The synthesis of TiO2-based photocatalysts by various methods, such as solgel,
hydrothermal, and precipitation, revealed that the synthesis technique effects
photocatalytic activity mostly owing to changes in surface area and pore size. TiO2
generated by hydrothermal synthesis contains a large surface area and adequate pore
size, and hence displayed the best activity for the degradation of MO and phenol under
UV light. Due to phenol's more stable structure, its degradation was more difficult than
that of MO (lower degradation and longer reaction time), but with optimum amount of
added H2O2 (4 mmol/l) and a low phenol concentration (10 ppm), more than 80 percent
of phenol was degraded after 240 minutes of reaction.
The Langmuir-Hinshelwood kinetic model was also used to compare the rate of
phenol degradation reaction on different catalysts and conditions [175]. The results
presented in the results tables show the agreement of all the photocatalytic processes of
the samples with the applied model. The reaction rate constants corresponding to the
catalytic process of each sample are listed in Table fom 3.9 to 3.12.
Under UV light, catalyst P123-C25-450 has the highest rate constant of 0.0027
compared to the other two catalyst samples. The initial concentration of phenol greatly
affects the reaction rate. At 10 ppm, the rate constant reaches 0.0071, more than twice
as much as at 30 ppm (0.0027). At phenol concentrations of 30 ppm and optimal H2O2
content (4 ppm), catalyst P123-c25-450 gives results of up to 0.0079. GO is found to
speed up the processing of phenol catalyst GO-ZnO with a rate constant of up to 0.0107
in the visible light range.
It also shows that the process parameters are a very important part of figuring out
how well a photocatalyst is synthesized.
However, the attempt to shift phenol photodegradation to the visible light range by
making a TiO2–GO composite failed despite the success of the same manufacturing
technique for ZnO–GO
150 trang |
Chia sẻ: huydang97 | Ngày: 27/12/2022 | Lượt xem: 365 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Research into TiO₂/ac, TiO₂/go synthesis and coating on cordierite ceramic applied as catalysts for photodegradation of methyl orange and phenol, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
on the more easily destroyed organic molecule MO demonstrated that the
addition of GO to TiO2 catalysts did not increase their activity in visible light. Catalysts
based on synthesized TiO2 displayed less activity than ZnO based cunder visible light
illumination. The findings are agreed with previous studies [160, 181,182].
Summary:
The synthesis of TiO2-based photocatalysts by various methods, such as solgel,
hydrothermal, and precipitation, revealed that the synthesis technique effects
photocatalytic activity mostly owing to changes in surface area and pore size. TiO2
generated by hydrothermal synthesis contains a large surface area and adequate pore
size, and hence displayed the best activity for the degradation of MO and phenol under
UV light. Due to phenol's more stable structure, its degradation was more difficult than
that of MO (lower degradation and longer reaction time), but with optimum amount of
added H2O2 (4 mmol/l) and a low phenol concentration (10 ppm), more than 80 percent
of phenol was degraded after 240 minutes of reaction.
The Langmuir-Hinshelwood kinetic model was also used to compare the rate of
phenol degradation reaction on different catalysts and conditions [175]. The results
presented in the results tables show the agreement of all the photocatalytic processes of
the samples with the applied model. The reaction rate constants corresponding to the
catalytic process of each sample are listed in Table fom 3.9 to 3.12.
Under UV light, catalyst P123-C25-450 has the highest rate constant of 0.0027
compared to the other two catalyst samples. The initial concentration of phenol greatly
affects the reaction rate. At 10 ppm, the rate constant reaches 0.0071, more than twice
as much as at 30 ppm (0.0027). At phenol concentrations of 30 ppm and optimal H2O2
content (4 ppm), catalyst P123-c25-450 gives results of up to 0.0079. GO is found to
speed up the processing of phenol catalyst GO-ZnO with a rate constant of up to 0.0107
in the visible light range.
It also shows that the process parameters are a very important part of figuring out
how well a photocatalyst is synthesized.
However, the attempt to shift phenol photodegradation to the visible light range by
making a TiO2–GO composite failed despite the success of the same manufacturing
technique for ZnO–GO.
115
CHAPTER 4: CONCLUSIONS AND RECOMENDATONS
1.Precipitation and hydrothermal methods were used to synthesize the Nano TiO2
catalysts. Many characterization methods of material structure and morphology as well
as synthesis parameters have been measured, researched, and optimized (substance
structure, calcination temperature, citric acid amount, substance removal methods, etc.).
The photodegradation is evaluated by the photochemical reaction to degrade the agent
methyl orange in solution (MO). The results showed that the catalyst made by the
hydrothermal method P123-C25-450 worked the best. After 60 minutes of lighting by
the UVC 254 NM-100W lamp, 98% of the MO had been broken down (MO
concentration was 20 ppm).
2.The TiO2 was modified with activated carbon by the sol-gel method. The
parameters of support as the amount as well as the type of activated carbon used, are
evaluated. The results showed that the catalyst SG AC1200 TI1/18 has the best
degradation efficiency. Similar experiments with samples modified with graphene oxide
(GO) support have yielded similar results. SG GO Ti 1/18 also gives the best
decomposition optical efficiency.
3. Different amounts of PEG 600 were used to dip coat TiO2/AC catalysts made
with sol-gel, hydrothermal, and precipitation methods on cordierite supports. The results
show that high PEG Corgel-150 material has the best performance in MO degradation,
with a performance of up to nearly 94%.
4.. The TiO2 coating by the chemical vapor deposition (CVD) method on glass,
aluminum, and cordierite supports has also been evaluated. The results show that the
catalyst coated on the ceramic support is the best at breaking down MO. After 120
minutes of light from a UVC lamp with a wavelength of 254 nm, MO was degraded
down by about 52%.
5. The highly active catalyst materials evaluated above, such as P123-C25-450, SG
AC 1200 T1/18, have been compared in the phenol photodegradation UV lamp. The
P123-C25-450 catalyst has the most effective result with a degradation rate of 45%
under research conditions. Preliminary research has compared the ability of GO-TiO2
catalysts, GO-ZnO, and P123-C25-450 to degrade phenol and the kinetics of their
processes.
Recommendation:
This study can be extended as to get better results with visible light photocatalysis,
further study on GO/TiO2 is needed.
116
REFERENCES
[1]. G. m.-G. a. Dobrosz-Go´meza, S.M. Lo´pez Zamora, E. GilPavas, J. Bojarska,
M. Kozanecki, J.M. Rynkowski, "Transition metal loaded TiO2 for phenol photo-
degradation," International Symposium on Air & Water Pollution Abatement
Catalysis (AWPAC), pp. 1-13, 2014.
[2]. R. B. B. Eugene W. Rice, Andrew D. Eaton, Lenore S. Clescerei, “Standard Method
for the Examination of Water and Wasstewater“. American Public Health
Association, 800I Street, NW Washington, DC 20001-3710: American Public Health
Association, American Water Works Association, Water Enviroment Federation,
2012.
[3]. Raghu Sangeetha, C. Ahmed Basha, “Chemical or electrochemical procedures
followed by ion exchange are used to recycle textile dye effluent“. Journal of
Hazardous Materials, November 2007, 149 (2): 324-30. doi:
10.1016/j.j.hazmat.2007.03.087
[4]. F. Q. Juanrong Chen, Wanzhen Xu, Shunsheng Cao, Huijun Zhu, "Recent Progress
in Enhancing Photocatalytic Efficiency of TiO2-based Materials," Applied Catalysis
A: General, pp. 1-22, 2015.
[5]. X. Chen and S. S. Mao, "Titanium dioxide nanomaterials: synthesis, properties,
modifications, and applications," Chemical reviews, vol. 107, pp. 2891-2959, 2007.
[6]. Xu, Y.-J., Y. Zhuang, and X. Fu, “New insight for enhanced photocatalytic activity
of TiO2 by doping carbon nanotubes: a case study on degradation of benzene and
methyl orange”. The Journal of Physical Chemistry C, 2010. 114(6): p. 2669-2676.
[7]. Zhou, J., M. Takeuchi, A.K. Ray, M. Anpo, and X. Zhao, “Enhancement of
photocatalytic activity of P25 TiO2 by vanadium-ion implantation under visible light
irradiation”. Journal of colloid and interface science, 2007. 311(2): p. 497-501.
[8]. Keller, V., P. Bernhardt, and F. Garin, “Photocatalytic oxidation of butyl acetate in
vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts”. Journal of Catalysis, 2003.
215(1): p. 129-138.
[9]. Bingham, S. and W.A. Daoud, “Recent advances in making nano-sized TiO2 visible-
light active through rare-earth metal doping”. Journal of Materials Chemistry, 2011.
21(7): p. 2041-205
[10]. Wang, J., Y. Lv, L. Zhang, B. Liu, R. Jiang, G. Han, R. Xu, and X. Zhang,
“Sonocatalytic degradation of organic dyes and comparison of catalytic activities of
CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites under ultrasonic irradiation”.
Ultrasonics Sonochemistry, 2010. 17(4): p. 642-648.
117
[11]. Rajamanickam, D. and M. Shanthi, “Photocatalytic degradation of an azo dye Sunset
Yellow under UV-A light using TiO2/CAC composite catalysts”. Spectrochim Acta
A Mol Biomol Spectrosc, 2014. 128: p. 100-8.
[12]. Hameed, B.H., A.T. Din, and A.L. Ahmad, „Adsorption of methylene blue onto
bamboo-based activated carbon: kinetics and equilibrium studies“. J Hazard Mater,
2007. 141(3): p. 819-25.
[13]. Asiltürk, M. and Ş. Şener, “TiO2-activated carbon photocatalysts: Preparation,
characterization and photocatalytic activities“. Chemical Engineering Journal, 2012.
180: p. 354-363.
[14]. Mogyorosi, K., I. Dekany, and J. Fendler, “Preparation and characterization of clay
mineral intercalated titanium dioxide nanoparticles”. Langmuir, 2003. 19(7): p.
2938-2946.
[15]. Shankar, M., S. Anandan, N. Venkatachalam, B. Arabindoo, and V. Murugesan,
“Fine route for an efficient removal of 2, 4-dichlorophenoxyacetic acid (2, 4-D) by
zeolite-supported TiO2”. Chemosphere, 2006. 63(6): p. 1014-1021
[16]. Li, X., H. Liu, L. Cheng, and H. Tong, “Photocatalytic oxidation using a new catalyst
TiO2 microsphere for water and wastewater treatment”. Environmental Science &
Technology, 2003. 37(17): p. 3989-3994.
[17]. Mahmoodi, N.M., M. Arami, and J. Zhang, “Preparation and photocatalytic activity
of immobilized composite photocatalyst (titania nanoparticle/activated carbon)”.
Journal of Alloys and Compounds, 2011. 509(14): p. 4754-4764.
[18]. I. E. W. Xingtao Gao, "Titania-silica as catalysts: molecular structural characteristics
and physico-chemical properties," Catalysis Today, vol. 51, pp. 233-254, 1999.
[19]. Mohan, D., Singh, K. P., & Singh, V. K. (2008). “Wastewater treatment using low
cost activated carbons derived from agricultural byproducts - A case study“. Journal
of Hazardous Materials, 152, 1045-1053.
[20]. Araña, Javier & Doña Rodríguez, J. & Rendón, Erick Danilo & Cabo, C. & González
Díaz, Oscar & Melián, J. & Pérez-Peña, J. & Colón, G. & Navı́o, J.A.. (2003). “TiO2
activation by using activated carbon as a support: Part I. Surface characterisation and
decantability study“. Applied Catalysis B: Environmental. 44. 161-172.
doi:10.1016/S0926-3373(03)00107-3.
[21]. Etacheri, Vinodkumar; Di Valentin, Cristiana; Schneider, Jenny; Bahnemann,
Detlef; Pillai, Suresh C. (2015). „Visible-Light Activation of TiO2 Photocatalysts:
Advances in Theory and Experiments“. Journal of Photochemistry and
Photobiology C: Photochemistry Reviews, S1389556715000441–
. doi:10.1016/j.jphotochemrev.2015.08.003
118
[22]. Du, S., Lian, J. & Zhang, F. “Visible Light-Responsive N-Doped TiO2
Photocatalysis: Synthesis, Characterizations, and Applications. Trans. Tianjin Univ.
28, 33–52 (2022). doi:10.1007/s12209-021-00303-w
[23]. Purabgola, A., Mayilswamy, N. & Kandasubramanian, B. “Graphene-based TiO2
composites for photocatalysis & environmental remediation: synthesis and
progress”. Environ Sci Pollut Res (2022). doi:10.1007/s11356-022-18983-9
[24]. Caique Prado Machado de Oliveira, Inara Fernandes Farah, Konrad Koch, Jörg E.
Drewes, Marcelo Machado Viana, Míriam Cristina Santos Amaral, “TiO2-Graphene
oxide nanocomposite membranes: A review”,Separation and Purification
Technology,Volume 280,2022,119836, ISSN 1383-5866, doi:
10.1016/j.seppur.2021.119836.
[25]. Reghunath, S., Pinheiro, D., & KR, S. D. (2021). A review of hierarchical
nanostructures of TiO2: Advances and applications. Applied Surface Science
Advances, 3, 100063. doi:10.1016/j.apsadv.2021.100063
[26]. https://wwf.panda.org/wwf_news/?338993/Textile-and-Garment-Sector-in-
Vietnam-Water-Risks-and-Solution.
[27]. Tetra Tech EM, Inc. (2001). „Best practice environmental management guidelines
for the textile industry“. ASEAN Australia Economic Cooperation Program,
Wastewater Technology Transfer and Cleaner Production Demonstration Project,
Manila, Philippines.
[28]. Hunger, K. (2003). Industrial dyes: Chemistry, properties and applications“.
Germany:Wiley-Vch.
[29]. Broadbent, A. (2001). “Basic Principles of Textile Coloration“. Canada: Thanet
Press
[30]. Chen, T., Zheng, Y., Lin, J. M. & Chen, G. (2008). “Study on the Photocatalytic
Degradation of Methyl Orange in Water Using Ag/ZnO as Catalyst by Liquid
Chromatography Electrospray Ionization Ion-Trap Mass Spectrometry“. Journal of
the American Society for Mass Spectrometry, 19, 997-1003
[31]. Panda, N., Sahoo, H. & Mohapatra, S. (2011). “Decolourization of Methyl Orange
using Fentonlike mesoporous Fe2O3–SiO2 composite“. Journal of Hazardous
Materials, 185, 359-365
[32]. N. Guettai and H. Ait Amar, "Photocatalytic oxidation of methyl orange inpresence
of titanium dioxide in aqueous suspension. Part I: Parametric study," Desalination,
vol. 185, pp. 427-437, 2005.
[33]. S. Al-Qaradawi and S. R. Salman, "Photocatalytic degradation of methyl orange as
a model compound," Journal of Photochemistry and Photobiology A: Chemistry,
vol. 148, pp. 161-168, 2002..
119
[34]. R. B. B. Eugene W. Rice, Andrew D. Eaton, Lenore S. Clescerei, “Standard Method
for the Examination of Water and Wasstewater”. American Public Health
Association, 800I Street, NW Washington, DC 20001-3710: American Public Health
Association, American Water Works Association, Water Enviroment Federation,
2012
[35]. G. Busca, S. Berardinelli, C. Resini, and L. Arrighi, "Technologies for the removal
of phenol from fluid streams: a short review of recent developments," Journal of
Hazardous Materials, vol. 160, pp. 265-288, 2008.
[36]. F. Akbal and A. N. Onar, "Photocatalytic degradation of phenol," Environmental
monitoring and assessment, vol. 83, pp. 295-302, 2003.
[37]. O. F. KASHIF Naeem, "Parameters effect on heterogeneous photocatalysed
degradation of phenol in aqueous dispersion of TiO2," Journal of Environmental
Science, vol. 21, pp. 527-533, 2009.
[38]. H. Babich, D.L. Davis, Phenol: “A review of environmental and health risks,
Regulatory Toxicology and Pharmacology“, Volume 1, Issue 1,1981,Pages 90-109,
ISSN 0273-2300, doi:10.1016/0273-2300(81)90071-4.
[39]. Wang, G.; Guo, W.; Xu, D.; Liu, D.; Qin, M, “Graphene Oxide Hybridised TiO2 for
Visible Light Photocatalytic Degradation of Phenol“. Symmetry 2020, 12, 1420.
doi:10.3390/sym12091420
[40]. Li.Y Zhang.S,Yu.Q and Yin.W, “The Effects of Activated Carbon Support on The
Structure and Properties of TiO2 Nanoparticles Prepared by A Sol-gel Method”
Applied Surface Science 2007. - Vol. 253. - pp. 9254- 9258
[41]. D. Fabbri A. Bianco Prevot, V. Zelano, M. Ginepro, E. Pramauro, “Removal and
degradation of aromatic compounds from a highly polluted site by coupling soil
washing with photocatalysis”, Chemosphere, 2008. - 1 : Vol. 71. - pp. 59-65.
[42]. Hargava Amit B Novel “Photocatalytic Reactor and Process for Wastewater
Treatment” Book : THE UNIVERSlTY OF CALGARY, 2000
[43]. Ayaz Mohd, “Presence of phenol in wastewater effluent and its removal: an
overview”. International Journal of Environmental Analytical Chemistry Volume
102, 2022 - Issue 6
[44]. P Wonchai, P. Surin, P. Thirawit, T. Titipun, B. Dheerawan, Y. Liangdeng, O.
Wiranwetchayan, “Crystalline phases and optical properties of titanium dioxide
films deposited on glass substrates by microwave method“, Surface and Coatings
Technology, Volume 306, Part A, 25 November 2016, Pages 69-74
[45]. Zhenzi Li, Shijie Wang, Jiaxing Wu, Wei Zhou, “Recent progress in defective TiO2
photocatalysts for energy and environmental applications,Renewable and
120
Sustainable Energy” Reviews,Volume 156,22,111980, ISSN 1364-
0321,doi:10.1016/j.rser.2021.111980.
[46]. Zaid H. Jabbar, Shahlaa Esmail Ebrahim, “Recent advances in nano-semiconductors
photocatalysis for degrading organic contaminants and microbial disinfection in
wastewater: A comprehensive review”, Environmental Nanotechnology, Monitoring
& Management,Volume 17,2022,100666,ISSN 2215 1532,
doi:10.1016/j.enmm.2022.100666.
[47]. E.M. Bayan, L.E. Pustovaya, M.G. Volkova,”Recent advances in TiO2-based
materials for photocatalytic degradation of antibiotics in aqueous
systems”,Environmental Technology & Innovation,Volume 24,2021,101822, ISSN
2352-1864,doi:10.1016/j.eti.2021.101822.
[48]. McEvoy Ralph W. Matthews and Stephen R,“ Photocatalytic degradation of phenol
in the presence of near-UV illuminated titanium dioxide“, Journal of Photochemistry
and Photobiology A: Chemistry, 1992. - 2 : Vol. 64. - pp. 231-246
[49]. Ollis Craig S. Turchi and David F”, Journal of Catalysis, 1990. - 1 : Vol. 122. - pp.
178-192.
[50]. Hameed U.G. Akpan and B.H, “Parameters affecting the photocatalytic degradation
of dyes using TiO2-based photocatalysts: A review“ Journal of Hazardous
Materials, 2009. - 2-3 : Vol. 170. - pp. 520-529.
[51]. Weeraman Buraso, Vichuda Lachom, Porntip Siriya and Paveena Laokul, “Synthesis
of TiO2 nanoparticles via a simple precipitation method and photocatalytic
performance“, Materials Research Express, Volume 5, Number 11 2018.
[52]. Dmitry Bokov ,Abduladheem Turki Jalil , Supat Chupradit , Wanich
Suksatan ,Mohammad Javed Ansari, Iman H. Shewael, Gabdrakhman H. Valiev, and
Ehsan Kianfar , “Nanomaterial by Sol-Gel Method: Synthesis and Application“,
Advances in Materials Science and Engineering / Hindawi 2021
[53]. Daniel Navas,Sandra Fuentes,Alejandro Castro-Alvarez, and Emigdio Chavez-
Angel, “Review on Sol-Gel Synthesis of Perovskite and Oxide
Nanomaterials“ MDPI open access, doi:10.3390/gels7040275
[54]. Yong X. Gan , Ahalapitiya H. Jayatissa, Zhen Yu, Xi Chen and Mingheng Li,
„Hydrothermal Synthesis of Nanomaterials“, Journal of Nanomaterials / 2020
doi:10.1155/2020/8917013
[55]. O.Carp „Photoinduced Reactivity of Titanium Dioxide“, Progress in Solid State
Chemistry. - 2004. - 32. - pp. 33-177.
[56]. Yasuhiko Arai Hiroyo Segawa, Kazuaki Yoshida Method, “Synthesis of Nano Silica
Particles for Polishing Prepared by Sol–Gel”, Journal of Sol-Gel Science and
Technology, 2005. - 32 : Vols. 1-3.
121
[57]. Xu.Q Anderson A.M. „Synthesis of Porosity Controlled Ceramic Membranes“,
Journal of Materials Research, 1991. Vol 6. - pp. 1073-1082.
[58]. Venkatachalam, N., Palanichamy, M. & Muregesan, V. (2007). “Sol–gel preparation
and characterization of nanosize TiO2: Its photocatalytic performance“. Materials
Chemistry and Physics, 104, 454 – 459.
[59]. Su A., Tseng, C.M., Chen, L.F., You, B.H., Hsu, B.C., Chen, “ Sol– Hydrothermal
Preparation and Photocatalysis of Titanium Dioxide”, Thin Solid Films, 2006. Vol.
498. - pp. 259-265.
[60]. Li.Y Zhang.S,Yu.Q and Yin.W, “The Effects of Activated Carbon Support on The
Structure and Properties of TiO2 Nanoparticles Prepared by A Sol-gel Method“,
Applied Surface Science. 2007. - Vol. 253. - pp. 9254- 9258.
[61]. Bahnemann D, “Photocatalytic water treatment: solar energy applications“, Solar
Energy, 2004. - Vol. 77. - pp. 445-459.
[62]. K. Porkodi S. Daisy Arokiamary, “ Synthesis and spectroscopic characterization of
nanostructured anatase titania: A photocatalyst“, Materials Characterization, june
2007. - 6 : Vol. 58. - pp. 495-503..
[63]. Chen Y., Dionysiou, D., “Effect of Calcination Temperature on The Photocatalytic
Activity and Adhesion of TiO2 Films Prepared by The P-25 Powder- Modified Sol–
Gel Method“, Journal of Molecular Catalysis A: Chemical, 2006. - Vol. 244. - pp.
73-82.
[64]. Yu-Hsiang Hsien Chi-Fu Chang, Yu-Huang Chen, Soofin Cheng, “
Photodegradation of aromatic pollutants in water over TiO2 supported on molecular
sieves”, Applied Catalysis B: Environmental, 2001. - 4 : Vol. 31. - pp. 241-249.
[65]. Juha-Pekka Nikkanen Tomi Kanerva, Tapio Mäntylä, “The effect of acidity in low-
temperature synthesis of titanium dioxide”, Journal of Crystal Growth, 2007. Vol.
304. - pp. 179-183..
[66]. Zhang X. Lei L, „Effect of Preparation Methods on The Structure and Catalytic
Performance of TiO2/AC Photocatalysts“, Journal of Hazardous Materials. - 2008.
- 153. - pp. 827-833..
[67]. Miki Kanna Sumpun Wongnawa, “Mixed amorphous and nanocrystalline TiO2
powders prepared by sol–gel method: Characterization and photocatalytic study” ,
Materials Chemistry and Physics, 2008. - 1 : Vol. 110. - pp. 166-175.
[68]. Tường, P. V. (2007). „Các phương pháp tổng hợp vật liệu gốm“, NXB Đại học Quốc
gia Hà Nội
[69]. Soler-Illia, G.J.A.A.; Sanchez, C.; Lebeau, B.; Patarin, J, „Chemical strategies to
design textured materials: From microporous and mesoporous oxides to
nanonetworks and hierarchical structures“, Chem. Rev. 2002, 102, 4093–4138
122
[70]. Wan, Y.; Zhao, D, „On the controllable soft-templating approach to mesoporous
silicates“, Chem. Rev. 2007, 107, 2821–2860.
[71]. Corma, A, “From microporous to mesoporous molecular sieve materials and their
use in catalysis“, Chem. Rev. 1997, 97, 2373–2420.
[72]. Yang, P.; Zhao, D.; Margolese, D.I.; Chmelka, B.F.; Stucky, G.D, “Generalized
syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks“,
Nature 1998, 396, 152–155.
[73]. Yang, P.; Zhao, D.; Margolese, D.I.; Chmelka, B.F.; Stucky, G.D, “Block copolymer
templating syntheses of mesoporous metal oxides with large ordering lengths and
semicrystalline framework“, Chem. Mater. 1999, 11, 2813–2826.
[74]. Soler-Illia, G.J.A.A.; Scolan, E.; Louis, A.; Albouy, P.-A.; Sanchez, C, “Design of
meso-structured titanium oxo based hybrid organic-inorganic networks“. New J.
Chem. 2001, 25, 156–165.
[75]. Chen, L.; Yao, B.; Cao, Y.; Fan, K, „Synthesis of well-ordered mesoporous titania
with tunable phase content and high photoactivity“ J. Phys. Chem. C 2007, 111,
11849–11853.
[76]. Hung, I.M.; Wang, Y.; Huang, C.-F.; Fan, Y.-S.; Han, Y.-J.; Peng, H.-W, “Effects
of templating surfactant concentrations on the mesostructure of ordered mesoporous
anatase TiO2 by an evaporation-induced self-assembly method“. J. Eur. Ceram. Soc.
2010, 30, 2065–2072.
[77]. Das, S.K.; Bhunia, M.K.; Bhaumik, A, „Self-assembled TiO2 nanoparticles:
Mesoporosity, optical and catalytic properties“, Dalton Trans. 2010, 39, 4382–4390.
[78]. Zhou, W.; Sun, F.; Pan, K.; Tian, G.; Jiang, B.; Ren, Z.; Tian, C.; Fu, H, “Well-
ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability
and improved crystallinity: Preparation, characterization, and photocatalytic
performance“. Adv. Funct. Mater. 2011, 21, 1922–1930
[79]. Ray, A. & Beenackers, A. (1998). “Development of a new photocatalytic reactor for
water purification“, Catalysis Today, 40, 73 – 83.
[80]. Arabatzis, I., Antonaraki, S. & Stergiopoulos, T. (2002), “Preparation,
characterization and photocatalytic activity of nanocrystalline thin film TiO2
catalysts towards 3,5-dichlorophenol degradation”. Journal on Photochemistry and
Photobiology A: Chemistry, 149, 237–245
[81]. Noorjahan M., Reddy, M. & Kumari, V. (2003), “Photocatalytic degradation of H-
Acid over a novel TiO2 thin film fixed bed reactor and in aqueous suspensions”,
Journal on Photochemisty and Photobiology A: Chemistry, 156, 179–187
123
[82]. Shigwedha N., Hua, Z. & Chen J. (2006), “Immobilizing TiO2 allows H2O2 to be
present at the start and enhances the photodegradation of acid yellow 36”, Journal
of Chemical Engineering in Japan, 39, 475–480
[83]. Pouilleau, J., Devilliers, D., Garrido, F., Durand-Vidal, S. & Mahe, E. (1997).
“Structure and composition of passive titanium oxide films”. Materials Science and
Engineering B, 47, 235-243.
[84]. Karuppuchamy, S., Nonomura, K., Yoshida, T., Sugiura, T., & Minoura, H. (2002).
“Cathodic electrodeposition of oxide semiconductor thin films and their
application to dye-sensitized solar cells”. Solid State Ionics, 151, 19-27.
[85]. Li, Y., Li, X., Li, J. & Yin, J. (2006). “Photocatalytic degradation of methyl orange
by TiO2-coated activated carbon and kinetic study“. Water Resources, 40, 1119–
1126.
[86]. Tryba, B., Morawski, W. & Inagaki, M. (2003a). “A new route for preparation of
TiO2 – mounted activated carbon”. Applied Catalysis B: Environmental, 46, 203-
208.
[87]. Kubo, M., Fukuda, H., Chua, X. & Yonemoto, T. (2005). “Ultrasonic degradation
of phenol in the presence of composite particles of TiO2 and activated carbon”. In:
American Institute of Chemical Engineering Annual Meeting, Conference
Proceedings, 10358–10360.
[88]. Takeda, S., Odaka, H. & Hosono, H. (2001). “Photocatalytic TiO2 thin film
deposited onto glass by DC magnetron sputtering”. Thin Solid Films, 392, 338-344
[89]. Zhang, X., Zhou, M. & Lei, L. (2005). „Preparation of photocatalytic TiO2 coatings
of nanosized particles on activated carbon by AP-MOCVD“. Carbon, 43, 1700–
1708.
[90]. Zhang, X., Zhou, M. & Lei, L. (2005). “Preparation of anatase TiO2 supported on
alumina by different metal organic chemical vapor deposition methods“. Applied
Catalysis A: General, 282, 285-293.
[91]. Byun, C., Jang, J., Kim, I., Hong, K. & Lee, B. (1997). “Anatase-to-rutile transition
of titania thin films prepared by MOCVD”. Material Research Bulletin, 32, 41–440.
[92]. Chen, C., Kelder, E. & Schoonman, J. (1999a). “Electrostatic sol-spray deposition
(ESSD) and characterization of nanostructured TiO2 thin films“. Thin Solid Films,
342, 35-41.
[93]. Kavan, L. & Gratzel, M. (1995). “Highly efficient semiconducting TiO2
photoelectrodes prepared by aerosol pyrolysis“. Electrochimica Acta, 40, 643-652.
[94]. Li Puma, G., Bono, A. Krishnaiah, D. & Collin, J. (2008). “Preparation of Titanium
dioxide photocatalyst loaded onto activated carbon support using chemical vapor
deposition: A review paper“. Journal of Hazardous Materials, 157, 209- 219.
124
[95]. Guillard, C., Lachheb, H., Houas, A., Ksibi, M., Elaloui, E. & Herrmann, J. (2003).
“Influence of chemical structure of dyes, of pH and of inorganic salts on their
photocatalytic degradation by TiO2: Comparison of the efficiency of powder and
supported TiO2”. Journal of Photochemistry and Photobiology A: Chemistry, 158,
27–36.
[96]. Ao, Y., Xu, J., Fu, D., Shen, X. & Yuan, C. (2008). “Low temperature preparation
of anatase TiO2 -activated carbon composite film”. Applied Surface Science, 254,
4001–4006.
[97]. Jahromi, H., Taghdisian, H., Afshar, S. & Tasharoffi, S. (2009). “Effects of pH and
polyethylene glycol on morphology of TiO2 thin film“. Surface and Coatings
Technology, 203, 1991-1996.
[98]. M. Uzunova-Bujnova, R. Todorovska, M. Milanova, R. Kralchevska,, D.
Todorovsky. (2009) .On the spray-drying deposition of TiO2 photocatalytic films“.
Applied Surface Science, 256, 830-837.
[99]. S., Lee, J., Yoo, K., Park, H., Kim, H. & Lee, J. (2008). “Adhesion properties of
inorganic binders for the immobilization of photocatalytic ZnO and TiO2
nanopowders”. Journal of Physics and Chemistry of Solids, 69,1461–1463
[100]. Akira Fujishima Tata N. Rao and Donald A. Tryk, “Titanium dioxide
photocatalysis” Journal of Photochemistry and Photobiology C: Photochemistry
Reviews, 2000. - 1 : Vol. 1. - pp. 1-21.
[101]. Bin Gao George Z. Chen,Gianluca Li Puma,“Carbon nanotubes/titanium dioxide
(CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant
wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Applied
Catalysis B: Environmental , 2009. - 3-4 : Vol. 89. - pp. 503-509.
[102]. Wang W. Silva, C.G. and Faria J.L. “Photocatalytic Degradation of Chromotrope
2R using Nanocrystalline TiO2/Activated Carbon Composite Catalysts“, Applied
Catalysis B: Enviromental. - 2007. - 70. - pp. 470-478.
[103]. Liu.J Rong.Y and Song-mei. L, “Preparation and Application of Efficient TiO2/ACF
Photocatalyst”, Journal of Environmental Science, 2006. - Vol. 5. - pp. 979-982.
[104]. Tryba, B., Morawski, W. & Inagaki, M. (2003a). “A new route for preparation of
TiO2 – mounted activated carbon”. Applied Catalysis B: Environmental, 46, 203-
208.
[105]. Li.Y Zhang.S,Yu.Q and Yin.W, “The Effects of Activated Carbon Support on The
Structure and Properties of TiO2 Nanoparticles Prepared by A Sol-gel Method“,
Applied Surface Science. 2007. Vol. 253. - pp. 9254- 9258.
125
[106]. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S.
V., Grigorieva, I. V. and Firsov, A. A. (2004), "Electric field in atomically thin
carbon films", Science, Vol. 306, No. 5696, pp. 666-669.
[107]. Wang, X., Zhi, L. and Mullen, K. (2007), "Transparent, Conductive Graphene
Electrodes for Dye-Sensitized Solar Cells", Nano Letters, Vol. 8, No. 1, pp. 323-327.
[108]. Allen, M. J., Tung, V. C. and Kaner, R. B. (2009), "Honeycomb Carbon: A Review
of Graphene", Chemical Reviews, Vol. 110, No. 1, pp. 132-145
[109]. Huang, X., Qi, X., Boey, F. and Zhang, H. (2012), "Graphene-based composites",
Chemical Society Reviews, Vol. 41, No. 2, pp. 666-686.
[110]. Geim, A. K. and Novoselov, K. S. (2007), "The rise of graphene", Nature Materials,
Vol. 6, No. 3, pp. 183-191.
[111]. Guo, S. and Dong, S. (2011), "Graphene nanosheet: synthesis, molecular
engineering, thin film, hybrids, and energy and analytical applications", Chemical
Society Reviews, Vol. 40, No. 5, pp. 2644-2672.
[112]. Feng, H., Cheng, R., Zhao, X., Duan, X. and Li, J. (2013), "A low-temperature
method to produce highly reduced graphene oxide", Nature Communications, Vol.
4, No. pp. 1539-1546.
[113]. Xu, Z., Sun, H., Zhao, X. and Gao, C. (2013), "Ultrastrong Fibers Assembled from
Giant Graphene Oxide Sheets", Advanced Materials, Vol. 25, No. 2, pp. 188-193.
[114]. Dreyer, D. R., Park, S., Bielawski, C. W. and Ruoff, R. S. (2010), "The chemistry of
graphene oxide", Chemical Society Reviews, Vol. 39, No. 1, pp. 228-240.
[115]. Luo, J., Cote, L. J., Tung, V. C., Tan, A. T. L., Goins, P. E., Wu, J. and Huang, J.
(2010), "Graphene Oxide Nanocolloids", Journal of the American Chemical Society,
Vol. 132, No. 50, pp. 17667-17669.
[116]. Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H.
B., Evmenenko, G., Nguyen, S. T. and Ruoff, R. S. (2007), "Preparation
and characterization of graphene oxide paper", Nature, Vol. 448, No. 7152, pp. 457-
460.
[117]. Park, S., An, J., Jung, I., Piner, R. D., An, S. J., Li, X., Velamakanni, A. and Ruoff,
R. S. (2009), "Colloidal suspensions of highly reduced graphene oxide in a wide
variety of organic solvents", Nano Letters, Vol. 9, No. 4, pp. 1593-1597.
[118]. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J.,
Stach, E. A., Piner, R. D., Nguyen, S. T. and Ruoff, R. S. (2006), "Graphene-based
composite materials", Nature, Vol. 442, No. 7100, pp. 282-286.
[119]. Bai, H., Li, C. and Shi, G. (2011), "Functional composite materials based on
chemically converted graphene", Advanced Materials, Vol. 23, No. 9, pp. 1089-
1115.
126
[120]. Zhu, X., Ning, G., Fan, Z., Gao, J., Xu, C., Qian, W. and Wei, F. (2012), "One-step
synthesis of a graphene-carbon nanotube hybrid decorated by magnetic
nanoparticles", Carbon, Vol. 50, No. 8, pp. 2764-2771.
[121]. Liu, J., Bai, H., Wang, Y., Liu, Z., Zhang, X. and Sun, D. D. (2010), "Self-
assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface
and their anti-recombination in photocatalytic applications", Advanced Functional
Materials, Vol. 20, No. 23, pp. 4175-4181.
[122]. Zhang, J., Xiong, Z. and Zhao, X. S. (2011), "Graphene-metal-oxide composites for
the degradation of dyes under visible light irradiation", Journal of Materials
Chemistry, Vol. 21, No. 11, pp. 3634-3640.
[123]. Kou, R., Shao, Y., Wang, D., Engelhard, M. H., Kwak, J. H., Wang, J., Viswanathan,
V. V., Wang, C., Lin, Y., Wang, Y., Aksay, I. A. and Liu, J. (2009), "Enhanced
activity and stability of Pt catalysts on functionalized graphene sheets for
electrocatalytic oxygen reduction", Electrochemistry Communications, Vol. 11, No.
5, pp. 954-957.
[124]. Chen, L. C. & Chou, T. S. (1994). “Photodecolorization of Methyl Orange Using
Silver Ion Modified TiO2 as Photocatalyst”. Industrial & Engineering Chemistry
Research, 33, 1436-1443.
[125]. Al- Qaradawi, S. & Salman, R. S. (2002). “Photocatalytic degradation of methyl
orange as a model compound”. Journal of Photochemistry and Photobiology A, 148,
161–168.
[126]. Arabatzis, I. M., Stergiopoulos, T., Bernard, M. C., Labou, D. Neophytides, S. G.
& Falaras, P.(2003). “Silver-modified titanium dioxide thin films for efficient
photodegradation of methyl orange”. Applied Catalysis B: Environmental, 42, 187–
201
[127]. Guettai, N. & Amar, H. A. (2005). “Photocatalytic oxidation of methyl orange in
presence of titanium dioxide in aqueous suspension. Part I: Parametric study”.
Desalination, 185, 427–437.
[128]. Chen, J. Q., Wang, D., Zhu, M. X. & Gao, C. J. (2006). “Study on degradation of
methyl orange using pelagite as photocatalyst”. Journal of Hazardous Materials
B,138, 182–186.
[129]. Li, Y., Li, X., Li, J. & Yin, J. (2006). “Photocatalytic degradation of methyl orange
by TiO2-coated”. Water Research, 40, 1119 – 1126.
[130]. Sharma, S. D., Singh, D., Saini, K. K., Kant, C., Sharma, V., Jain, S. C. & Sharma,
C. P. (2006). “Sol–gel-derived super-hydrophilic nickel doped TiO2 film as active
photo-catalyst”. Applied Catalysis A: General, 314, 40–46.
127
[131]. Kansal, S. K., Singh, M. & Sud, D. (2007). “Studies on photodegradation of two
commercial dyes in aqueous phase using different photocatalysts”. Journal of
Hazardous Materials, 141, 581-590.
[132]. Liu, Y. & Sun, D. (2007). “Development of Fe2O3 -CeO2 -TiO2/γ -Al2O3 as catalyst
for catalytic wet air oxidation of methyl orange azo dye under room condition”.
Applied Catalysis. B, Environmental, 72, 205-211
[133]. Ma, H., Zhuo, Q. & Wang, B. (2007). “Characteristics of CuO-MoO3-P2O5 Catalyst
and Its Catalytic Wet Oxidation (CWO) of Dye Wastewater under Extremely Mild
Conditions”. Environmental Science & Technology, 41, 7491-7496.
[134]. Rashed, M. N. & El-Amin, A. A. (2007). “Photocatalytic degradation of methyl
orange in aqueous TiO2 under different solar irradiation sources“. International
Journal of Physical Sciences, 2 (3), 73-81
[135]. Zhang, X., Yang, H., Zhang, F. & Chen, K.W. (2007). “Preparation and
characterization of Pt–TiO2–SiO2 mesoporous materials and visible-light
photocatalytic performance“. Materials Letters, 61, 2231–2234.
[136]. Huang, M., Xu, C., Wu, Z., Huang, Y., Lin, J. & Wu, J. (2008). “Photocatalytic
discolorization of methyl orange solution by Pt modified TiO2 loaded on natural
zeolite”. Dyes and Pigments,77, 327-334.
[137]. Sohn, Y. S., Smith, Y. R., Misra, M. & Subramanian, V. (2008). “Electrochemically
assisted photocatalytic degradation of methyl orange using anodized titanium
dioxide nanotubes”. Applied Catalysis B: Environmental, 84, 372–378.
[138]. Zhang, F., Xie, F., Fang, T., Zhang, K., Chen, T. & Oh, W. (2012). “Photocatalytic
Degradation of Methyl Orange on Platinum and Palladium Co-doped TiO2
Nanoparticles, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-
Metal Chemistry“, 42:5, 685-691 doi:10.1080/15533174.2011.615040
[139]. Sun, M., Li, D., Li, W., Chen, Y., Chen, Z., He, Y. & Fu, X. (2008). “New
Photocatalyst, Sb2S3, for Degradation of Methyl Orange under Visible-Light
Irradiation”. Journal of Physical Chemistry C, 112, 18076–18081.
[140]. Zhao, Q., Li, M., Chu, J., Jiang, T. & Yin, H. (2009). “Preparation, characterization
of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for
degradation of methyl orange”. Applied Surface Science, 255, 3773–3778.
[141]. Zhu, Y., Xu, S. & Yi, D. (2010). “Photocatalytic degradation of methyl orange using
polythiophene/titanium dioxide composites”. Reactive & Functional Polymers, 70,
282-287.
[142]. Guo, C., Xu, J., He, Y., Zhang, Y. & Wang, Y. (2011). “Photodegradation of
rhodamine B and methyl orange over one-dimensional TiO2 catalysts under
simulated solar irradiation”. Applied Surface Science, 257, 3798–3803.
128
[143]. Rauf, M. & Ashraf, S. (2009). „Fundamental principles and application of
heterogeneous photocatalytic degradation of dye in solution“. Chemical Engineering
Journal, 151, 10-18.
[144]. Bouzaida, I., Ferronato, C., Chovelon, J., Rammah, M. & Herrmann J. (2004).
“Heterogeneous photocatalytic degradation of the anthraquinonic dye, acid blue 25
(AB25): A kinetic approach“. Journal of Photochemistry and Photobiology A:
Chemistry, 168, 23
[145]. S. Kulkarni and D. Kaware, "Review on Research for Removal of Phenol from
Wastewater", International Journal of Scientific and Research Publications, 3
(2013) 1-4.
[146]. Zaheen U Khan, Ayesha Kausar, Hidayat Ullah, Amin Badshah and Wasid U Khan
(2015), "A review of graphene oxide, graphene buckypaper, and polymer/graphene
composites: Properties and fabrication techniques", Journal of Plastic Film &
Sheeting. 0(0), tr. 1-45.
[147]. X. Xiong and Y. Xu, "Synergetic Effect of Pt and Borate on the TiO2-
Photocatalyzed Degradation of Phenol in Water", The Journal of Physical Chemistry
C, 120 (2016) 3906-3912.
[148]. W. Wang, P. Serp, P. Kalck, J. Luis Faria, “Photocatalytic degradation of phenol on
MWNT and titania composite catalysts prepared by a modified sol–gel method”,
Applied Catalysis B: Environmental 56 (2005) 305-312.
[149]. J. Prince, F. Tzompantzi, G. Mendoza-Damian, F. Hernandez-Beltran, J.S. Valente,
“Photocatalytic degradation of phenol by semiconducting mixed oxides derived
from Zn(Ga)Al layered double hydroxides”, Applied Catalysis B: Environmental
163 (2015) 352-360.
[150]. M. Umar and H. Abdul, "Photocatalytic Degradation of Organic Pollutants in
Water", Organic Pollutants - Monitoring, Risk and Treatment, 2013.
[151]. A. Linsebigler, G. Lu and J. Yates, "Photocatalysis on TiO2 Surfaces: Principles,
Mechanisms, and Selected Results", Chemical Reviews, 95 (1995) 735-758.
[152]. K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka and A. Itaya, "Heterogeneous
Photocatalytic Decomposition of Phenol over TiO2 Powder", Bulletin of the
Chemical Society of Japan, 58 (1985) 2015- 2022.
[153]. N. Khalid, E. Ahmed, N. Niaz, G. Nabi, M. Ahmad, M. Tahir, M. Rafique, M.
Rizwan and Y. Khan, "Highly visible light responsive metal loaded N/TiO2
nanoparticles for photocatalytic conversion of CO2 into methane", Ceramics
International, 43 (2017) 6771-6777.
129
[154]. N. M. Nghĩa and N. T. Huệ, "Nghiên cứu tính chất quang xúc tác của TiO2 pha tạp
Fe phủ trên hạt silica – gel," Tạp chí Khoa học ĐHQGHN: Khoa học Tự nhiên và
Công nghệ, vol. 32, no. 4, pp. 24-29, 2016.
[155]. N.Q. Tuấn et al, "Nghiên cứu các chất quang xúc tác TiO2 được biến tính bởi Fe2O3
bằng phương pháp sol-gel " Tạp chí hoá học Việt Nam, vol. 47, no. 3, pp. 292-299,
2008.
[156]. [3V] V. H. Sơn and L. P. Sơn, "Tổng hợp nano TiO2 cấu trúc anatase pha tạp
neodymium bằng phương pháp sol-gel," Tạp chí hóa học Việt Nam, vol. 52, no. 4,
2014.
[157]. N. V. Hưng et al, "Ảnh hưởng của Nd3+ đến cấu trúc và hoạt tính quang xúc tác của
bột Nd-TiO2 kích thước nano điều chế bằng phương pháp thuỷ nhiệt và thủy phân,"
Tạp chí Khoa học và Công nghệ, vol. 50, no. 3, pp. 367-374, 2012.
[158]. H. T. K. Xuân et al, “Nghiên cứu biến tính TiO2 anatase bằng KF và khảo sát hoạt
tính quang hóa trong vùng khả kiến”," Tạp chí phát triển khoa học và công nghệ -
ĐH Quốc Gia TP.HCM, vol. 13, no. T1, pp. 22-28, 2010.
[159]. Malekshoar G, Pal K, He Q, Yu A, Ray AK (2014) Enhanced solar photocatalytic
degradation of phenol with coupled graphene- based titanium dioxide and zinc oxide.
Indust Eng Chem Res 53:18824–18832
[160]. Alam S, Sharma N, Kumar L (2017) “Synthesis of graphene oxide (GO) by Modified
Hummers method and its thermal reduction to obtain reduced graphene oxide rGO”.
Graphene 6:1–18
[161]. Mai Phuong. P, „Study on the impregnation procedures to prepare catalytic
complexes for the treatment of motobiker ‘s exhaust gases“, a PhD dissertation 2013
HUST
[162]. I Syauqiyah, M Elma, M D. Putra1, A Rahma, Amalia E. Pratiwi and E L. A.
Rampun, “Interlayer-free Silica-carbon Template Membranes from Pectin and P123
for Water Desalination“, MATEC Web Conf. Volume 280, 2019
[163]. A. Ban Mazin, S. Asma, Khalil, „Characterization of TiO2 Nanorods and Nanotubes
Synthesized by Sol Gel Template Method“, Engineering and Technology Journal
Vol. 36, Part C, No. 2, 2018
[164]. Shaohua, ShenLiang, Zhao Liejin Guo, “Crystallite, optical and photocatalytic
properties of visible-light-driven ZnIn2S4 photocatalysts synthesized via a
surfactant-assisted hydrothermal method“, Materials Research Bulletin, Volume 44,
Issue 1, 8 January 2009, Pages 100-105
[165]. H. Annika, H. Marwa, S. Franceb , J. Jouguetb , D. Dappozze ,G. Chantal, "Impact
of Rutile and Anatase Phase on the Photocatalytic Decomposition of Lactic Acid“,
130
Applied Catalysis B: Environmental ,Volume 253, 15 September 2019, Pages 96-
104
[166]. G Jayakumar, A Albert Irudayaraj, A Dhayal Raj, “Particle Size Effect on the
Properties of Cerium Oxide (CeO2) Nanoparticles Synthesized by Hydrothermal
Method“, Mechanics, Materials Science & Engineering, April 2017 – ISSN 2412-
5954
[167]. Katie A.Cychosz, T. Matthias, “Progress in the Physisorption Characterization of
Nanoporous Gas Storage Materials“, Engineering, Volume 4, Issue 4, August 2018,
Pages 559-566
[168]. M.Peñas-Garzón, A.Gómez-Avilés, C.BelverJ.J.Rodriguez, J.Bedia, “Degradation
pathways of emerging contaminants using TiO2-activated carbon heterostructures in
aqueous solution under simulated solar light“, Chemical Engineering Journal
Volume 392, 15 July 2020, 124867
[169]. O. Kingsley,J Iwuozorab, O. Joshua, E.Ighalocd, “Adsorption of methyl orange: A
review on adsorbent performance,“ Current Research in Green and Sustainable
Chemistry Volume 4, 2021, 100179 9. -174
[170]. Abdollah Karami, Reem Shomal , Rana Sabouni , Mohammad H. Al-Sayah and
Ahmed Aidan, “Parametric Study of Methyl Orange Removal Using Metal–Organic
Frameworks Based on Factorial Experimental Design Analysis”, Energies 2022, 15,
4642.
[171]. Reda S. Salama, Sohier A. El-Hakama, Salem. E. Samraa, Shady M. El-Dafrawya
and Awad I.Ahmeda, “Adsorption, Equilibrium and kinetic studies on the removal
of methyl orange dye from aqueous solution by the use of copper metal organic
framework (Cu-BDC)”, International Journal of Modern Chemistry, 2018, 10(2):
195-207
[172]. Xian-Tai Zhou, Hong-Bing Ji, andXing-Jiao Huang, “Photocatalytic Degradation of
Methyl Orange over Metalloporphyrins Supported on TiO2 Degussa P25”,
Molecules 2012, 17(2), 1149-1158
[173]. S. LasseS, S. RenSua, W. StefanWendt, H. PeterHald, M. ArefMamakhel, Y.
Chuanxu, B. Yudong Huang, B,B. Iversenc Flemming, “The influence of crystallite
size and crystallinity of anatase nanoparticles on the photo-degradation of phenol”,
Journal of Catalysis Volume 310, February 2014, Pages 100-108
[174]. Lathasree, S., Rao, A.N., SivaSankar, B., Sadasivam, V., Rengaraj, K.,
“Heterogeneous photocatalytic mineralization of phenols in aqueous solutions“, J.
Mol. Catal. A: Chem. 223, (2004)
131
[175]. N.N.Bahrudin, “Evaluation of degradation kinetic and photostability of immobilized
TiO2/activated carbon bilayer photocatalyst for phenol removal”, Applied Surface
Science Advances Volume 7, February 2022, 100208
[176]. Daneshvar, N., Behnajady, M.A., Asghar,Y.Z.,“Photooxidative
degradation of 4-nitrophenol in UV/H2O2 process: Influence of operational
parameters and reaction mechanism“, J. Hazard. Mat., B139, (2007) 275-279.
[177]. Sobczynski, A., Duczmal, L., Zmudzinski, W, “Phenol destruction by photocatalysis
on TiO2: An attempt to solve the reaction mechanism“, J. Mol. Catal. A: Chem. 213,
(2004) 225-230
[178]. Behnajady, M.A., Modirshshla, N., Shokri, M., “Photodestruction of acid orange 7
(AO7) in aqueous solution by UV/H2O2: Influence of operational parameters“,
Chemosphere 55 (2003) 129-134.
[179]. Roenfeldt, E.J., Linden, K.G., Canonica, S., Gunten, U. V.,“Comparison of the
efficiency of OH radical formation during ozonation and the advanced oxidation
processes O3/H2O2 and UV/H2O2“, Water Res. 40 (2006) 3695-3704.
[180]. Yonar, T., Kestioglu, K., Azbar, N, “Treatability studies on domestic wastewater
using UV/H2O2 process“, Appl. Catal. B: Environ., 67, (2006) 223-228
[181]. Raja A, Selvakumar K, Rajasekaran P, Arunpandian M, Ashok- kumar S,
Kaviyarasu K, Asath Bahadur S, Swaminathan M (2019), “Visible active reduced
graphene oxide loaded titania for photo- decomposition of ciprofloxacin and its
antibacterial activity“. Colloids Surf A 564:23–30
[182]. Fu CC, Juang RS, Huq MM, Hsieh CT (2016), “Enhanced adsorption and
photodegradation of phenol in aqueous suspensions of titania/graphene oxide
composite catalysts“. J Taiwan Inst Chem Eng 67:338–345
THE COLLECTION OF PUBLICATIONS
1. Nguyễn Trung Hiếu, Phạm Thị Mai Phương, Đào Quốc Tùy, Lê Minh Thắng
(2016), “Nghiên cứu ảnh hưởng của chủng loại và hàm lượng than hoạt tính trong
vật liệu AC/TiO2 đến quá trình quang phân hủy methyl orange (MO)”, Tạp chí hóa
học, số T54 (5e1,2) 1-5 2016, tr. 343-347.
2. Nguyễn Trung Hiếu, Đào Quốc Tùy, Filip Verschaeren, Lê Minh Thắng
(2017), “Nghiên cứu ảnh hưởng của chất hoạt động bề mặt và phương pháp tổng
hợp đến quá trình tổng hộp xúc tác quang hóa TiO2 trong xử lý methyl da cam
(MO)”, Tạp chí Hóa học, số T.55 (2e) 2017, tr. 5-10.
3. Nguyễn Trung Hiếu, Bùi Đức Huy, Le Minh Thắng (2018), “Nghiên cứu hoạt
tính của xúc tác TiO2 dạng màng mỏng trên cordierite trong xử lý methyl da cam”,
Tạp chí Hóa học, số T.56 (3E12), tr. 198-202.
4. Nguyễn Trung Hiếu, Hoàng Thế Huynh, Trịnh Giang Khánh, Vũ Anh Tuấn,
Lê Minh Thắng (2019), “Tổng hợp và đánh giá hoạt tính xúc tác của màng TiO2
trên gốm cordierite trong việc xử lý methyl da cam”, Tạp chí Hóa học, số T.57
(2e12) 1-5, tr. 115-121.
5. Nguyễn Trung Hiếu, Trịnh Huy Quang, Đào Quốc Tùy, Lê Minh Thắng
(2019), “Nghiên cứu ảnh hưởng của tỷ lệ grapheme oxide (GO) trong quá trình
biến tính xúc tác quang hóa TiO2 bằng phương pháp sol-gel và xử lý methyl da cam
(MO)”, Tạp chí Hóa học, số T.57 (2e12) 1-5, tr. 122-127.
6. Trung Hieu Nguyen, Anh Tuan Vu, Van Han Dang, Jeffrey Chi-Sheng Wu,
Minh Thang Le (2020), “Photocatalytic Degradation of Phenol and Methyl Orange
with Titania-Based Photocatalysts Synthesized by Various Methods in Comparison
with ZnO–Graphene Oxide Composite”, Topics in Catalysis, Springer Nature 2020.
https://doi.org/10.1007/s11244-020-01361-5
APPENDIX A
TiO2/AC composites Calculation
Example of Calculation:
TiO2/AC at 5%wt: In preparation process 20ml Ti(OCH(CH3)2)4 was used. The synthesis
reaction was presented below Ti(OCH(CH3)2)4 information; the density is 0.97 kg/l, the
molecular weight is 284.26 g/mol. For TiO2, the molecular weight is 80 g/mol.
Ti{OCH(CH3)2}4 + 2 H2O → TiO2 + 4 (CH3)2CHOH
So, 20ml Ti[OCH(CH3)2]4 can be produced TiO2;
2
2
423
423
/80
1
1
/26.284
/97.020
)(
])([
])([
2 TiO
TiO
CHOCHTi
CHOCHTi
molg
mol
mol
molg
lkgml
gTiO
=
So the amount of TiO2 = 5.46 g
The percent theoretical amount of AC percent in composite catalyst can be computed
by
100%
=
TX
X
ACofwt
100
46.5
%5
=
X
X
wt
The amount of AC added, X =0.29 g
APPENDIX B MO (methyl orange) photodegradation
A: methyl orange MO in powder, B experimental setup for full range visible experiment,
C MO sampling tube, D: MO absorbance by Avantes Uv-Vis device
APPENDIX C Phenol photodegradation
a b
c
d
APPENDIX D BET pore results
APPENDIX E XRD characterizations
Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - G1-18
00-021-1272 (*) - Anatase, syn - TiO2 - Y: 82.49 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 3.78520 - b 3.78520 - c 9.51390 - alpha 90.000 - beta 90.000 - gamma 90.000 - Body-centered - I41/amd (141) - 4 - 136.313 - I/Ic
File: HieuBK G1-18.raw - Type: 2Th/Th locked - Start: 5.000 ° - End: 70.010 ° - Step: 0.030 ° - Step time: 0.3 s - Temp.: 25 °C (Room) - Time Started: 3 s - 2-Theta: 5.000 ° - Theta: 2.500 ° - Chi: 0.00 ° - Phi: 0.00 ° - X: 0.0 m
L
in
(
C
p
s
)
0
100
200
300
400
500
600
2-Theta - Scale
5 10 20 30 40 50 60 70
d
=
3
.5
2
7
d
=
2
.3
7
8
d
=
1
.8
9
5
d
=
1
.6
9
7
d
=
1
.6
6
7
d
=
1
.4
8
7
Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - G1-24
00-021-1272 (*) - Anatase, syn - TiO2 - Y: 50.21 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 3.78520 - b 3.78520 - c 9.51390 - alpha 90.000 - beta 90.000 - gamma 90.000 - Body-centered - I41/amd (141) - 4 - 136.313 - I/Ic
1)
File: HieuBK G1-24.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 70.010 ° - Step: 0.030 ° - Step time: 0.3 s - Temp.: 25 °C (Room) - Time Started: 14 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° - Phi: 0.00 ° - X: 0.0
Left Angle: 23.540 ° - Right Angle: 26.180 ° - Left Int.: 69.9 Cps - Right Int.: 94.8 Cps - Obs. Max: 25.276 ° - d (Obs. Max): 3.521 - Max Int.: 238 Cps - Net Height: 151 Cps - FWHM: 0.718 ° - Chord Mid.: 25.253 ° - Int. Br
L
in
(
C
p
s
)
0
100
200
300
400
500
600
2-Theta - Scale
5 10 20 30 40 50 60 70
d
=
3
.5
2
0
d
=
3
.3
6
0
d
=
2
.3
7
8
d
=
1
.8
9
0
d
=
1
.7
0
0
d
=
1
.4
8
1
d
=
1
.3
7
0
Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - G1-4
00-021-1272 (*) - Anatase, syn - TiO2 - Y: 55.67 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 3.78520 - b 3.78520 - c 9.51390 - alpha 90.000 - beta 90.000 - gamma 90.000 - Body-centered - I41/amd (141) - 4 - 136.313 - I/Ic
1)
File: HieuBK G1-4.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 70.010 ° - Step: 0.030 ° - Step time: 0.3 s - Temp.: 25 °C (Room) - Time Started: 14 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° - Phi: 0.00 ° - X: 0.0 m
Left Angle: 22.820 ° - Right Angle: 27.560 ° - Left Int.: 71.2 Cps - Right Int.: 64.8 Cps - Obs. Max: 25.280 ° - d (Obs. Max): 3.520 - Max Int.: 234 Cps - Net Height: 167 Cps - FWHM: 0.742 ° - Chord Mid.: 25.271 ° - Int. Br
L
in
(
C
p
s
)
0
100
200
300
400
500
600
2-Theta - Scale
5 10 20 30 40 50 60 70
d
=
3
.5
2
0
d
=
2
.3
7
4
d
=
1
.8
9
1
d
=
1
.6
9
8
d
=
1
.6
6
4
d
=
1
.4
8
2