1. Đã tổng hợp thành công vật liệu composite MS2/g-C3N4 (M = Sn, W) bằng phương pháp nung đơn giản trực tiếp ở pha rắn từ các tiền chất muối kim loại/acid và thiourea. Kết quả cho thấy hàm lượng của hai pha thành phần (MS2 và g-C3N4) trong composite có thể được kiểm soát bởi tỷ lệ của các tiền chất.
2. Sự tồn tại đồng thời của hai cấu tử thành phần (MS2 và g-C3N4) trong composite và ảnh hưởng của g-C3N4 đến cấu trúc và hình thái của vật liệu dạng lớp MS2 đã được xác nhận bởi các đặc trưng hóa lý như XRD, IR, SEM, TEM, TGA, XPS và Raman.
3. Các vật liệu composite MS2/g-C3N4 (M = Sn, W) đã thể hiện hoạt tính quang xúc tác cao thông qua phản ứng phân hủy dung dịch RhB dưới ánh sáng khả kiến. Thành phần tối ưu của hai pha (MS2 và g-C3N4), tại đó các composite thể hiện hoạt tính quang xúc tác vượt trội so với các bán dẫn riêng lẻ đã được xác định. Cụ thể, mẫu SCN30 và mẫu WCN25 có hoạt tính quang xúc tác tốt nhất, với hiệu suất phân hủy RhB tương ứng là 92,22% và 83,05% sau 6 giờ chiếu xạ ánh sáng khả kiến.
4. Cơ chế của phản ứng quang phân hủy RhB đối với mẫu đại diện SCN30 bằng cách sử dụng các chất dập tắt gốc tự do đã được đề xuất. Theo đó, cơ chế chuyển và phân tách điện tích quang sinh giữa SnS2 và g-C3N4 tuân theo sơ đồ S.
5. Đặc trưng điện hoá và dung lượng lưu trữ ion Li+ của SnS2 và SCNx (x = 1, 3, 5 và 7) đã được khảo sát. Với hàm lượng g-C3N4 thích hợp trong cấu trúc composite, SCN3 cho thấy hiệu suất chu trình vượt trội với dung lượng riêng lần lượt là 1305,7 mAh g−1 và 1720,7 mAh g−1 tại các mật độ dòng tương ứng 500 mA g−1 và 100 mA g−1, CE ở chu kỳ đầu tiên đạt 52,9% và mức duy trì dung lượng sau 600 chu kỳ là 155,0%. Điều này được lý giải là do tỷ phần thích hợp của g-C3N4 trong composite SCN3 đóng vai trò vật liệu đệm giúp hạn chế sự thay đổi thể tích lớn của điện cực và tăng độ dẫn ion Li+.
                
              
                                            
                                
            
 
            
                 154 trang
154 trang | 
Chia sẻ: Kim Linh 2 | Ngày: 11/11/2024 | Lượt xem: 330 | Lượt tải: 0 
              
            Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu tổng hợp và biến tính MS₂ (m = sn, w) với g-C₃N₄ làm chất xúc tác quang và vật liệu anode pin sạc lithium-ion, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
. (2011), "Stabilizing lithium–sulphur 
cathodes using polysulphide reservoirs", Nature communications,2, pp. 325. 
[47] Jia J., Sun W., Zhang Q., Zhang X., Hu X., Liu E. and Fan J. (2020), "Inter-
plane heterojunctions within 2D/2D FeSe2/g-C3N4 nanosheet semiconductors 
for photocatalytic hydrogen generation", Applied Catalysis B: 
Environmental,261, pp. 118249. 
[48] Jia T. K., Sun G., Cao J. L. and Zhang Z. Y. (2015), "Molten salt synthesis of 
SnS2 nanoparticles with visible-light driven photocatalytic activity for the 
degradation of rhodamine B", Key Engineering Materials,655, pp. 203-207. 
[49] Jiang D., Li J., Xing C., Zhang Z., Meng S. and Chen M. (2015), "Two-
dimensional CaIn2S4/g-C3N4 heterojunction nanocomposite with enhanced 
visible-light photocatalytic activities: interfacial engineering and mechanism 
insight", ACS applied materials interfaces,7, pp. 19234-19242. 
[50] Jiang J., Ou-yang L., Zhu L., Zheng A., Zou J., Yi X. and Tang H. (2014), 
"Dependence of electronic structure of g-C3N4 on the layer number of its 
nanosheets: a study by Raman spectroscopy coupled with first-principles 
calculations", Carbon,80, pp. 213-221. 
120 
[51] Jiang X., Yang X., Zhu Y., Shen J., Fan K. and Li C. (2013), "In situ 
assembly of graphene sheets-supported SnS2 nanoplates into 3D 
macroporous aerogels for high-performance lithium ion batteries", Journal of 
Power Sources,237, pp. 178-186. 
[52] Jiang Y., Song D., Wu J., Wang Z., Huang S., Xu Y., Chen Z., Zhao B. and 
Zhang J. (2019), "Sandwich-like SnS2/graphene/SnS2 with expanded 
interlayer distance as high-rate lithium/sodium-ion battery anode materials", 
ACS nano,13, pp. 9100-9111. 
[53] Jing L., Xu Y., Chen Z., He M., Xie M., Liu J., Xu H., Huang S. and Li H. 
(2018), "Different morphologies of SnS2 supported on 2D g-C3N4 for 
excellent and stable visible light photocatalytic hydrogen generation", ACS 
Sustainable Chemistry Engineering,6, pp. 5132-5141. 
[54] Karpinski A., Makovetski B., Russell S., Serenyi J. and Williams D. (1999), 
"Silver–zinc: status of technology and applications", Journal of Power 
Sources,80, pp. 53-60. 
[55] Katsumata K.-i., Motoyoshi R., Matsushita N. and Okada K. (2013), 
"Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and 
enhanced visible-light-driven photodegradation of acetaldehyde gas", 
Journal of hazardous materials,260, pp. 475-482. 
[56] Kim I., Park S.-W. and Kim D.-W. (2019), "Onion-like crystalline WS2 
nanoparticles anchored on graphene sheets as high-performance anode 
materials for lithium-ion batteries", Chemical Engineering Journal,375, pp. 
122033. 
[57] Kim T.-J., Kim C., Son D., Choi M. and Park B. (2007), "Novel SnS2-
nanosheet anodes for lithium-ion batteries", Journal of Power Sources,167, 
pp. 529-535. 
[58] Kordesch K. V. and Tomantschger K. (1981), "Primary batteries", The 
Physics Teacher,19, pp. 12-21. 
121 
[59] Lan C., Li C., Ho J. C. and Liu Y. (2021), "2D WS2: from vapor phase 
synthesis to device applications", Advanced Electronic Materials,7, pp. 
2000688. 
[60] Le Q. D., Ngoc P. N., Huu H. T., Nguyen T. H. T., Van T. N., Thi L. N., Le 
M. K., Le M. L. P. and Vo V. (2022), "A novel anode Sn/g-C3N4 composite 
for lithium-ion batteries", Chemical Physics Letters,796, pp. 139550. 
[61] Lee Y.-W., Kim D.-M., Kim S.-J., Kim M.-C., Choe H.-S., Lee K.-H., Sohn 
J. I., Cha S. N., Kim J. M. and Park K.-W. (2016), "In situ synthesis and 
characterization of Ge embedded electrospun carbon nanostructures as high 
performance anode material for lithium-ion batteries", ACS Applied 
Materials Interfaces,8, pp. 7022-7029. 
[62] Leißing M., Horsthemke F., Wiemers‐Meyer S., Winter M., Niehoff P., 
Nowak S. J. B. and Supercaps (2021), "The Impact of the C‐Rate on Gassing 
During Formation of NMC622 II Graphite Lithium‐Ion Battery Cells", 4, pp. 
1344-1350. 
[63] Li D., Danilov D. L., Bergveld H. J., Eichel R.-A. and Notten P. H. (2019), 
"Understanding battery aging mechanisms", RSC Catalysis Series,pp. 
[64] Li H., Shi L., Lu W., Huang X. and Chen L. (2001), "Studies on capacity 
loss and capacity fading of nanosized SnSb alloy anode for Li-ion batteries", 
Journal of The Electrochemical Society,148, pp. A915. 
[65] Li H., Yu K., Fu H., Guo B., Lei X. and Zhu Z. (2015), "Multi-slice 
nanostructured WS2@rGO with enhanced Li-ion battery performance and a 
comprehensive mechanistic investigation", Physical Chemistry Chemical 
Physics,17, pp. 29824-29833. 
[66] Li L., Liu S. and Zhu T. J. J. o. E. S. (2010), "Application of activated carbon 
derived from scrap tires for adsorption of Rhodamine B", 22, pp. 1273-1280. 
[67] Li X., Feng Y., Li M., Li W., Wei H. and Song D. (2015), "Smart hybrids of 
Zn2GeO4 nanoparticles and ultrathin g‐C3N4 layers: synergistic lithium 
122 
storage and excellent electrochemical performance", Advanced Functional 
Materials,25, pp. 6858-6866. 
[68] Li X., Kersey-Bronec F. E., Ke J., Cloud J. E., Wang Y., Ngo C., Pylypenko 
S. and Yang Y. (2017), "Study of lithium silicide nanoparticles as anode 
materials for advanced lithium ion batteries", ACS Applied Materials 
Interfaces,9, pp. 16071-16080. 
[69] Li X., Yu J., Low J., Fang Y., Xiao J. and Chen X. (2015), "Engineering 
heterogeneous semiconductors for solar water splitting", Journal of 
Materials Chemistry A,3, pp. 2485-2534. 
[70] Li Y.-p., Li F.-t., Wang X.-j., Zhao J., Wei J.-n., Hao Y.-j. and Liu Y. (2017), 
"Z-scheme electronic transfer of quantum-sized α-Fe2O3 modified g-C3N4 
hybrids for enhanced photocatalytic hydrogen production", International 
Journal of Hydrogen Energy,42, pp. 28327-28336. 
[71] Li Y., Zhang H., Liu P., Wang D., Li Y. and Zhao H. (2013), "Cross‐linked 
g‐C3N4/rGO nanocomposites with tunable band structure and enhanced 
visible light photocatalytic activity", Small,9, pp. 3336-3344. 
[72] Liang Y., Zhao C. Z., Yuan H., Chen Y., Zhang W., Huang J. Q., Yu D., Liu 
Y., Titirici M. M. and Chueh Y. L. (2019), "A review of rechargeable 
batteries for portable electronic devices", InfoMat,1, pp. 6-32. 
[73] Liu E., Chen J., Ma Y., Feng J., Jia J., Fan J. and Hu X. (2018), "Fabrication 
of 2D SnS2/g-C3N4 heterojunction with enhanced H2 evolution during 
photocatalytic water splitting", Journal of colloid interface science,524, pp. 
313-324. 
[74] Liu J., Zhang Y., Zhang L., Xie F., Vasileff A. and Qiao S. Z. (2019), 
"Graphitic carbon nitride (g‐C3N4)‐derived N‐rich graphene with tuneable 
interlayer distance as a high‐rate anode for sodium‐ion batteries", Advanced 
Materials,31, pp. 1901261. 
123 
[75] Liu W., Wei M., Ji L., Zhang Y., Song Y., Liao J. and Zhang L. (2020), 
"Hollow carbon sphere based WS2 anode for high performance lithium and 
sodium ion batteries", Chemical Physics Letters,741, pp. 137061. 
[76] Liu Y., Chen P., Chen Y., Lu H., Wang J., Yang Z., Lu Z., Li M. and Fang 
L. (2016), "In situ ion-exchange synthesis of SnS2/g-C3N4 nanosheets 
heterojunction for enhancing photocatalytic activity", RSC advances,6, pp. 
10802-10809. 
[77] Liu Y., Sun J., Du H., He S., Xie L., Ai W. and Huang W. (2019), "A long-
cycling anode based on a coral-like Sn nanostructure with a binary binder", 
Chemical Communications,55, pp. 10460-10463. 
[78] Liu Y., Wang W., Huang H., Gu L., Wang Y. and Peng X. (2014), "The 
highly enhanced performance of lamellar WS2 nanosheet electrodes upon 
intercalation of single-walled carbon nanotubes for supercapacitors and 
lithium ions batteries", Chemical Communications,50, pp. 4485-4488. 
[79] Liu Y., Wang W., Wang Y. and Peng X. (2014), "Homogeneously 
assembling like-charged WS2 and GO nanosheets lamellar composite films 
by filtration for highly efficient lithium ion batteries", Nano Energy,7, pp. 
25-32. 
[80] Low J., Jiang C., Cheng B., Wageh S., Al‐Ghamdi A. A. and Yu J. (2017), 
"A review of direct Z‐scheme photocatalysts", Small Methods,1, pp. 
1700080. 
[81] Lu J., Chen Z., Pan F., Cui Y. and Amine K. (2018), "High-performance 
anode materials for rechargeable lithium-ion batteries", Electrochemical 
Energy Reviews,1, pp. 35-53. 
[82] Luo B., Hu Y., Zhu X., Qiu T., Zhi L., Xiao M., Zhang H., Zou M., Cao A. 
and Wang L. (2018), "Controllable growth of SnS2 nanostructures on 
nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate 
capability", Journal of Materials Chemistry A,6, pp. 1462-1472. 
124 
[83] Ma D., Tang J., He G. and Pan S. (2024), "Investigation of the Photocatalytic 
Performance, Mechanism, and Degradation Pathways of Rhodamine B with 
Bi2O3 Microrods under Visible-Light Irradiation", Materials,17, pp. 957. 
[84] Ma S., Xue J., Zhou Y. and Zhang Z. (2015), "Enhanced visible-light 
photocatalytic activity of Ag2O/g-C3N4 p–n heterojunctions synthesized via a 
photochemical route for degradation of tetracycline hydrochloride", RSC 
Advances,5, pp. 40000-40006. 
[85] Majumder S., Shao M., Deng Y. and Chen G. (2019), "Ultrathin sheets of 
MoS2/g-C3N4 composite as a good hosting material of sulfur for lithium–
sulfur batteries", Journal of Power Sources,431, pp. 93-104. 
[86] Marsh H. and Griffiths J., "A high resolution electron microscopy study of 
graphitization of graphitizable carbon," in International symposium on 
carbon. Carbon society of Japan. Annual meeting. 9, 1982, pp. 81-83. 
[87] Meenu P. C., Datta S. P., Singh S. A., Dinda S., Chakraborty C. and Roy S. 
(2020), "Polyaniline supported g-C3N4 quantum dots surpass benchmark 
Pt/C: development of morphologically engineered g-C3N4 catalysts towards 
“metal-free” methanol electro-oxidation", Journal of Power Sources,461, pp. 
228150. 
[88] Miller D. R., Wang J. and Gillan E. G. (2002), "Rapid, facile synthesis of 
nitrogen-rich carbon nitride powders", Journal of Materials Chemistry,12, 
pp. 2463-2469. 
[89] Mukherjee R., Thomas A. V., Datta D., Singh E., Li J., Eksik O., Shenoy V. 
B. and Koratkar N. (2014), "Defect-induced plating of lithium metal within 
porous graphene networks", Nature communications,5, pp. 3710. 
[90] Nandi D. K., Sen U. K., Dhara A., Mitra S. and Sarkar S. K. (2016), 
"Intercalation based tungsten disulfide (WS2) Li-ion battery anode grown by 
atomic layer deposition", RSC advances,6, pp. 38024-38032. 
125 
[91] Nzereogu P., Omah A., Ezema F., Iwuoha E. and Nwanya A. (2022), "Anode 
materials for lithium-ion batteries: A review", Applied Surface Science 
Advances,9, pp. 100233. 
[92] Ou J. Z., Ge W., Carey B., Daeneke T., Rotbart A., Shan W., Wang Y., Fu 
Z., Chrimes A. F. and Wlodarski W. (2015), "Physisorption-based charge 
transfer in two-dimensional SnS2 for selective and reversible NO2 gas 
sensing", ACS nano,9, pp. 10313-10323. 
[93] Pang Q., Gao Y., Zhao Y., Ju Y., Qiu H., Wei Y., Liu B., Zou B., Du F. and 
Chen G. (2017), "Improved Lithium‐Ion and Sodium‐Ion Storage Properties 
from Few‐Layered WS2 Nanosheets Embedded in a Mesoporous CMK‐3 
Matrix", Chemistry–A European Journal,23, pp. 7074-7080. 
[94] Papailias I., Giannakopoulou T., Todorova N., Demotikali D., Vaimakis T. 
and Trapalis C. (2015), "Effect of processing temperature on structure and 
photocatalytic properties of g-C3N4", Applied Surface Science,358, pp. 278-
286. 
[95] Qin F., Zhang K., Fang J., Lai Y., Li Q., Zhang Z. and Li J. (2014), "High 
performance lithium sulfur batteries with a cassava-derived carbon sheet as a 
polysulfides inhibitor", New Journal of Chemistry,38, pp. 4549-4554. 
[96] Raić M., Mikac L., Marić I., Štefanić G., Škrabić M., Gotić M. and Ivanda 
M. (2020), "Nanostructured silicon as potential anode material for Li-ion 
batteries", Molecules,25, pp. 891. 
[97] Saadati A. and Sheibani S. (2023), "Nitrogen-doped carbon dot impregnated 
g-C3N4/SnS2 nanocomposite as an efficient mediator and co-catalyst for 
enhanced photocatalytic degradation and water splitting", Journal of Alloys 
Compounds,947, pp. 169594. 
[98] Sakthivel S. and Kisch H. (2003), "Photocatalytic and photoelectrochemical 
properties of nitrogen‐doped titanium dioxide", ChemPhysChem,4, pp. 487-
490. 
126 
[99] Shah M. S. A. S., Park A. R., Rauf A., Hong S. H., Choi Y., Park J., Kim J., 
Kim W.-J. and Yoo P. J. (2017), "Highly interdigitated and porous 
architected ternary composite of SnS2, g-C3N4, and reduced graphene oxide 
(rGO) as high performance lithium ion battery anodes", RSC Advances,7, pp. 
3125-3135. 
[100] Sharma R. A. and Seefurth R. N. (1976), "Thermodynamic properties of the 
lithium‐silicon system", Journal of the Electrochemical Society,123, pp. 
1763. 
[101] Shi S., Deng T., Zhang M. and Yang G. (2017), "Fast facile synthesis of 
SnO2/Graphene composite assisted by microwave as anode material for 
lithium-ion batteries", Electrochimica Acta,246, pp. 1104-1111. 
[102] Shi Y., Wang Y., Wong J. I., Tan A. Y. S., Hsu C.-L., Li L.-J., Lu Y.-C. and 
Yang H. Y. (2013), "Self-assembly of hierarchical MoSx/CNT 
nanocomposites (2< x< 3): towards high performance anode materials for 
lithium ion batteries", Scientific reports,3, pp. 1-8. 
[103] Shiva K., Matte H. R., Rajendra H., Bhattacharyya A. J. and Rao C. (2013), 
"Employing synergistic interactions between few-layer WS2 and reduced 
graphene oxide to improve lithium storage, cyclability and rate capability of 
Li-ion batteries", Nano Energy,2, pp. 787-793. 
[104] Song M.-K., Zhang Y. and Cairns E. J. (2013), "A long-life, high-rate 
lithium/sulfur cell: a multifaceted approach to enhancing cell performance", 
Nano letters,13, pp. 5891-5899. 
[105] Song T., Xie C., Matras-Postolek K. and Yang P. (2021), "2D layered g-
C3N4/WO3/WS2 S-scheme heterojunctions with enhanced photochemical 
performance", The Journal of Physical Chemistry C,125, pp. 19382-19393. 
[106] Song Y., Bai S., Zhu L., Zhao M., Han D., Jiang S. and Zhou Y.-N. (2018), 
"Tuning pseudocapacitance via C–S bonding in WS2 nanorods anchored on 
N, S codoped graphene for high-power lithium batteries", ACS applied 
materials interfaces,10, pp. 13606-13613. 
127 
[107] Song Y., Gu J., Xia K., Yi J., Chen H., She X., Chen Z., Ding C., Li H. and 
Xu H. (2019), "Construction of 2D SnS2/g-C3N4 Z-scheme composite with 
superior visible-light photocatalytic performance", Applied Surface 
Science,467, pp. 56-64. 
[108] Song Y., Liao J., Chen C., Yang J., Chen J., Gong F., Wang S., Xu Z. and 
Wu M. (2019), "Controllable morphologies and electrochemical 
performances of self-assembled nano-honeycomb WS2 anodes modified by 
graphene doping for lithium and sodium ion batteries", Carbon,142, pp. 697-
706. 
[109] Su K., Deng S., Li L., Qin Q., Yang J., Chen Y., Zhang S. and Chen J. 
(2022), "g-C3N4 Derived Materials for Photocatalytic Hydrogen Production: 
a Mini Review on Design Strategies", Journal of Renewable Materials,10, 
pp. 653. 
[110] Sun B.-w., Yu H.-y., Yang Y.-j., Li H.-j., Zhai C.-y., Qian D.-J. and Chen M. 
(2017), "New complete assignment of X-ray powder diffraction patterns in 
graphitic carbon nitride using discrete Fourier transform and direct 
experimental evidence", Physical Chemistry Chemical Physics,19, pp. 
26072-26084. 
[111] Sun Y., Xiong T., Ni Z., Liu J., Dong F., Zhang W. and Ho W.-K. (2015), 
"Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles 
decoration", Applied Surface Science,358, pp. 356-362. 
[112] Sun Z., Li Y., Zhang S., Shi L., Wu H., Bu H. and Ding S. (2019), "g-C3N4 
nanosheets enhanced solid polymer electrolytes with excellent 
electrochemical performance, mechanical properties, and thermal stability", 
Journal of Materials Chemistry A,7, pp. 11069-11076. 
[113] Teter D. M. and Hemley R. J. (1996), "Low-compressibility carbon nitrides", 
Science,271, pp. 53-55. 
[114] Thomas A., Fischer A., Goettmann F., Antonietti M., Müller J.-O., Schlögl 
R. and Carlsson J. M. (2008), "Graphitic carbon nitride materials: variation 
128 
of structure and morphology and their use as metal-free catalysts", Journal of 
Materials Chemistry,18, pp. 4893-4908. 
[115] Tongay S., Fan W., Kang J., Park J., Koldemir U., Suh J., Narang D. S., Liu 
K., Ji J. and Li J. (2014), "Tuning interlayer coupling in large-area 
heterostructures with CVD-grown MoS2 and WS2 monolayers", Nano 
letters,14, pp. 3185-3190. 
[116] Tran H. H., Nguyen P. H., Le M. L. P., Kim S.-J. and Vo V. (2019), "SnO2 
nanosheets/graphite oxide/g-C3N4 composite as enhanced performance anode 
material for lithium ion batteries", Chemical Physics Letters,715, pp. 284-
292. 
[117] Tran H. H., Truong D. H., Truong T. T., Xuan Dieu Nguyen T., Jin Y. S., 
Kim S. J. and Vo V. (2018), "A Facile Synthesis of WS2/g‐C3N4 Composites 
with Improved Photocatalytic Activity", Bulletin of the Korean Chemical 
Society,39, pp. 965-971. 
[118] Tran Huu H. and Im W. B. (2020), "Facile green synthesis of 
pseudocapacitance-contributed ultrahigh capacity Fe2(MoO4)3 as an anode 
for lithium-ion batteries", ACS applied materials interfaces,12, pp. 35152-
35163. 
[119] Tran Huu H., Nguyen Thi X. D., Nguyen Van K., Kim S. J. and Vo V. 
(2019), "A facile synthesis of MoS2/g-C3N4 composite as an anode material 
with improved lithium storage capacity", Materials,12, pp. 1730. 
[120] Vafayi L., Gharibe S. and Afshar S. (2013), "Development of a Mild 
Hydrothermal Method toward Preparation of ZnS Spherical Nanoparticles", 
Journal of Applied Chemical Research,7, pp. 63-70. 
[121] Vattikuti S. P., Ngo I.-L. and Byon C. (2016), "Physicochemcial 
characteristic of CdS-anchored porous WS2 hybrid in the photocatalytic 
degradation of crystal violet under UV and visible light irradiation", Solid 
State Sciences,61, pp. 121-130. 
129 
[122] Veith G. M., Baggetto L., Adamczyk L. A., Guo B., Brown S. S., Sun X.-G., 
Albert A. A., Humble J. R., Barnes C. E. and Bojdys M. J. (2013), 
"Electrochemical and solid-state lithiation of graphitic C3N4", Chemistry of 
Materials,25, pp. 503-508. 
[123] Vo V., Thi X. D. N., Jin Y.-S., Thi G. L., Nguyen T. T., Duong T. Q. and 
Kim S.-J. (2017), "SnO2 nanosheets/g-C3N4 composite with improved 
lithium storage capabilities", Chemical Physics Letters,674, pp. 42-47. 
[124] Wan W., Sun J.-Y., Ye S. and Zhang Q.-y. (2018), "Confining the 
polymerization degree of graphitic carbon nitride in porous zeolite-Y and its 
luminescence", RSC advances,8, pp. 25057-25064. 
[125] Wang D., Liu L.-M., Zhao S.-J., Hu Z.-Y. and Liu H. (2016), "Potential 
application of metal dichalcogenides double-layered heterostructures as 
anode materials for Li-ion batteries", The Journal of Physical Chemistry 
C,120, pp. 4779-4788. 
[126] Wang G., Peng J., Zhang L., Zhang J., Dai B., Zhu M., Xia L. and Yu F. 
(2015), "Two-dimensional SnS2@PANI nanoplates with high capacity and 
excellent stability for lithium-ion batteries", Journal of Materials Chemistry 
A,3, pp. 3659-3666. 
[127] Wang H.-E., Zhao X., Li X., Wang Z., Liu C., Lu Z., Zhang W. and Cao G. 
(2017), "rGO/SnS2/TiO2 heterostructured composite with dual-confinement 
for enhanced lithium-ion storage", Journal of Materials Chemistry A,5, pp. 
25056-25063. 
[128] Wang J.-G., Sun H., Liu H., Jin D., Zhou R. and Wei B. (2017), "Edge-
oriented SnS2 nanosheet arrays on carbon paper as advanced binder-free 
anodes for Li-ion and Na-ion batteries", Journal of Materials Chemistry A,5, 
pp. 23115-23122. 
[129] Wang K., Li Q., Liu B., Cheng B., Ho W. and Yu J. (2015), "Sulfur-doped g-
C3N4 with enhanced photocatalytic CO2-reduction performance", Applied 
Catalysis B: Environmental,176, pp. 44-52. 
130 
[130] Wang S., Shi Y., Fan C., Liu J., Li Y., Wu X.-L., Xie H., Zhang J. and Sun 
H. (2018), "Layered g-C3N4@reduced graphene oxide composites as anodes 
with improved rate performance for lithium-ion batteries", ACS applied 
materials interfaces,10, pp. 30330-30336. 
[131] Wei H., Hou C., Zhang Y. and Nan Z. (2017), "Scalable low temperature in 
air solid phase synthesis of porous flower-like hierarchical nanostructure 
SnS2 with superior performance in the adsorption and photocatalytic 
reduction of aqueous Cr (VI)", Separation Purification Technology,189, pp. 
153-161. 
[132] Wen J., Xie J., Chen X. and Li X. (2017), "A review on g-C3N4-based 
photocatalysts", Applied surface science,391, pp. 72-123. 
[133] Winter M. and Besenhard J. O. (1999), "Electrochemical lithiation of tin and 
tin-based intermetallics and composites", Electrochimica Acta,45, pp. 31-50. 
[134] Xia P., Cheng B., Jiang J. and Tang H. (2019), "Localized π-conjugated 
structure and EPR investigation of g-C3N4 photocatalyst", Applied Surface 
Science,487, pp. 335-342. 
[135] Xu F., Almeida T. P., Chang H., Xia Y., Wears M. L. and Zhu Y. (2013), 
"Multi-walled carbon/IF-WS2 nanoparticles with improved thermal 
properties", Nanoscale,5, pp. 10504-10510. 
[136] Xu H., Sun L., Li W., Gao M., Zhou Q., Li P., Yang S. and Lin J. (2022), 
"Facile synthesis of hierarchical g-C3N4@WS2 composite as Lithium-ion 
battery anode", Chemical Engineering Journal,435, pp. 135129. 
[137] Xu J., Wang G., Fan J., Liu B., Cao S. and Yu J. (2015), "g-C3N4 modified 
TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-
sensitized solar cells", Journal of Power Sources,274, pp. 77-84. 
[138] Xu J., Xu Y., Tang G., Tang H. and Jiang H. (2019), "The novel g-
C3N4/MoS2/ZnS ternary nanocomposite with enhanced lithium storage 
properties", Applied Surface Science,492, pp. 37-44. 
131 
[139] Xu Q., Zhang L., Cheng B. and Fan J. (2020), "S-scheme heterojunction 
photocatalyst", Chem,6, pp. 1543-1559. 
[140] Xu Q., Zhu B., Jiang C., Cheng B. and Yu J. (2018), "Constructing 2D/2D 
Fe2O3/g‐C3N4 direct Z‐scheme photocatalysts with enhanced H2 generation 
performance", Solar Rrl,2, pp. 1800006. 
[141] Xu Y. and Gao S.-P. (2012), "Band gap of C3N4 in the GW approximation", 
International journal of hydrogen energy,37, pp. 11072-11080. 
[142] Ye S., Wang R., Wu M.-Z. and Yuan Y.-P. (2015), "A review on g-C3N4 for 
photocatalytic water splitting and CO2 reduction", Applied Surface 
Science,358, pp. 15-27. 
[143] Ye Y., Wong Z. J., Lu X., Ni X., Zhu H., Chen X., Wang Y. and Zhang X. 
(2015), "Monolayer excitonic laser", Nature Photonics,9, pp. 733-737. 
[144] Yin L., Cheng R., Song Q., Yang J., Kong X., Huang J., Lin Y. and Ouyang 
H. (2019), "Construction of nanoflower SnS2 anchored on g-C3N4 nanosheets 
composite as highly efficient anode for lithium ion batteries", Electrochimica 
Acta,293, pp. 408-418. 
[145] Yin Y., Liu W., Huo N. and Yang S. (2017), "High rate capability and long 
cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast 
processing", Chemical Engineering Journal,307, pp. 999-1007. 
[146] Yu S., Jung J.-W. and Kim I.-D. (2015), "Single layers of WS2 nanoplates 
embedded in nitrogen-doped carbon nanofibers as anode materials for 
lithium-ion batteries", Nanoscale,7, pp. 11945-11950. 
[147] Yuan Y.-P., Yin L.-S., Cao S.-W., Gu L.-N., Xu G.-S., Du P., Chai H., Liao 
Y.-S. and Xue C. (2014), "Microwave-assisted heating synthesis: a general 
and rapid strategy for large-scale production of highly crystalline g-C3N4 
with enhanced photocatalytic H2 production", Green Chemistry,16, pp. 4663-
4668. 
132 
[148] Zaleski-Ejgierd P. and Pyykkö P. (2011), "Relativity and the mercury 
battery", Chemistry Chemical Physics,13, pp. 16510-16512. 
[149] Zeng P., Ji X., Su Z. and Zhang S. (2018), "WS2/g-C3N4 composite as an 
efficient heterojunction photocatalyst for biocatalyzed artificial 
photosynthesis", RSC advances,8, pp. 20557-20567. 
[150] Zhang B., Hu X., Liu E. and Fan J. (2021), "Novel S-scheme 2D/2D 
BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity", 
Chinese Journal of Catalysis,42, pp. 1519-1529. 
[151] Zhang R., Bao J., Pan Y. and Sun C.-F. (2019), "Highly reversible 
potassium-ion intercalation in tungsten disulfide", Chemical Science,10, pp. 
2604-2612. 
[152] Zhang X.-Q., Zhao C.-Z., Huang J.-Q. and Zhang Q. (2018), "Recent 
advances in energy chemical engineering of next-generation lithium 
batteries", Engineering,4, pp. 831-847. 
[153] Zhang X., Wang J., Xu H., Tan H. and Ye X. (2019), "Preparation and 
tribological properties of WS2 hexagonal nanoplates and nanoflowers", 
Nanomaterials,9, pp. 840. 
[154] Zhang Y., Pan Q., Chai G., Liang M., Dong G., Zhang Q. and Qiu J. (2013), 
"Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 
nanopowders by low temperature thermal condensation of melamine", 
Scientific reports,3, pp. 1-8. 
[155] Zhang Z., Huang J., Zhang M., Yuan Q. and Dong B. (2015), "Ultrathin 
hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D 
heterojunction photocatalysts toward high photocatalytic activity", Applied 
Catalysis B: Environmental,163, pp. 298-305. 
[156] Zhao B., Song D., Ding Y., Li W., Wang Z., Jiang Y. and Zhang J. (2020), 
"Size-tunable SnS2 nanoparticles assembled on graphene as anodes for high 
133 
performance lithium/sodium-ion batteries", Electrochimica Acta,354, pp. 
136730. 
[157] Zhong R., Zhang Z., Yi H., Zeng L., Tang C., Huang L. and Gu M. (2018), 
"Covalently bonded 2D/2D Og-C3N4/TiO2 heterojunction for enhanced 
visible-light photocatalytic hydrogen evolution", Applied Catalysis B: 
Environmental,237, pp. 1130-1138. 
[158] Zhou L., Yan S., Pan L., Wang X., Wang Y. and Shi Y. (2016), "A scalable 
sulfuration of WS2 to improve cyclability and capability of lithium-ion 
batteries", Nano Research,9, pp. 857-865. 
[159] Zhu A., Qiao L., Jia Z., Tan P., Liu Y., Ma Y. and Pan J. (2017), "C–S bond 
induced ultrafine SnS2 dot/porous g-C3N4 sheet 0D/2D heterojunction: 
synthesis and photocatalytic mechanism investigation", Dalton 
Transactions,46, pp. 17032-17040. 
[160] Zhu B., Tan H., Fan J., Cheng B., Yu J. and Ho W. (2021), "Tuning the 
strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-
scheme heterojunctions by nonmetal doping", Journal of Materiomics,7, pp. 
988-997. 
[161] Zhuang T. Z., Huang J. Q., Peng H. J., He L. Y., Cheng X. B., Chen C. M. 
and Zhang Q. (2016), "Rational integration of polypropylene/graphene 
oxide/nafion as ternary‐layered separator to retard the shuttle of polysulfides 
for lithium–sulfur batteries", Small,12, pp. 381-389. 
[162] Zirak M., Zhao M., Moradlou O., Samadi M., Sarikhani N., Wang Q., Zhang 
H.-L. and Moshfegh A. (2015), "Controlled engineering of WS2 nanosheets–
CdS nanoparticle heterojunction with enhanced photoelectrochemical 
activity", Solar Energy Materials Solar Cells,141, pp. 260-269. 
[163] Zuo Y., Xu X., Zhang C., Li J., Du R., Wang X., Han X., Arbiol J., Llorca J. 
and Liu J. (2020), "SnS2/g-C3N4/graphite nanocomposites as durable lithium-
ion battery anode with high pseudocapacitance contribution", Electrochimica 
Acta,349, pp. 136369. 
134 
PHỤ LỤC 
Hình P1. (a) Giản đồ XRD của SNS, SCNx (x = 1, 3, 5 và 7) trong khoảng 
2θ = 10–30o. (b) Phổ IR trong vùng 1000–1800 cm–1. (b) Đường đẳng nhiệt hấp phụ – 
giải hấp phụ N2 và (c) phân bố kích thước mao quản BJH 
của các mẫu vật liệu SNS, SCN1 và SCN3. 
135 
Hình P2. Ảnh (a) TEM và (b) HR-TEM của vật liệu SCN7. 
Hình P3. Giản đồ XRD của vật liệu WCN5 trong khoảng 2θ = 5–15o. 
136 
Hình P4. (a) Phổ IR trong vùng 600–400 cm–1 của vật liệu WS và WCN5. 
(b) Phổ Raman của vật liệu com-WS và WCN5. 
Hình P5. Ảnh SEM của các vật liệu (a) CN và (b) WCN25. 
137 
Hình P6. Đồ thị phụ thuộc hàm Kubelka – Munk vào năng lượng photon ước tính Eg 
của WS, các composite WCNy (y = 3, 5, 10, 25, 30 và 35) và CN. 
138 
Hình P7. Mô hình mạch tương đương cho EIS. 
139 
Bảng P1. Bảng giá trị C/Co của RhB theo thời gian t (giờ) đối với mẫu CN, SNS và các composite SCNx (x = 1, 3, 5, 7, 25, 30 và 35). 
Thời gian 
(giờ) 
C/Co 
CN SNS SCN1 SCN3 SCN5 SCN7 SCN25 SCN30 SCN35 
0 1 1 1 1 1 1 1 1 1 
1 0,888448 0,9036498 0,948998 0,931921 0,929527 0,885897 0,8333928 0,7296235 0,8749172 
2 0,800722 0,8220806 0,851289 0,871785 0,77828 0,753114 0,6790282 0,5055664 0,715449 
3 0,690253 0,7405114 0,768612 0,71407 0,659018 0,626894 0,5283898 0,3008989 0,5794027 
4 0,632853 0,6748181 0,696135 0,659607 0,579871 0,524908 0,3862679 0,1877932 0,4667783 
5 0,577077 0,6447087 0,655333 0,559191 0,513192 0,439079 0,2659701 0,110235 0,3770774 
6 0,542961 0,6299277 0,583394 0,527989 0,475245 0,39364 0,1845295 0,0777575 0,3073101 
Bảng P2. Bảng giá trị C/Co của RhB theo thời gian t (giờ) đối với mẫu WS và các composite WCNy (y = 1, 3, 5, 10, 25, 30 và 35). 
Thời gian 
(giờ) 
C/Co 
WS WCN1 WCN3 WCN5 WCN10 WCN25 WCN30 WCN35 
0 1 1 1 1 1 1 1 1 
1 0,9850321 0,9526981 0,9091755 0,8398559 0,8896708 0,807812 0,8285876 0,8609492 
2 0,9379901 0,8812195 0,7799038 0,7190355 0,7639914 0,5612035 0,607804 0,7377742 
3 0,8717037 0,7498252 0,6790496 0,6580554 0,6378324 0,3969613 0,454143 0,5812051 
4 0,8460445 0,6189565 0,6038269 0,5680099 0,5409345 0,3045934 0,3620574 0,4290156 
5 0,7883111 0,5658732 0,5492207 0,5150085 0,431085 0,238112 0,2649792 0,3622274 
6 0,7273704 0,5211992 0,4946146 0,47 0,3740016 0,1694735 0,2422351 0,3020086 
140 
Bảng P3. Bảng giá trị C/Co của RhB theo thời gian t (giờ) đối với mẫu SCN30 trong 
các điều kiện khác nhau: có mặt O2, N2 và các chất dập tắt. 
Thời gian 
(giờ) 
C/Co 
O2 N2 AO TBA BQ 
0 1 1 1 1 1 
1 0,618867 0,7578505 0,894489 0,828269 0,924051 
2 0,375239 0,605468 0,72752 0,595584 0,822956 
3 0,164132 0,4990774 0,575236 0,400001 0,717756 
4 0,087107 0,3976738 0,464831 0,253712 0,65361 
5 0,051162 0,314002 0,358232 0,184277 0,586898 
6 0,019781 0,2513867 0,291879 0,109012 0,514541 
Bảng P4. Hằng số tốc độ theo mô hình Langmuir - Hinshelwood. 
Điều kiện Hằng số tốc độ k (giờ–1) Hệ số hồi quy (R2) 
Không khí 0,44402 0,99344 
O2 0,65055 0,99016 
N2 0,22589 0,99830 
AO 0,21330 0,99130 
TBA 0,41022 0,98487 
BQ 0,11185 0,99633