Luận án Research into TiO₂/ac, TiO₂/go synthesis and coating on cordierite ceramic applied as catalysts for photodegradation of methyl orange and phenol

The synthesis of TiO2-based photocatalysts by various methods, such as solgel, hydrothermal, and precipitation, revealed that the synthesis technique effects photocatalytic activity mostly owing to changes in surface area and pore size. TiO2 generated by hydrothermal synthesis contains a large surface area and adequate pore size, and hence displayed the best activity for the degradation of MO and phenol under UV light. Due to phenol's more stable structure, its degradation was more difficult than that of MO (lower degradation and longer reaction time), but with optimum amount of added H2O2 (4 mmol/l) and a low phenol concentration (10 ppm), more than 80 percent of phenol was degraded after 240 minutes of reaction. The Langmuir-Hinshelwood kinetic model was also used to compare the rate of phenol degradation reaction on different catalysts and conditions [175]. The results presented in the results tables show the agreement of all the photocatalytic processes of the samples with the applied model. The reaction rate constants corresponding to the catalytic process of each sample are listed in Table fom 3.9 to 3.12. Under UV light, catalyst P123-C25-450 has the highest rate constant of 0.0027 compared to the other two catalyst samples. The initial concentration of phenol greatly affects the reaction rate. At 10 ppm, the rate constant reaches 0.0071, more than twice as much as at 30 ppm (0.0027). At phenol concentrations of 30 ppm and optimal H2O2 content (4 ppm), catalyst P123-c25-450 gives results of up to 0.0079. GO is found to speed up the processing of phenol catalyst GO-ZnO with a rate constant of up to 0.0107 in the visible light range. It also shows that the process parameters are a very important part of figuring out how well a photocatalyst is synthesized. However, the attempt to shift phenol photodegradation to the visible light range by making a TiO2–GO composite failed despite the success of the same manufacturing technique for ZnO–GO

pdf150 trang | Chia sẻ: huydang97 | Lượt xem: 389 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Research into TiO₂/ac, TiO₂/go synthesis and coating on cordierite ceramic applied as catalysts for photodegradation of methyl orange and phenol, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
on the more easily destroyed organic molecule MO demonstrated that the addition of GO to TiO2 catalysts did not increase their activity in visible light. Catalysts based on synthesized TiO2 displayed less activity than ZnO based cunder visible light illumination. The findings are agreed with previous studies [160, 181,182]. Summary: The synthesis of TiO2-based photocatalysts by various methods, such as solgel, hydrothermal, and precipitation, revealed that the synthesis technique effects photocatalytic activity mostly owing to changes in surface area and pore size. TiO2 generated by hydrothermal synthesis contains a large surface area and adequate pore size, and hence displayed the best activity for the degradation of MO and phenol under UV light. Due to phenol's more stable structure, its degradation was more difficult than that of MO (lower degradation and longer reaction time), but with optimum amount of added H2O2 (4 mmol/l) and a low phenol concentration (10 ppm), more than 80 percent of phenol was degraded after 240 minutes of reaction. The Langmuir-Hinshelwood kinetic model was also used to compare the rate of phenol degradation reaction on different catalysts and conditions [175]. The results presented in the results tables show the agreement of all the photocatalytic processes of the samples with the applied model. The reaction rate constants corresponding to the catalytic process of each sample are listed in Table fom 3.9 to 3.12. Under UV light, catalyst P123-C25-450 has the highest rate constant of 0.0027 compared to the other two catalyst samples. The initial concentration of phenol greatly affects the reaction rate. At 10 ppm, the rate constant reaches 0.0071, more than twice as much as at 30 ppm (0.0027). At phenol concentrations of 30 ppm and optimal H2O2 content (4 ppm), catalyst P123-c25-450 gives results of up to 0.0079. GO is found to speed up the processing of phenol catalyst GO-ZnO with a rate constant of up to 0.0107 in the visible light range. It also shows that the process parameters are a very important part of figuring out how well a photocatalyst is synthesized. However, the attempt to shift phenol photodegradation to the visible light range by making a TiO2–GO composite failed despite the success of the same manufacturing technique for ZnO–GO. 115 CHAPTER 4: CONCLUSIONS AND RECOMENDATONS 1.Precipitation and hydrothermal methods were used to synthesize the Nano TiO2 catalysts. Many characterization methods of material structure and morphology as well as synthesis parameters have been measured, researched, and optimized (substance structure, calcination temperature, citric acid amount, substance removal methods, etc.). The photodegradation is evaluated by the photochemical reaction to degrade the agent methyl orange in solution (MO). The results showed that the catalyst made by the hydrothermal method P123-C25-450 worked the best. After 60 minutes of lighting by the UVC 254 NM-100W lamp, 98% of the MO had been broken down (MO concentration was 20 ppm). 2.The TiO2 was modified with activated carbon by the sol-gel method. The parameters of support as the amount as well as the type of activated carbon used, are evaluated. The results showed that the catalyst SG AC1200 TI1/18 has the best degradation efficiency. Similar experiments with samples modified with graphene oxide (GO) support have yielded similar results. SG GO Ti 1/18 also gives the best decomposition optical efficiency. 3. Different amounts of PEG 600 were used to dip coat TiO2/AC catalysts made with sol-gel, hydrothermal, and precipitation methods on cordierite supports. The results show that high PEG Corgel-150 material has the best performance in MO degradation, with a performance of up to nearly 94%. 4.. The TiO2 coating by the chemical vapor deposition (CVD) method on glass, aluminum, and cordierite supports has also been evaluated. The results show that the catalyst coated on the ceramic support is the best at breaking down MO. After 120 minutes of light from a UVC lamp with a wavelength of 254 nm, MO was degraded down by about 52%. 5. The highly active catalyst materials evaluated above, such as P123-C25-450, SG AC 1200 T1/18, have been compared in the phenol photodegradation UV lamp. The P123-C25-450 catalyst has the most effective result with a degradation rate of 45% under research conditions. Preliminary research has compared the ability of GO-TiO2 catalysts, GO-ZnO, and P123-C25-450 to degrade phenol and the kinetics of their processes. Recommendation: This study can be extended as to get better results with visible light photocatalysis, further study on GO/TiO2 is needed. 116 REFERENCES [1]. G. m.-G. a. Dobrosz-Go´meza, S.M. Lo´pez Zamora, E. GilPavas, J. Bojarska, M. Kozanecki, J.M. Rynkowski, "Transition metal loaded TiO2 for phenol photo- degradation," International Symposium on Air & Water Pollution Abatement Catalysis (AWPAC), pp. 1-13, 2014. [2]. R. B. B. Eugene W. Rice, Andrew D. Eaton, Lenore S. Clescerei, “Standard Method for the Examination of Water and Wasstewater“. American Public Health Association, 800I Street, NW Washington, DC 20001-3710: American Public Health Association, American Water Works Association, Water Enviroment Federation, 2012. [3]. Raghu Sangeetha, C. Ahmed Basha, “Chemical or electrochemical procedures followed by ion exchange are used to recycle textile dye effluent“. Journal of Hazardous Materials, November 2007, 149 (2): 324-30. doi: 10.1016/j.j.hazmat.2007.03.087 [4]. F. Q. Juanrong Chen, Wanzhen Xu, Shunsheng Cao, Huijun Zhu, "Recent Progress in Enhancing Photocatalytic Efficiency of TiO2-based Materials," Applied Catalysis A: General, pp. 1-22, 2015. [5]. X. Chen and S. S. Mao, "Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications," Chemical reviews, vol. 107, pp. 2891-2959, 2007. [6]. Xu, Y.-J., Y. Zhuang, and X. Fu, “New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: a case study on degradation of benzene and methyl orange”. The Journal of Physical Chemistry C, 2010. 114(6): p. 2669-2676. [7]. Zhou, J., M. Takeuchi, A.K. Ray, M. Anpo, and X. Zhao, “Enhancement of photocatalytic activity of P25 TiO2 by vanadium-ion implantation under visible light irradiation”. Journal of colloid and interface science, 2007. 311(2): p. 497-501. [8]. Keller, V., P. Bernhardt, and F. Garin, “Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts”. Journal of Catalysis, 2003. 215(1): p. 129-138. [9]. Bingham, S. and W.A. Daoud, “Recent advances in making nano-sized TiO2 visible- light active through rare-earth metal doping”. Journal of Materials Chemistry, 2011. 21(7): p. 2041-205 [10]. Wang, J., Y. Lv, L. Zhang, B. Liu, R. Jiang, G. Han, R. Xu, and X. Zhang, “Sonocatalytic degradation of organic dyes and comparison of catalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites under ultrasonic irradiation”. Ultrasonics Sonochemistry, 2010. 17(4): p. 642-648. 117 [11]. Rajamanickam, D. and M. Shanthi, “Photocatalytic degradation of an azo dye Sunset Yellow under UV-A light using TiO2/CAC composite catalysts”. Spectrochim Acta A Mol Biomol Spectrosc, 2014. 128: p. 100-8. [12]. Hameed, B.H., A.T. Din, and A.L. Ahmad, „Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies“. J Hazard Mater, 2007. 141(3): p. 819-25. [13]. Asiltürk, M. and Ş. Şener, “TiO2-activated carbon photocatalysts: Preparation, characterization and photocatalytic activities“. Chemical Engineering Journal, 2012. 180: p. 354-363. [14]. Mogyorosi, K., I. Dekany, and J. Fendler, “Preparation and characterization of clay mineral intercalated titanium dioxide nanoparticles”. Langmuir, 2003. 19(7): p. 2938-2946. [15]. Shankar, M., S. Anandan, N. Venkatachalam, B. Arabindoo, and V. Murugesan, “Fine route for an efficient removal of 2, 4-dichlorophenoxyacetic acid (2, 4-D) by zeolite-supported TiO2”. Chemosphere, 2006. 63(6): p. 1014-1021 [16]. Li, X., H. Liu, L. Cheng, and H. Tong, “Photocatalytic oxidation using a new catalyst TiO2 microsphere for water and wastewater treatment”. Environmental Science & Technology, 2003. 37(17): p. 3989-3994. [17]. Mahmoodi, N.M., M. Arami, and J. Zhang, “Preparation and photocatalytic activity of immobilized composite photocatalyst (titania nanoparticle/activated carbon)”. Journal of Alloys and Compounds, 2011. 509(14): p. 4754-4764. [18]. I. E. W. Xingtao Gao, "Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties," Catalysis Today, vol. 51, pp. 233-254, 1999. [19]. Mohan, D., Singh, K. P., & Singh, V. K. (2008). “Wastewater treatment using low cost activated carbons derived from agricultural byproducts - A case study“. Journal of Hazardous Materials, 152, 1045-1053. [20]. Araña, Javier & Doña Rodríguez, J. & Rendón, Erick Danilo & Cabo, C. & González Díaz, Oscar & Melián, J. & Pérez-Peña, J. & Colón, G. & Navı́o, J.A.. (2003). “TiO2 activation by using activated carbon as a support: Part I. Surface characterisation and decantability study“. Applied Catalysis B: Environmental. 44. 161-172. doi:10.1016/S0926-3373(03)00107-3. [21]. Etacheri, Vinodkumar; Di Valentin, Cristiana; Schneider, Jenny; Bahnemann, Detlef; Pillai, Suresh C. (2015). „Visible-Light Activation of TiO2 Photocatalysts: Advances in Theory and Experiments“. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, S1389556715000441– . doi:10.1016/j.jphotochemrev.2015.08.003 118 [22]. Du, S., Lian, J. & Zhang, F. “Visible Light-Responsive N-Doped TiO2 Photocatalysis: Synthesis, Characterizations, and Applications. Trans. Tianjin Univ. 28, 33–52 (2022). doi:10.1007/s12209-021-00303-w [23]. Purabgola, A., Mayilswamy, N. & Kandasubramanian, B. “Graphene-based TiO2 composites for photocatalysis & environmental remediation: synthesis and progress”. Environ Sci Pollut Res (2022). doi:10.1007/s11356-022-18983-9 [24]. Caique Prado Machado de Oliveira, Inara Fernandes Farah, Konrad Koch, Jörg E. Drewes, Marcelo Machado Viana, Míriam Cristina Santos Amaral, “TiO2-Graphene oxide nanocomposite membranes: A review”,Separation and Purification Technology,Volume 280,2022,119836, ISSN 1383-5866, doi: 10.1016/j.seppur.2021.119836. [25]. Reghunath, S., Pinheiro, D., & KR, S. D. (2021). A review of hierarchical nanostructures of TiO2: Advances and applications. Applied Surface Science Advances, 3, 100063. doi:10.1016/j.apsadv.2021.100063 [26]. https://wwf.panda.org/wwf_news/?338993/Textile-and-Garment-Sector-in- Vietnam-Water-Risks-and-Solution. [27]. Tetra Tech EM, Inc. (2001). „Best practice environmental management guidelines for the textile industry“. ASEAN Australia Economic Cooperation Program, Wastewater Technology Transfer and Cleaner Production Demonstration Project, Manila, Philippines. [28]. Hunger, K. (2003). Industrial dyes: Chemistry, properties and applications“. Germany:Wiley-Vch. [29]. Broadbent, A. (2001). “Basic Principles of Textile Coloration“. Canada: Thanet Press [30]. Chen, T., Zheng, Y., Lin, J. M. & Chen, G. (2008). “Study on the Photocatalytic Degradation of Methyl Orange in Water Using Ag/ZnO as Catalyst by Liquid Chromatography Electrospray Ionization Ion-Trap Mass Spectrometry“. Journal of the American Society for Mass Spectrometry, 19, 997-1003 [31]. Panda, N., Sahoo, H. & Mohapatra, S. (2011). “Decolourization of Methyl Orange using Fentonlike mesoporous Fe2O3–SiO2 composite“. Journal of Hazardous Materials, 185, 359-365 [32]. N. Guettai and H. Ait Amar, "Photocatalytic oxidation of methyl orange inpresence of titanium dioxide in aqueous suspension. Part I: Parametric study," Desalination, vol. 185, pp. 427-437, 2005. [33]. S. Al-Qaradawi and S. R. Salman, "Photocatalytic degradation of methyl orange as a model compound," Journal of Photochemistry and Photobiology A: Chemistry, vol. 148, pp. 161-168, 2002.. 119 [34]. R. B. B. Eugene W. Rice, Andrew D. Eaton, Lenore S. Clescerei, “Standard Method for the Examination of Water and Wasstewater”. American Public Health Association, 800I Street, NW Washington, DC 20001-3710: American Public Health Association, American Water Works Association, Water Enviroment Federation, 2012 [35]. G. Busca, S. Berardinelli, C. Resini, and L. Arrighi, "Technologies for the removal of phenol from fluid streams: a short review of recent developments," Journal of Hazardous Materials, vol. 160, pp. 265-288, 2008. [36]. F. Akbal and A. N. Onar, "Photocatalytic degradation of phenol," Environmental monitoring and assessment, vol. 83, pp. 295-302, 2003. [37]. O. F. KASHIF Naeem, "Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2," Journal of Environmental Science, vol. 21, pp. 527-533, 2009. [38]. H. Babich, D.L. Davis, Phenol: “A review of environmental and health risks, Regulatory Toxicology and Pharmacology“, Volume 1, Issue 1,1981,Pages 90-109, ISSN 0273-2300, doi:10.1016/0273-2300(81)90071-4. [39]. Wang, G.; Guo, W.; Xu, D.; Liu, D.; Qin, M, “Graphene Oxide Hybridised TiO2 for Visible Light Photocatalytic Degradation of Phenol“. Symmetry 2020, 12, 1420. doi:10.3390/sym12091420 [40]. Li.Y Zhang.S,Yu.Q and Yin.W, “The Effects of Activated Carbon Support on The Structure and Properties of TiO2 Nanoparticles Prepared by A Sol-gel Method” Applied Surface Science 2007. - Vol. 253. - pp. 9254- 9258 [41]. D. Fabbri A. Bianco Prevot, V. Zelano, M. Ginepro, E. Pramauro, “Removal and degradation of aromatic compounds from a highly polluted site by coupling soil washing with photocatalysis”, Chemosphere, 2008. - 1 : Vol. 71. - pp. 59-65. [42]. Hargava Amit B Novel “Photocatalytic Reactor and Process for Wastewater Treatment” Book : THE UNIVERSlTY OF CALGARY, 2000 [43]. Ayaz Mohd, “Presence of phenol in wastewater effluent and its removal: an overview”. International Journal of Environmental Analytical Chemistry Volume 102, 2022 - Issue 6 [44]. P Wonchai, P. Surin, P. Thirawit, T. Titipun, B. Dheerawan, Y. Liangdeng, O. Wiranwetchayan, “Crystalline phases and optical properties of titanium dioxide films deposited on glass substrates by microwave method“, Surface and Coatings Technology, Volume 306, Part A, 25 November 2016, Pages 69-74 [45]. Zhenzi Li, Shijie Wang, Jiaxing Wu, Wei Zhou, “Recent progress in defective TiO2 photocatalysts for energy and environmental applications,Renewable and 120 Sustainable Energy” Reviews,Volume 156,22,111980, ISSN 1364- 0321,doi:10.1016/j.rser.2021.111980. [46]. Zaid H. Jabbar, Shahlaa Esmail Ebrahim, “Recent advances in nano-semiconductors photocatalysis for degrading organic contaminants and microbial disinfection in wastewater: A comprehensive review”, Environmental Nanotechnology, Monitoring & Management,Volume 17,2022,100666,ISSN 2215 1532, doi:10.1016/j.enmm.2022.100666. [47]. E.M. Bayan, L.E. Pustovaya, M.G. Volkova,”Recent advances in TiO2-based materials for photocatalytic degradation of antibiotics in aqueous systems”,Environmental Technology & Innovation,Volume 24,2021,101822, ISSN 2352-1864,doi:10.1016/j.eti.2021.101822. [48]. McEvoy Ralph W. Matthews and Stephen R,“ Photocatalytic degradation of phenol in the presence of near-UV illuminated titanium dioxide“, Journal of Photochemistry and Photobiology A: Chemistry, 1992. - 2 : Vol. 64. - pp. 231-246 [49]. Ollis Craig S. Turchi and David F”, Journal of Catalysis, 1990. - 1 : Vol. 122. - pp. 178-192. [50]. Hameed U.G. Akpan and B.H, “Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review“ Journal of Hazardous Materials, 2009. - 2-3 : Vol. 170. - pp. 520-529. [51]. Weeraman Buraso, Vichuda Lachom, Porntip Siriya and Paveena Laokul, “Synthesis of TiO2 nanoparticles via a simple precipitation method and photocatalytic performance“, Materials Research Express, Volume 5, Number 11 2018. [52]. Dmitry Bokov ,Abduladheem Turki Jalil , Supat Chupradit , Wanich Suksatan ,Mohammad Javed Ansari, Iman H. Shewael, Gabdrakhman H. Valiev, and Ehsan Kianfar , “Nanomaterial by Sol-Gel Method: Synthesis and Application“, Advances in Materials Science and Engineering / Hindawi 2021 [53]. Daniel Navas,Sandra Fuentes,Alejandro Castro-Alvarez, and Emigdio Chavez- Angel, “Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials“ MDPI open access, doi:10.3390/gels7040275 [54]. Yong X. Gan , Ahalapitiya H. Jayatissa, Zhen Yu, Xi Chen and Mingheng Li, „Hydrothermal Synthesis of Nanomaterials“, Journal of Nanomaterials / 2020 doi:10.1155/2020/8917013 [55]. O.Carp „Photoinduced Reactivity of Titanium Dioxide“, Progress in Solid State Chemistry. - 2004. - 32. - pp. 33-177. [56]. Yasuhiko Arai Hiroyo Segawa, Kazuaki Yoshida Method, “Synthesis of Nano Silica Particles for Polishing Prepared by Sol–Gel”, Journal of Sol-Gel Science and Technology, 2005. - 32 : Vols. 1-3. 121 [57]. Xu.Q Anderson A.M. „Synthesis of Porosity Controlled Ceramic Membranes“, Journal of Materials Research, 1991. Vol 6. - pp. 1073-1082. [58]. Venkatachalam, N., Palanichamy, M. & Muregesan, V. (2007). “Sol–gel preparation and characterization of nanosize TiO2: Its photocatalytic performance“. Materials Chemistry and Physics, 104, 454 – 459. [59]. Su A., Tseng, C.M., Chen, L.F., You, B.H., Hsu, B.C., Chen, “ Sol– Hydrothermal Preparation and Photocatalysis of Titanium Dioxide”, Thin Solid Films, 2006. Vol. 498. - pp. 259-265. [60]. Li.Y Zhang.S,Yu.Q and Yin.W, “The Effects of Activated Carbon Support on The Structure and Properties of TiO2 Nanoparticles Prepared by A Sol-gel Method“, Applied Surface Science. 2007. - Vol. 253. - pp. 9254- 9258. [61]. Bahnemann D, “Photocatalytic water treatment: solar energy applications“, Solar Energy, 2004. - Vol. 77. - pp. 445-459. [62]. K. Porkodi S. Daisy Arokiamary, “ Synthesis and spectroscopic characterization of nanostructured anatase titania: A photocatalyst“, Materials Characterization, june 2007. - 6 : Vol. 58. - pp. 495-503.. [63]. Chen Y., Dionysiou, D., “Effect of Calcination Temperature on The Photocatalytic Activity and Adhesion of TiO2 Films Prepared by The P-25 Powder- Modified Sol– Gel Method“, Journal of Molecular Catalysis A: Chemical, 2006. - Vol. 244. - pp. 73-82. [64]. Yu-Hsiang Hsien Chi-Fu Chang, Yu-Huang Chen, Soofin Cheng, “ Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves”, Applied Catalysis B: Environmental, 2001. - 4 : Vol. 31. - pp. 241-249. [65]. Juha-Pekka Nikkanen Tomi Kanerva, Tapio Mäntylä, “The effect of acidity in low- temperature synthesis of titanium dioxide”, Journal of Crystal Growth, 2007. Vol. 304. - pp. 179-183.. [66]. Zhang X. Lei L, „Effect of Preparation Methods on The Structure and Catalytic Performance of TiO2/AC Photocatalysts“, Journal of Hazardous Materials. - 2008. - 153. - pp. 827-833.. [67]. Miki Kanna Sumpun Wongnawa, “Mixed amorphous and nanocrystalline TiO2 powders prepared by sol–gel method: Characterization and photocatalytic study” , Materials Chemistry and Physics, 2008. - 1 : Vol. 110. - pp. 166-175. [68]. Tường, P. V. (2007). „Các phương pháp tổng hợp vật liệu gốm“, NXB Đại học Quốc gia Hà Nội [69]. Soler-Illia, G.J.A.A.; Sanchez, C.; Lebeau, B.; Patarin, J, „Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures“, Chem. Rev. 2002, 102, 4093–4138 122 [70]. Wan, Y.; Zhao, D, „On the controllable soft-templating approach to mesoporous silicates“, Chem. Rev. 2007, 107, 2821–2860. [71]. Corma, A, “From microporous to mesoporous molecular sieve materials and their use in catalysis“, Chem. Rev. 1997, 97, 2373–2420. [72]. Yang, P.; Zhao, D.; Margolese, D.I.; Chmelka, B.F.; Stucky, G.D, “Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks“, Nature 1998, 396, 152–155. [73]. Yang, P.; Zhao, D.; Margolese, D.I.; Chmelka, B.F.; Stucky, G.D, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework“, Chem. Mater. 1999, 11, 2813–2826. [74]. Soler-Illia, G.J.A.A.; Scolan, E.; Louis, A.; Albouy, P.-A.; Sanchez, C, “Design of meso-structured titanium oxo based hybrid organic-inorganic networks“. New J. Chem. 2001, 25, 156–165. [75]. Chen, L.; Yao, B.; Cao, Y.; Fan, K, „Synthesis of well-ordered mesoporous titania with tunable phase content and high photoactivity“ J. Phys. Chem. C 2007, 111, 11849–11853. [76]. Hung, I.M.; Wang, Y.; Huang, C.-F.; Fan, Y.-S.; Han, Y.-J.; Peng, H.-W, “Effects of templating surfactant concentrations on the mesostructure of ordered mesoporous anatase TiO2 by an evaporation-induced self-assembly method“. J. Eur. Ceram. Soc. 2010, 30, 2065–2072. [77]. Das, S.K.; Bhunia, M.K.; Bhaumik, A, „Self-assembled TiO2 nanoparticles: Mesoporosity, optical and catalytic properties“, Dalton Trans. 2010, 39, 4382–4390. [78]. Zhou, W.; Sun, F.; Pan, K.; Tian, G.; Jiang, B.; Ren, Z.; Tian, C.; Fu, H, “Well- ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: Preparation, characterization, and photocatalytic performance“. Adv. Funct. Mater. 2011, 21, 1922–1930 [79]. Ray, A. & Beenackers, A. (1998). “Development of a new photocatalytic reactor for water purification“, Catalysis Today, 40, 73 – 83. [80]. Arabatzis, I., Antonaraki, S. & Stergiopoulos, T. (2002), “Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3,5-dichlorophenol degradation”. Journal on Photochemistry and Photobiology A: Chemistry, 149, 237–245 [81]. Noorjahan M., Reddy, M. & Kumari, V. (2003), “Photocatalytic degradation of H- Acid over a novel TiO2 thin film fixed bed reactor and in aqueous suspensions”, Journal on Photochemisty and Photobiology A: Chemistry, 156, 179–187 123 [82]. Shigwedha N., Hua, Z. & Chen J. (2006), “Immobilizing TiO2 allows H2O2 to be present at the start and enhances the photodegradation of acid yellow 36”, Journal of Chemical Engineering in Japan, 39, 475–480 [83]. Pouilleau, J., Devilliers, D., Garrido, F., Durand-Vidal, S. & Mahe, E. (1997). “Structure and composition of passive titanium oxide films”. Materials Science and Engineering B, 47, 235-243. [84]. Karuppuchamy, S., Nonomura, K., Yoshida, T., Sugiura, T., & Minoura, H. (2002). “Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells”. Solid State Ionics, 151, 19-27. [85]. Li, Y., Li, X., Li, J. & Yin, J. (2006). “Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study“. Water Resources, 40, 1119– 1126. [86]. Tryba, B., Morawski, W. & Inagaki, M. (2003a). “A new route for preparation of TiO2 – mounted activated carbon”. Applied Catalysis B: Environmental, 46, 203- 208. [87]. Kubo, M., Fukuda, H., Chua, X. & Yonemoto, T. (2005). “Ultrasonic degradation of phenol in the presence of composite particles of TiO2 and activated carbon”. In: American Institute of Chemical Engineering Annual Meeting, Conference Proceedings, 10358–10360. [88]. Takeda, S., Odaka, H. & Hosono, H. (2001). “Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering”. Thin Solid Films, 392, 338-344 [89]. Zhang, X., Zhou, M. & Lei, L. (2005). „Preparation of photocatalytic TiO2 coatings of nanosized particles on activated carbon by AP-MOCVD“. Carbon, 43, 1700– 1708. [90]. Zhang, X., Zhou, M. & Lei, L. (2005). “Preparation of anatase TiO2 supported on alumina by different metal organic chemical vapor deposition methods“. Applied Catalysis A: General, 282, 285-293. [91]. Byun, C., Jang, J., Kim, I., Hong, K. & Lee, B. (1997). “Anatase-to-rutile transition of titania thin films prepared by MOCVD”. Material Research Bulletin, 32, 41–440. [92]. Chen, C., Kelder, E. & Schoonman, J. (1999a). “Electrostatic sol-spray deposition (ESSD) and characterization of nanostructured TiO2 thin films“. Thin Solid Films, 342, 35-41. [93]. Kavan, L. & Gratzel, M. (1995). “Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis“. Electrochimica Acta, 40, 643-652. [94]. Li Puma, G., Bono, A. Krishnaiah, D. & Collin, J. (2008). “Preparation of Titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper“. Journal of Hazardous Materials, 157, 209- 219. 124 [95]. Guillard, C., Lachheb, H., Houas, A., Ksibi, M., Elaloui, E. & Herrmann, J. (2003). “Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2: Comparison of the efficiency of powder and supported TiO2”. Journal of Photochemistry and Photobiology A: Chemistry, 158, 27–36. [96]. Ao, Y., Xu, J., Fu, D., Shen, X. & Yuan, C. (2008). “Low temperature preparation of anatase TiO2 -activated carbon composite film”. Applied Surface Science, 254, 4001–4006. [97]. Jahromi, H., Taghdisian, H., Afshar, S. & Tasharoffi, S. (2009). “Effects of pH and polyethylene glycol on morphology of TiO2 thin film“. Surface and Coatings Technology, 203, 1991-1996. [98]. M. Uzunova-Bujnova, R. Todorovska, M. Milanova, R. Kralchevska,, D. Todorovsky. (2009) .On the spray-drying deposition of TiO2 photocatalytic films“. Applied Surface Science, 256, 830-837. [99]. S., Lee, J., Yoo, K., Park, H., Kim, H. & Lee, J. (2008). “Adhesion properties of inorganic binders for the immobilization of photocatalytic ZnO and TiO2 nanopowders”. Journal of Physics and Chemistry of Solids, 69,1461–1463 [100]. Akira Fujishima Tata N. Rao and Donald A. Tryk, “Titanium dioxide photocatalysis” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000. - 1 : Vol. 1. - pp. 1-21. [101]. Bin Gao George Z. Chen,Gianluca Li Puma,“Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Applied Catalysis B: Environmental , 2009. - 3-4 : Vol. 89. - pp. 503-509. [102]. Wang W. Silva, C.G. and Faria J.L. “Photocatalytic Degradation of Chromotrope 2R using Nanocrystalline TiO2/Activated Carbon Composite Catalysts“, Applied Catalysis B: Enviromental. - 2007. - 70. - pp. 470-478. [103]. Liu.J Rong.Y and Song-mei. L, “Preparation and Application of Efficient TiO2/ACF Photocatalyst”, Journal of Environmental Science, 2006. - Vol. 5. - pp. 979-982. [104]. Tryba, B., Morawski, W. & Inagaki, M. (2003a). “A new route for preparation of TiO2 – mounted activated carbon”. Applied Catalysis B: Environmental, 46, 203- 208. [105]. Li.Y Zhang.S,Yu.Q and Yin.W, “The Effects of Activated Carbon Support on The Structure and Properties of TiO2 Nanoparticles Prepared by A Sol-gel Method“, Applied Surface Science. 2007. Vol. 253. - pp. 9254- 9258. 125 [106]. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A. (2004), "Electric field in atomically thin carbon films", Science, Vol. 306, No. 5696, pp. 666-669. [107]. Wang, X., Zhi, L. and Mullen, K. (2007), "Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells", Nano Letters, Vol. 8, No. 1, pp. 323-327. [108]. Allen, M. J., Tung, V. C. and Kaner, R. B. (2009), "Honeycomb Carbon: A Review of Graphene", Chemical Reviews, Vol. 110, No. 1, pp. 132-145 [109]. Huang, X., Qi, X., Boey, F. and Zhang, H. (2012), "Graphene-based composites", Chemical Society Reviews, Vol. 41, No. 2, pp. 666-686. [110]. Geim, A. K. and Novoselov, K. S. (2007), "The rise of graphene", Nature Materials, Vol. 6, No. 3, pp. 183-191. [111]. Guo, S. and Dong, S. (2011), "Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications", Chemical Society Reviews, Vol. 40, No. 5, pp. 2644-2672. [112]. Feng, H., Cheng, R., Zhao, X., Duan, X. and Li, J. (2013), "A low-temperature method to produce highly reduced graphene oxide", Nature Communications, Vol. 4, No. pp. 1539-1546. [113]. Xu, Z., Sun, H., Zhao, X. and Gao, C. (2013), "Ultrastrong Fibers Assembled from Giant Graphene Oxide Sheets", Advanced Materials, Vol. 25, No. 2, pp. 188-193. [114]. Dreyer, D. R., Park, S., Bielawski, C. W. and Ruoff, R. S. (2010), "The chemistry of graphene oxide", Chemical Society Reviews, Vol. 39, No. 1, pp. 228-240. [115]. Luo, J., Cote, L. J., Tung, V. C., Tan, A. T. L., Goins, P. E., Wu, J. and Huang, J. (2010), "Graphene Oxide Nanocolloids", Journal of the American Chemical Society, Vol. 132, No. 50, pp. 17667-17669. [116]. Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., Nguyen, S. T. and Ruoff, R. S. (2007), "Preparation and characterization of graphene oxide paper", Nature, Vol. 448, No. 7152, pp. 457- 460. [117]. Park, S., An, J., Jung, I., Piner, R. D., An, S. J., Li, X., Velamakanni, A. and Ruoff, R. S. (2009), "Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents", Nano Letters, Vol. 9, No. 4, pp. 1593-1597. [118]. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T. and Ruoff, R. S. (2006), "Graphene-based composite materials", Nature, Vol. 442, No. 7100, pp. 282-286. [119]. Bai, H., Li, C. and Shi, G. (2011), "Functional composite materials based on chemically converted graphene", Advanced Materials, Vol. 23, No. 9, pp. 1089- 1115. 126 [120]. Zhu, X., Ning, G., Fan, Z., Gao, J., Xu, C., Qian, W. and Wei, F. (2012), "One-step synthesis of a graphene-carbon nanotube hybrid decorated by magnetic nanoparticles", Carbon, Vol. 50, No. 8, pp. 2764-2771. [121]. Liu, J., Bai, H., Wang, Y., Liu, Z., Zhang, X. and Sun, D. D. (2010), "Self- assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications", Advanced Functional Materials, Vol. 20, No. 23, pp. 4175-4181. [122]. Zhang, J., Xiong, Z. and Zhao, X. S. (2011), "Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation", Journal of Materials Chemistry, Vol. 21, No. 11, pp. 3634-3640. [123]. Kou, R., Shao, Y., Wang, D., Engelhard, M. H., Kwak, J. H., Wang, J., Viswanathan, V. V., Wang, C., Lin, Y., Wang, Y., Aksay, I. A. and Liu, J. (2009), "Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction", Electrochemistry Communications, Vol. 11, No. 5, pp. 954-957. [124]. Chen, L. C. & Chou, T. S. (1994). “Photodecolorization of Methyl Orange Using Silver Ion Modified TiO2 as Photocatalyst”. Industrial & Engineering Chemistry Research, 33, 1436-1443. [125]. Al- Qaradawi, S. & Salman, R. S. (2002). “Photocatalytic degradation of methyl orange as a model compound”. Journal of Photochemistry and Photobiology A, 148, 161–168. [126]. Arabatzis, I. M., Stergiopoulos, T., Bernard, M. C., Labou, D. Neophytides, S. G. & Falaras, P.(2003). “Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange”. Applied Catalysis B: Environmental, 42, 187– 201 [127]. Guettai, N. & Amar, H. A. (2005). “Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study”. Desalination, 185, 427–437. [128]. Chen, J. Q., Wang, D., Zhu, M. X. & Gao, C. J. (2006). “Study on degradation of methyl orange using pelagite as photocatalyst”. Journal of Hazardous Materials B,138, 182–186. [129]. Li, Y., Li, X., Li, J. & Yin, J. (2006). “Photocatalytic degradation of methyl orange by TiO2-coated”. Water Research, 40, 1119 – 1126. [130]. Sharma, S. D., Singh, D., Saini, K. K., Kant, C., Sharma, V., Jain, S. C. & Sharma, C. P. (2006). “Sol–gel-derived super-hydrophilic nickel doped TiO2 film as active photo-catalyst”. Applied Catalysis A: General, 314, 40–46. 127 [131]. Kansal, S. K., Singh, M. & Sud, D. (2007). “Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts”. Journal of Hazardous Materials, 141, 581-590. [132]. Liu, Y. & Sun, D. (2007). “Development of Fe2O3 -CeO2 -TiO2/γ -Al2O3 as catalyst for catalytic wet air oxidation of methyl orange azo dye under room condition”. Applied Catalysis. B, Environmental, 72, 205-211 [133]. Ma, H., Zhuo, Q. & Wang, B. (2007). “Characteristics of CuO-MoO3-P2O5 Catalyst and Its Catalytic Wet Oxidation (CWO) of Dye Wastewater under Extremely Mild Conditions”. Environmental Science & Technology, 41, 7491-7496. [134]. Rashed, M. N. & El-Amin, A. A. (2007). “Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources“. International Journal of Physical Sciences, 2 (3), 73-81 [135]. Zhang, X., Yang, H., Zhang, F. & Chen, K.W. (2007). “Preparation and characterization of Pt–TiO2–SiO2 mesoporous materials and visible-light photocatalytic performance“. Materials Letters, 61, 2231–2234. [136]. Huang, M., Xu, C., Wu, Z., Huang, Y., Lin, J. & Wu, J. (2008). “Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite”. Dyes and Pigments,77, 327-334. [137]. Sohn, Y. S., Smith, Y. R., Misra, M. & Subramanian, V. (2008). “Electrochemically assisted photocatalytic degradation of methyl orange using anodized titanium dioxide nanotubes”. Applied Catalysis B: Environmental, 84, 372–378. [138]. Zhang, F., Xie, F., Fang, T., Zhang, K., Chen, T. & Oh, W. (2012). “Photocatalytic Degradation of Methyl Orange on Platinum and Palladium Co-doped TiO2 Nanoparticles, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano- Metal Chemistry“, 42:5, 685-691 doi:10.1080/15533174.2011.615040 [139]. Sun, M., Li, D., Li, W., Chen, Y., Chen, Z., He, Y. & Fu, X. (2008). “New Photocatalyst, Sb2S3, for Degradation of Methyl Orange under Visible-Light Irradiation”. Journal of Physical Chemistry C, 112, 18076–18081. [140]. Zhao, Q., Li, M., Chu, J., Jiang, T. & Yin, H. (2009). “Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange”. Applied Surface Science, 255, 3773–3778. [141]. Zhu, Y., Xu, S. & Yi, D. (2010). “Photocatalytic degradation of methyl orange using polythiophene/titanium dioxide composites”. Reactive & Functional Polymers, 70, 282-287. [142]. Guo, C., Xu, J., He, Y., Zhang, Y. & Wang, Y. (2011). “Photodegradation of rhodamine B and methyl orange over one-dimensional TiO2 catalysts under simulated solar irradiation”. Applied Surface Science, 257, 3798–3803. 128 [143]. Rauf, M. & Ashraf, S. (2009). „Fundamental principles and application of heterogeneous photocatalytic degradation of dye in solution“. Chemical Engineering Journal, 151, 10-18. [144]. Bouzaida, I., Ferronato, C., Chovelon, J., Rammah, M. & Herrmann J. (2004). “Heterogeneous photocatalytic degradation of the anthraquinonic dye, acid blue 25 (AB25): A kinetic approach“. Journal of Photochemistry and Photobiology A: Chemistry, 168, 23 [145]. S. Kulkarni and D. Kaware, "Review on Research for Removal of Phenol from Wastewater", International Journal of Scientific and Research Publications, 3 (2013) 1-4. [146]. Zaheen U Khan, Ayesha Kausar, Hidayat Ullah, Amin Badshah and Wasid U Khan (2015), "A review of graphene oxide, graphene buckypaper, and polymer/graphene composites: Properties and fabrication techniques", Journal of Plastic Film & Sheeting. 0(0), tr. 1-45. [147]. X. Xiong and Y. Xu, "Synergetic Effect of Pt and Borate on the TiO2- Photocatalyzed Degradation of Phenol in Water", The Journal of Physical Chemistry C, 120 (2016) 3906-3912. [148]. W. Wang, P. Serp, P. Kalck, J. Luis Faria, “Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol–gel method”, Applied Catalysis B: Environmental 56 (2005) 305-312. [149]. J. Prince, F. Tzompantzi, G. Mendoza-Damian, F. Hernandez-Beltran, J.S. Valente, “Photocatalytic degradation of phenol by semiconducting mixed oxides derived from Zn(Ga)Al layered double hydroxides”, Applied Catalysis B: Environmental 163 (2015) 352-360. [150]. M. Umar and H. Abdul, "Photocatalytic Degradation of Organic Pollutants in Water", Organic Pollutants - Monitoring, Risk and Treatment, 2013. [151]. A. Linsebigler, G. Lu and J. Yates, "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results", Chemical Reviews, 95 (1995) 735-758. [152]. K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka and A. Itaya, "Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder", Bulletin of the Chemical Society of Japan, 58 (1985) 2015- 2022. [153]. N. Khalid, E. Ahmed, N. Niaz, G. Nabi, M. Ahmad, M. Tahir, M. Rafique, M. Rizwan and Y. Khan, "Highly visible light responsive metal loaded N/TiO2 nanoparticles for photocatalytic conversion of CO2 into methane", Ceramics International, 43 (2017) 6771-6777. 129 [154]. N. M. Nghĩa and N. T. Huệ, "Nghiên cứu tính chất quang xúc tác của TiO2 pha tạp Fe phủ trên hạt silica – gel," Tạp chí Khoa học ĐHQGHN: Khoa học Tự nhiên và Công nghệ, vol. 32, no. 4, pp. 24-29, 2016. [155]. N.Q. Tuấn et al, "Nghiên cứu các chất quang xúc tác TiO2 được biến tính bởi Fe2O3 bằng phương pháp sol-gel " Tạp chí hoá học Việt Nam, vol. 47, no. 3, pp. 292-299, 2008. [156]. [3V] V. H. Sơn and L. P. Sơn, "Tổng hợp nano TiO2 cấu trúc anatase pha tạp neodymium bằng phương pháp sol-gel," Tạp chí hóa học Việt Nam, vol. 52, no. 4, 2014. [157]. N. V. Hưng et al, "Ảnh hưởng của Nd3+ đến cấu trúc và hoạt tính quang xúc tác của bột Nd-TiO2 kích thước nano điều chế bằng phương pháp thuỷ nhiệt và thủy phân," Tạp chí Khoa học và Công nghệ, vol. 50, no. 3, pp. 367-374, 2012. [158]. H. T. K. Xuân et al, “Nghiên cứu biến tính TiO2 anatase bằng KF và khảo sát hoạt tính quang hóa trong vùng khả kiến”," Tạp chí phát triển khoa học và công nghệ - ĐH Quốc Gia TP.HCM, vol. 13, no. T1, pp. 22-28, 2010. [159]. Malekshoar G, Pal K, He Q, Yu A, Ray AK (2014) Enhanced solar photocatalytic degradation of phenol with coupled graphene- based titanium dioxide and zinc oxide. Indust Eng Chem Res 53:18824–18832 [160]. Alam S, Sharma N, Kumar L (2017) “Synthesis of graphene oxide (GO) by Modified Hummers method and its thermal reduction to obtain reduced graphene oxide rGO”. Graphene 6:1–18 [161]. Mai Phuong. P, „Study on the impregnation procedures to prepare catalytic complexes for the treatment of motobiker ‘s exhaust gases“, a PhD dissertation 2013 HUST [162]. I Syauqiyah, M Elma, M D. Putra1, A Rahma, Amalia E. Pratiwi and E L. A. Rampun, “Interlayer-free Silica-carbon Template Membranes from Pectin and P123 for Water Desalination“, MATEC Web Conf. Volume 280, 2019 [163]. A. Ban Mazin, S. Asma, Khalil, „Characterization of TiO2 Nanorods and Nanotubes Synthesized by Sol Gel Template Method“, Engineering and Technology Journal Vol. 36, Part C, No. 2, 2018 [164]. Shaohua, ShenLiang, Zhao Liejin Guo, “Crystallite, optical and photocatalytic properties of visible-light-driven ZnIn2S4 photocatalysts synthesized via a surfactant-assisted hydrothermal method“, Materials Research Bulletin, Volume 44, Issue 1, 8 January 2009, Pages 100-105 [165]. H. Annika, H. Marwa, S. Franceb , J. Jouguetb , D. Dappozze ,G. Chantal, "Impact of Rutile and Anatase Phase on the Photocatalytic Decomposition of Lactic Acid“, 130 Applied Catalysis B: Environmental ,Volume 253, 15 September 2019, Pages 96- 104 [166]. G Jayakumar, A Albert Irudayaraj, A Dhayal Raj, “Particle Size Effect on the Properties of Cerium Oxide (CeO2) Nanoparticles Synthesized by Hydrothermal Method“, Mechanics, Materials Science & Engineering, April 2017 – ISSN 2412- 5954 [167]. Katie A.Cychosz, T. Matthias, “Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials“, Engineering, Volume 4, Issue 4, August 2018, Pages 559-566 [168]. M.Peñas-Garzón, A.Gómez-Avilés, C.BelverJ.J.Rodriguez, J.Bedia, “Degradation pathways of emerging contaminants using TiO2-activated carbon heterostructures in aqueous solution under simulated solar light“, Chemical Engineering Journal Volume 392, 15 July 2020, 124867 [169]. O. Kingsley,J Iwuozorab, O. Joshua, E.Ighalocd, “Adsorption of methyl orange: A review on adsorbent performance,“ Current Research in Green and Sustainable Chemistry Volume 4, 2021, 100179 9. -174 [170]. Abdollah Karami, Reem Shomal , Rana Sabouni , Mohammad H. Al-Sayah and Ahmed Aidan, “Parametric Study of Methyl Orange Removal Using Metal–Organic Frameworks Based on Factorial Experimental Design Analysis”, Energies 2022, 15, 4642. [171]. Reda S. Salama, Sohier A. El-Hakama, Salem. E. Samraa, Shady M. El-Dafrawya and Awad I.Ahmeda, “Adsorption, Equilibrium and kinetic studies on the removal of methyl orange dye from aqueous solution by the use of copper metal organic framework (Cu-BDC)”, International Journal of Modern Chemistry, 2018, 10(2): 195-207 [172]. Xian-Tai Zhou, Hong-Bing Ji, andXing-Jiao Huang, “Photocatalytic Degradation of Methyl Orange over Metalloporphyrins Supported on TiO2 Degussa P25”, Molecules 2012, 17(2), 1149-1158 [173]. S. LasseS, S. RenSua, W. StefanWendt, H. PeterHald, M. ArefMamakhel, Y. Chuanxu, B. Yudong Huang, B,B. Iversenc Flemming, “The influence of crystallite size and crystallinity of anatase nanoparticles on the photo-degradation of phenol”, Journal of Catalysis Volume 310, February 2014, Pages 100-108 [174]. Lathasree, S., Rao, A.N., SivaSankar, B., Sadasivam, V., Rengaraj, K., “Heterogeneous photocatalytic mineralization of phenols in aqueous solutions“, J. Mol. Catal. A: Chem. 223, (2004) 131 [175]. N.N.Bahrudin, “Evaluation of degradation kinetic and photostability of immobilized TiO2/activated carbon bilayer photocatalyst for phenol removal”, Applied Surface Science Advances Volume 7, February 2022, 100208 [176]. Daneshvar, N., Behnajady, M.A., Asghar,Y.Z.,“Photooxidative degradation of 4-nitrophenol in UV/H2O2 process: Influence of operational parameters and reaction mechanism“, J. Hazard. Mat., B139, (2007) 275-279. [177]. Sobczynski, A., Duczmal, L., Zmudzinski, W, “Phenol destruction by photocatalysis on TiO2: An attempt to solve the reaction mechanism“, J. Mol. Catal. A: Chem. 213, (2004) 225-230 [178]. Behnajady, M.A., Modirshshla, N., Shokri, M., “Photodestruction of acid orange 7 (AO7) in aqueous solution by UV/H2O2: Influence of operational parameters“, Chemosphere 55 (2003) 129-134. [179]. Roenfeldt, E.J., Linden, K.G., Canonica, S., Gunten, U. V.,“Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2“, Water Res. 40 (2006) 3695-3704. [180]. Yonar, T., Kestioglu, K., Azbar, N, “Treatability studies on domestic wastewater using UV/H2O2 process“, Appl. Catal. B: Environ., 67, (2006) 223-228 [181]. Raja A, Selvakumar K, Rajasekaran P, Arunpandian M, Ashok- kumar S, Kaviyarasu K, Asath Bahadur S, Swaminathan M (2019), “Visible active reduced graphene oxide loaded titania for photo- decomposition of ciprofloxacin and its antibacterial activity“. Colloids Surf A 564:23–30 [182]. Fu CC, Juang RS, Huq MM, Hsieh CT (2016), “Enhanced adsorption and photodegradation of phenol in aqueous suspensions of titania/graphene oxide composite catalysts“. J Taiwan Inst Chem Eng 67:338–345 THE COLLECTION OF PUBLICATIONS 1. Nguyễn Trung Hiếu, Phạm Thị Mai Phương, Đào Quốc Tùy, Lê Minh Thắng (2016), “Nghiên cứu ảnh hưởng của chủng loại và hàm lượng than hoạt tính trong vật liệu AC/TiO2 đến quá trình quang phân hủy methyl orange (MO)”, Tạp chí hóa học, số T54 (5e1,2) 1-5 2016, tr. 343-347. 2. Nguyễn Trung Hiếu, Đào Quốc Tùy, Filip Verschaeren, Lê Minh Thắng (2017), “Nghiên cứu ảnh hưởng của chất hoạt động bề mặt và phương pháp tổng hợp đến quá trình tổng hộp xúc tác quang hóa TiO2 trong xử lý methyl da cam (MO)”, Tạp chí Hóa học, số T.55 (2e) 2017, tr. 5-10. 3. Nguyễn Trung Hiếu, Bùi Đức Huy, Le Minh Thắng (2018), “Nghiên cứu hoạt tính của xúc tác TiO2 dạng màng mỏng trên cordierite trong xử lý methyl da cam”, Tạp chí Hóa học, số T.56 (3E12), tr. 198-202. 4. Nguyễn Trung Hiếu, Hoàng Thế Huynh, Trịnh Giang Khánh, Vũ Anh Tuấn, Lê Minh Thắng (2019), “Tổng hợp và đánh giá hoạt tính xúc tác của màng TiO2 trên gốm cordierite trong việc xử lý methyl da cam”, Tạp chí Hóa học, số T.57 (2e12) 1-5, tr. 115-121. 5. Nguyễn Trung Hiếu, Trịnh Huy Quang, Đào Quốc Tùy, Lê Minh Thắng (2019), “Nghiên cứu ảnh hưởng của tỷ lệ grapheme oxide (GO) trong quá trình biến tính xúc tác quang hóa TiO2 bằng phương pháp sol-gel và xử lý methyl da cam (MO)”, Tạp chí Hóa học, số T.57 (2e12) 1-5, tr. 122-127. 6. Trung Hieu Nguyen, Anh Tuan Vu, Van Han Dang, Jeffrey Chi-Sheng Wu, Minh Thang Le (2020), “Photocatalytic Degradation of Phenol and Methyl Orange with Titania-Based Photocatalysts Synthesized by Various Methods in Comparison with ZnO–Graphene Oxide Composite”, Topics in Catalysis, Springer Nature 2020. https://doi.org/10.1007/s11244-020-01361-5 APPENDIX A TiO2/AC composites Calculation Example of Calculation: TiO2/AC at 5%wt: In preparation process 20ml Ti(OCH(CH3)2)4 was used. The synthesis reaction was presented below Ti(OCH(CH3)2)4 information; the density is 0.97 kg/l, the molecular weight is 284.26 g/mol. For TiO2, the molecular weight is 80 g/mol. Ti{OCH(CH3)2}4 + 2 H2O → TiO2 + 4 (CH3)2CHOH So, 20ml Ti[OCH(CH3)2]4 can be produced TiO2; 2 2 423 423 /80 1 1 /26.284 /97.020 )( ])([ ])([ 2 TiO TiO CHOCHTi CHOCHTi molg mol mol molg lkgml gTiO   = So the amount of TiO2 = 5.46 g The percent theoretical amount of AC percent in composite catalyst can be computed by 100%   = TX X ACofwt 100 46.5 %5   = X X wt The amount of AC added, X =0.29 g APPENDIX B MO (methyl orange) photodegradation A: methyl orange MO in powder, B experimental setup for full range visible experiment, C MO sampling tube, D: MO absorbance by Avantes Uv-Vis device APPENDIX C Phenol photodegradation a b c d APPENDIX D BET pore results APPENDIX E XRD characterizations Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - G1-18 00-021-1272 (*) - Anatase, syn - TiO2 - Y: 82.49 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 3.78520 - b 3.78520 - c 9.51390 - alpha 90.000 - beta 90.000 - gamma 90.000 - Body-centered - I41/amd (141) - 4 - 136.313 - I/Ic File: HieuBK G1-18.raw - Type: 2Th/Th locked - Start: 5.000 ° - End: 70.010 ° - Step: 0.030 ° - Step time: 0.3 s - Temp.: 25 °C (Room) - Time Started: 3 s - 2-Theta: 5.000 ° - Theta: 2.500 ° - Chi: 0.00 ° - Phi: 0.00 ° - X: 0.0 m L in ( C p s ) 0 100 200 300 400 500 600 2-Theta - Scale 5 10 20 30 40 50 60 70 d = 3 .5 2 7 d = 2 .3 7 8 d = 1 .8 9 5 d = 1 .6 9 7 d = 1 .6 6 7 d = 1 .4 8 7 Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - G1-24 00-021-1272 (*) - Anatase, syn - TiO2 - Y: 50.21 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 3.78520 - b 3.78520 - c 9.51390 - alpha 90.000 - beta 90.000 - gamma 90.000 - Body-centered - I41/amd (141) - 4 - 136.313 - I/Ic 1) File: HieuBK G1-24.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 70.010 ° - Step: 0.030 ° - Step time: 0.3 s - Temp.: 25 °C (Room) - Time Started: 14 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° - Phi: 0.00 ° - X: 0.0 Left Angle: 23.540 ° - Right Angle: 26.180 ° - Left Int.: 69.9 Cps - Right Int.: 94.8 Cps - Obs. Max: 25.276 ° - d (Obs. Max): 3.521 - Max Int.: 238 Cps - Net Height: 151 Cps - FWHM: 0.718 ° - Chord Mid.: 25.253 ° - Int. Br L in ( C p s ) 0 100 200 300 400 500 600 2-Theta - Scale 5 10 20 30 40 50 60 70 d = 3 .5 2 0 d = 3 .3 6 0 d = 2 .3 7 8 d = 1 .8 9 0 d = 1 .7 0 0 d = 1 .4 8 1 d = 1 .3 7 0 Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - G1-4 00-021-1272 (*) - Anatase, syn - TiO2 - Y: 55.67 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 3.78520 - b 3.78520 - c 9.51390 - alpha 90.000 - beta 90.000 - gamma 90.000 - Body-centered - I41/amd (141) - 4 - 136.313 - I/Ic 1) File: HieuBK G1-4.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 70.010 ° - Step: 0.030 ° - Step time: 0.3 s - Temp.: 25 °C (Room) - Time Started: 14 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° - Phi: 0.00 ° - X: 0.0 m Left Angle: 22.820 ° - Right Angle: 27.560 ° - Left Int.: 71.2 Cps - Right Int.: 64.8 Cps - Obs. Max: 25.280 ° - d (Obs. Max): 3.520 - Max Int.: 234 Cps - Net Height: 167 Cps - FWHM: 0.742 ° - Chord Mid.: 25.271 ° - Int. Br L in ( C p s ) 0 100 200 300 400 500 600 2-Theta - Scale 5 10 20 30 40 50 60 70 d = 3 .5 2 0 d = 2 .3 7 4 d = 1 .8 9 1 d = 1 .6 9 8 d = 1 .6 6 4 d = 1 .4 8 2

Các file đính kèm theo tài liệu này:

  • pdfluan_an_research_into_tioac_tiogo_synthesis_and_coating_on_c.pdf
  • doc3.Trich yeu luan an_NTH final.doc
  • doc12.Thong tin tom tat luan an dua len mang tieng Anh_NTH.doc
  • doc12.Thong tin tom tat luan an dua len mang tieng Viet_NTH.doc
  • docxBia TT Anh.docx
  • docxBia TT Viet.docx
  • docxLuan an khong phu luc.docx
  • docRuot Tom tat Viet.doc
  • docxRuot-Tom-tat Anh.docx
  • pdfTom-tat Anh full.pdf
  • pdfTom-tat Viet full.pdf