Xây dựng đƣợc phƣơng pháp đồ thị nhằm xác định nhanh hiệu suất tạo biodiesel từ dầu
vi tảo họ Botryococcus theo độ nhớt động học tại 40oC của sản phẩm biodiesel sau tinh
chế, gọi là phƣơng pháp hiệu suất – độ nhớt. Phƣơng pháp này dựa trên hai phƣơng trình
chính: Y = -5,5112X + 122,34, áp dụng trong khoảng tuyến tính khi hiệu suất cao hơn
67,9%, tƣơng ứng với độ nhớt thấp hơn 9,93 cSt; và Y = 222,65X-0,523, áp dụng trong
khoảng phi tuyến khi hiệu suất thấp hơn 67,9%, tƣơng ứng với độ nhớt cao hơn 9,93 cSt;
trong đó Y là hiệu suất tạo biodiesel (%) và X là độ nhớt động học của biodiesel tại 40oC(cSt).
                
              
                                            
                                
            
 
            
                 184 trang
184 trang | 
Chia sẻ: toanphat99 | Lượt xem: 2635 | Lượt tải: 3 
              
            Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu tổng hợp xúc tác dị thể lưỡng chức năng trên cơ sở silicat chứa canxi, ứng dụng để chuyển hóa dầu nhiều axit tự do thành biodiesel, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ng xúc tác lên 
tới 26 lần. Việc nghiên cứu trạng thái của xúc tác MCS sau sử dụng cho thấy, quá trình 
giảm hoạt tính xúc tác có nguyên nhân chủ yếu là sự che phủ của các phân tử dầu sau mỗi 
lần phản ứng, làm bề mặt riêng và sự tiếp xúc của các tâm axit – bazơ với chất phản ứng 
không còn cao nhƣ ban đầu. Lực axit-bazơ của xúc tác MCS sau sử dụng giảm không đáng 
kể chứng tỏ tính ổn định cao của các tâm axit – bazơ trên bề mặt xúc tác, mặc dù lƣợng 
tâm giảm mạnh do kết quả của sự che phủ bề mặt xúc tác. Kết quả tái sử dụng và tái sinh 
xúc tác cũng là bằng chứng mạnh mẽ khẳng định sự hiệu quả của việc sử dụng xúc tác 
lƣỡng chức MCS cho dầu vi tảo họ Botryococcus nói riêng và các loại dầu có chỉ số axit 
cao nói chung. 
108 
NHỮNG ĐIỂM MỚI CỦA LUẬN ÁN 
1. Chế tạo thành công hai hệ xúc tác lƣỡng chức axit – bazơ theo phƣơng pháp đồng ngƣng 
tụ, ứng dụng cho quá trình tổng hợp biodiesel từ dầu vi tảo họ Botryococcus nói riêng và 
các loại dầu có chỉ số axit cao nói chung. Xúc tác CS và MCS là hai hệ xúc tác mới, có cấu 
trúc và tính chất đặc biệt khi sở hữu cả hai loại tâm axit – bazơ có lực mạnh, thúc đẩy chọn 
lọc hai phản ứng chính là este hóa các axit béo tự do và trao đổi este các triglyxerit, giúp 
quá trình chuyển hóa nguyên liệu có thể đƣợc thực hiện trong những điều kiện êm dịu hơn 
so với các xúc tác axit, và hiệu quả hơn so với các xúc tác bazơ khác; 
2. Sử dụng phƣơng pháp phổ kỹ thuật cao nghiên cứu sâu vào cấu trúc xúc tác CS và MCS, 
đó là phổ hấp thụ tia X (XAS), bao gồm hai thành phần là phổ hấp thụ tia X gần ngƣỡng 
(XANES) và phổ hấp thụ tia X cấu trúc tinh vi mở rộng (EXAFS). Kết quả cho thấy, xúc 
tác CS và MCS chứa các tâm Ca với số phối trí 6, bao quanh bởi hệ liên kết –O-Si- đặc 
trƣng cho hệ thống oxit phức hợp CaO-SiO2. Thông qua cấu trúc mô phỏng xác định từ 
phổ XAS, giải thích đƣợc sự xuất hiện tính axit và bazơ trong hai xúc tác CS và MCS: các 
tâm axit sinh ra từ sự chênh lệch điện tích dọc theo các liên kết Ca-O-Si, các tâm bazơ xuất 
hiện tại các khuyết tật chứa các phần tử O2-; cả hai loại tâm này đều định vị trên bộ khung 
xúc tác, nên có tính chất ổn định, bền vững trong môi trƣờng phản ứng. Giải thích phù hợp 
tốt với các kết quả định lƣợng độ axit – bazơ theo phƣơng pháp thực nghiệm; 
3. Sử dụng nguyên liệu dầu vi tảo họ Botryococcus làm nguyên liệu chính cho quá trình 
tổng hợp biodiesel trên xúc tác MCS. Đây là loại nguyên liệu mới, thuộc thế hệ thứ 3, ít 
đƣợc nghiên cứu tại Việt Nam, cho năng suất thu dầu rất cao và rất có tiềm năng làm 
nguyên liệu chính cho việc sản xuất biodiesel trên quy mô lớn; 
4. Xây dựng đƣợc phƣơng pháp đồ thị nhằm xác định nhanh hiệu suất tạo biodiesel từ dầu 
vi tảo họ Botryococcus theo độ nhớt động học tại 40oC của sản phẩm biodiesel sau tinh 
chế, gọi là phƣơng pháp hiệu suất – độ nhớt. Phƣơng pháp này dựa trên hai phƣơng trình 
chính: Y = -5,5112X + 122,34, áp dụng trong khoảng tuyến tính khi hiệu suất cao hơn 
67,9%, tƣơng ứng với độ nhớt thấp hơn 9,93 cSt; và Y = 222,65X-0,523, áp dụng trong 
khoảng phi tuyến khi hiệu suất thấp hơn 67,9%, tƣơng ứng với độ nhớt cao hơn 9,93 cSt; 
trong đó Y là hiệu suất tạo biodiesel (%) và X là độ nhớt động học của biodiesel tại 40oC 
(cSt). 
109 
DANH MỤC CÁC C NG TRÌNH Đ C NG BỐ CỦA LUẬN ÁN 
1. Nguyễn Khánh Diệu Hồng, Nguyễn Đăng Toàn, Nguyễn Trung Thành, Lê Thị Hồng 
Ngân, Đinh Thị Ngọ (2012) Xác định các chỉ tiêu kỹ thuật và phân tích thành phần hóa học 
dầu vi tảo họ Botryococcus sp làm nguyên liệu cho sản xuất biodiesel, Tạp chí Hóa học, 
50(4A), 375-378. 
2. Nguyễn Khánh Diệu Hồng, Nguyễn Đăng Toàn (2013) Nghiên cứu tổng hợp và đặc 
trƣng xúc tác lƣỡng chức phức hợp canxi silicat (CS), ứng dụng cho quá trình tổng hợp 
biodiesel từ dầu vi tảo, Tạp chí Hóa học 51(2C), 977-982. 
3. Nguyễn Đăng Toàn, Nguyễn Khánh Diệu Hồng (2013) Nghiên cứu tổng hợp xúc tác dị 
thể lƣỡng chức năng meso calcium silicate (MCS), ứng dụng cho phản ứng chuyển hóa dầu 
vi tảo thành nhiên liệu sinh học biodiesel, Tạp chí Hóa học 51(4AB), 95-101. 
4. Nguyễn Đăng Toàn, Vũ Đỗ Hồng Dƣơng, Nguyễn Khánh Diệu Hồng (2013) Nghiên 
cứu tổng hợp xúc tác dị thể lƣỡng chức năng silicat chứa canxi (MCS) dạng mao quản 
trung bình, ứng dụng cho quá trình tổng hợp biodiesel từ dầu vi tảo, Tạp chí Xúc tác và 
Hấp phụ, 2(2), 182-190. 
5. Trần Mai Khôi, Nguyễn Đăng Toàn, Nguyễn Chí Công, Nguyễn Khánh Diệu Hồng 
(2013) Nghiên cứu chuyển hóa dầu thực vật có chỉ số axit cao thành nhiên liệu sinh học 
trên xúc tác dị thể lƣỡng chức năng thế hệ mới, Tạp chí Dầu khí 8, 36-45. 
6. Đinh Thị Ngọ, Nguyễn Đăng Toàn, Nguyễn Trung Thành, Nguyễn Lệ Tố Nga (2013) 
Nghiên cứu chuyển hóa sinh khối vi tảo thành nhiên liệu sinh học biodiesel, Tuyển tập 
Báo cáo Hội nghị Khoa học - Công nghệ, Kỷ niệm 35 năm thành lập Viện Dầu khí Việt 
Nam, 679-686. 
7. Nguyen Khanh Dieu Hong, Nguyen Dang Toan, Nguyen Trung Thanh, Nguyen Thi Ha 
(2014) Study on the relation between the conversion and product viscosity in the 
methanolysis of various feedstocks, International Symposium on Eco-materials 
Processing and Design 2014, ISBN 978-89-5708-236-2, Hanoi University of Science and 
Technology, 154-158. 
8. Nguyễn Đăng Toàn, Võ Đức Anh, Vũ Đỗ Hồng Dƣơng, Nguyễn Khánh Diệu Hồng, 
Đinh Thị Ngọ (2014) Nghiên cứu tổng hợp xúc tác dị thể lƣỡng chức năng silicat chứa 
canxi (CS), ứng dụng cho quá trình tổng hợp biodiesel từ dầu vi tảo, Tạp chí Xúc tác và 
Hấp phụ, 3(3), 156-165. 
9. Nguyen Khanh Dieu Hong, Phan Trung Nghia, Nguyen Dang Toan, Nguyen Le To 
Nga, Nguyen Thi Ha, Vo Duc Anh, Vu Thi Phuong Anh (2014) Biodiesel from Rubber 
Seed Oil on Heterogeneous Catalyst: An Effective Way to Use Bybroducts from Rubber 
Processing. The Japan Society of Polymer processing (JSPP), Journal Seikei- Kakou 
26(4), 173-179. 
10. Nguyen Dang Toan, Vo Duc Anh, Nguyen Khanh Dieu Hong (2014) Study on the 
preparation and characterization of mesoporous calcium containing silicate catalyst by X-
Ray Absorption Spectroscopy (XAS), Vietnam Journal of Chemistry 53(2E1), 11-16. 
11. Nguyễn Đăng Toàn, Nguyễn Khánh Diệu Hồng (2015) Xác định và giải thích tính axit 
– bazơ của xúc tác lƣỡng chức silicat chứa canxi (CS), Tạp chí Xúc tác và Hấp phụ 4(3), 
32-38. 
110 
TÀI LIỆU THAM KHẢO 
1. A. Sensoz S., Angin D., Yorgun S. (2000) Influence of particle size on the pyrolysis of 
rapeseed (Brassica napus L.): fuel properties of bio-oil, Biomass Bioenergy 19, 271−279. 
2. A. Dowaki K., Ohta T., Kasahara Y., Kameyama M., Sakawaki K., Mori S. (2007) An 
economic and energy analysis on bio-hydrogen fuel using a gasification process, 
Renewable Energy 32, 80–94. 
3. A. Demirbas (2008) Biodiesel: a realistic fuel alternative for diesel engines, Springer-
Verlag London Limited. 
4. A. Demirbas (2006) Global biofuel strategies, Energy Edu. Sci. Technol. 17, 27–63. 
5. B. Laforgia D., Ardito V. (1994) Biodiesel fuelled IDI engines: performances, emissions 
and heat release investigation, Biores. Technol. 51, 53–59. 
6. C. Cardone M., M. Prati V., V. Rocco, A. Senatore (1998) Experimental analysis of 
performances and emissions of a diesel engines fuelled with biodiesel and diesel oil blends, 
Proceedings of MIS–MAC 4, 211–225. 
7. C. Schumacher L. G., Borgelt S. C., Fosseen D., Goetz W., Hires W. G. (1996) Heavy-
duty engine exhaust emission test using methyl ester soybean oil/diesel fuel blends, Biores. 
Technol. 57, 31–36. 
8. C. Knothe G., Sharp C. A., Ryan T. W. (2006) Exhaust emissions of biodiesel, 
petrodiesel, neat methyl esters, and alkanes in a new technology engine, Energy Fuels 20, 
403–408. 
9. C. Ma F., Hanna M. A. (1999) Biodiesel production: a review, Biores. Technol. 70, 1–
15. 
10. C. Peterson L., Reece D. L., Hammon B., Thompson J. C., Beck S. M. (1995) 
Commercalization of idaho biodiesel from ethanol and waste vegetable oil, ASAE meeting 
presentation 956738. 
11. C. Amit Sarin (2012) Biodiesel: Production and Properties, RSC Publishing, UK. 
12. C. K. R. Szulczyk, B. A. McCarl (2010) Market penetration of biodiesel, Renewable 
Sustainable Energy Rev. 14, 2426-2433. 
13. G. S. Jain, M. P. Sharma (2010) Prospects of biodiesel from Jatropha in India: a 
review, Renewable Sustainable Energy Rev. 14, 763-771. 
14. Government of India, Ministry of Agriculture (2009) Production of Oil Seeds , New 
Delhi. 
15. G. P. K. Biswas, S. Pohit, R. Kumar (2010) Biodiesel from jatropha: can India meet 
the 20% blending target?, Energy Policy 38, 1477-1484. 
16. G S. Kumar, A. Chaube, S. K. Jain (2012) Critical review of Jatropha biodiesel 
promotion policies in India, Energy Policy 41, 775-781. 
17. G. Pettrie, M. Darby (2011) Report No. AS1118, USDA foreign agricultural services, 
Global agricultural Information network, USA. 
18. G. A. D. Padula, M. S. Santos, L. Ferreira, D. Borenstein (2012) The emergence of the 
biodiesel industry in Brazil: current figures and future prospects, Energy Policy 44, 395-
405. 
111 
19. G. E. L. La Rovere, A. S. Pereira, A. F. Simoes (2011) Biofuels and sustainable energy 
development in Brazil, World Dev. 39, 1026-1036. 
20. G. Afrane (2012) Examining the potential for liquid biofuels production and usage in 
Ghana, Energy Policy 40, 444-451. 
21. Ghana Statistical Service (2011) Digest of Macroeconomic Data: Statistic abstract 
2010, Accra, Ghana. 
22. G. A. S. Silitonga, A. E. Atabani, T. M. I. Mahlia, H. H. Masjuki, I. A. Badruddin, S. 
Mekhilef (2011) A review on prospect of Jatropha curcas for biodiesel in Indonesia, 
Renewable Sustainable Energy Rev. 15, 3733-3756. 
23. H. H. Masjuki (2010) Biofuel Engine: A New Challenge. International & Corporate 
relations Office (ICR), University of Malaya ISBN 978-967-5148-65-1, 1–56. 
24. Indonesia Ministry of Energy and Mineral Resources (2007) Strategic Plan for New 
and Renewable Energy of Indonesia, Indonesia Ministry of Energy and Mineral Resources. 
25. I. A. Zhou, E. Thomson (2009) The development of biofuels in Asia, Appl. Energy 86, 
11-20. 
26. I. G. Najafi, B. Ghobadian, T. F. Yusaf (2011) Algae as a sustainable energy source 
for biofuel production in Iran: A case study, Renewable Sustainable Energy Rev. 15, 3870-
3876. 
27. I. Z. Abdullah, B. Salamatinia, H. Mootabadi, S. Bhatia (2009) Current status and 
policies on biodiesel industry in Malaysia as the world's leading producer of palm oil, 
Energy Policy 37, 5440-5448. 
28. I. R. Hoh (2009) Malaysia Biofuels Annual Report No. MY9026, USDA Foreign 
Agricultural Service, USA. 
29. I. S. Sukkasi, N. Chollacoop, W. Ellis, S. Grimley, S. Jai (2010) Challenges and 
considerations for planning toward sustainable biodiesel development in developing 
countries: Lessons from the Greater Mekong Subregion, Renewable Sustainable Energy 
Rev. 14, 3100. 
30. International Center for Genetic Engineering and Biotechnology (2009) Feasibility 
Study of Increase Production of Sugarcane, Cassava and Oil Palm for Biofuels 
Production, NCGEB, Bangkok. 
31. I. S. Preecharjarn (2010) GAIN Report No. TH0079, USDA Foreign Agricultural 
Service, USA. 
32. I. M. Acaroglu, H. Aydogan (2012) Biofuels energy sources and future of biofuels 
energy in Turkey, Biomass Bioenergy 36, 69-76. 
33. IEEP Program (2011) Full project proposal document for biodiesel production from 
closed algae growing systems using waste water of ethanol plant in Vietnam, 3-V-053. 
34. I. Peter Adewale, Marie-Josée Dumont, Michael Ngadi (2015) Recent trends of 
biodiesel production from animal fat wastes and associated production techniques, 
Renewable and Sustainable Energy Reviews 45, 574-588. 
35. J. L. Ahmad, N. H. Mat Yasin, C. J. C. Derek, J. K. Lim (2014) Comparison of 
harvesting methods for microalgae Chlorella sp. and its potential use as a biodiesel 
feedstock, Environmental Technology 35(17), 2244-2253. 
112 
36. J. M. F. Demirbas (2011) Biofuels from algae for sustainable development, Appl. 
Energy 88, 3473-3480. 
37. J. Haas M., McAloon A. J., Yee W. C., Foglia T. A. (2006) A process model to 
estimate biodiesel production costs, Biores. Technol. 97, 671-678. 
38. J. Freedman B., Pryde E. H., Mounts T. L. (1984) Variables aff ecting the yields of 
fatty esters from transesterified vegetable oils, J. Am. Oil Chem. Soc. 61, 1638-1643. 
39. J. Ali Y., Hanna M. A. (1994) Alternative diesel fuels from vegetable oils, Biores. 
Technol. 50, 153-163. 
40. J. Ali Y., Hanna M. H. (1994) Physical properties of tallow ester and diesel fuel 
blends, Biores. Technol. 47, 131-134. 
41. J. Dunn R. O., Shockley M. W., Bagby M. O. (1996) Improving the low-temperature 
properties of alternative diesel fuels: Vegetable oil-derived methyl esters. J. Am. Oil 
Chem. Soc. 73, 1719-1728. 
42. L. Ma F., Clements L. D., Hanna M. A. (1998) The effects of catalysts, free fatty acids, 
and water on transesterification of beef tallow, Trans. ASAE 41, 1261-1264. 
43. L. Ma F., Clements L. D., Hanna M. A. (1999) The effect of mixing on 
transesterification of beef tallow, Biores. Technol. 69, 289-293. 
44. L. Seidel B., Alm M., Peters R., Kordel W., Schaffer A. (2006) Safety evaluation for a 
biodiesel process using prion-contaminated animal fat as a source, Environ. Sci. Pollut. 
Res. 13, 25-130. 
45. L. M. A. Wakil, M.A. Kalam, H.H. Masjuki, A.E. Atabani, I.M. Rizwanul Fattah 
(2015) Influence of biodiesel blending on physicochemical properties and importance of 
mathematical model for predicting the properties of biodiesel blend, Energy Conversion 
and Management 94, 51-67. 
46. L. Joao Malca, Antonio Coelho, Fausto Freire (2014) Environmental life-cycle 
assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations, 
Applied Energy 114 , 837-844. 
47. L. Xiu Ping X., Hui Liu, Lihong Tian, Xiang Bai Dong, Shi Hua Shen, Le Qing Qu 
(2015) Integrated and comparative proteomics of high-oil and high-protein soybean seeds, 
Food Chemistry 172, 105-116. 
48. L. Pimental D., Patzek W. T. (2005) Ethanol production using corn, switch grass and 
wood: biodiesel production using soybean and sunflower, Natural Resources Research 14 
(1), 65–76. 
49. L. Addison K., Hiraga M. (2010) Oil yields and characteristics, Journey to forever, 
Handmade Projects, Tamba, Japan. 
50. L. Crabbe E., Nolasco-Hipolito C., Kobayashi G., Sonomoto K., Ishikazi A. (2001) 
Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel 
properties, Process Biochemistry 37 (1), 65–71. 
51. M. Dorado P., Cruz F., Palomar J. M., Lopez F. J. (2006) An approach to the 
economics of two vegetable oil-based biofuels in Spain, Renewable Energy 31, 1231–1237. 
52. M. Krawczyk T. (1996) Biodiesel. International News on Fats, Oils and Related 
Materials, American Oil Chemists Society Press, Champaign, Illinois. 
113 
53. M. Zhang Y., Dube M. A., Mclean D. D., Kates M. (2003) Biodiesel production from 
waste cooking oil: 2. Economic assessment and sensitivity analysis, Biores. Technol. 90, 
229–240. 
54. M. Luque R., Herrero-Davila L., Campelo J. M., Clark J. H., Hidalgo J. M., et al 
(2008) Biofuels: a technological perspective, Energy and Environmental Science 1, 542–
564. 
55. M. Jan C. J. Bart, Natale Palmeri, Stefano Cavallaro (2010) Biodiesel science and 
technology: From soil to oil, Woodhead Publishing Limited 7, CRC Press. 
56. M. G. Knothe, Jurgen Krahl, Jon Van Gerpen (2010) The Biodiesel Handbook: Second 
Edition, AOCS Press. 
57. M. Ignacio R. Huerga, Maria Soledad Zanuttini, Martin S. Gross, Carlos A. Querini 
(2014) Biodiesel production from Jatropha curcas: Integrated process optimization, 
Energy Conversion and Management 80, 1-9. 
58. M. Kumar A., Sharma S. (2008) An evaluation of multipurpose oil seed crop for 
industrial uses (Jatropha curcas L.): A review, Ind. Crops Prod. 28, 1-10. 
59. Nazir N., Ramli N., Mangunwidjaja D., Hambali E., Setyaningsih D., et al (2009) 
Extraction, transesterification and process control in biodiesel production from Jatropha 
Curcas, European Journal of Lipid Science and Technology 111, 1185–1200. 
60. N. Jain S., Sharma M. P. (2011) Biodiesel production from Jatropha curcas Oil, 
Renewable and Sustainable Energy Reviews 14, 3140–3147. 
61. N. Jain S., Sharma M. P. (2011) Prospects of biodiesel from Jatropha in India: A 
review, Renewable and Sustainable Energy Reviews 14, 763–771. 
62. N. Kaushik, Kumar K., Kumar S. (2007) Potential of Jatropha curcas for biofuels, 
Journal of Biobased Materials and Bioenergy 1, 301–314. 
63. N. Vivek G. A. K. (2004) Biodiesel production from Karanja oil, Journal of Scientific 
and Industrial Research 63, 39–47. 
64. N. Meher L. C., Naik S. N., Das L. M. (2004) Methanolysis of Pongamia pinnata 
(karanja) oil for production of biodiesel, Journal of Scientific and Industrial Research 63, 
913–918. 
65. N. Karmee S. K., Chadha A. (2005) Preparation of biodiesel from crude oil of 
Pongamia Pinnata, Bioresource Technology 96, 1425–1429. 
66. N. De B. K., Bhattacharyya D. K. (1999) Biodiesel from minor vegetable oils like 
karanja oil and nahor oil, Lipid Letters 101, 404–406. 
67. N. Aninidita Karmakar, Subrata Karmakar, Souti Mukherjee (2010) Review: Properties 
of various plants and animals feedstocks for biodiesel production, Bioresource Technology 
101, 7201–7210. 
68. N. Canoira L., Alcantara R., Garcia-Martinez M. J. Carrasco, J. (2006) Biodiesel from 
Jojoba oil–wax: transesterification with methanol and properties as a fuel, Biomass and 
Bioenergy 30, 76–81. 
69. N. Kulkarni M. G., Sawant S. B. (2003) Some physical properties of castor oil esters 
and hydrogenated castor oil esters, European Journal of Lipid Science Technology 105, 
214–218. 
114 
70. N. Van Gerpen J., Shanks B., Pruszko R., Clements D., Knothe G. (2004) Biodiesel 
Production Technology. Subcontractor Report, National Renewable Energy Laboratory 
NREL/SR-510-36244. 
71. N. Balat M. (2011) Potential alternatives to edible oil for biodiesels production – a 
review of current work, Energy Conversion and Management 52, 1479–1492. 
72. N. Enweremadu C. C., Rutto H. L. (2010) Combustion, emission and engine 
performance characteristics of used cooking oil biodiesel–-A review, Renewable and 
Sustainable Energy Reviews 14, 2863–2873. 
73. N. Geoffrey Brooks (2010) Edible oil and processes for its production from 
microalgae, US 20100303957. 
74. N. P. Nautiyal, K.A. Subramanian, M.G. Dastidar (2014) Recent Advancements in the 
Production of Biodiesel from Algae: A Review, Reference Module in Earth Systems and 
Environmental Sciences. 
75. N. Lais Galileu S., Andrew Ingram, Gary A. Leeke (2015) Assessment of algae 
biodiesel viability based on the area requirement in the European Union, United States 
and Brazil, Renewable Energy 78, 406-417. 
76. N. Ahmad Galadima, Oki Muraza (2014) Biodiesel production from algae by using 
heterogeneous catalysts: A critical review, Energy 78, 72-83. 
77. Nagarajan Sanjay, Siaw Kiang Chou, Shenyan Cao, Chen Wu, Zhi Zhou (2013) An 
updated comprehensive techno-economic analysis of algae biodiesel, Bioresource 
Technology 145, 150-156. 
78. N. George Brownbridge, Pooya Azadi, Andrew Smallbone, Amit Bhave, Benjamin 
Taylor, Markus Kraft (2014) The future viability of algae-derived biodiesel under 
economic and technical uncertainties, Bioresource Technology 151, 166-173. 
79. N. Shakeel A. Khan, Rashmi, Z. Hussain (2009) Prospects of biodiesel production 
from microalgae in India, Renewable and Sustainable Energy Reviews 13(9), 2361–2372. 
80. N. Teresa M. Mata, Antonio A. Martins (2010) Microalgae for biodiesel production 
and other applications: A review, Renewable and Sustainable Energy Reviews 14, 217-
232. 
81. N. Jasvinder Singh, Sai Gu (2010) Commercialization potential of microalgae for 
biofuels production, Renewable and Sustainable Energy Reviews 14, 2590-2610. 
82. N. Xiufeng Li, Han Xu, Qingyu Wu (2007) Large-scale biodiesel production from 
microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors, 
Biotechnol Bioeng. 98(4), 764-771. 
83. Oilgae comprehensive report (2011) Energy from algae: product, market, processes 
and strategies, Oilgae magazine. 
84. O. Chan Yoo, So-Young Jun, Jae-Yon Lee, Chi-Yong Ahn, Hee-Mock Oh (2010) 
Selection of microalgae for lipid production under high level carbon dioxide, Bioresource 
technology 101(1), S71-S74. 
85. O. E. A. Ehimen, Z. F. Sun, C. G. Carrington (2010) Variables affecting the in situ 
transesterification of microalgae lipids, Fuel 89(3), 677-684. 
115 
86. O. Liam Brennan, Philip Owende (2010) Biofuels from microalgae-A review of 
technologies for production, processing, and extractions of biofuels and co-products 
Review Article, Renewable and Sustainable Energy Reviews 14(2), 557-577. 
87. O. Jin Liu, Junchao Huang, King Wai Fan, Yue Jiang, Yujuan Zhong, Zheng Sun, Feng 
Cheng (2010) Production potential of Chlorella zofingienesis as a feedstock for biodiesel, 
Bioresource Technology 101(22), 8658-8663. 
88. O. A. Demirbas (2010) Algae Energy: Algae as a New Source of Biodiesel, Green 
Energy and Technology, ISBN: 978-1-84996-049-6. 
89. O. Helena M. Amaro, A. Catarina Guedes, F. Xavier Malcata (2011) Advances and 
perspectives in using microalgae to produce biodiesel, Applied Energy 88(10), 3402-3410. 
90. O. Sarmidi Amin (2009) Review on biofuel oil and gas production processes from 
microalgae, Energy Conversion and Management 50(7), 1834-1840. 
91. O. Ling Xia, Shaoxian Song, Qiaoning He, Haijian Yang, Chunxiang Hu (2014) 
Selection of microalgae for biodiesel production in a scalable outdoor photobioreactor in 
north China, Bioresource Technology 174, 274-280. 
92. O. Jungmin Kim, Gursong Yoo, Hansol Lee, Juntaek Lim, Kyochan Kim, Chul Woong 
Kim, Min S. Park, Ji-Won Yang (2013) Methods of downstream processing for the 
production of biodiesel from microalgae, Biotechnology Advances 31(6), 862-876. 
93. O. Ronald Halim, Brendan Gladman, Michael K. Danquah, Paul A. Webley (2011) Oil 
extraction from microalgae for biodiesel production, Bioresource Technology 102(1), 178-
185. 
94. O. W. Kram (2008) Algae interests align, Biodiesel Mag. 5 (11), 60-65. 
95. P. Metzger, Largeau C. (2005) Botryococcus braunii: a rich source for hydrocarbons 
and related ether lipids. Appl. Microbiol. Biotechnol. 66, 486-496. 
96. P. Sawayama S., Minowa T., Yokayama S. (1999) Possibility of renewable energy 
production and carbon dioxide mitigation by thermochemical liquefaction of microalgae, 
Biomass Bioenergy 17, 33-39. 
97. P. Okada S., Devarenne T. P., Chapell J. (2000) Molecular characterization of 
squalene synthase from the green microalga Botryococcus braunii, Archives Biochem. 
Biophys. 373, 307-317. 
98. P. Dayananda C., Sarada R., Bhattacharya S., Ravishankar G. A. (2005) Effect of media 
and culture conditions on growth and hydrocarbon production by Botryococcus braunii, 
Process Biochem. 40, 3125-3131. 
99. P. Ela E., Anastasios M. (2010) Extracellular terpenoid hydrocarbon extraction and 
quantitation from the green microalgae Botryococcus braunii, Biores. Technol. 101, 2359-
2366. 
100. P. Chiara S., Cristian T., Giulia S., Daniele F., Paola G., Franca G., Rossella P., 
Emilio T. (2010) Extraction of hydrocarbons from microalga Botryococcus braunii with 
switchable solvents, Biores. Technol. 101, 3274-3279. 
101. P. C. Dayananda, A. Kumudha, R. Sarada, G. A. Ravishankar (2010) Isolation, 
characterization and outdoor cultivation of green microalgae Botryococcus sp., Scientific 
Research and Essays 5(17), 2497-2505. 
116 
102. P. Banerjee A., Sharma R., Chisty Y., Banerjee U. C. (2002) Botryococcus braunii: A 
renewable source of hydrocarbons and other chemicals, Critical Reviews in 
Biotechnology 22(3), 245-279. 
103. P. Metzger, C. Largeau (2005) Botryococcus braunii: a rich source for hydrocarbons 
and related ether lipids, Applied Microbiology and Biotechnology 66(5), 486-496. 
104. Pierre Metzger, Allard Beatrice, Casadevall Eliette, Berkaloff Claire, Coute Alain 
(1990) Structure and chemistry of a new chemical race of Botryococcus braunii 
(Chlorophyceae) that produces lycopadiene, a tetraterpenoid hydrocarbon, Journal of 
Phycology 26(2), 258-266. 
105. P. Achitouv Etienne, Metzger Pierre, Rager Marie-Noelle, Largeau Claude (2004) 
C31-C34 methylated squalene from a Bolivian strain of Botryococcus braunii. 
Phytochemistry 65(23), 3159-3165. 
106. P. Dayananda C., Sarada R., Srinivas P., Shamala T. R., Ravishankar G. A. (2006) 
Presence of methyl branched fatty acids and saturated hydrocarbons in botryococcene 
producing strain of Botryococcus braunii. Acta Physiologiae Plantarum 28(3), 251-256. 
107. P. Veeramuthu Ashokkumar, Elango Agila, Pandian Sivakumar, Zainal Salam, 
Ramasamy Rengasamy, Farid Nasir Ani (2014) Optimization and characterization of 
biodiesel production from microalgae Botryococcus grown at semi-continuous system, 
Energy Conversion and Management 88, 936–946. 
108. P. Y. C. Sharma, B. Singh (2008) Development of biodiesel from karanja, a tree 
found in rural India, Fuel 87, 1740-1742. 
109. P. G. B. Boocock, S. K. Konar, V. Mao, H. Sidi (1996) Fast one-phase oil-rich 
processes for the preparation of vegetable oil methyl esters, Biomass Bioenergy 11, 43-50. 
110. P. I. A. Mohammed-Dabo, M. S. Ahmad, A. Hamza, K. Muazu, A. Aliyu (2012) 
Cosolvent transesterification of Jatropha curcas seed oil, J. Petroleum Technol. 
Alternative Fuels 3, 42-51. 
111. P. A. Demirbas (2002) Biodiesel from vegetable oils via transesterification in 
supercritical methanol, Energy Convers. Manage. 43, 2349-2356. 
112. P. S. Hawash, N. Kamal, F. Zaher, O. Kenawi, G. El Diwani (2009) Biodiesel fuel 
from Jatropha oil via non-catalytic supercritical methanol transesterification, Fuel 88, 
579-582. 
113. P. J. Z. Yin, M. Xiao, J. B. Song (2008) Biodiesel from soybean oil in supercritical 
methanol with co-solvent, Energy Convers. Manage. 49, 908-912. 
114. P. W. Cao, H. Han, J. Zhang (2005) Preparation of biodiesel from soybean oil using 
supercritical methanol and co-solvent, Fuel 84, 347-351. 
115. P. A. Demirbas (2008) New liquid biofuels from vegetable oils via catalytic pyrolysis, 
Energy Edu. Sci. Technol. 21, 1-59. 
116. P. A. K. Singh, S. D. Fernando, R. Hernandez (2007) Base-catalyzed fast 
transesterification of soybean oil using ultrasonication, Energy Fuels 21, 1161-1164. 
117. P. J. B. Ji, J. L. Wang, Y. C. Li, Y. L. Yu, Z. C. Xu (2006) Preparation of biodiesel 
with the help of ultrasonic and hydrodynamic cavitation, Ultrasonics 44, E411-E414. 
117 
118. P. D. Kumar, G. Kumar, Poonam, C. P. Singh (2010) Fast, easy ethanolysis of 
coconut oil for biodiesel production assisted by ultrasonication, Ultrason. Sonochem. 17, 
839-844. 
119. P. Lidstrom, J. Tierney, B. Wathey, J. Westman (2001) Microwave assisted organic 
synthesis. A review, Tetrahedron 57, 9225-9283. 
120. P. N. Saifuddin, K. H. Chua (2004) Production of ethyl ester (biodiesel) from used 
frying oil: Optimization of transesterification process using microwave irradiation, 
Malaysian J. Chem. 6, 77-82. 
121. Q. Z. Yaakob, B. H. Ong, M. N. S. Kumar, S. K. Kamarudin (2009) Microwave-
assisted transesterification of jatropha and waste frying palm oil, Int. J. Sustain. Energy 
28, 195-201. 
122. Q. V. Lertsathapornsuk, R. Pairintra, K. Pairintra, K. Krisnangkura (2008) Microwave 
assisted in continuous biodiesel production from waste frying palm oil and its performance 
in a 100 kW diesel generator, Fuel Process. Technol. 89, 1330-1336. 
123. Q. K. J. Harrington, C. D. Arcy-Evans (1985) Transesterification in situ of sunflower 
oil, Ind. Eng. Chem. Prod. Res. Dev. 24, 314-318. 
124. Q. M. Haas, K. Scott, W. Marmer, T. Foglia (2004) In situ alkaline 
transesterification: an effective method for the production of fatty acid esters from 
vegetable oils, J. Am. Oil Chem. Soc. 81, 83-89. 
125. S. Siler-Marinkovic, A. Tomasevic (1998) A. Transesterification of sunflower oil in 
situ, Fuel 77, 1389-1391. 
126. S. J. F. Qian, F. Wang, S. Liu, Z. Yun (2008) In situ alkaline transesterification of 
cottonseed oil for production of biodiesel and nontoxic cottonseed meal, Biores. Technol. 
99, 9009-9012. 
127. S. F. Ma, M. A. Hanna (1999) Biodiesel Production: A Review, Biores. Technol. 70, 
1-15. 
128. S. E. Crabbe, C. N. Hipolito, G. Kobayashi, K. Sonomoto, A. Ishizaki (2001) 
Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel 
properties, Process Biochem. 37, 65-71. 
129. S. V. K. Tyagi, A. K. Vasishtha (1996) Changes in the characteristics and 
composition of oils during deep-fat frying, J. Am. Oil Chem. Soc. 73, 499-505. 
130. S. Saka, D. Kusdiana (2001) Biodiesel fuel from rapeseed oil as prepared in 
supercritical methanol, Fuel 80, 225-231. 
131. S. Saka, D. Kusdiana (2004) Effects of Water on Biodiesel Fuel Production by 
Supercritical Methanol Treatment, Biores. Technol. 91, 289-295. 
132. S. Sinha, A. K. Agarwal, S. Garg (2008) Biodiesel development from rice bran oil: 
Transesterification process optimization and fuel characterization, Energy Convers. 
Manage. 49, 1248-1257. 
133. S. Y. C. Leung, Y. Guo (2006) Transesterification of neat and used frying oil: 
Optimization for biodiesel production, Fuel Process. Technol. 87, 883-890. 
118 
134. S. M. Encinar, J. F. Gonzalez, R. A. Reinares (2005) Biodiesel from used frying oil. 
Variables affecting the yields and characteristics of the biodiesel, Ind. Eng. Chem. Res. 44, 
5491-5499. 
135. S. Casas, C. M. Fernandez, M. J. Ramos, A. Perez, J. F. Rodrıguez (2010) 
Optimization of the reaction parameters for fast pseudo single-phase transesterification of 
sunflower oil, Fuel 89, 650-658. 
136. S. U. Rashid, F. Anwar, G. Knothe (2009) Evaluation of biodiesel obtained from 
cottonseed oil, Fuel Process. Technol. 90, 1157-1163. 
137. S. W. Xie, H. Peng, L. Chen (2006) Transesterification of soybean oil catalyzed by 
potassium loaded on alumina as a solid-base catalyst, Appl. Catal. A: Gen. 300, 67-74. 
138. Suppes G. J., Dasari M. P. A., Doskocil E. J., Mankidy P. J., Goff M. J. (2004) 
Transesterification of soybean oil with zeolite and metal catalysts, Appl. Catal. A: Gen. 
257, 213-223. 
139. S. A. Hamid, P. L. Boey, G. P. Maniam (2009) Biodiesel production via 
transesterification of palm olein using waste mud crab (Scylla serrata) shell as a 
heterogeneous catalyst, Biores. Technol. 100, 6362-6368. 
140. S. N. Viriya-empikul, P. Krasae, B. Puttasawat, B. Yoosuk, N. Chollacoop, K. 
Faungnawakij (2010) Waste shells of mollusk and egg as biodiesel production catalysts, 
Biores. Technol. 101, 3765-3767. 
141. S. Bepari, R. Chakraborty, A. Banerjee (2011) Application of calcined waste fish 
(Labeo rohita) scale as low-cost heterogeneous catalyst for biodiesel synthesis, Biores. 
Technol. 102, 3610-3618. 
142. S. J. Jitputti, B. Kitiyanan, P. Rangsunvigit, K. Bunyakiat, L. Attanatho, P. 
Jenvanitpanjakul (2006) Transesterification of crude palm kernel oil and crude coconut oil 
by different solid catalysts, J. Chem. Eng. 116, 61-66. 
143. S. Nakagaki, A. Bail, V. C. dos Santos, V. H. R. de Souza, H. Vrubel, F. S. Nunes, L. 
P. Ramos (2008) Use of anhydrous sodium molybdate as an efficient heterogeneous 
catalyst for soybean oil methanolysis, Appl. Catal. A: Gen. 351, 267-274. 
144. S. L. Xu, X. Yang, X. D. Yu, Y. H. Guo, Maynurkader (2008) Preparation of 
mesoporous polyoxometalate-tantalum pentoxide composite catalyst for efficient 
esterification of fatty acid, Catal. Commun. 9, 1607-1611. 
145. S. Y. Wang, H. Wu, M. H. Zong (2008) Improvement of biodiesel production by 
lipozyme TL IM-catalyzed methanolysis using response surface methodology and acyl 
migration enhancer, Biores. Technol. 99, 7232-7237. 
146. S. W. Xie, X. Huang, H. Li (2007) Soybean oil methyl esters preparation using NaX 
zeolites loaded with KOH as a heterogeneous catalyst, Biores. Technol. 98, 936-939. 
147. S. M. J. Ramos, A. Casas, L. Rodriguez, R. Romero, A. Perez (2008) 
Transesterification of sunflower oil over zeolites using different metal loading: A case of 
leaching and agglomeration studies, 346, 79-85. 
148. S. K. H. Chung, D. R. Chang, B. G. Park (2008) Removal of free fatty acid in waste 
frying oil by esterification with methanol on zeolite catalysts, Biores. Technol. 99, 7438-
7443. 
119 
149. S. J. M. Marchetti, A. F. Errazu (2008) Comparison of different heterogeneous 
catalysts and different alcohols for the esterification reaction of oleic acid, Fuel 87, 3477-
3480. 
150. S. Emin Selahattin UMDU (2008) Methyl ester production from vegetable oils on 
heterogeneous basic catalysts, Master of Science. 
151. S. E. Umdu, S. C. Sofuoglu, E. Seker (2003) Methyl ester production from canola oil 
on heterogeneous base catalyst, Hzmir Institute of Technology. 
152. Shruti G. Chopade, K. S. Kulkarni, A. A. Kakulrni, Niaj S. Topare (2012) Solid 
heterogeneous catalysts for production of biodiesel from trans-esterification of 
triglycerides with methanol: A Review, Acta Chimica & Pharmaceutica Indica 2(1), 8-14. 
153. S. N. Naik, L. C. Meher, D. V. Sagar (2006) Technical aspects of biodiesel 
production by transesterification—a review, Renewable Sustainable Energy Rev. 10, 248-
268. 
154. S. B. X. Peng, Q. Shu, J. F. Wang, G. R. Wang, D. Z. Wang, M. H. Han (2008) 
Biodiesel production from waste oil feedstocks by solid acid catalysis, Process. Saf. 
Enviro. Protect. 86, 441-447. 
155. S. M. Mittelbach, B. Trathnigg (1990) Kinetics of Alkaline Catalyzed Methanolysis of 
Sunflower Oil, Eur. J. Lipid Sci. Technol. 92, 145-148. 
156. S. H. Lepper, L. Friesenhagen (1986) Process for the production of fatty acid esters of 
short-chain aliphatic alcohols from fats and/or oils containing free fatty acids, US 
4608202. 
157. S. J. Hancsok, F. Kovacs, M. Krar (2004) Production of vegetable oil fatty acid 
methyl esters from used frying oil by combined acidic/alkali transesterification, Petrol. 
Coal 46, 36-44. 
158. S. F. J. Sprules, D. Price (1950) Synthetic compositions obtained by reaction of a 
chlorinated acetamide with a benzyl sulphonamide modified urea resin, US 2366494. 
159. S. L. Jeromin, E. Peukert, G. Wollmann, K. G. A. A. Henkel (1986) Process for the 
pre-esterification of free fatty acids in raw fats and/or oils, EP 0192035. 
160. S. M. R. Simone, C. R. Michele, G. R. Marcelli, L. S. J. Paulo, M. B. C. Fernanda, R. 
L. Elizabeth (2008) Transesterification of vegetable oils promoted by poly(styrene-
divinylbenzene) and poly(divinylbenzene), Appl. Catal. A: Gen. 349, 198-203. 
161. S. W. Lou, M. Zong, Z. Duan (2008) Efficient production of biodiesel from high free 
fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts, 
Biores. Technol. 99, 8752-8758. 
162. S. N. Ozbay, N. Oktar, N. A. Tapan (2008) Esterification of free fatty acids in waste 
cooking oils (WCO): Role of ion-exchange resins, Fuel 87, 1789-1798. 
163. S. N. Shibasaki-Kitakawa, H. Honda, H. Kuribayashi, T. Toda, T. Fukumura, T. 
Yonemoto (2007) Biodiesel productionusing anionic ionexchange resin as heterogenous 
catalyst, Biores. Technol. 98, 416-421. 
164. S. P. K. Sahoo, L. M. Das, M. K. G. Babu, S. N. Naik (2007) Biodiesel development 
from high acid value polanga seed oil and performance evaluation in a CI engine, Fuel 86, 
448-454. 
120 
165. S. Y. Wang, O. Shiyi, P. Liu, Z. Zhang (2007) Preparation of biodiesel from waste 
cooking oil via two-step catalyzed process, Energy Convers. Manage. 48, 184-188. 
166. S. M. Canakci, J. V. Gerpan (2001) Biodiesel production from oils and fats with high 
free fatty acids, Trans. Am. Soc. Agric. Eng. 44, 1429-1436. 
167. S. H. Lakicevic, V. B. Veljkovic, O. S. Stamenkovic, Z. B. Todorovic, M. L. Lazic 
(2006) Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high 
content of free fatty acids, Fuel 85, 2671-2675. 
168. S. V. Ghadge, H. Raheman (2005) Biodiesel production from mahua (Madhuca 
indica) oil having high free fatty acids, Biomass Bioenergy 28, 601-605. 
169. S. Y. Zhang, M. A. Dube, D. D. McLean, M. Kates (2003) Biodiesel Production from 
Waste Cooking Oil: 2. Economic Assessment, Biores. Technol. 90, 229-240. 
170. S. R. Peterson, W. P. Scarrah (1984) Rapeseed oil transesterification by 
heterogeneous catalysis, J. Am. Oil Chem. Soc. 61, 1593-1597. 
171. S. K. Jacobson, R. Gopinath, L. C. Meher, A. K. Dalai (2008) Solid acid catalyzed 
biodiesel production from waste cooking oil, Appl. Catal. B: Environ. 85, 86-91 
172. S. L. C. Meher, A. K. M. G. Dalai (2006) Biodiesel Productions from Vegetable Oils 
Using Heterogeneous Catalysts and Their Applications as Lubricity Additives, Presented at 
the IEEE EIC Climate Change Technology Conference, Article No. 4057358, Ottawa, 1-8. 
173. S.A.P. Rico, I.L. Sauer (2015) A review of Brazilian biodiesel experiences, 
Renewable and Sustainable Energy Reviews 45, 513-529. 
174. S. E. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce, J. G. Goodwin 
(2005) Synthesis of biodiesel via acid catalysis, Jr. Ind. Eng. Chem. Res. 44, 5353-5363. 
175. S. M. P. Meneghetti, R. M. De Almeida, L. K. Noda, N. S. Goncalves, M. R. 
Meneghetti (2008) Transesterification reaction of vegetable oils, using superacid sulfated 
TiO2‐base catalysts, Appl. Catal. A: Gen. 347, 100-105. 
176. S. Furuta, H. Matsuhashi, K. Arata (2006) Biodiesel fuel production with solid 
superacid catalysis in fixed bed reactor under atmospheric pressure, Biomass Bioenergy 
30, 870-873. 
177. S. Y. M. Park, D. W. Lee, D. K. Kim, J. Lee, K. Y. Lee (2008) The heterogeneous 
catalyst system for the continuous conversion of free fatty acids in used vegetable oils for 
the production of biodiesel, Catal. Today 131, 238-243. 
178. S. M. Zhu, B. He, W. Shi, F. J. D. Yaohui, J. Li, F. Zeng (2010) Preparation and 
characterization of PSSA/PVA catalytic membrane for biodiesel production, Fuel 89, 
2299-2304. 
179. S. Zhang, Y. G. Zu, Y. J. Fu, M. Luo, D. Y. Zhang, T. Efferth (2010) Rapid 
microwave-assisted transesterification of yellow horn oil to biodiesel using a 
heteropolyacid solid catalyst, Biores. Technol. 101, 931-936. 
180. S. X. Liang, G. Gong, H. Wua, J. Yang (2009) Highly efficient procedure for the 
synthesis of biodiesel from soybean oil using chloroaluminate ionic liquid as catalyst, Fuel 
88, 613-616. 
181. S. Chen, J. Zhang, R. Yang, Y. Yan (2010) Biodiesel production from vegetable oil 
using heterogenous acid and alkali catalyst, Fuel 89, 2939-2944. 
121 
182. S. B. Y. Giri, K. N. Rao, B. L. A. Prabhavathi Devi, N. Lingaiah, I. Suryanarayana, R. 
B. N. Prasad, P. S. S. Prasad (2005) Esterification of palmitic acid on the ammonium salt 
of 12-tungstophosphoric acid: the influence of partial proton exchange on the activity of 
the catalyst, Catal. Commun. 6, 788-792. 
183. S. B. Hamad, R. O. L. de Souza, G. Sapaly, M. G. C. Rocha, P. G. P. De Oliveira, W. 
A. Gonzalez, E. A. Sales, N. Essayem (2008) Transesterification of rapeseed oil with 
ethanol over heterogeneous heteropolyacids, Catal. Commun. 10, 92-97. 
184. S. T. Kolaczkowski, U. A. Asli, M. G. Davidson (2009) A new heterogeneous ZnL 2 
catalyst on a structured support for biodiesel production, Catal. Today 147S, S220-S224. 
185. S. Li, Y. Wang, S. Dong, Y. Chen, F. Cao (2009) Biodiesel production from Eruca 
Sativa Gars vegetable oil and motor emissions properties, Renew. Energy 34, 1871-1876. 
186. S. C. Cannilla, G. Bonura, E. Rombi, F. Arenaa, F. Frusteri (2010) Highly effective 
MnCeOx catalysts for the biodiesel production by transesterification reaction of vegetable 
oil, Appl. Catal. A: Gen. 382, 158-166. 
187. S. G. Corro, N. Tellez, E. Ayala, A. Marinez-Ayala (2010 Two-step biodiesel 
production from Jatropha curcas crude oil using SiO2·HF solid catalyst for FFA 
esterification step, Fuel 89, 2815-2821. 
188. S. Y. C. Lin, W. J. Lee, H. C. Hou (2006) PAH emissions and energy efficiency of 
palm-biodiesel blends fueled on diesel generator, Atmos. Environ. 40, 3930-3940. 
189. T. N. Katada, T. Hatanaka, M. Ota, K. Yamada, K. Okumura, M. Niwa (2009) 
Biodiesel production using heteropoly acid-derived solid acid catalyst 
H4PNbW11O40/WO3–Nb2O5, Appl. Catal. A: Gen. 363, 164-168. 
190. T. A. Macario, G. Giordano, B. Onida, D. Cocina, A. Tagarelli, A. M. Giuffre (2010) 
Biodiesel production process by homogeneous/heterogeneous catalytic system using an 
acid–base catalyst, Appl. Catal. A: Gen. 378, 160-168. 
191. T. K. Suwannakarn, E. Lotero, S. J. G. Changqing Lu Jr. (2008) Stability of sulfated 
zirconia and the nature of the catalytically active species in the transesterification of 
triglycerides, J. Catal. 255, 27-286. 
192. T. Y. Wang, F. Zhang, S. Xu, L. Yang, D. Li, D. G. Evans, X. Duan (2008) 
Preparation of macrospherical magnesia-rich magnesium aluminate spinel catalysts for 
methanolysis of soybean oil, Chem. Eng. Sci. 63, 4306-4312. 
193. T. N. Brun, A. B. Garcia, H. Deleuze, M. F. Achard, C. Sanchez, F. Durand, V. 
Oestreicher, R. Backov (2010) Enzyme-based hybrid macroporous foams as highly 
efficient biocatalysts obtained through integrative chemistry, Chem. Mater. 22, 4555-4562. 
194. T. P. Winayanuwattikun, C. Kaewpiboon, K. Piriyakananon, S. Tantong, W. 
Thakernkarnkit, W. Chulalaksananukul, T. Yongvanich (2008) Potential plant oil 
feedstock for lipase catalyzed biodiesel production in Thailand, Biomass Bioenergy 32, 
1279-1286. 
195. T. Groger H. (2001) The development of new monometallic bifunctional catalysts with 
Lewis acid and Lewis base properties, and their application in asymmetric cyanation 
reactions, Chemistry - A European Journal 7(24), 5246–5251. 
122 
196. T. Brigitte Voit (2006) Sequential One-Pot Reactions Using the Concept of ―Site 
Isolation‖, Angewandte Chemie International Edition 45(26), 4238–4240. 
197. T. Margelefsky E. L., Zeidan R. K., Davis M. E. (2008) Cooperative catalysis by 
silica-supported organic functional groups, Chem. Soc. Rev. 37(6), 1118-1126. 
198. T. Seong Huh, Hung-Ting Chen, Jerzy W. Wiench, Marek Pruski, Victor S. -Y. Lin 
(2005) Cooperative Catalysis by General Acid and Base Bifunctionalized Mesoporous 
Silica Nanospheres, Angewandte Chemie International Edition 44(12), 1826–1830. 
199. T. Ryan K. Zeidan, Son-Jong Hwang, Mark E. Davis (2006) Multifunctional 
Heterogeneous Catalysts: SBA-15-Containing Primary Amines and Sulfonic Acids, 
Angewandte Chemie International Edition 45(38), 6332–6335. 
200. T. Shang F., Sun J., Wu S., Liu H., Guan J., Kan Q. (2011) Direct synthesis of acid-
base bifunctionalized hexagonal mesoporous silica and its catalytic activity in cascade 
reactions, J. Colloid Interface Sci. 355(1), 190-197. 
201. T. Sankaranarayanapillai Shylesh, Alex Wagner, Andreas Seifert, Stefan Ernst, 
Werner R. Thiel (2009) Cooperative Acid–Base Effects with Functionalized Mesoporous 
Silica Nanoparticles: Applications in Carbon–Carbon Bond-Formation Reactions, 
Chemistry - A European Journal, 15(29) 7052–7062. 
202. Victor S. Y. Lin, Jennifer A. Nieweg, Jonh G. Verkade, Chita Reddy, Venkat Reddy, 
Carla Kern (2008) Porous Silica and metal oxide composite-based catalyst for conversion 
of fatty acids and oils to Biodiesel, US 7790651. 
203. Victor S. Y. Lin, Tse-Ming Hsin, Senniang Chen, Enruo Guo, Chih-Hsiang Tsai, 
Marek Pruski (2010) Calcium Containing Silicate Mixed Oxide-Based Heterogeneous 
Catalysts for Biodiesel Production, Topics in Catalyst 53. 
204. V. Jong Rack S., Eun Hee Park (1997) Acidic properties of CaO-SiO2 binary oxide 
catalyst and activity for acid catalyst, Korean J. of Chem. Engineering 14. 
205. Victor Shang-Yi Lin et al (2010) Porous silica and metal oxide composite-based 
catalysts for conversion of fatty acids and oils to biodiesel, US 7790651B2. 
206. V. Yasuaki M., P. Duc L., H. Thi Tr., B. Van L., L. Ngoc Ph., K. Imamura, N. 
Takenaka (2014) Production of biodiesel from Vietnamese Jatropha curcas oil by a co-
solvent method, Bioresource Technology 173, 309–316. 
207. V. Rives-Editor (2001) Layered Double Hydroxides: Present and Future, Nova Sci. 
Pub. Co., Inc., New York, Chapter 1, 1-40. 
208.V. Jeong-Geol Na, Jun Kyu Han, You-Kwan Oh, Jong-Ho Park, Tae Sung Jung, Sang 
Sup Han, Hyung Chul Yoon, Soo Hyun Chung, Jong-Nam Kim, Chang Hyun Ko (2011) 
Decarboxylation of microalgal oil without hydrogen into hydrocarbon for the production 
of transportation fuel, Catalysis Today 185(1), 313-317. 
209. V. Randall T. Cygan, Jeffery A. Greathouse, Hendrik Heinz, Andrey G. Kalinichev 
(2009) Molecular models and simulations of layered materials, J. Mater. Chem. 19, 2470–
2481. 
210. Wojciech Gac (2011) Acid–base properties of Ni–MgO–Al2O3 materials, Applied 
Surface Science 257, 2875–2880. 
123 
211. W. Piotr Kustrowski, Lucjan Chmielarz, Ewa Bozek, Murad Sawalha, Frank Roessner 
(2004) Acidity and basicity of hydrotalcite derived mixed Mg–Al oxides studied by test 
reaction of MBOH conversion and temperature programmed desorption of NH3 and CO2, 
Materials Research Bulletin 39, 263–281. 
212. W. Jianyi Shen, M. Tu, C. Hu (1998) Structural and Surface Acid/Base Properties of 
Hydrotalcite-Derived MgAlO Oxides Calcined at Varying Temperatures, Journal of Solid 
State Chemistry 137, 295-301. 
213. Watts K. Chris, Arjun B. Chhetri, M. Rafiqul Islam (2008) Waste Cooking Oil as an 
Alternate Feedstock for Biodiesel Production, Energies 1, 3-18. 
214. Webley A. Paul, Ronald Halim, Michael K. Danquah (2012) Extraction of oil from 
microalgae for biodiesel production: A review, Biotechnology Advances 30, 709-732. 
215. W. Keita Ikeue, Nao Miyoshi, Takayuki Tanaka, Masato Machida (2011) Ca-
Containing Mesoporous Silica as a Solid Base Catalyst for the Knoevenagel Condensation 
Reaction, Catal. Lett. 141, 877–881. 
216. W. Caballero-Briones, F.J. Espinosa-Faller, V. Rejón, F. Chale, E. Hernandez-
Rodriguez, A. Zapata-Navarro, J.L. Pena (2014) Calcium content and speciation in 
alkaline-cooked corn studied by synchrotron Ca K-edge X-ray absorption spectroscopy, 
Journal of Cereal Science 60, 7-10. 
217. W. Tanabe et al (1974) A new hypothesis regarding the surface acidity of binary 
metal oxides, Buletin of the Chemical Society of Japan 47(5), 1064-1066. 
218. Wuesong Shen (2012) A new hypothesis of micro region acid sites regarding the 
surface acidity of binary oxides, RSC Advances 2, 5957–5960. 
219. W. Tanabe, M. Misono, Y. Ono, H. Hattori (1989) New solid acids and bases - their 
catalytic properties, Studies in Surface Science and Catalysis 51. 
220. W. M. Halder (2007) Determination of the Critical Micellar Concentration (CMC) of 
a Cationic Micelle from Stokes Shift Data, Chem. Educator 12, 33–36. 
221. X. S. Santosh K., R. Nutan (2011) Micellar Properties of Alkyltrimethyl Ammmonium 
Bromide in Aquo-organic Solvent Media, Res. J. Chem. Sci. 1(4), 22-29. 
222. X. Music, N. Filipovic-Vincekovic, L. Sekovanic (2011) Precipitation of amorphous 
SiO2 particles and their properties, Brazilian Journal of Chemical Engineering 28(1), 89-
94. 
223. X. M. Johansson (2010) Controlling the Pore Size and Morphology of Mesoporous 
Silica, Linköping University, Sweden, ISBN: 978-91-7393-305-6. 
224. X. E. Borges, L. Diaz, J. Gavin, A. Brito (2011) Estimation of the content of fatty acid 
methyl esters (FAME) in biodiesel samples from dynamic viscosity measurements, Fuel 
Processing Technology 92, 597–599. 
225. X. A. Paul (1997) Acid-base, surface electron donating and catalytic properties of 
binary oxides of Zr with rare earth elements, Thesis of Doctor of Philosophy in Chemistry, 
Department of Applied Chemistry, Cochin University of Science and Technology, India. 
226. X. S. Ivanova (2004) Structure, Texture, and Acid–Base Properties of Alkaline Earth 
Oxides, Rare Earth Oxides, and Binary Oxide Systems, Kinetics and Catalysis 46(5), 620-
633. 
124 
PHỤ LỤC 
PHỤ LỤC 1: KẾT QUẢ ĐO BET 
1. Kết quả đo BET của xúc tác CS trước khi nung: 
125 
126 
127 
128 
2. Kết quả BET của xúc tác CS đã nung 
129 
130 
131 
132 
133 
3. Kết quả đo BET và phân bố mao quản của xúc tác MCS 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
PHỤ LỤC 2. KẾT QUẢ ĐO TPD-NH3 VÀ TPD-CO2 
1. Kết quả đo TPD-NH3 của xúc tác CS 
148 
149 
150 
2. Kết quả TPD-CO2 của xúc tác CS 
151 
152 
153 
3. Kết quả TPD-NH3 của xúc tác MCS 
154 
155 
156 
157 
158 
4. Kết quả TPD-CO2 của xúc tác MCS 
159 
160 
161 
162 
163 
PHỤ LỤC 3: PHỔ FT-IR 
164 
1. Phổ FT-IR của xúc tác CS 
2. Phổ FT-IR của xúc tác MCS 
PHỤ LỤC 4. CÁC PHỔ MS CỦA BIODIESEL TỪ DẦU VI TẢO HỌ 
BOTRYOCOCCUS 
4
7
1
.3
7
9
6
.4
8
5
4
.8
8
7
5
.1
1
0
9
4
.0
1
4
9
2
.1
1
6
3
8
.8
3
4
6
0
.6
3
8
5
5
.5
CS
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
%
T
ra
n
s
m
it
ta
n
c
e
 500 1000 1500 2000 2500 3000 3500 4000 
Wavenumbers (cm-1)
Number of sample scans: 32
Number of background scans: 32
Resolution: 4.000
Sample gain: 4.0
Mirror velocity: 0.6329
Aperture: 100.00
4
6
4
7
9
1
.5
9
5
5
.0
1
0
8
3
.2
1
6
4
9
.8
2
8
4
7
.2
2
9
2
0
.8
3
4
4
5
.5
*Mau MSC-3
 30
 35
 40
 45
 50
 55
 60
 65
 70
%
T
ra
n
s
m
it
ta
n
c
e
 500 1000 1500 2000 2500 3000 3500 
Wavenumbers (cm-1)
Number of sample scans: 64
Number of background scans: 64
Resolution: 4.000
Sample gain: 2.0
Mirror velocity: 0.6329
Aperture: 100.00
165 
166 
167 
168 
169 
170 
171 
172 
173 
            Các file đính kèm theo tài liệu này:
 luan_an_tien_si_toan_van_1441.pdf luan_an_tien_si_toan_van_1441.pdf