 371-379. 
38. Fukuhara. O. (1989). A review of the culture of grouper in Japan. Bull. Nansei 
Reg. Fish. Res. Lab, 22, 47-57. 
39. Garcia, A. S., Parrish, C. C., and Brown, J. A. (2008). Growth and lipid 
composition of Atlantic cod (Gadus morhua) larvae in response to differently enriched 
Artemia franciscana. Fish physiology and biochemistry, 34(1), 77-94. 
40. García-Ortega, A., Daw, A., and Hopkins, K. (2014). Feeding Hatchery-Produced 
Larvae of the Giant Grouper (Epinephelus lanceolatus). 
108 
41. Gemmell, B. J., and Buskey, E. J. (2011). The transition from nauplii to 
copepodites: susceptibility of developing copepods to fish predators. Journal of plankton 
research, 33, 1773 - 1777. 
42. Gisbert, E., Merino, G., Muguet, J. B., Bush, D., Piedrahita, R. H., and Conklin, 
D. E. (2002). Morphological development and allometric growth patterns in 
hatchery‐reared California halibut larvae. Journal of Fish biology, 61(5), 1217-1229 
43. Glamuzina, B., Skaramuca, B., Glavic, N., Kozvul, V., Dulcic, J., and Kraljevic, 
M. (1998). Egg and early larval development of laboratory reared dusky grouper 
(Epinephelus marginatus Lowe, 1834) (Picies, Serranidae). Scientia Marina, 62(4), 373-
378. 
44. Glamuzina, B., Glavic, N., Tutman, P., Kozul, V., and Skaramuca, B. (2000). Egg 
and early larval development of laboratory reared goldblotch grouper (Epinephelus 
costae Steindachner, 1878) (Pisces, Serranidae). Scientia Marina,64(3), 341- 345. 
45. Glamuzina, B., Glavić, N., Skaramuca, B., Kozul, V., and Tutman, P. (2001). 
Early development of the hybrid (Epinephelus costae ♀× E. marginatus♂). 
Aquaculture, 198(1), 55-61. 
46. Glamuzina, B., Skaramuca, B., Glavic, N., Kozvul, V., Dulcic, J. and Kraljevic, 
M. (1998). Egg and early larval development of laboratory reared dusky grouper 
(Epinephelus marginatus Lowe, 1834) (Picies, Serranidae). Scientia Marina, 62(4), 373-
378. 
47. Gomez, K. A., and Gomez, A. A. (1984). Statistical procedures for agricultural 
research. John Wiley & Sons, 680p. 
48. Gracia-López, V., Kiewek-Mart nez, M., and Maldonado-Garc a, M. (2004). 
Effects of temperature and salinity on artificially reproduced eggs and larvae of the 
leopard grouper (Mycteroperca rosacea). Aquaculture, 237 (1), 485 - 498. 
49. Grant, E.M. (1982). Guide to Fishes. Dep. Harbours Mar., Brisbane, Queensland, 
Australia. 896 p. 
50. Hagiwara, A., Kotani, T., Snell, T.W., Assavaaree, M., Hirayama, K., 1995. 
Morphology, reproduction, genetics, and mating behavior of small tropical marine 
Brachionus strains (Rotifera). J. Exp. Mar. Biol. Ecol. 194, 25–37. 
109 
51. Hagiwara, A., Gallardo, W. G., Assavaaree, M., Kotani, T., and De Araujo, A. B. 
(2001). Live food production in Japan: recent progress and future aspects. 
Aquaculture, 200(1), 111-127. 
52. Hagiwara, A., Wullur, S., Marcial, H. S., Hirai, N., and Sakakura, Y. (2014). 
Euryhaline rotifer Proales similis as initial live food for rearing fish with small 
mouth. Aquaculture, 432, 470-474. 
53. Hamre, K., Srivastava, A., Rønnestad, I., Mangor‐Jensen, A., and Stoss, J. (2008). 
Several micronutrients in the rotifer (Branchionus sp). may not fulfil the nutritional 
requirements of marine fish larvae. Aquaculture Nutrition, 14(1), 51-60. 
54. Hansen, M. H. (2011). Effects of feeding with copepod nauplii (Acartia tonsa) 
compared to rotifers (Brachionus ibericus, Cayman) on quality parameters in Atlantic 
cod (Gadus morhua) larvae. 
55. Hart, P. R., and Purser, G. J. (1995). Effects of salinity and temperature on eggs 
and yolk sac larvae of the greenback flounder (Rhombosolea tapirina Günther, 
1862). Aquaculture, 136(3), 221-230. 
56. Hart, P. R., Hutchinson, W. G., and Purser, G. J. (1996). Effects of photoperiod, 
temperature and salinity on hatchery-reared larvae of the greenback flounder 
(Rhombosolea tapirina Günther, 1862). Aquaculture, 144(4), 303-311. 
57. Heath, P. L., and Moore, C. G. (1997). Rearing dover sole larvae on Tisbe and 
Artemia diets. Aquaculture International, 5(1), 29- 39. 
58. Heemstra, P.C. and Randall, J.E., (1993). FAO Species Catalogue. Vol. 16. 
Groupers of the world (family Serranidae, subfamily Epinephelinae). An annotated and 
illustrated catalogue of the grouper, rockcod, hind, coral grouper and lyretail species 
known to date. Rome: FAO. FAO Fish. Synop. 125(16):382 p. 
59. Helland, S., Terjesen, B. F., and Berg, L. (2003). Free amino acid and protein 
content in the planktonic copepod Temora longicornis compared to Artemia 
franciscana. Aquaculture, 215(1), 213-228. 
60. Hirai, N., Koiso, M., Teruya, K., Kobayashi, M., Takebe, T., Sato, T., and 
Hagiwara, A. (2013). Success of seed production of humphead wrasse Cheilinus 
undulatus with improvement of spawning induction, feeding, and rearing conditions. 
In US - Japan Aquaculture Panel Symposium (p. 107). 
110 
61. Hoff, F., and Snell, T. (2008). Plankton Culture Manual, 6th edition. Florida Aqua 
Farms. Inc., Dade City, FL. USA 
62. Holliday, F. and Blaxter, J. (1960). The effects of salinity on the developing eggs 
and larvae of the herring. Journal of the Marine Biological Association of the United 
Kingdom, 39(03), 591-603. 
63. Holt, J., Godbout, R. C., and Arnold, C. R. (1981). Effects of temperature and 
salinity on egg hatching and larval survival of red drum (Sciaenops ocellata). Texas A & 
M University, Sea Grant College Program. 
64. Howell, B. R., Day, O. J., Ellis, T., and Baynes, S. M. (1998). Early life stages of 
farmed fish. Biology of farmed fish, 1, 27. 
65. Hseu, J. R., Hwang, P. P., and Ting, Y. Y. (2004). Morphometric model and 
laboratory analysis of intracohort cannibalism in giant grouper (Epinephelus lanceolatus) 
fry. Fisheries Science, 70(3), 482-486. 
66. Hussain, N. A., and Higuchi, M. (1980). Larval rearing and development of the 
brown spotted grouper (Epinephelus tauvina Forskål). Aquaculture, 19(4), 339 - 350. 
67. Huys, R., and Boxshall, G. A. (1991). Copepod evolution. Ray Society. 
68. Imsland, A. K., Foss, A., Gunnarsson, S., Berntssen, M. H., FitzGerald, R., 
Bonga, S. W., and Stefansson, S. O. (2001). The interaction of temperature and salinity 
on growth and food conversion in juvenile turbot (Scophthalmus 
maximus). Aquaculture, 198(3), 353-367 
69. Jagadis, I., Ignatius, B., Kandasamy, D., and Khan, M. A. (2011). Larval rearing 
trials of the honeycomb grouper (Epinephelus merra Bloch) under laboratory conditions. 
Indian Journal of Fisheries, 58(4), 33-37. 
70. Johnson, D. W., and Katavic, I. (1986). Survival and growth of sea bass 
(Dicentrarchus labrax) larvae as influenced by temperature, salinity, and delayed initial 
feeding. Aquaculture, 52(1), 11-19. 
71. Jones, A. (1972). Studies on egg development and larval rearing of turbot, 
Scophthalmus maximus L., and brill, Scophthalmus rhombus L., in the 
laboratory. Journal of the Marine Biological Association of the United Kingdom,52(04), 
965-986. 
111 
72. Kaji, T., Tanaka, M., Oka, M., Takeuchi, H., Ohsumi, S., Teruya, K., and 
Hirokawa, J. (1999). Growth and morphological development of laboratory-reared 
yellowfin tuna (Thunnus albacares) larvae and early juveniles, with special emphasis on 
the digestive system. Fisheries science, 65(5), 700-707. 
73. Kawabe, K. (2000). Fin development and squamation of blacktip grouper 
(Epinephelus fasciatus), reared artificially in the tank. Suisanzoshoku (Japan). 
74. Kawabe, K., and Kimura, J. (2008). Improvement of swimbladder inflation rate in 
blacktip grouper (Epinephelus fasciatus) larvae by the use of a skimmer for oily film 
removal from the water surface. Aquaculture Science (Japan). 
75. Kawabe, K., and Kohno, H. (2009). Morphological development of larval and 
juvenile blacktip grouper (Epinephelus fasciatus). Fisheries Science, 75(5), 1239-1251. 
76. Kawahara, S., Shams, A. J., Al-bosta, A. A., Mansoor, M. H. and Al-Baqqal, A. 
A. (1997). Effects of incubation and spawning water temperature and salinity on egg 
development of the orange-spotted grouper (Epinephelus coioides, Serranidae). Asian 
Fisheries Science 9: 239-250. 
77. Kerber, C. E., Silva, H. K. A., Santos, P., and Sanches, E. (2012). Reproduction 
and Larviculture of Dusky Grouper (Epinephelus marginatus Lowe 1834) in Brazil. 
Journal of Agriculture Science and Technology B, 2, 229-234. 
78. Kinne, O. and Kinne, E. M. (1962). Rates of development in embryos of a 
cyprinodont fish exposed to different temperature - salinity-oxygen combinations. 
Canadian Journal of Zoology, 40(2), 231-253. 
79. Kiriyakit, A., Gallardo, W. G., and Bart, A. N. (2011). Successful hybridization of 
groupers (Epinephelus coioides x Epinephelus lanceolatus) using cryopreserved sperm. 
Aquaculture, 320(1), 106-112. 
80. Kitajima, C., Takaya, M., Tsukashima, Y., and Arakawa, T. (1991). Development 
of eggs, larvae and juveniles of the grouper (Epinephelus septemfasciatus) reared in the 
laboratory. Ichthyological Research, 38(1), 47-55. 
81. Kleppel, G. S., Hazzard, S. E., and Burkart, C. A. (2005). Maximizing the 
nutritional values of copepods in aquaculture: managed versus balanced 
nutrition. Copepods in Aquaculture, 352. 
112 
82. Knuckey, R. M., Semmens, G. L., Mayer, R. J., and Rimmer, M. A. (2005). 
Development of an optimal microalgal diet for the culture of the calanoid copepod 
(Acartia sinjiensis): effect of algal species and feed concentration on copepod 
development. Aquaculture, 249(1), 339-351. 
83. Koh, I. C. C. (2009). Larval development of grouper hybrids (Epinephelus 
coioides X E. fuscoguttatus and E. coioides X E. lanceolatus). Universiti Malaysia 
Sabah. 
84. Kohno, H., S, Diani, S., and Supriatna, A. (1993). Morphological development of 
larval and juvenile grouper (Epinephelus fuscoguttatus). Jpn. J. Ichthyo., 40 (3), 307-
316. 
85. Kolkovski, S., Koven, W., and Tandler, A. (1997). The mode of action of Artemia 
in enhancing utilization of microdiet by gilthead seabream (Sparus aurata) larvae. 
Aquaculture, 155(1), 193-205. 
86. Koven, W., Barr, Y., Lutzky, S., Ben-Atia, I., Weiss, R., Harel, M., and Tandler, 
A. (2001). The effect of dietary arachidonic acid (20: 4n− 6) on growth, survival and 
resistance to handling stress in gilthead seabream (Sparus aurata) larvae. 
Aquaculture, 193(1), 107-122. 
87. Kraul, S., Brittain, K., Cantrell, R., Nagao, T., Ogasawara, A., Ako, H., and 
Kitagawa, H. (1993). Nutritional factors affecting stress resistance in the larval mahimahi 
(Coryphaena hippurus). Journal of the World Aquaculture Society,24(2), 186-193. 
88. Kreibich, T., Saborowski, R., Hagen, W., and Niehoff, B. (2011). Influence of 
short-term nutritional variations on digestive enzyme and fatty acid patterns of the 
calanoid copepod (Temora longicornis). Journal of Experimental Marine Biology and 
Ecology, 407(2), 182-189. 
89. Kujawa, R., Mamcarz, A. and Kucharczyk, D. (1997). Effect of temperature on 
embryonic development of asp (Aspius L.). Polskie Archi-wum hydrobiologii 44: 139-
143. 
90. Kusaka, A., Yamaoka, K., Yamada, T., Abe, M., and Kinoshita, I. (2001). Early 
development of dorsal and pelvic fins and their supports in hatchery-reared red-spotted 
113 
grouper (Epinephelus akaara) (Perciformes: Serranidae). Ichthyological Research, 48(4), 
355-360. 
91. Laurence, G. C. and Rogers, C. A. (1976). Effects of temperature and salinity on 
comparative embryonic development and mortality of Atlantic Cod (Gadus morhua L.) 
and haddock (Melanogrammus aeglefinus L). ICES J. Mar. Sci. 36: 220-228. 
92. Lavens, P., and Sorgeloos, P. (2000). The history, present status and prospects of 
the availability of Artemia cysts for aquaculture. Aquaculture, 181(3), 397-403. 
93. Lazo, J. P. (1999). Development of the digestive system in red drum (Sciaenops 
ocellatus) larvae. 
94. Lein, I., Holmefjord, I., and Rye, M. (1997). Effects of temperature on yolk sac 
larvae of Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture, 157(1), 123-135. 
95. Lemus, J. T., Blaylock, R. B., Apeitos, A., and Lotz, J. M. (2010). Short‐term 
effects of first‐prey type and number on survival and growth of intensively cultured 
spotted seatrout, Cynoscion nebulosus (Sciaenidae), Larvae. Journal of the World 
Aquaculture Society, 41(3), 455-463 
96. Leu, M. Y., Liou, C. H., and Fang, L. S. (2005). Embryonic and larval 
development of the malabar grouper (Epinephelus malabaricus) (Pisces: 
Serranidae). Journal of the Marine Biological Association of the United 
Kingdom, 85(05), 1249-1254. 
97. Leu, M. Y., Liou, C. H., and Fang, L. S. (2005). Embryonic and larval 
development of the malabar grouper (Epinephelus malabaricus) (Pisces: 
Serranidae). Journal of the Marine Biological Association of the United 
Kingdom, 85(05), 1249-1254. 
98. Leu, M. Y., Liou, C. H., Wang, W. H., Yang, S. D., and Meng, P. J. (2009). 
Natural spawning, early development and first feeding of the semicircle angelfish 
(Pomacanthus semicirculatus) (Cuvier, 1831) in captivity. Aquaculture Research, 40(9), 
1019-1030. 
99. Liang, W.-F., Zhang, H.-F., Wang, Y.-X., Huang, G.-G., Huang, P.-W., and Shen, 
N.-n. (2009). Effect of Several Factors on Motility of Sperm of (Epinephelus 
lanceolatus). Journal of Guangdong Ocean University, 3, 007. 
114 
100. Liao, I. C., Su, H. M., and Chang, E. Y. (2001). Techniques in finfish larviculture 
in Taiwan. Aquaculture, 200(1), 1-31. 
101. Linden, O., Sharp, J. R., Laughlin, R., and Neff, J. M. (1979). Interactive effects 
of salinity, temperature and chronic exposure to oil on the survival and developmental 
rate of embryo of the estuarine killifish (Fundulus heteroclitus). Mar. Biol. 51: 101-109. 
102. Lindley, L. C., Phelps, R. P., Davis, D. A., and Cummins, K. A. (2011). Salinity 
acclimation and free amino acid enrichment of copepod nauplii for first-feeding of larval 
marine fish. Aquaculture, 318(3), 402-406. 
103. Lin, Q., Lu, J., Gao, Y., Shen, L., Cai, J., Luo, J. (2006). The effect of temperature 
on gonad, embryonic development and survival rate of juvenile seahorses (Hippocampus 
kuda Bleeker). Aquaculture 254: 701-713. 
104. Lin, H. Z., Liu, Y. J., He, J. G., Zheng, W. H., Tian, L. X. (2007). Alternative 
vegetable lipid sources in diets for grouper (Epinephelus coioides Hamilton): effects on 
growth, and muscle and liver fatty acid composition. Aquaculture Research, 38(15), 
1605-1611. 
105. Ling, Z., Wenming, W., Jinliang, L., and Qiuming, L. (2010). Studies on 
Embryonic Development, Morphological Development and Feed Changeover of 
Epinephelus lanceolatus Larva [J]. Chinese Agricultural Science Bulletin, 1, 064. 
106. Lim, L. (1993). Larviculture of the Greasy Grouper Epinephelus tauvina F. and 
the Brown‐Marbled Grouper E. fuscoguttatus F. in Singapore. Journal of the world 
Aquaculture Society, 24(2), 262-274. 
107. Liu, G., and Xu, D. (2009). Effects of calanoid copepod Schmackeria poplesia as 
a live food on the growth, survival and fatty acid composition of larvae and juveniles of 
Japanese flounder (Paralichthys olivaceus). Journal of Ocean University of China, 8(4), 
359-365. 
108. Luizi, F. S., Gara, B., Shields, R. J., and Bromage, N. R. (1999). Further 
description of the development of the digestive organs in Atlantic halibut (Hippoglossus 
hippoglossus) larvae, with notes on differential absorption of copepod and Artemia 
prey. Aquaculture, 176(1), 101-116. 
115 
109. Luo, Z., Liu, Y., Mai, K., Tian, L., Liu, D., and Tan, X. (2004). Optimal dietary 
protein requirement of grouper (Epinephelus coioides) juveniles fed isoenergetic diets in 
floating net cages. Aquaculture Nutrition, 10(4), 247-252. 
110. Martin, G. B., and Wuenschel, M. J. (2006). Effect of temperature and salinity on 
otolith element incorporation in juvenile gray snapper (Lutjanus griseus). Marine 
Ecology Progress Series, 324, 229-239. 
111. Martínez‐Lagos, R., and Gracia‐López, V. (2009). Morphological development 
and growth patterns of the leopard grouper (Mycteroperca rosacea) during larval 
development. Aquaculture Research, 41(1), 120-128. 
112. Masuma, S., Tezuka, N. and Teruya, K., 1993. Embryonic and morphological 
development of larval and juvenile coral trout (Plectropomus leopardus). Japanese 
Journal of Ichthyology, 40, 333 - 342. 
113. May, R. C. (1974). Effects of temperature and salinity on yolk utilization in 
(Bairdiella icistia Jordan & Gilbert) (Pisces: Sciaenidae). Journal of Experimental 
Marine Biology and Ecology, 16(3), 213-225. 
114. Millamena, O. M., 2002. Replacement of fish meal by animal by-product meals in 
a practical diet for grow-out culture of grouper (Epinephelus coioides). Aquaculture, 
204(1), 75-84. 
115. Moser, H. G. (1981). Morphological and functional aspects of marine fish 
larvae. Marine fish larvae. 
116. Myoung, J.-G., Kang, C.-B., Yoo, J. M., Lee, E. K., Kim, S., Jeong, C.-H., and 
Kim, B.-I. (2013). First Record of the Giant Grouper (Epinephelus lanceolatus) 
(Perciformes: Serranidae: Epinephelinae) from Jeju Island, South Korea. Fisheries and 
Aquatic Sciences, 16(1), 49-52. 
117. Navarro, J. C., McEvoy, L. A., Amat, F., and Sargent, J. R. (1995). Effects of diet 
on fatty acid composition of body zones in larvae of the sea bass (Dicentrarchus labrax): 
a chemometric study. Marine Biology, 124(2), 177-183. 
118. Niu, J., Liu, Y.-J., Tian, L.-X., Mai, K.-S., Zhou, Q.-C., Yang, H.-J., and Ye, C.-
X., (2007). Maize Oil Can Replace Fish Oil in The Diet of Grouper Postlarvae 
(Epinephelus coioides) Without Adversely Affecting Growth or Fatty Acid Composition. 
American Journal of Agricultural and Biological Sciences, 2(2), 81 - 90. 
116 
119. O'Bryen, P. J., and Lee, C. S. (2005). Culture of copepods and applications to 
marine finfish larval rearing workshop discussion summary. Copepods in Aquaculture, 
245-253 
120. Øie, G., Reitan, K. I., Evjemo, J. O., Støttrup, J., and Olsen, Y. (2011). Live 
feeds. Larval Fish Nutrition, 307-334. 
121. Olivotto, I., Holt, S. A., Carnevali, O., and Holt, G. J. (2006). Spawning, early 
development, and first feeding in the lemonpeel angelfish (Centropyge 
flavissimus). Aquaculture, 253(1), 270-278. 
122. Olivotto, I., Tokle, N. E., Nozzi, V., Cossignani, L., and Carnevali, O. (2010). 
Preserved copepods as a new technology for the marine ornamental fish aquaculture: A 
feeding study. Aquaculture, 308(3), 124-131. 
123. Paiboon Bunliptanon and Janejit Kongkumnerd (1999), “Hatchery Technology of 
Grouper in Thailand”, Report of the Apec/Naca Cooperative Grouper Aquaculture 
Workshop, FWG 01/99, Collaborative APEC Grouper Research and Development 
Network, Median, Hat Yai, Thailan, 7 – 9 April 1999, APEC, pp. 37 – 44. 
124. Payne, M. F., Rippingale, R. J., and Cleary, J. J. (2001). Cultured copepods as 
food for West Australian fish (Glaucosoma hebraicum) and pink snapper (Pagrus 
auratus) larvae. Aquaculture, 194(1), 137-150. 
125. Pierre, S., Gaillard, S., Prévot‐D'Alvise, N., Aubert, J., Rostaing‐Capaillon, O., 
Leung‐Tack, D., and Grillasca, J. P. (2008). Grouper aquaculture: Asian success and 
Mediterranean trials. Aquatic Conservation: Marine and Freshwater Ecosystems, 18(3), 
297-308. 
126. Polo, A., Yufera, M., and Pascual, E. (1991). Effects of temperature on egg and 
larval development of (Sparus aurata L). Aquaculture, 92, 367-375. 
127. Powell, A. B., and Tucker, J. W. (1992). Egg and larval development of 
laboratory-reared Nassau grouper (Epinephelus striatus) (Pisces, Serranidae). Bulletin of 
Marine Science, 50(1), 171-185. 
128. Rainuzzo, J. R., Reitan, K. I., and Olsen, Y. (1997). The significance of lipids at 
early stages of marine fish: a review. Aquaculture, 155(1), 103-115. 
117 
129. Rasem, B. M., James, C. M., Al-Thobaiti, S. A., and Carlos, M. H. (1997). 
Spawning of the Camouflage Grouper (Epinephelus polyphekadion Bleeker) in the 
Hypersaline Waters of Saudi Arabia. Asian Fisheries Science, 9, 251-260. 
130. Rimmer, M. (2000). Review of grouper hatchery technology. Live reef fish, 15, 
14. 
131. Rosenlund, G., Stoss, J., and Talbot, C. (1997). Co-feeding marine fish larvae 
with inert and live diets. Aquaculture, 155(1), 183-191. 
132. Russo, T., Boglione, C., De Marzi, P., and Cataudella, S. (2009). Feeding 
preferences of the dusky grouper (Epinephelus marginatus, Lowe 1834) larvae reared in 
semi-intensive conditions: A contribution addressing the domestication of this species. 
Aquaculture, 289(3), 289-296. 
133. Salem, A. T., James, C. M. (1996). Developments in grouper culture in Saudi 
Arabia INFOFISH International 1: 22-29. 
134. Sampaio, L. A. and Bianchini, A. (2002). Salinity effects on osmoregulation and 
growth of the euryhaline flounder (Paralichthys orbignyanus). J. Exp. Mar. Biol. Ecol. 
269: 187-196. 
135. Santosa, H., and Sukadi. (2008). Marine finfish aquaculture developments at 
Indonesian Aquaculture 2007. Asia- Pacific Marine Aquaculture Network. January-
March, 45-50 pp. 
136. Sargent, J., McEvoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., and 
Tocher, D. (1999). Lipid nutrition of marine fish during early development: current 
status and future directions. Aquaculture, 179(1), 217-229. 
137. Sawada, Y., Kato, K., Okada, T., Kurata, M., Mukai, Y., Miyashita, S., and 
Kumai, H. (1999). Growth and morphological development of larval and juvenile 
(Epinephelus bruneus) (perciformes: Serranidae). Ichthyological Research, 46(3), 245-
257. 
138. Schipp, G. R., Bosmans, J. M., and Marshall, A. J. (1999). A method for hatchery 
culture of tropical calanoid copepods, Acartia spp. Aquaculture,174(1), 81-88. 
139. Schultz, L.P. (1966). Addenda, p. 147-165. In: Fishes of the Marshall and 
Marianas Islands. Bull. U.S. Nat. Mus., 202, 3:1-176. 
118 
140. Senoo, S., Baidya, A.P., Shapawi, R. and Rahman, R.A. (2002). Observation on 
eggs of mouse grouper (Cromileptes altivelis) under rearing conditions. Suisanzoshoku, 
50, 437 - 438. 
141. Shi, Y., Zhang, G., Zhu, Y., and Liu, J. (2010). Effects of photoperiod, 
temperature, and salinity on growth and survival of obscure puffer (Takifugu obscurus) 
larvae. Aquaculture, 309(1), 103-108. 
142. Shiau, S.-Y., Lan, C.-W. (1996). Optimum dietary protein level and protein to 
energy ratio for growth of grouper (Epinephelus malabaricus). Aquaculture, 145(1), 259-
266. 
143. Shuk Man, C. and Wai Chuen, Ng. (2006). "Epinephelus lanceolatus". IUCN red 
list of threatened Species. Version 2011.2. International Union for Conservation of 
Nature. 
144. Small, B. C. and Bates, T. D. (2001). Effect of low-temperature incubation of 
channel catfish (Ictalurus punctatus) eggs on development, survival and growth. Journal 
World Aquaculture Society. 32,189-194. 
145. Slamet, B., and Hutapea, J. H. (2005). First successful hatchery production of 
Napoleon wrasse at Gondol Research Institute for Mariculture, Bali. 
146. Southgate, P. C. (2012). Foods and Feeding, In Aquaculture: Farming aquatic 
animals and plants. John Wiley & Sons. 
147. Srivastava, A., Stoss, J., and Hamre, K. (2011). A study on enrichment of the 
rotifer Brachionus “Cayman” with iodine and selected vitamins. Aquaculture, 319(3), 
430-438. 
148. Su, H. M., Su, M. S., and Liao, I. C. (1997). Preliminary results of providing 
various combinations of live foods to grouper (Epinephelus coioides) larvae. 
Hydrobiologia, 358(1-3), 301-304. 
149. Sugama, K., Trijoko, E., Heriadi, S., Ismi, and Kawahara, S. (2000). Breeding and 
larval rearing of barramundi cod (Cromileptes altivelis) in captivity. In Report of the 
regional workshop on sustainable sea farming and grouper aquaculture, Medan, 
Indonesia, 17–20 April 2000, edited by APEC/BOBP/NACA (pp. 55-66). Bangkok,, 
119 
Thailand: Collaborative APEC Grouper Research and Development Network, Network 
of Aquaculture Centres in Asia-Pacific 
150. Sugama, K., Tridjoko, B., Slamet, S. I., Setiadi, E. and Kawahara, S. (2001). 
Manual for the seed production of humpback grouper (Cromileptes altivelis). Gondol 
Research Institute for Mariculture. Central Research Institute for Sea Exploration and 
Fisherias. 
151. Sugama, K., Ismi, S., Kawahara, S., and Rimmer, M. (2003). Improvement of 
larval rearing technique for Humpback grouper (Cromileptes altivelis). Aquaculture 
Asia, 8(3), 34-37. 
152. Sugama, K., Ismi, S., Setiawati, K. M., Rimmer, M. A., McBride, S., and 
Williams, K. C. (2004). Effect of water temperature on growth, survival and feeding rate 
of humpback grouper (Cromileptes altivelis) larvae. ACIAR MONOGRAPH 
SERIES, 110, 61-66. 
153. Swanson, C. (1996). Early development of milkfish: effects of salinity on 
embryonic and larval metabolism, yolk absorption and growth. Journal of Fish Biology, 
48(3): 405-421. 
154. Tanaka, M. (1971). Studies on the structure and function of the digestive system 
in teleost larvae III. Development of the digestive system during postlarval 
stage. Japanese Journal of Ichthyology, 18(4), 164-174. 
155. Tanaka, Y., Sakakura, Y., Chuda, Y., Hagiwara, A., and Yasumoto, S. (2005). 
Food selectivity of seven-band grouper (Epinephelus septemfasciatus) larvae fed 
different sizes of rotifers. Nippon Suisan Gakkaishi 71, 911–916. 
156. Tandler, A., Anav, F. A., and Choshniak, I. (1995). The effect of salinity on 
growth rate, survival and swimbladder inflation in gilthead seabream (Sparus aurata), 
larvae. Aquaculture, 135(4), 343-353. 
157. Tew, K. S., Meng, P. J., Lin, H. S., Chen, J. H., and Leu, M. Y. (2013). 
Experimental evaluation of inorganic fertilization in larval giant grouper (Epinephelus 
lanceolatus Bloch) production. Aquaculture Research, 44(3), 439-450. 
120 
158. Toledo, J. D., Golez, M. S., Doi, M., and Ohno, A. (1999). Use of copepod nauplii 
during early feeding stage of grouper (Epinephelus coioides). Fisheries Science,65(3), 
390-397. 
159. Toledo, J. D., Caberoy, N. B., Quinitio, G. F., Choresca, C. H., and Nakagawa, H. 
(2002). Effects of salinity, aeration and light intensity on oil globule absorption, feeding 
incidence, growth and survival of early‐stage grouper (Epinephelus coioides) 
larvae. Fisheries science, 68(3), 478-483. 
160. Toledo, J. D., Caberoy, N. B., Quinitio, G. F., Rimmer, M. A., McBride, S. and 
Williams, K. C. (2004). Environmental factors affecting embryonic development, 
hatching and survival of early stage larvae of the grouper (Epinephelus coioides). 
Advances in grouper aquaculture, 10-16. 
161. Tseng, W. Y. and Ho, S. (1988). The biology and culture of red grouper 
162. Tsujigado, A. and Lin, W.T., (1982). Spawning ecology, egg development and 
larvae of Epinephelus fario (Thunberg). Bulletin of Mie-Owase Fisheries Experimental 
Station, 1980, 29 - 34. 
163. Van der Meeren, T., Olsen, R. E., Hamre, K., and Fyhn, H. J. (2008). Biochemical 
composition of copepods for evaluation of feed quality in production of juvenile marine 
fish. Aquaculture, 274(2), 375-397. 
164. Vatanakul, V., Kongkumnerd, J., Rojanapitayakul, S., Yashiro, R., and 
Panichasuke, P. (1999). Broodstock development of giant grouper (Epinephelus 
lanceolatus). 
165. Ukawa, M., and Higuchi, M. (1966). Spawning habits and early life history of a 
serranid fish (Epinephelus akaara) (Temminck et Schlegel). Japanese Journal of 
Ichthyology, 13(4-6), 156-161. 
166. Walsh, W. A., Swanson, C., and Lee, C. S. (1991). Effects of development, 
temperature and salinity on metabolism in eggs and yolk‐sac larvae of milkfish (Chanos 
chanos) (Forsskål). Journal of fish biology, 39(1), 115-125. 
167. Wang, Y., Guo, Q., Zhao, H., Liu, H., and Lu, W. (2015). Larval development 
and salinity tolerance of Japanese flounder (Paralichthys olivaceus) from hatching to 
juvenile settlement. Aquaculture Research, 46(8), 1878-1890. 
121 
168. Watanabe, W. O., Ellis, S. C., Ellis, E. P., Lopez, V. G., Bass, P., Ginoza, J., and 
Moriwake, A. (1996). Evaluation of first‐feeding regimens for larval nassau grouper 
(Epinephelus straitus) and Preliminary, Pilot‐Scale Culture through Metamorphosis. 
Journal of the world Aquaculture Society, 27(3), 323-331. 
169. Wuenschel, M. J., Jugovich, A. R., and Hare, J. A. (2004). Effect of temperature 
and salinity on the energetics of juvenile gray snapper (Lutjanus griseus): implications 
for nursery habitat value. Journal of Experimental Marine Biology and Ecology, 312(2), 
333-347. 
170. Wullur, S., Sakakura, Y., and Hagiwara, A. (2009). The minute monogonont 
rotifer (Proales similis de Beauchamp): Culture and feeding to small mouth marine fish 
larvae. Aquaculture, 293(1), 62-67. 
171. Wullur, S., Sakakura, Y., and Hagiwara, A. (2011). Application of the minute 
monogonont rotifer (Proales similis de Beauchamp) in larval rearing of seven-band 
grouper (Epinephelus septemfasciatus). Aquaculture, 315(3), 355-360. 
172. Yamaoka, K., Nanbu, T., Miyagawa, M., Isshiki, T., and Kusaka, A. (2000). 
Water surface tension-related deaths in prelarval red-spotted 
grouper. Aquaculture,189(1), 165-176. 
173. Yang, Z. and Chen, Y. (2005). Effect of temperature on incubation period and 
hatching success of obscure puffer (Takifugu obscurus Abe) eggs. Aquaculture, 246(1), 
173-179. 
174. Yeh, S. P., Shiu, P. J., Guei, W. C., Lin, Y. H., and Liu, C. H. (2013). 
Improvement in lipid metabolism and stress tolerance of juvenile giant grouper 
(Epinephelus lanceolatus Bloch), fed supplemental choline. Aquaculture Research. 
175. Yoseda, K., Dan, S., Sugaya, T., Yokogi, K., Tanaka, M., and Tawada, S. (2006). 
Effects of temperature and delayed initial feeding on the growth of Malabar grouper 
(Epinephelus malabaricus) larvae. Aquaculture, 256(1), 192-200. 
176. Yúfera, M., and Darias, M. J. (2007). The onset of exogenous feeding in marine 
fish larvae. Aquaculture, 268(1), 53-63. 
122 
177. Zhang, H.-F., Wang, Y.-X., Liufu, Y.-Z., Huang, G.-G., Ou, C.-H., Huang, P.-W., 
and Liang, W.F. (2008). Studies on Artificial Propagation and Embryonic Development 
of Epinephelus lanceolatus [J]. Journal of Guangdong Ocean University, 4, 009. 
1 
Phụ Lục 
1. Ảnh hƣởng của nhiệt độ và độ mặn đến quá trình phát triển của phôi 
Anova: Single Factor Nhiệt độ - Thời gian nở (phút) 
 SUMMARY 
 Groups Count Sum Average Variance 
 25,0±0,5 3 117.9 39.3 20.41 
 28,0±0,5 3 67.4 22.47 5.84 
 31,0±0,5 3 55.2 18.4 4.69 
 34,0±0,5 3 49.2 16.4 4.09 
 ANOVA 
 Source of Variation SS df MS F P-value F crit 
Between Groups 976.4425 3 325.4808333 37.16241675 4.81075E-05 4.066180557 
Within Groups 70.06666667 8 8.758333333 
 Total 1046.509167 11 significant difference 
Anova: Single Factor Nhiệt độ - Thời gian ấp (phút) 
 SUMMARY 
 Groups Count Sum Average Variance 
 25,0±0,5 3 3287.1 1095.7 32.67 
 28,0±0,5 3 3152.1 1050.7 71.47 
 31,0±0,5 3 3061.8 1020.6 85.41 
 34,0±0,5 3 3031.2 1010.4 66.43 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 13181 3 4393.81 68.65864521 4.73592E-06 4.066180557 
Within Groups 511.96 8 63.995 
 Total 13693 11 significant difference 
2 
 Anova: Single Factor Nhiệt độ - Tỷ lệ nở (%) 
 SUMMARY 
 Groups Count Sum Average Variance 
 25,0±0,5 3 97.87050429 32.62350143 4.0708614 
 28,0±0,5 3 158.1573091 52.71910304 1.9410792 
 31,0±0,5 3 152.8446114 50.94820379 1.795801 
 34,0±0,5 3 103.4932721 34.49775735 7.6558023 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between 
Groups 1011.6836 3 337.2278668 87.231716 1.8826E-06 4.066181 
Within Groups 30.9270879 8 3.865885988 
 Total 1042.610688 11 significant difference 
Anova: Single Factor Nhiệt độ - Tỷ lệ ấu trùng dị hình (%) 
 SUMMARY 
 Groups Count Sum Average Variance 
 25,0±0,5 3 34.369 11.456 8.355 
 28,0±0,5 3 27.214 9.071 0.734 
 31,0±0,5 3 56.105 18.702 1.178 
 34,0±0,5 3 240.095 80.032 28.361 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between 
Groups 10237.69725 3 3412.56575 353.38292 7.7202E-09 4.066181 
Within Groups 77.25479786 8 9.656849733 
Total 10314.95205 11 significant difference 
3 
Anova: Single Factor độ mặn - Thời gian ấp (phút) 
 SUMMARY 
 Groups Count Sum Average Variance 
 24±0,5 3 3038.1 1012.7 43.81 
 28±0,5 3 3092.4 1030.8 56.77 
 32±0,5 3 3062.8 1020.933333 66.34333333 
 35±0,5 3 3045 1015 54.61 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 587.1625 3 195.7208333 3.533930184 0.068089658 4.066180557 
Within Groups 443.0666667 8 55.38333333 
 Total 1030.229167 11 not significant difference 
Anova: Single Factor độ mặn - Thời gian nở (phút) 
 SUMMARY 
 Groups Count Sum Average Variance 
 24±0,5 3 146.4 48.8 3.43 
 28±0,5 3 147.9 49.3 4.41 
 32±0,5 3 149.1 49.7 6.24 
 35±0,5 3 150.2 50.06666667 6.303333333 
 ANOVA 
 Source of Variation SS df MS F P-value F crit 
Between Groups 2.66 3 0.886666667 0.173998365 0.91101154 4.066180557 
Within Groups 40.76666667 8 5.095833333 
 Total 43.42666667 11 not significant difference 
4 
Anova: Single Factor độ mặn - Tỷ lệ nở (%) 
 SUMMARY 
 Groups Count Sum Average Variance 
 24±0,5 3 71.39806544 23.79935515 3.6292305 
 28±0,5 3 111.4856533 37.16188444 1.79846604 
 32±0,5 3 157.6237463 52.54124876 2.03723034 
 35±0,5 3 150.9184057 50.30613524 2.17138105 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 1591.166203 3 530.3887343 220.162634 5.02339E-08 4.066180557 
Within Groups 19.27261587 8 2.409076984 
 Total 1610.438819 11 significant difference 
Anova: Single Factor độ mặn -Tỷ lệ ấu trùng dị hình (%) 
 SUMMARY 
 Groups Count Sum Average Variance 
 24±0,5 3 5.008951223 1.669650408 0.0184013 
 28±0,5 3 3.971588465 1.323862822 0.0710808 
 32±0,5 3 3.891200525 1.297066842 0.0264264 
 35±0,5 3 3.79523616 1.26507872 0.0493637 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 0.32044699 3 0.106815663 2.585205 0.1257581 4.0661806 
Within Groups 0.330544555 8 0.041318069 
Total 0.650991545 11 
Not significant difference 
5 
2. Ảnh hƣởng của nhiệt độ và độ mặn đến cá Song vua giai đoạn ấu trùng 
Anova: Single Factor Nhiệt độ - kích thước - 20 ngày tuổi 
 SUMMARY 
 Groups Count Sum Average Variance 
 ĐC 30 302.8 10.09333333 0.461333333 
 25 30 236.6 7.886666667 0.894298851 
 28 30 333.2 11.10666667 0.594436782 
 31 30 374.5 12.48333333 0.791781609 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between 
Groups 337.5095833 3 112.5031944 164.1273897 1.40675E-41 2.682809415 
Within Groups 79.51366667 116 0.685462644 
 Total 417.02325 119 significant difference 
Anova: Single Factor Nhiệt độ - kích thước - Thời điểm biến thái 
 SUMMARY 
 Groups Count Sum Average Variance 
 ĐC 30 1068.1 35.6 8.10654023 
 25 30 1017 33.9 11.97931034 
 28 30 1092 36.4 2.756551724 
 31 30 1035 34.5 1.785517241 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between 
Groups 112.30025 3 37.43341667 2.682809415 0.070274809 6.079834166 
Within Groups 714.2096667 116 6.156979885 
 Total 826.5099167 119 not significant difference 
6 
Anova: Single Factor Độ mặn (ppt)- kích thước -20 ngày tuổi 
 SUMMARY 
 Groups Count Sum Average Variance 
 24 30 307.8 10.26 0.715586207 
 28 30 341.6 11.38666667 0.523264368 
 32 30 316.2 10.54 0.833517241 
 35 30 277.7 9.256666667 0.785298851 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 
69.4135833
3 3 23.13786111 32.38706793 
2.7808E-
15 2.682809415 
Within Groups 
82.8723333
3 116 0.714416667 
Total 
152.285916
7 119 significant difference 
Anova: Single Factor Độ mặn (ppt) - kích thước -Thời điểm biến thái 
 SUMMARY 
 Groups Count Sum Average Variance 
 24 30 1088.9 36.29667 6.462402 
 28 30 1101.1 36.70333 13.42723 
 32 30 1074.1 35.80333 5.040333 
 35 30 1068 35.6 8.346207 
 ANOVA 
 Source of Variation SS df MS F P-value F crit 
Between Groups 22.22092 3 7.406972 0.890363 0.448425 2.682809 
Within Groups 965.009 116 8.319043 
 Total 987.2299 119 not significant difference 
7 
Anova: Single Factor nhiệt độ -20 DAH - Tỷ lệ sống 
 SUMMARY 
 Groups Count Sum Average Variance 
 ĐC (25 - 26.5) 3 6.472271 2.157424 0.053284 
 25 3 4.658075 1.552692 0.073723 
 28 3 9.395866 3.131955 0.011283 
 31 3 8.264413 2.754804 0.03158 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 4.315251 3 1.438417 33.87093 6.78E-05 4.066181 
Within Groups 0.339741 8 0.042468 
 Total 4.654992 11 significant difference 
Anova: Single Factor nhiệt độ - biến thái- Tỷ lệ sống 
 SUMMARY 
 Groups Count Sum Average Variance 
 ĐC 3 4.415843 1.471948 0.010056 
 25 3 3.181718 1.060573 0.012779 
 28 3 6.185091 2.061697 0.014109 
 31 3 5.515208 1.838403 0.030413 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 1.73134 3 0.577113 34.27229 6.49E-05 4.066181 
Within Groups 0.134712 8 0.016839 
Total 1.866052 11 significant difference 
8 
Anova: Single Factor Độ mặn -20 DAH - Tỷ lệ sống 
 SUMMARY 
 Groups Count Sum Average Variance 
 24 3 5.30220336 1.767401 0.149439926 
 28 3 9.58964982 3.19655 0.018102713 
 32 3 9.98401449 3.328005 0.006575769 
 35 3 7.48884285 2.496281 0.022872129 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 4.65647833 3 1.552159 31.51744164 8.82421E-05 4.066180557 
Within Groups 0.39398108 8 0.049248 
Total 5.0504594 11 significant difference 
Anova: Single Factor Độ mặn -biến thái - Tỷ lệ sống 
 SUMMARY 
 Groups Count Sum Average Variance 
 24 3 4.75984766 1.586616 0.003975045 
 28 3 7.02910712 2.343036 0.005275521 
 32 3 7.39615504 2.465385 0.002815109 
 35 3 5.42460593 1.808202 0.015608423 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 1.5948094 3 0.531603 76.83764712 3.07259E-06 4.066180557 
Within Groups 0.05534819 8 0.006919 
Total 1.65015759 11 significant difference 
9 
3. Ảnh hƣởng của thức ăn đến ấu trùng cá Song vua 2 -9 ngày tuổi 
Anova: Single Factor kích thước - 2DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT1 30 70.88 2.362666667 0.003689 
 CT2 30 70.89 2.363 0.006311 
 CT3 30 70.9 2.363333333 0.002499 
 Không cho ăn 24 56.62 2.359166667 0.087886 
 ANOVA 
 Source of Variation SS df MS F P-value F crit 
Between Groups 0.000285088 3 9.50292E-05 0.004385 0.999598 2.687139 
Within Groups 2.383866667 110 0.021671515 
 Total 2.384151754 113 not significant difference 
Anova: Single Factor kích thước -6DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT1 30 106.12 3.537333333 0.007847816 
 CT2 30 104.25 3.475 0.011384483 
 CT3 30 105.56 3.518666667 0.005984368 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between 
Groups 0.061406667 2 0.030703333 3.601295757 0.029972977 3.152742895 
Within Groups 0.731283333 87 0.008405556 
 Total 0.79269 89 significant difference 
10 
Anova: Single Factor kích thước - 9DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT1 30 119.29 3.976333333 0.133686092 
 CT2 30 120.32 4.010666667 0.032047816 
 CT3 30 126.21 4.207 0.008718276 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between 
Groups 0.929326667 2 0.464663333 7.990670961 0.000651765 3.101295757 
Within Groups 5.059113333 87 0.058150728 
 Total 5.98844 89 significant difference 
Anova: Single Factor Survival rate - 2 DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT1 3 26.92186 8.973953 0.00224 
 CT2 3 27.0713 9.023767 0.007452 
 CT3 3 26.97037 8.990125 0.016487 
 Không cho ăn 3 27.17545 9.058485 0.015775 
 ANOVA 
 Source of Variation SS df MS F P-value F crit 
Between Groups 0.012674 3 0.004225 0.402805 
0.755047 4.066181 
Within Groups 0.083905 8 0.010488 
 Total 0.096579 11 not significant difference 
11 
Anova: Single Factor Survival rate - 6 DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT1 3 103.4253 34.47509 3.512695 
 CT2 3 80.09424 26.69808 1.133275 
 CT3 3 45.96782 15.32261 4.793981 
 ANOVA 
 Source of Variation SS df MS F P-value F crit 
Between Groups 556.7009 2 278.3505 88.45929 3.53E-05 5.143253 
Within Groups 18.8799 6 3.14665 
 Total 575.5808 8 significant difference 
Anova: Single Factor Survival rate - 9 DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT1 3 12.78306 4.26102 0.115557 
 CT2 3 10.96268 3.654227 0.019935 
 CT3 3 7.43768 2.479227 0.080153 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 4.923613604 2 2.461807 34.24801 0.000522 5.14325285 
Within Groups 0.431290505 6 0.071882 
 Total 5.354904108 8 significant difference 
12 
4. Ảnh hƣởng của thức ăn đến ấu trùng cá Song vua 10 -21 ngày tuổi 
Anova: Single Factor Total length 15 DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT4 30 216.58 7.219333 0.080372 
 CT5 30 190.78 6.359333 0.098372 
 CT6 30 205.53 6.851 0.036251 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 11.17006 2 5.585028 77.93258 4.03E-20 3.101296 
Within Groups 6.234843 87 0.071665 
 Total 17.4049 89 significant difference 
Anova: Single Factor Total length 21 DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT4 30 370.09 12.33633333 0.254092989 
 CT5 30 307.39 10.24633333 0.255086092 
 CT6 30 338.43 11.281 0.057616207 
 ANOVA 
 Source of Variation SS df MS F P-value F crit 
Between Groups 65.52363556 2 32.76181778 173.4055585 4.43106E-31 3.101295757 
Within Groups 16.43706333 87 0.188931762 
 Total 81.96069889 89 significant difference 
13 
Anova: Single Factor Survival rate - 15 DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT4 4 259.9095 64.97737 3.988116 
 CT5 4 222.5278 55.63195 1.001169 
 CT6 4 238.7819 59.69549 3.328604 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 175.6634 2 87.8317 31.67812 
8.44E-05 4.256495 
Within Groups 24.95367 9 2.77263 
 Total 200.6171 11 significant difference 
Anova: Single Factor Survival rate - 21 DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT4 4 242.98 60.74500137 5.60057 
 CT5 4 214.3429 53.58572793 5.362232 
 CT6 4 232.4467 58.11168512 1.815861 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 104.8985 2 52.44922608 12.31331 0.002655 4.256495 
Within Groups 38.33599 9 4.259554383 
 Total 143.2344 11 significant difference 
14 
5. Ảnh hƣởng của thức ăn đến ấu trùng cá Song vua 22 - 42 ngày tuổi 
Anova: Single Factor Total length 42 DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT7 30 1089 36.3 53.18275862 
 CT8 30 1064 35.46666667 16.53333333 
 CT9 30 1278 42.6 6.455172414 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 912.6888889 2 456.3444444 17.97309451 2.9274E-07 3.101295757 
Within Groups 2208.966667 87 25.39042146 
 Total 3121.655556 89 significant difference 
Anova: Single Factor Survival rate - 27 DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT7 4 291.6898 72.92245 1.381776 
 CT8 4 276.7925 69.19812 8.162231 
 CT9 4 225.9991 56.49978 1.306738 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 593.0969 2 296.5484 81.98933 1.67E-06 4.256495 
Within Groups 32.55223 9 3.616915 
 Total 625.6491 11 significant difference 
15 
Anova: Single Factor Survival rate - 32 DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT7 4 270.9039 67.72597 6.575545 
 CT8 4 241.36 60.34 3.196157 
 CT9 4 100.6135 25.15337 5.741974 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between 
Groups 4140.104 2 2070.052 400.3021 1.61E-09 4.256495 
Within Groups 46.54103 9 5.171225 
 Total 4186.645 11 significant difference 
Anova: Single Factor Survival rate - 37 DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT7 4 201.7106 50.42766 3.789500669 
 CT8 4 223.999 55.99976 6.847267691 
 CT9 4 76.60099 19.15025 2.144343653 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between 
Groups 3156.282 2 1578.141 370.4234006 2.27E-09 4.256495 
Within Groups 38.34334 9 4.260371 
 Total 3194.625 11 significant difference 
16 
Anova: Single Factor Survival rate - 42 DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
CT7 4 
148.3512748 37.08782 12.84853 
CT8 4 
213.748935 53.43723 6.117671 
CT9 4 
63.23362139 15.80841 5.405149 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 2848.061 2 1424.03 175.2916 6.21E-08 4.256495 
Within Groups 73.11404 9 8.123782 
 Total 2921.175 11 significant difference 
6. Ảnh hưởng của thức ăn đến ấu trùng cá Song vua 42 - 84 ngày tuổi 
Anova: Single Factor Total length 84 DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT10 30 2256 75.2 18.23448276 
 CT11 30 3597 119.9 21.12758621 
 CT12 30 3358 111.9333333 59.51264368 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between 
Groups 34108.95556 2 17054.47778 517.4572139 4.96408E-49 3.101295757 
Within Groups 2867.366667 87 32.95823755 
 Total 36976.32222 89 significant difference 
17 
Anova: Single Factor Survival rate - 53 DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT10 4 38.46669 9.616673 0.026135 
 CT11 4 39.03591 9.758978 0.016469 
 CT12 4 38.67664 9.669161 0.009762 
 ANOVA 
 Source of Variation SS df MS F P-value F crit 
Between Groups 0.04143 2 0.020715 1.186742 0.348795 4.256495 
Within Groups 0.157099 9 0.017455 
 Total 0.19853 11 not significant difference 
Anova: Single Factor Survival rate - 63 DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT10 4 37.24431 9.311079 0.071752 
 CT11 4 38.09832 9.52458 0.043174 
 CT12 4 37.56982 9.392456 0.042354 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between 
Groups 0.092882 2 0.046441 0.885831 0.445471 4.256495 
Within Groups 0.471839 9 0.052427 
 Total 0.564722 11 not significant difference 
18 
Anova: Single Factor Survival rate - 73 DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT10 4 35.49454 8.873634 0.01149211 
 CT11 4 36.92525 9.231312 0.043849233 
 CT12 4 36.05436 9.013591 0.006911836 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 0.259898 2 0.129949 6.262281563 0.019765 4.256495 
Within Groups 0.18676 9 0.020751 
 Total 0.446657 11 significant difference 
Anova: Single Factor Survival rate -84 DAH 
 SUMMARY 
 Groups Count Sum Average Variance 
 CT10 4 35.15332 8.788331 0.020327 
 CT11 4 36.70787 9.176967 0.044371 
 CT12 4 35.43488 8.858719 0.0308 
 ANOVA 
 Source of 
Variation SS df MS F P-value F crit 
Between Groups 0.343032656 2 0.171516 5.388056 0.028937 4.256495 
Within Groups 0.286494248 9 0.031833 
 Total 0.629526904 11 significant difference 
            Các file đính kèm theo tài liệu này:
 luan_an_nghien_cuu_mot_so_dac_diem_sinh_hoc_ca_song_vua_epin.pdf luan_an_nghien_cuu_mot_so_dac_diem_sinh_hoc_ca_song_vua_epin.pdf