1. Đã tổng hợp thành công vật liệu composite MS2/g-C3N4 (M = Sn, W) bằng phương pháp nung đơn giản trực tiếp ở pha rắn từ các tiền chất muối kim loại/acid và thiourea. Kết quả cho thấy hàm lượng của hai pha thành phần (MS2 và g-C3N4) trong composite có thể được kiểm soát bởi tỷ lệ của các tiền chất.
2. Sự tồn tại đồng thời của hai cấu tử thành phần (MS2 và g-C3N4) trong composite và ảnh hưởng của g-C3N4 đến cấu trúc và hình thái của vật liệu dạng lớp MS2 đã được xác nhận bởi các đặc trưng hóa lý như XRD, IR, SEM, TEM, TGA, XPS và Raman.
3. Các vật liệu composite MS2/g-C3N4 (M = Sn, W) đã thể hiện hoạt tính quang xúc tác cao thông qua phản ứng phân hủy dung dịch RhB dưới ánh sáng khả kiến. Thành phần tối ưu của hai pha (MS2 và g-C3N4), tại đó các composite thể hiện hoạt tính quang xúc tác vượt trội so với các bán dẫn riêng lẻ đã được xác định. Cụ thể, mẫu SCN30 và mẫu WCN25 có hoạt tính quang xúc tác tốt nhất, với hiệu suất phân hủy RhB tương ứng là 92,22% và 83,05% sau 6 giờ chiếu xạ ánh sáng khả kiến.
4. Cơ chế của phản ứng quang phân hủy RhB đối với mẫu đại diện SCN30 bằng cách sử dụng các chất dập tắt gốc tự do đã được đề xuất. Theo đó, cơ chế chuyển và phân tách điện tích quang sinh giữa SnS2 và g-C3N4 tuân theo sơ đồ S.
5. Đặc trưng điện hoá và dung lượng lưu trữ ion Li+ của SnS2 và SCNx (x = 1, 3, 5 và 7) đã được khảo sát. Với hàm lượng g-C3N4 thích hợp trong cấu trúc composite, SCN3 cho thấy hiệu suất chu trình vượt trội với dung lượng riêng lần lượt là 1305,7 mAh g−1 và 1720,7 mAh g−1 tại các mật độ dòng tương ứng 500 mA g−1 và 100 mA g−1, CE ở chu kỳ đầu tiên đạt 52,9% và mức duy trì dung lượng sau 600 chu kỳ là 155,0%. Điều này được lý giải là do tỷ phần thích hợp của g-C3N4 trong composite SCN3 đóng vai trò vật liệu đệm giúp hạn chế sự thay đổi thể tích lớn của điện cực và tăng độ dẫn ion Li+.
154 trang |
Chia sẻ: Kim Linh 2 | Ngày: 11/11/2024 | Lượt xem: 10 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu tổng hợp và biến tính MS₂ (m = sn, w) với g-C₃N₄ làm chất xúc tác quang và vật liệu anode pin sạc lithium-ion, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
. (2011), "Stabilizing lithium–sulphur
cathodes using polysulphide reservoirs", Nature communications,2, pp. 325.
[47] Jia J., Sun W., Zhang Q., Zhang X., Hu X., Liu E. and Fan J. (2020), "Inter-
plane heterojunctions within 2D/2D FeSe2/g-C3N4 nanosheet semiconductors
for photocatalytic hydrogen generation", Applied Catalysis B:
Environmental,261, pp. 118249.
[48] Jia T. K., Sun G., Cao J. L. and Zhang Z. Y. (2015), "Molten salt synthesis of
SnS2 nanoparticles with visible-light driven photocatalytic activity for the
degradation of rhodamine B", Key Engineering Materials,655, pp. 203-207.
[49] Jiang D., Li J., Xing C., Zhang Z., Meng S. and Chen M. (2015), "Two-
dimensional CaIn2S4/g-C3N4 heterojunction nanocomposite with enhanced
visible-light photocatalytic activities: interfacial engineering and mechanism
insight", ACS applied materials interfaces,7, pp. 19234-19242.
[50] Jiang J., Ou-yang L., Zhu L., Zheng A., Zou J., Yi X. and Tang H. (2014),
"Dependence of electronic structure of g-C3N4 on the layer number of its
nanosheets: a study by Raman spectroscopy coupled with first-principles
calculations", Carbon,80, pp. 213-221.
120
[51] Jiang X., Yang X., Zhu Y., Shen J., Fan K. and Li C. (2013), "In situ
assembly of graphene sheets-supported SnS2 nanoplates into 3D
macroporous aerogels for high-performance lithium ion batteries", Journal of
Power Sources,237, pp. 178-186.
[52] Jiang Y., Song D., Wu J., Wang Z., Huang S., Xu Y., Chen Z., Zhao B. and
Zhang J. (2019), "Sandwich-like SnS2/graphene/SnS2 with expanded
interlayer distance as high-rate lithium/sodium-ion battery anode materials",
ACS nano,13, pp. 9100-9111.
[53] Jing L., Xu Y., Chen Z., He M., Xie M., Liu J., Xu H., Huang S. and Li H.
(2018), "Different morphologies of SnS2 supported on 2D g-C3N4 for
excellent and stable visible light photocatalytic hydrogen generation", ACS
Sustainable Chemistry Engineering,6, pp. 5132-5141.
[54] Karpinski A., Makovetski B., Russell S., Serenyi J. and Williams D. (1999),
"Silver–zinc: status of technology and applications", Journal of Power
Sources,80, pp. 53-60.
[55] Katsumata K.-i., Motoyoshi R., Matsushita N. and Okada K. (2013),
"Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and
enhanced visible-light-driven photodegradation of acetaldehyde gas",
Journal of hazardous materials,260, pp. 475-482.
[56] Kim I., Park S.-W. and Kim D.-W. (2019), "Onion-like crystalline WS2
nanoparticles anchored on graphene sheets as high-performance anode
materials for lithium-ion batteries", Chemical Engineering Journal,375, pp.
122033.
[57] Kim T.-J., Kim C., Son D., Choi M. and Park B. (2007), "Novel SnS2-
nanosheet anodes for lithium-ion batteries", Journal of Power Sources,167,
pp. 529-535.
[58] Kordesch K. V. and Tomantschger K. (1981), "Primary batteries", The
Physics Teacher,19, pp. 12-21.
121
[59] Lan C., Li C., Ho J. C. and Liu Y. (2021), "2D WS2: from vapor phase
synthesis to device applications", Advanced Electronic Materials,7, pp.
2000688.
[60] Le Q. D., Ngoc P. N., Huu H. T., Nguyen T. H. T., Van T. N., Thi L. N., Le
M. K., Le M. L. P. and Vo V. (2022), "A novel anode Sn/g-C3N4 composite
for lithium-ion batteries", Chemical Physics Letters,796, pp. 139550.
[61] Lee Y.-W., Kim D.-M., Kim S.-J., Kim M.-C., Choe H.-S., Lee K.-H., Sohn
J. I., Cha S. N., Kim J. M. and Park K.-W. (2016), "In situ synthesis and
characterization of Ge embedded electrospun carbon nanostructures as high
performance anode material for lithium-ion batteries", ACS Applied
Materials Interfaces,8, pp. 7022-7029.
[62] Leißing M., Horsthemke F., Wiemers‐Meyer S., Winter M., Niehoff P.,
Nowak S. J. B. and Supercaps (2021), "The Impact of the C‐Rate on Gassing
During Formation of NMC622 II Graphite Lithium‐Ion Battery Cells", 4, pp.
1344-1350.
[63] Li D., Danilov D. L., Bergveld H. J., Eichel R.-A. and Notten P. H. (2019),
"Understanding battery aging mechanisms", RSC Catalysis Series,pp.
[64] Li H., Shi L., Lu W., Huang X. and Chen L. (2001), "Studies on capacity
loss and capacity fading of nanosized SnSb alloy anode for Li-ion batteries",
Journal of The Electrochemical Society,148, pp. A915.
[65] Li H., Yu K., Fu H., Guo B., Lei X. and Zhu Z. (2015), "Multi-slice
nanostructured WS2@rGO with enhanced Li-ion battery performance and a
comprehensive mechanistic investigation", Physical Chemistry Chemical
Physics,17, pp. 29824-29833.
[66] Li L., Liu S. and Zhu T. J. J. o. E. S. (2010), "Application of activated carbon
derived from scrap tires for adsorption of Rhodamine B", 22, pp. 1273-1280.
[67] Li X., Feng Y., Li M., Li W., Wei H. and Song D. (2015), "Smart hybrids of
Zn2GeO4 nanoparticles and ultrathin g‐C3N4 layers: synergistic lithium
122
storage and excellent electrochemical performance", Advanced Functional
Materials,25, pp. 6858-6866.
[68] Li X., Kersey-Bronec F. E., Ke J., Cloud J. E., Wang Y., Ngo C., Pylypenko
S. and Yang Y. (2017), "Study of lithium silicide nanoparticles as anode
materials for advanced lithium ion batteries", ACS Applied Materials
Interfaces,9, pp. 16071-16080.
[69] Li X., Yu J., Low J., Fang Y., Xiao J. and Chen X. (2015), "Engineering
heterogeneous semiconductors for solar water splitting", Journal of
Materials Chemistry A,3, pp. 2485-2534.
[70] Li Y.-p., Li F.-t., Wang X.-j., Zhao J., Wei J.-n., Hao Y.-j. and Liu Y. (2017),
"Z-scheme electronic transfer of quantum-sized α-Fe2O3 modified g-C3N4
hybrids for enhanced photocatalytic hydrogen production", International
Journal of Hydrogen Energy,42, pp. 28327-28336.
[71] Li Y., Zhang H., Liu P., Wang D., Li Y. and Zhao H. (2013), "Cross‐linked
g‐C3N4/rGO nanocomposites with tunable band structure and enhanced
visible light photocatalytic activity", Small,9, pp. 3336-3344.
[72] Liang Y., Zhao C. Z., Yuan H., Chen Y., Zhang W., Huang J. Q., Yu D., Liu
Y., Titirici M. M. and Chueh Y. L. (2019), "A review of rechargeable
batteries for portable electronic devices", InfoMat,1, pp. 6-32.
[73] Liu E., Chen J., Ma Y., Feng J., Jia J., Fan J. and Hu X. (2018), "Fabrication
of 2D SnS2/g-C3N4 heterojunction with enhanced H2 evolution during
photocatalytic water splitting", Journal of colloid interface science,524, pp.
313-324.
[74] Liu J., Zhang Y., Zhang L., Xie F., Vasileff A. and Qiao S. Z. (2019),
"Graphitic carbon nitride (g‐C3N4)‐derived N‐rich graphene with tuneable
interlayer distance as a high‐rate anode for sodium‐ion batteries", Advanced
Materials,31, pp. 1901261.
123
[75] Liu W., Wei M., Ji L., Zhang Y., Song Y., Liao J. and Zhang L. (2020),
"Hollow carbon sphere based WS2 anode for high performance lithium and
sodium ion batteries", Chemical Physics Letters,741, pp. 137061.
[76] Liu Y., Chen P., Chen Y., Lu H., Wang J., Yang Z., Lu Z., Li M. and Fang
L. (2016), "In situ ion-exchange synthesis of SnS2/g-C3N4 nanosheets
heterojunction for enhancing photocatalytic activity", RSC advances,6, pp.
10802-10809.
[77] Liu Y., Sun J., Du H., He S., Xie L., Ai W. and Huang W. (2019), "A long-
cycling anode based on a coral-like Sn nanostructure with a binary binder",
Chemical Communications,55, pp. 10460-10463.
[78] Liu Y., Wang W., Huang H., Gu L., Wang Y. and Peng X. (2014), "The
highly enhanced performance of lamellar WS2 nanosheet electrodes upon
intercalation of single-walled carbon nanotubes for supercapacitors and
lithium ions batteries", Chemical Communications,50, pp. 4485-4488.
[79] Liu Y., Wang W., Wang Y. and Peng X. (2014), "Homogeneously
assembling like-charged WS2 and GO nanosheets lamellar composite films
by filtration for highly efficient lithium ion batteries", Nano Energy,7, pp.
25-32.
[80] Low J., Jiang C., Cheng B., Wageh S., Al‐Ghamdi A. A. and Yu J. (2017),
"A review of direct Z‐scheme photocatalysts", Small Methods,1, pp.
1700080.
[81] Lu J., Chen Z., Pan F., Cui Y. and Amine K. (2018), "High-performance
anode materials for rechargeable lithium-ion batteries", Electrochemical
Energy Reviews,1, pp. 35-53.
[82] Luo B., Hu Y., Zhu X., Qiu T., Zhi L., Xiao M., Zhang H., Zou M., Cao A.
and Wang L. (2018), "Controllable growth of SnS2 nanostructures on
nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate
capability", Journal of Materials Chemistry A,6, pp. 1462-1472.
124
[83] Ma D., Tang J., He G. and Pan S. (2024), "Investigation of the Photocatalytic
Performance, Mechanism, and Degradation Pathways of Rhodamine B with
Bi2O3 Microrods under Visible-Light Irradiation", Materials,17, pp. 957.
[84] Ma S., Xue J., Zhou Y. and Zhang Z. (2015), "Enhanced visible-light
photocatalytic activity of Ag2O/g-C3N4 p–n heterojunctions synthesized via a
photochemical route for degradation of tetracycline hydrochloride", RSC
Advances,5, pp. 40000-40006.
[85] Majumder S., Shao M., Deng Y. and Chen G. (2019), "Ultrathin sheets of
MoS2/g-C3N4 composite as a good hosting material of sulfur for lithium–
sulfur batteries", Journal of Power Sources,431, pp. 93-104.
[86] Marsh H. and Griffiths J., "A high resolution electron microscopy study of
graphitization of graphitizable carbon," in International symposium on
carbon. Carbon society of Japan. Annual meeting. 9, 1982, pp. 81-83.
[87] Meenu P. C., Datta S. P., Singh S. A., Dinda S., Chakraborty C. and Roy S.
(2020), "Polyaniline supported g-C3N4 quantum dots surpass benchmark
Pt/C: development of morphologically engineered g-C3N4 catalysts towards
“metal-free” methanol electro-oxidation", Journal of Power Sources,461, pp.
228150.
[88] Miller D. R., Wang J. and Gillan E. G. (2002), "Rapid, facile synthesis of
nitrogen-rich carbon nitride powders", Journal of Materials Chemistry,12,
pp. 2463-2469.
[89] Mukherjee R., Thomas A. V., Datta D., Singh E., Li J., Eksik O., Shenoy V.
B. and Koratkar N. (2014), "Defect-induced plating of lithium metal within
porous graphene networks", Nature communications,5, pp. 3710.
[90] Nandi D. K., Sen U. K., Dhara A., Mitra S. and Sarkar S. K. (2016),
"Intercalation based tungsten disulfide (WS2) Li-ion battery anode grown by
atomic layer deposition", RSC advances,6, pp. 38024-38032.
125
[91] Nzereogu P., Omah A., Ezema F., Iwuoha E. and Nwanya A. (2022), "Anode
materials for lithium-ion batteries: A review", Applied Surface Science
Advances,9, pp. 100233.
[92] Ou J. Z., Ge W., Carey B., Daeneke T., Rotbart A., Shan W., Wang Y., Fu
Z., Chrimes A. F. and Wlodarski W. (2015), "Physisorption-based charge
transfer in two-dimensional SnS2 for selective and reversible NO2 gas
sensing", ACS nano,9, pp. 10313-10323.
[93] Pang Q., Gao Y., Zhao Y., Ju Y., Qiu H., Wei Y., Liu B., Zou B., Du F. and
Chen G. (2017), "Improved Lithium‐Ion and Sodium‐Ion Storage Properties
from Few‐Layered WS2 Nanosheets Embedded in a Mesoporous CMK‐3
Matrix", Chemistry–A European Journal,23, pp. 7074-7080.
[94] Papailias I., Giannakopoulou T., Todorova N., Demotikali D., Vaimakis T.
and Trapalis C. (2015), "Effect of processing temperature on structure and
photocatalytic properties of g-C3N4", Applied Surface Science,358, pp. 278-
286.
[95] Qin F., Zhang K., Fang J., Lai Y., Li Q., Zhang Z. and Li J. (2014), "High
performance lithium sulfur batteries with a cassava-derived carbon sheet as a
polysulfides inhibitor", New Journal of Chemistry,38, pp. 4549-4554.
[96] Raić M., Mikac L., Marić I., Štefanić G., Škrabić M., Gotić M. and Ivanda
M. (2020), "Nanostructured silicon as potential anode material for Li-ion
batteries", Molecules,25, pp. 891.
[97] Saadati A. and Sheibani S. (2023), "Nitrogen-doped carbon dot impregnated
g-C3N4/SnS2 nanocomposite as an efficient mediator and co-catalyst for
enhanced photocatalytic degradation and water splitting", Journal of Alloys
Compounds,947, pp. 169594.
[98] Sakthivel S. and Kisch H. (2003), "Photocatalytic and photoelectrochemical
properties of nitrogen‐doped titanium dioxide", ChemPhysChem,4, pp. 487-
490.
126
[99] Shah M. S. A. S., Park A. R., Rauf A., Hong S. H., Choi Y., Park J., Kim J.,
Kim W.-J. and Yoo P. J. (2017), "Highly interdigitated and porous
architected ternary composite of SnS2, g-C3N4, and reduced graphene oxide
(rGO) as high performance lithium ion battery anodes", RSC Advances,7, pp.
3125-3135.
[100] Sharma R. A. and Seefurth R. N. (1976), "Thermodynamic properties of the
lithium‐silicon system", Journal of the Electrochemical Society,123, pp.
1763.
[101] Shi S., Deng T., Zhang M. and Yang G. (2017), "Fast facile synthesis of
SnO2/Graphene composite assisted by microwave as anode material for
lithium-ion batteries", Electrochimica Acta,246, pp. 1104-1111.
[102] Shi Y., Wang Y., Wong J. I., Tan A. Y. S., Hsu C.-L., Li L.-J., Lu Y.-C. and
Yang H. Y. (2013), "Self-assembly of hierarchical MoSx/CNT
nanocomposites (2< x< 3): towards high performance anode materials for
lithium ion batteries", Scientific reports,3, pp. 1-8.
[103] Shiva K., Matte H. R., Rajendra H., Bhattacharyya A. J. and Rao C. (2013),
"Employing synergistic interactions between few-layer WS2 and reduced
graphene oxide to improve lithium storage, cyclability and rate capability of
Li-ion batteries", Nano Energy,2, pp. 787-793.
[104] Song M.-K., Zhang Y. and Cairns E. J. (2013), "A long-life, high-rate
lithium/sulfur cell: a multifaceted approach to enhancing cell performance",
Nano letters,13, pp. 5891-5899.
[105] Song T., Xie C., Matras-Postolek K. and Yang P. (2021), "2D layered g-
C3N4/WO3/WS2 S-scheme heterojunctions with enhanced photochemical
performance", The Journal of Physical Chemistry C,125, pp. 19382-19393.
[106] Song Y., Bai S., Zhu L., Zhao M., Han D., Jiang S. and Zhou Y.-N. (2018),
"Tuning pseudocapacitance via C–S bonding in WS2 nanorods anchored on
N, S codoped graphene for high-power lithium batteries", ACS applied
materials interfaces,10, pp. 13606-13613.
127
[107] Song Y., Gu J., Xia K., Yi J., Chen H., She X., Chen Z., Ding C., Li H. and
Xu H. (2019), "Construction of 2D SnS2/g-C3N4 Z-scheme composite with
superior visible-light photocatalytic performance", Applied Surface
Science,467, pp. 56-64.
[108] Song Y., Liao J., Chen C., Yang J., Chen J., Gong F., Wang S., Xu Z. and
Wu M. (2019), "Controllable morphologies and electrochemical
performances of self-assembled nano-honeycomb WS2 anodes modified by
graphene doping for lithium and sodium ion batteries", Carbon,142, pp. 697-
706.
[109] Su K., Deng S., Li L., Qin Q., Yang J., Chen Y., Zhang S. and Chen J.
(2022), "g-C3N4 Derived Materials for Photocatalytic Hydrogen Production:
a Mini Review on Design Strategies", Journal of Renewable Materials,10,
pp. 653.
[110] Sun B.-w., Yu H.-y., Yang Y.-j., Li H.-j., Zhai C.-y., Qian D.-J. and Chen M.
(2017), "New complete assignment of X-ray powder diffraction patterns in
graphitic carbon nitride using discrete Fourier transform and direct
experimental evidence", Physical Chemistry Chemical Physics,19, pp.
26072-26084.
[111] Sun Y., Xiong T., Ni Z., Liu J., Dong F., Zhang W. and Ho W.-K. (2015),
"Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles
decoration", Applied Surface Science,358, pp. 356-362.
[112] Sun Z., Li Y., Zhang S., Shi L., Wu H., Bu H. and Ding S. (2019), "g-C3N4
nanosheets enhanced solid polymer electrolytes with excellent
electrochemical performance, mechanical properties, and thermal stability",
Journal of Materials Chemistry A,7, pp. 11069-11076.
[113] Teter D. M. and Hemley R. J. (1996), "Low-compressibility carbon nitrides",
Science,271, pp. 53-55.
[114] Thomas A., Fischer A., Goettmann F., Antonietti M., Müller J.-O., Schlögl
R. and Carlsson J. M. (2008), "Graphitic carbon nitride materials: variation
128
of structure and morphology and their use as metal-free catalysts", Journal of
Materials Chemistry,18, pp. 4893-4908.
[115] Tongay S., Fan W., Kang J., Park J., Koldemir U., Suh J., Narang D. S., Liu
K., Ji J. and Li J. (2014), "Tuning interlayer coupling in large-area
heterostructures with CVD-grown MoS2 and WS2 monolayers", Nano
letters,14, pp. 3185-3190.
[116] Tran H. H., Nguyen P. H., Le M. L. P., Kim S.-J. and Vo V. (2019), "SnO2
nanosheets/graphite oxide/g-C3N4 composite as enhanced performance anode
material for lithium ion batteries", Chemical Physics Letters,715, pp. 284-
292.
[117] Tran H. H., Truong D. H., Truong T. T., Xuan Dieu Nguyen T., Jin Y. S.,
Kim S. J. and Vo V. (2018), "A Facile Synthesis of WS2/g‐C3N4 Composites
with Improved Photocatalytic Activity", Bulletin of the Korean Chemical
Society,39, pp. 965-971.
[118] Tran Huu H. and Im W. B. (2020), "Facile green synthesis of
pseudocapacitance-contributed ultrahigh capacity Fe2(MoO4)3 as an anode
for lithium-ion batteries", ACS applied materials interfaces,12, pp. 35152-
35163.
[119] Tran Huu H., Nguyen Thi X. D., Nguyen Van K., Kim S. J. and Vo V.
(2019), "A facile synthesis of MoS2/g-C3N4 composite as an anode material
with improved lithium storage capacity", Materials,12, pp. 1730.
[120] Vafayi L., Gharibe S. and Afshar S. (2013), "Development of a Mild
Hydrothermal Method toward Preparation of ZnS Spherical Nanoparticles",
Journal of Applied Chemical Research,7, pp. 63-70.
[121] Vattikuti S. P., Ngo I.-L. and Byon C. (2016), "Physicochemcial
characteristic of CdS-anchored porous WS2 hybrid in the photocatalytic
degradation of crystal violet under UV and visible light irradiation", Solid
State Sciences,61, pp. 121-130.
129
[122] Veith G. M., Baggetto L., Adamczyk L. A., Guo B., Brown S. S., Sun X.-G.,
Albert A. A., Humble J. R., Barnes C. E. and Bojdys M. J. (2013),
"Electrochemical and solid-state lithiation of graphitic C3N4", Chemistry of
Materials,25, pp. 503-508.
[123] Vo V., Thi X. D. N., Jin Y.-S., Thi G. L., Nguyen T. T., Duong T. Q. and
Kim S.-J. (2017), "SnO2 nanosheets/g-C3N4 composite with improved
lithium storage capabilities", Chemical Physics Letters,674, pp. 42-47.
[124] Wan W., Sun J.-Y., Ye S. and Zhang Q.-y. (2018), "Confining the
polymerization degree of graphitic carbon nitride in porous zeolite-Y and its
luminescence", RSC advances,8, pp. 25057-25064.
[125] Wang D., Liu L.-M., Zhao S.-J., Hu Z.-Y. and Liu H. (2016), "Potential
application of metal dichalcogenides double-layered heterostructures as
anode materials for Li-ion batteries", The Journal of Physical Chemistry
C,120, pp. 4779-4788.
[126] Wang G., Peng J., Zhang L., Zhang J., Dai B., Zhu M., Xia L. and Yu F.
(2015), "Two-dimensional SnS2@PANI nanoplates with high capacity and
excellent stability for lithium-ion batteries", Journal of Materials Chemistry
A,3, pp. 3659-3666.
[127] Wang H.-E., Zhao X., Li X., Wang Z., Liu C., Lu Z., Zhang W. and Cao G.
(2017), "rGO/SnS2/TiO2 heterostructured composite with dual-confinement
for enhanced lithium-ion storage", Journal of Materials Chemistry A,5, pp.
25056-25063.
[128] Wang J.-G., Sun H., Liu H., Jin D., Zhou R. and Wei B. (2017), "Edge-
oriented SnS2 nanosheet arrays on carbon paper as advanced binder-free
anodes for Li-ion and Na-ion batteries", Journal of Materials Chemistry A,5,
pp. 23115-23122.
[129] Wang K., Li Q., Liu B., Cheng B., Ho W. and Yu J. (2015), "Sulfur-doped g-
C3N4 with enhanced photocatalytic CO2-reduction performance", Applied
Catalysis B: Environmental,176, pp. 44-52.
130
[130] Wang S., Shi Y., Fan C., Liu J., Li Y., Wu X.-L., Xie H., Zhang J. and Sun
H. (2018), "Layered g-C3N4@reduced graphene oxide composites as anodes
with improved rate performance for lithium-ion batteries", ACS applied
materials interfaces,10, pp. 30330-30336.
[131] Wei H., Hou C., Zhang Y. and Nan Z. (2017), "Scalable low temperature in
air solid phase synthesis of porous flower-like hierarchical nanostructure
SnS2 with superior performance in the adsorption and photocatalytic
reduction of aqueous Cr (VI)", Separation Purification Technology,189, pp.
153-161.
[132] Wen J., Xie J., Chen X. and Li X. (2017), "A review on g-C3N4-based
photocatalysts", Applied surface science,391, pp. 72-123.
[133] Winter M. and Besenhard J. O. (1999), "Electrochemical lithiation of tin and
tin-based intermetallics and composites", Electrochimica Acta,45, pp. 31-50.
[134] Xia P., Cheng B., Jiang J. and Tang H. (2019), "Localized π-conjugated
structure and EPR investigation of g-C3N4 photocatalyst", Applied Surface
Science,487, pp. 335-342.
[135] Xu F., Almeida T. P., Chang H., Xia Y., Wears M. L. and Zhu Y. (2013),
"Multi-walled carbon/IF-WS2 nanoparticles with improved thermal
properties", Nanoscale,5, pp. 10504-10510.
[136] Xu H., Sun L., Li W., Gao M., Zhou Q., Li P., Yang S. and Lin J. (2022),
"Facile synthesis of hierarchical g-C3N4@WS2 composite as Lithium-ion
battery anode", Chemical Engineering Journal,435, pp. 135129.
[137] Xu J., Wang G., Fan J., Liu B., Cao S. and Yu J. (2015), "g-C3N4 modified
TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-
sensitized solar cells", Journal of Power Sources,274, pp. 77-84.
[138] Xu J., Xu Y., Tang G., Tang H. and Jiang H. (2019), "The novel g-
C3N4/MoS2/ZnS ternary nanocomposite with enhanced lithium storage
properties", Applied Surface Science,492, pp. 37-44.
131
[139] Xu Q., Zhang L., Cheng B. and Fan J. (2020), "S-scheme heterojunction
photocatalyst", Chem,6, pp. 1543-1559.
[140] Xu Q., Zhu B., Jiang C., Cheng B. and Yu J. (2018), "Constructing 2D/2D
Fe2O3/g‐C3N4 direct Z‐scheme photocatalysts with enhanced H2 generation
performance", Solar Rrl,2, pp. 1800006.
[141] Xu Y. and Gao S.-P. (2012), "Band gap of C3N4 in the GW approximation",
International journal of hydrogen energy,37, pp. 11072-11080.
[142] Ye S., Wang R., Wu M.-Z. and Yuan Y.-P. (2015), "A review on g-C3N4 for
photocatalytic water splitting and CO2 reduction", Applied Surface
Science,358, pp. 15-27.
[143] Ye Y., Wong Z. J., Lu X., Ni X., Zhu H., Chen X., Wang Y. and Zhang X.
(2015), "Monolayer excitonic laser", Nature Photonics,9, pp. 733-737.
[144] Yin L., Cheng R., Song Q., Yang J., Kong X., Huang J., Lin Y. and Ouyang
H. (2019), "Construction of nanoflower SnS2 anchored on g-C3N4 nanosheets
composite as highly efficient anode for lithium ion batteries", Electrochimica
Acta,293, pp. 408-418.
[145] Yin Y., Liu W., Huo N. and Yang S. (2017), "High rate capability and long
cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast
processing", Chemical Engineering Journal,307, pp. 999-1007.
[146] Yu S., Jung J.-W. and Kim I.-D. (2015), "Single layers of WS2 nanoplates
embedded in nitrogen-doped carbon nanofibers as anode materials for
lithium-ion batteries", Nanoscale,7, pp. 11945-11950.
[147] Yuan Y.-P., Yin L.-S., Cao S.-W., Gu L.-N., Xu G.-S., Du P., Chai H., Liao
Y.-S. and Xue C. (2014), "Microwave-assisted heating synthesis: a general
and rapid strategy for large-scale production of highly crystalline g-C3N4
with enhanced photocatalytic H2 production", Green Chemistry,16, pp. 4663-
4668.
132
[148] Zaleski-Ejgierd P. and Pyykkö P. (2011), "Relativity and the mercury
battery", Chemistry Chemical Physics,13, pp. 16510-16512.
[149] Zeng P., Ji X., Su Z. and Zhang S. (2018), "WS2/g-C3N4 composite as an
efficient heterojunction photocatalyst for biocatalyzed artificial
photosynthesis", RSC advances,8, pp. 20557-20567.
[150] Zhang B., Hu X., Liu E. and Fan J. (2021), "Novel S-scheme 2D/2D
BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity",
Chinese Journal of Catalysis,42, pp. 1519-1529.
[151] Zhang R., Bao J., Pan Y. and Sun C.-F. (2019), "Highly reversible
potassium-ion intercalation in tungsten disulfide", Chemical Science,10, pp.
2604-2612.
[152] Zhang X.-Q., Zhao C.-Z., Huang J.-Q. and Zhang Q. (2018), "Recent
advances in energy chemical engineering of next-generation lithium
batteries", Engineering,4, pp. 831-847.
[153] Zhang X., Wang J., Xu H., Tan H. and Ye X. (2019), "Preparation and
tribological properties of WS2 hexagonal nanoplates and nanoflowers",
Nanomaterials,9, pp. 840.
[154] Zhang Y., Pan Q., Chai G., Liang M., Dong G., Zhang Q. and Qiu J. (2013),
"Synthesis and luminescence mechanism of multicolor-emitting g-C3N4
nanopowders by low temperature thermal condensation of melamine",
Scientific reports,3, pp. 1-8.
[155] Zhang Z., Huang J., Zhang M., Yuan Q. and Dong B. (2015), "Ultrathin
hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D
heterojunction photocatalysts toward high photocatalytic activity", Applied
Catalysis B: Environmental,163, pp. 298-305.
[156] Zhao B., Song D., Ding Y., Li W., Wang Z., Jiang Y. and Zhang J. (2020),
"Size-tunable SnS2 nanoparticles assembled on graphene as anodes for high
133
performance lithium/sodium-ion batteries", Electrochimica Acta,354, pp.
136730.
[157] Zhong R., Zhang Z., Yi H., Zeng L., Tang C., Huang L. and Gu M. (2018),
"Covalently bonded 2D/2D Og-C3N4/TiO2 heterojunction for enhanced
visible-light photocatalytic hydrogen evolution", Applied Catalysis B:
Environmental,237, pp. 1130-1138.
[158] Zhou L., Yan S., Pan L., Wang X., Wang Y. and Shi Y. (2016), "A scalable
sulfuration of WS2 to improve cyclability and capability of lithium-ion
batteries", Nano Research,9, pp. 857-865.
[159] Zhu A., Qiao L., Jia Z., Tan P., Liu Y., Ma Y. and Pan J. (2017), "C–S bond
induced ultrafine SnS2 dot/porous g-C3N4 sheet 0D/2D heterojunction:
synthesis and photocatalytic mechanism investigation", Dalton
Transactions,46, pp. 17032-17040.
[160] Zhu B., Tan H., Fan J., Cheng B., Yu J. and Ho W. (2021), "Tuning the
strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-
scheme heterojunctions by nonmetal doping", Journal of Materiomics,7, pp.
988-997.
[161] Zhuang T. Z., Huang J. Q., Peng H. J., He L. Y., Cheng X. B., Chen C. M.
and Zhang Q. (2016), "Rational integration of polypropylene/graphene
oxide/nafion as ternary‐layered separator to retard the shuttle of polysulfides
for lithium–sulfur batteries", Small,12, pp. 381-389.
[162] Zirak M., Zhao M., Moradlou O., Samadi M., Sarikhani N., Wang Q., Zhang
H.-L. and Moshfegh A. (2015), "Controlled engineering of WS2 nanosheets–
CdS nanoparticle heterojunction with enhanced photoelectrochemical
activity", Solar Energy Materials Solar Cells,141, pp. 260-269.
[163] Zuo Y., Xu X., Zhang C., Li J., Du R., Wang X., Han X., Arbiol J., Llorca J.
and Liu J. (2020), "SnS2/g-C3N4/graphite nanocomposites as durable lithium-
ion battery anode with high pseudocapacitance contribution", Electrochimica
Acta,349, pp. 136369.
134
PHỤ LỤC
Hình P1. (a) Giản đồ XRD của SNS, SCNx (x = 1, 3, 5 và 7) trong khoảng
2θ = 10–30o. (b) Phổ IR trong vùng 1000–1800 cm–1. (b) Đường đẳng nhiệt hấp phụ –
giải hấp phụ N2 và (c) phân bố kích thước mao quản BJH
của các mẫu vật liệu SNS, SCN1 và SCN3.
135
Hình P2. Ảnh (a) TEM và (b) HR-TEM của vật liệu SCN7.
Hình P3. Giản đồ XRD của vật liệu WCN5 trong khoảng 2θ = 5–15o.
136
Hình P4. (a) Phổ IR trong vùng 600–400 cm–1 của vật liệu WS và WCN5.
(b) Phổ Raman của vật liệu com-WS và WCN5.
Hình P5. Ảnh SEM của các vật liệu (a) CN và (b) WCN25.
137
Hình P6. Đồ thị phụ thuộc hàm Kubelka – Munk vào năng lượng photon ước tính Eg
của WS, các composite WCNy (y = 3, 5, 10, 25, 30 và 35) và CN.
138
Hình P7. Mô hình mạch tương đương cho EIS.
139
Bảng P1. Bảng giá trị C/Co của RhB theo thời gian t (giờ) đối với mẫu CN, SNS và các composite SCNx (x = 1, 3, 5, 7, 25, 30 và 35).
Thời gian
(giờ)
C/Co
CN SNS SCN1 SCN3 SCN5 SCN7 SCN25 SCN30 SCN35
0 1 1 1 1 1 1 1 1 1
1 0,888448 0,9036498 0,948998 0,931921 0,929527 0,885897 0,8333928 0,7296235 0,8749172
2 0,800722 0,8220806 0,851289 0,871785 0,77828 0,753114 0,6790282 0,5055664 0,715449
3 0,690253 0,7405114 0,768612 0,71407 0,659018 0,626894 0,5283898 0,3008989 0,5794027
4 0,632853 0,6748181 0,696135 0,659607 0,579871 0,524908 0,3862679 0,1877932 0,4667783
5 0,577077 0,6447087 0,655333 0,559191 0,513192 0,439079 0,2659701 0,110235 0,3770774
6 0,542961 0,6299277 0,583394 0,527989 0,475245 0,39364 0,1845295 0,0777575 0,3073101
Bảng P2. Bảng giá trị C/Co của RhB theo thời gian t (giờ) đối với mẫu WS và các composite WCNy (y = 1, 3, 5, 10, 25, 30 và 35).
Thời gian
(giờ)
C/Co
WS WCN1 WCN3 WCN5 WCN10 WCN25 WCN30 WCN35
0 1 1 1 1 1 1 1 1
1 0,9850321 0,9526981 0,9091755 0,8398559 0,8896708 0,807812 0,8285876 0,8609492
2 0,9379901 0,8812195 0,7799038 0,7190355 0,7639914 0,5612035 0,607804 0,7377742
3 0,8717037 0,7498252 0,6790496 0,6580554 0,6378324 0,3969613 0,454143 0,5812051
4 0,8460445 0,6189565 0,6038269 0,5680099 0,5409345 0,3045934 0,3620574 0,4290156
5 0,7883111 0,5658732 0,5492207 0,5150085 0,431085 0,238112 0,2649792 0,3622274
6 0,7273704 0,5211992 0,4946146 0,47 0,3740016 0,1694735 0,2422351 0,3020086
140
Bảng P3. Bảng giá trị C/Co của RhB theo thời gian t (giờ) đối với mẫu SCN30 trong
các điều kiện khác nhau: có mặt O2, N2 và các chất dập tắt.
Thời gian
(giờ)
C/Co
O2 N2 AO TBA BQ
0 1 1 1 1 1
1 0,618867 0,7578505 0,894489 0,828269 0,924051
2 0,375239 0,605468 0,72752 0,595584 0,822956
3 0,164132 0,4990774 0,575236 0,400001 0,717756
4 0,087107 0,3976738 0,464831 0,253712 0,65361
5 0,051162 0,314002 0,358232 0,184277 0,586898
6 0,019781 0,2513867 0,291879 0,109012 0,514541
Bảng P4. Hằng số tốc độ theo mô hình Langmuir - Hinshelwood.
Điều kiện Hằng số tốc độ k (giờ–1) Hệ số hồi quy (R2)
Không khí 0,44402 0,99344
O2 0,65055 0,99016
N2 0,22589 0,99830
AO 0,21330 0,99130
TBA 0,41022 0,98487
BQ 0,11185 0,99633