The performance of catalysts in dual-reactor mode above revealed that the
concept of “dual-reactor” suggested by our research group which actually worked in
practially. This could help to overcome the hinder of different thermodynamic
barriers between RWGS and hydroformylation. In comparison with the previous
study, in which, the oxo-selectivity based on ethylene was achieved maximum of
ca. 15% [78-80]. The catalytic activities could increase the oxo-selectivity based on
ethylene up to ca. 60% applying in dual-reactor system. This is very prospective to
apply this process in industry if it is considered that ethylene is much valuable than
CO2. Moreover, oxo products (propanal and propanol) are easily separated from
product-flow by condensation resulted in a possibility to recycle a part of product
gases (C2H4, C2H6.) that could help to hinder the C2H4 hydrogenation, but it also
increases the hydroformylation. In dual-reactor mode, the catalyst performance
depended strongly on Au NP size. The Au NP size of higher than 10nm was
believed is not active for hydroformylation but promoted the ethylene
hydrogenation. Conversely, the Au NP size of lower than 4nm was not active both
C2H4 hydrogenation and hydroformylation. The loading content of 1%wt Au was
suitable to achieve Au NP size of 6 nm over SiO2 support that resulted in highest
oxo-selectivity in comparison to those of different Au loading samples. The dualreactor
concept again confirmed clearly about the mechanistic scheme of CO2
conversion with C2H4 to propanol/propanal in the presence of H2, in which the
process occurs through 2 separated steps: the first one is RGWS to produce CO,
then follow with hydroformylation of CO and C2H4 to form oxo products. The Au
NP supported catalyst only produced propanal via hydroformylation, propanol was
formed by later hydrogenation of propanal as a side-reaction. Hence, it need to
supply a further catalytic process to convert propanal to propanol completely. In
addition to the effect of Cs, loading Cs on Au NP supported SiO2 did not help to
increase catalytic activity as expected. In contrary, Cs loading resulted in an
increase of Au NP size which dropped the catalyst performance. On the other hand,
Cs loading could reduce the surface area of catalyst by collapsing pore structure
because of reaction between Cs2O and water vapor formed in RWGS step.
134 trang |
Chia sẻ: Kim Linh 2 | Ngày: 11/11/2024 | Lượt xem: 65 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Study on the hydroformylation of ethylene with co and CO₂ using supported ionic liquid phase silp/TiO₂ and nano Au/TiO₂ (SiO₂) catalyst, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
21,
USA. [Online]. Availabe:
https://www.spglobal.com/commodityinsights/en/ci/products/oxo-chemical-
economics-handbook.html.
[26] Market Reseach Future, “Oxo Alcohol Market Research Report Information
by Type (n-butanol, iso-butanol, 2-ethylhexanol, and others), Application
(Plasticizers, Acrylates, Acetates, Resins, Solvents, Glycol Ethers, Lube Oil
117
Additives), and Region (Asia-Pacific, Europe, and RoW)- Forecast to 2030”
USA, August 2024. [Online]. Availabe:
https://www.marketresearchfuture.com/reports/oxo-alcohol-market-6637.
[27] Boy Cornils, and Wolfgang A. Herrmann, “Concepts in homogeneous
catalysis the industrial view”, Journal of Catalysis, Volume 216, p. 23–31,
2003. DOI: 10.1016/S0021-9517(02)00128-8.
[28] Frohning, C. D. and Kohlpaintner, C. W. Applied homogeneous catalysts with
organometallic compounds, Vol. 1, Ch. 2.1, VCH, Weinheim, 1996.
[29] Maurice Abou Rid Anthony K. Smith, “Bimetallic hydroformylation catalyst
high regioselectivity through heterobimetallic cooperativity”, Journal of
Molecular Catalysis A: Chemical, Volume 202, p. 87–95, 2003. DOI:
10.1016/S1381-1169(03)00234-6.
[30] Hong Sang Ahn, Sung Hwan Han, Sung Jin Uhm Won Kyung Seok, Heung
Nae Lee, G.A. Korneevac, “Hydroformylation of olefins with formaldehyde in
the presence of RhHCO(PPh3)3”, Journal of Molecular Catalysis A: Chemical , Volume 144,p. 295–306, 1999. DOI: 10.1016/S1381-1169(99)00002-3.
[31] Imre T&h, Ipin Guo, Brian E. Hanson, “Alternative supported aqueous-
phase catalyst systems”, Journal of Molecular Catalysis A: Chemical ,
Volume 116, p. 217-229, 1997. DOI: 10.1016/S1381-1169(96)00141-0.
[32] Peter Wasserscheid, Roy van Hal and Andreas Bosmann, “1-n-Butyl-3-
Methylimidazolium ([BMIM]) octylsulfate – an even ‘greener’ ionic liquid”,
Green Chemistry, Volume 4, 400-404, 2002. DOI: doi.org/10.1039/B205425F.
[33] Balakos, M. W. and Chuang, S. S. C., “Transient response of propionaldehyde
formation during CO/H2/C2H4 reaction on Rh/SiO2”, J. Catal. Volume 151 p.253–265, 1995. DOI: doi.org/10.1006/jcat.1995.1026.
[34] Arnoldo J. Bruss , Marcos A. Gelesky Giovanna Machado, Jairton Dupont,
“Rh(0) nanoparticles as catalyst precursors for the solventless
hydroformylation of olefins”, Journal of Molecular Catalysis A: Chemical ,
Volume 252 p.212–218, 2006. DOI: 10.1016/j.molcata.2006.02.063.
[35] Barbara Kirchner, Ionic liquids, Springer Heidelberg Dordrecht London New
York, e-ISBN 978-3-642-01780-3, 2009.
[36] Bassam E1 Ali, Jimoh Tijani, Mohammed Fettouhi, “Hydroformylation of
alkyl alkenes catalyzed by rhodium supported on MCM-41 - The effect of
H3PW12O40 on the catalytic activity and recycling”, Journal of Molecular Catalysis A: Chemical Volume 250, p.153–162, 2006. DOI:
10.1016/j.molcata.2006.01.057.
[37] Anders Riisager, Rasmus Fehrmann, Supported liquid catalysts, Handbook of
Heterogeneous Catalysis (ISBN: 3527312412), p: 631-644: 4270, Wiley-
VCH, Weinheim, 2008.
[38] Anders Riisager, Rasmus Fehrmann, Marco Haumann, Babu S. K. Gorle and
Peter Wasserscheid, “Stability and Kinetic Studies of Supported Ionic Liquid
Phase Catalysts for Hydroformylation of Propene”, Ind. Eng. Chem. Res.,
Volume 44, 9853-9859, 2005. DOI: 10.1021/ie050629g.
[39] Anders Riisager, “Catalytic SILP materials”, Topics in Organometallic
Chemistry (ISSN: 1436-6002), vol: 23, p. 149-162, Springer, 2008. DOI
10.1007/3418_042.
118
[40] Scott A. Hedrick, Steven S. C. Chuang, and Mark A. Brundage, “Deuterium
Pulse Transient Analysis for Determination of Heterogeneous Ethylene
Hydroformylation Mechanistic Parameters”, Journal of Catalysis, Volume
185, 73–90, 1999. DOI: 10.1006/jcat.1999.2481.
[41] N. Sivasankar, H. Frei, “Direct Observation of Kinetically Competent Surface
Intermediates upon Ethylene Hydroformylation over Rh/Al2O3 under Reaction Conditions by Time-Resolved Fourier Transform Infrared Spectroscopy”, J.
Phys. Chem. C , Volume 115, 7545-7553, 2011. DOI: 10.1021/jp112391n.
[42] A. Fusi, R. Psaro, C. Dossi, L. Garlaschelli, F. Cozzi., “A molecular approach
to heterogeneous catalysis. Ethylene hydroformylation catalysed by silica-
supported [Rh12(CO)30]2−0O)lecular approach to heterogeneous catalysis. Et+, Na+, K+, Zn2+,” J. Mol. Catal. A: Chem. ,Volume 107, 255-261, 1996. DOI:
10.1016/1381-1169(95)00215-4.
[43] L. Alvarado Rupflin, J. Mormul, M. Lejkowski, S. Titlbach, R. Papp, R.
Gläser, M. Dimitrakopoulou, X. Huang, A. Trunschke, M. G. Willinger, R.
Schlögl, F. Rosowski, S. A. Schunk, “Platinum Group Metal Phosphides as
Heterogeneous Catalysts for the Gas-Phase Hydroformylation of Small
Olefins”, ACS Catal. , Volume 7, 3584-3590, 2017. DOI:
10.1021/acscatal.7b00499.
[44] D. G. Hanna, S. Shylesh, P. A. Parada, A. T. Bell., “Hydrogenation of butanal
over silica-supported Shvo’s catalyst and its use for the gas-phase conversion
of propene to butanol via tandem hydroformylation and hydrogenation”, J.
Catal., Volume 311, 52-58, 2014. DOI: 10.1016/j.jcat.2013.11.012.
[45] N. Navidi, J. W. Thybaut, G. B. Marin, “Experimental investigation of
ethylene hydroformylation to propanal on Rh and Co based catalysts”, Appl.
Catal., A, Volume 469, 357-366, 2014. DOI: 10.1016/j.apcata.2013.10.019.
[46] L. Sordelli, M. Guidotti, D. Andreatta, G. Vlaic, R. Psaro., “Characterization
and catalytic performances of alkali-metal promoted Rh/SiO2 catalysts for propene hydroformylation”, J. Mol. Catal. A: Chem. , Volume 204, 509-518,
2003. DOI: 10.1016/S1381-1169(03)00333-9.
[47] T. Hanaoka, H. Arakawa, T. Matsuzaki, Y. Sugi, K. Kanno, Y. Abe. “Ethylene
hydroformylation and carbon monoxide hydrogenation over modified and
unmodified silica supported rhodium catalysts”, Catal. Today, Volume 58,
271-280, 2000. DOI: 10.1016/S0920-5861(00)00261-3.
[48] E. J. Rode, M. E. Davis, B. E. Hanson., “Propylene hydroformylation on
rhodium zeolites X and Y: II. In situ Fourier transform infrared spectroscopy”,
J. Catal., Volume 96, 574-585, 1985. DOI: 10.1016/0021-9517(85)90325-2.
[49] I. Horiuti, M. Polanyi, “Exchange reactions of hydrogen on metallic catalysts”,
Trans. Faraday Soc., Volume 30, 1164-1172, 1934. DOI:
10.1039/TF9343001164.
[50] M. Lenarda, L. Storaro, R. Ganzerla, “Hydroformylation of simple olefins
catalyzed by metals and clusters supported on unfunctionalized inorganic
carriers” , J. Mol. Catal. A: Chem., 111, 203-237, 1996. DOI: 10.1016/1381-
1169(96)00211-7.
119
[51] Liu, X.; Hu, B.; Fujimoto, K.; Haruta, M.; Tokunaga, M, “Hydroformylation
of olefins by Au/Co3O4 catalysts”, Appl. Catal., B, 92, 411−421, 2009. DOI: 10.1016/j.apcatb.2009.08.021.
[52] R.F. Heck and D.S. Breslow, “The Reaction of Cobalt Hydrotetracarbonyl
with Olefins”, J. Am. Chem. Soc., 83 4023-4027, 1961. DOI:
10.1021/ja01480a017.
[53] R.F. Heck and D.S. Breslow, “Acylcobalt Carbonyls and their
Triphenylphosphine Complexes”, Journal of the American Chemical
Society , Volume 84, 13, 2499-2502, 1962. DOI: 10.1021/ja00872a009.
[54] Wilkinson G., Brown C.K , “The mechanism of phosphine-modified rhodium-
catalyzed hydroformylation studied by CIR-FTIR”, Journal of the American
Chemical Society, p.1392, 1970. DOI: 10.1016/0304-5102(87)80106-2.
[55] Piet W.N.M. van Leeuwen, Carmen Claver. Rhodium Catalyzed
Hydroformylation, Catalysis by Metal Complexes, Vol. 22, Netherlands, ISBN
10: 1402004214, 2002.
[56] Henrici-Olivé, G. and Olivé, S., The chemistry of the catalysed hydrogenation
of carbon monoxide, Springer-Verlag, Berlin, Volume 231, 1984.
[57] Chuang, S. S. C. and Pien, S. I., “Infrared study of the CO insertion reaction
on reduced, oxidised, and sulfided Rh/SiO2 catalysts”, Journal of Catalysis , Volume 135, p. 618–634, 1992. DOI: 10.1016/0021-9517(92)90058-P.
[58] Sachtler, W. M. H. and Ichikawa, M., “Catalytic sites requirements for
elementary steps in syngas conversion to oxygenates over promoted Rh”, J.
Phys. Chem. , Volume 90, p.4752–4758, 1986. DOI: 10.1021/j100411a009.
[59] Scott A. Hedrick, Steven S. C. Chuang, and Mark A. Brundage, “Deuterium
Pulse Transient Analysis for Determination of Heterogeneous Ethylene
Hydroformylation Mechanistic Parameters”, Journal of Catalysis, Volume
185, 73–90, 1999. DOI: 10.1006/jcat.1999.2481.
[60] M. K. Ko, H. Frei., “Millisecond FT-IR Spectroscopy of Surface Intermediates
of C2H4 Hydrogenation over Pt/Al2O3 Catalyst under Reaction Conditions” , J.
Phys. Chem. B , 108, 1805-1808, 2004. DOI: 10.1021/jp030920e.
[61] K. J. Williams, A. B. Boffa, M. Salmeron, A. T. Bell, G. A. Somorjai, “The
kinetics of CO2 hydrogenation on a Rh foil promoted by titania overlayers”, Catal. Lett., Volume 11, 77-88, 1991. DOI: 10.1007/bf00764834.
[62] D. S. Jordan, A. T. Bell, “Catalytic Reactions of Carbon Monoxide”, J. Phys.
Chem., Volume 90, 4797-4805, 1986. DOI: 10.1021/j150517a010.
[63] S. Naito, M. Tanimoto, “Effect of sodium cation addition on the
hydroformylation of propene over silica-supported Group VIII metal
catalysts”, J. Chem. Soc., Chem. Commun., 1403-1404, 1989. DOI:
10.1039/C39890001403.
[64] D. Y. Murzin, A. Bernas, T. Salmi, “Kinetic Modeling of Regioselectivity in
Alkenes Hydroformylation over Rhodium”, J. Mol. Catal. A: Chem., Volume
315, 148-154, 2010. DOI: 10.1016/j.molcata.2009.06.023.
[65] Marco Haumann, Michael Jakuttis, Sebastian Werner, Peter Wasserscheid,
“Supported ionic liquid phase (SILP) catalyzed hydroformylation of 1-butene
120
in a gradient-free loop reactor”, Journal of Catalysis. , Volume 263, Issue
2, 25, Pages 321-327, April 2009. DOI: 10.1016/j.jcat.2009.02.024.
[66] “MACBETH has received funding from the European Union's Horizon
2020”, Research and Innovation Programme under Grant Agreement No
869896 [Online]. Availabe: https://www.macbeth-project.eu/introduction/.
[Accessed: August 2020]
[67] Morten Logemann, Jakob Maximilian Marinkovic, Markus Schörner,
Eduardo José García-Suárez, Corinna Hecht, Robert Franke, Matthias
Wessling, Anders Riisager, Rasmus Fehrmann and Marco Haumann,
“Continuous gas-phase hydroformylation of but-1-ene in a membrane reactor
by supported liquid-phase (SLP) catalysis”, Green Chemistry, Issue 17, 2020.
DOI: 10.1039/D0GC01483D.
[68] Andre Kaftan, Andreas Schönweiz, Ioannis Nikiforidis, Wolfgang Hieringer,
Katrin,M. Dyballa , Robert Franke, Andreas Görling , Jörg Libuda, Peter Wass
erscheid, Mathias Laurin, Marco Haumann, “Supported homogeneous catalyst
makes its own liquid phase”, Journal of Catalysis. Volume 321, Pages 32-
38, January 2015. DOI: 10.1016/j.jcat.2014.10.019.
[69] D. J. Cole-Hamilton, R. P. Tooze, Catalyst Separation, Recovery and
Recycling, Volume 30, Springer, Dordrecht, 2006.
[70] M. Schörner, S. Kämmerle, D. Wisser, B. Baier, M. Hartmann, M. Thommes,
R. Franke, M. Haumann, “Influence of support texture and reaction conditions
on the accumulation and activity in the gas-phase aldol condensation of n-
pentanal on porous silica”, React. Chem. Eng., Volume 7 , pp. 2445-2459,
2022. DOI: 10.1039/D2RE00143H.
[71] Markus Schörner, Andreas Schönweiz, Stefanie Vignesh, Liudmila Mokrushin
a, Matthias Thommes, Robert Franke, Marco Haumann , “Tuning catalyst
performance in the SILP-catalyzed gas-phase hydroformylation of but-1-ene
by choice of the ionic liquid”, Journal of Ionic Liquids, Volume 3, Issue
2, December 2023. DOI: 10.1016/j.jil.2023.100061.
[72] W. Wang, S. P. Wang, X. B. Ma, J. L. Gong, “Recent advances in catalytic
hydrogenation of carbon dioxide”, Chem. Soc. Rev., 40, 3703-3727, 2011.
DOI: 10.1039/C1CS15008A.
[73] W. Pan, C. Song. Carbon Dioxide as Chemical Feedstock, WILEY, VCH
Verlag GmbH & Co. KGaA, Weinheim, pp. 249-266 2010.
[74] S. S. Ail, S. Dasappa, “Biomass to liquid transportation fuel via Fischer
Tropsch synthesis – Technology review and current scenario”, Renewable
Sustainable Energy Rev., 58, 267-286, 2016. DOI: 10.1016/j.rser.2015.12.143.
[75] S. Maiti, G. Gallastegui, S. J. Sarma, S. K. Brar, Y. Le Bihan, P. Drogui, G.
Buelna, M. Verma, “A re-look at the biochemical strategies to enhance
butanol production”, Biomass Bioenergy, Volume 94, 187-200, 2016. DOI:
10.1016/j.biombioe.2016.09.001.
[76] J. M. Matter, M. Stute, S. Ó. Snæbjörnsdottir, E. H. Oelkers, S. R. Gislason, E.
S. Aradottir, B. Sigfusson, I. Gunnarsson, H. Sigurdardottir, E. Gunnlaugsson,
G. Axelsson, H. A. Alfredsson, D. Wolff-Boenisch, K. Mesfin, D. F. d. l. R.
Taya, J. Hall, K. Dideriksen, W. S. Broecker, “Rapid carbon mineralization
121
for permanent disposal of anthropogenic carbon dioxide emissions”, Science,
Volume 352, 1312-1314, 2016. DOI: 10.1126/science.aad8132.
[77] C. J. Keturakis, F. Ni, M. Spicer, M. G. Beaver, H. S. Caram, I. E. Wachs,
“Monitoring Solid Oxide CO2 Capture Sorbents in Action”, ChemSusChem, volume 7, 3459-3466, 2014. DOI: 10.1002/cssc.201402474.
[78] Stefan J. Ahlers, Ursula Bentrup, David Linke, and Evgenii V. Kondratenko,
“An Innovative Approach for Highly Selective Direct Conversion of CO2 into Propanol using C2H4 and H2”, ChemSusChem, volume 7, 2631 – 2639, 2014. DOI: 10.1002/cssc.201402212.
[79] Stefan J. Ahlers, Marga-Martina Pohl, Joerg Radnik, David Linke, Evgenii V.
Kondratenko, “Catalytic role and location of Cs promoter in Cs–Au/TiO2 catalysts for propanol synthesis from CO2, C2H4 and H2”, Applied Catalysis B: Environmental, Volumes 176–177, Pages 570-577, October 2015. DOI:
10.1016/j.apcatb.2015.04.034.
[80] Stefan J. Ahlers, Ralph Kraehnert, Carsten Kreyenschulte , Marga-Martina
Pohl ,David Linke, Evgenii V. Kondratenko, “Propanol formation from CO2 and C2H4 with H2 over Au/TiO2: Effect of support and K doping”, Catalysis Today , Volume 258, 684–690, 2015. DOI: 10.1016/j.cattod.2015.04.006.
[81] S. J. Ahlers, M.-M. Pohl, M. Holena, D. Linke and E. V. Kondratenko, “Direct
propanol synthesis from CO2, C2H4, and H2 over Cs–Au/TiO2 rutile: effect of promoter loading, temperature and feed composition”. Catal. Sci. Technol.,
Volume 6, 2171, 2016. DOI: 10.1039/C5CY01425E.
[82] Yasuo Izumi, “Recent advances in the photocatalytic conversion of carbon
dioxide to fuels with water and/or hydrogen using solar energy and beyond”,
Coord. Chem. Rev., Volume 257, 171-186, 2013. DOI:
10.1016/j.ccr.2012.04.018.
[83] L. Zhang, Z.-J. Zhao, J. Gong, “Nanostructured Materials for Heterogeneous
Electrocatalytic CO2 Reduction and their Related Reaction Mechanisms”, Angew. Chem. Int. Ed., Volume 56, 11326-11353, 2017. DOI:
10.1002/anie.201612214.
[84] D. Kim, J. Resasco, Y. Yu, A. M. Asiri, P. D. Yang, “Synergistic geometric
and electronic effects for electrochemical reduction of carbon dioxide using
gold–copper bimetallic nanoparticles”, Nature Communications , volume 5,
Article number: 4948, 2014. DOI: 10.1038/ncomms5948.
[85] J. Klankermayer, S. Wesselbaum, K. Beydoun, W. Leitner, “Selective
Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen:
Catalytic Chess at the Interface of Energy and Chemistry”, Angew. Chem. Int.
Ed., Volume 55, 7296-7343, 2016. DOI: 10.1002/anie.201507458.
[86] T. D. Veras, T. S. Mozer, D. D. R. M. dos Santos, A. D. Cesar, “Hydrogen:
Trends, production and characterization of the main process worldwide”, Int.
J. Hydrogen Energy, Volume 42, 2018-2033, 2017. DOI:
10.1016/j.ijhydene.2016.08.219.
[87] J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, F. Su, “A thermodynamic
analysis of methanation reactions of carbon oxides for the production of
122
synthetic natural gas”, RSC Adv., Volume 2, 2358, 2012. DOI:
10.1039/C2RA00632D.
[88] Zhongliang Huang, Yujia Yuan, Miaomiao Song, Zhimian Hao, Jingran Xiao,
Dongren Cai,Abdul-Rauf Ibrahim, Guowu Zhan, “CO2 hydrogenation over mesoporous Ni-Pt/SiO2 nanorod catalysts:Determining CH4/CO selectivity by surface ratio of Ni/Pt”, Chemical Engineering Science, Volume 247, 117106,
2022. DOI: 10.1016/j.ces.2021.117106.
[89] Lahijani P., Zainal Z.A., Mohammadi M., Mohamed A.R, “Conversion of the
greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review”, Renew. Sustain. Energy Rev., Volume 41:615–632, 2015. DOI:
10.1016/j.rser.2014.08.034.
[90] Y. A. Daza, J. N. Kuhn, “CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for
CO2 conversion to liquid fuels”, RSC Adv., Volume 6, 49675-49691, 2016. DOI: 10.1039/C6RA05414E.
[91] M. D. Porosoff, B. H. Yan, J. G. G. Chen, “Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities”, Energy Environ. Sci., Vol 9, 62-73, 2016. DOI:
10.1039/C5EE02657A.
[92] P. Panagiotopoulou, “Hydrogenation of CO2 over supported noble metal catalysts”, Appl. Catal., A, Vol 542, 63-70, 2017. DOI:
10.1016/j.apcata.2017.05.026.
[93] J. Kehres, J. W. Andreasen, F. C. Krebs, A. M. Molenbroek, I. Chorkendorff,
T. Vegge, J, “Combined in situ small- and wide-angle X-ray scattering studies
of TiO2 nanoparticle annealing to 1023 K”, Appl. Crystallogr., Vol 43, 1400-1408, 2010. DOI:10.1107/S0021889810041907.
[94] H. Sakurai, A. Ueda, T. Kobayashi, M. Haruta, “Low-temperature water–gas
shift reaction over gold deposited on TiO2”, Chem. Commun., 271-272, 1997. DOI: 10.1039/A606192C.
[95] B. Cornils, New Synthesis with Carbon monoxide, J. Falbe (Ed.), Springer,
pages 12, 1980.
[96] V. Kyriakou, A. Vourros, I. Garagounis, S. A. C. Carabineiro, F. J.
Maldonado-Hódar, G. E. Marnellos, M. Konsolakis, “Highly active and stable
TiO2-supported Au nanoparticles for CO2 reduction”, Catal. Commun., Vol 98, 52-56, 2017. DOI: 10.1016/j.catcom.2017.05.003.
[97] H. Kusama, K. K. Bando, K. Okabe, H. Arakawa, “Characterization of Rh-
Co/SiO2 catalysts for CO2 hydrogenation with TEM, XPS and FT-IR”, Appl. Catal., A, Vol 197, 255-268, 2000. DOI: 10.1016/S0926-860X(00)00611-6.
[98] G. A. Mills, F. W. Steffgen, “Heterogeneous methanation: Initial rate of CO
hydrogenation on supported ruthenium and nickel”, Catal. Rev.: Sci. Eng., 8,
159-210, 1974. DOI: 10.1016/0021-9517(74)90182-1.
[99] P. Frontera, A. Macario, M. Ferraro, P. Antonucci, “Supported Catalysts for
CO2 Methanation: A Review”, Catalysts, Vol 7, 59, 2017. DOI: 10.3390/catal7020059.
123
[100] D. Li, N. Ichikuni, S. Shimazu, T. Uematsu, “Catalytic properties of sprayed
Ru/Al2O3 and promoter effects of alkali metals in CO2 hydrogenation”, Appl. Catal., A, Vol 172, 351-358, 1998. DOI: 10.1016/S0926-860X(98)00139-2.
[101] K. K. Bando, K. Soga, K. Kunimori, H. Arakawa, “Effect of Li additive on
CO2 hydrogenation reactivity of zeolite supported Rh catalysts”, Appl. Catal., A, 175, 67-81, 1998. DOI: 10.1016/S0926-860X(98)00202-6.
[102] Bogdan Jurca, Lu Peng, Ana Primo, Alvaro Gordillo, Amarajothi
Dhakshinamoorthy, Vasile I. Parvulescu, and Hermenegildo García,
“Promotional Effects on the Catalytic Activity of Co-Fe Alloy Supported on
Graphitic Carbon for CO2 Hydrogenation”, Nanomaterials (Basel). 12(18): 3220, 2022. DOI: 10.3390/nano12183220.
[103] G. M. Torres, R. Frauenlob, R. Franke, A. Börner, “Production of
alcohols via hydroformylation”, Catal. Sci. Technol., 5, 34-54, 2015. DOI:
10.1039/C4CY01131G.
[104] Macleod, N.; Keel, J. M.; Lambert, R. M., “The Effects of Ageing a
Bimetallic Catalyst under Industrial Conditions: A Study of Fresh and Used
Pd-Au-K/Silica Vinyl Acetate Synthesis Catalysts”, Appl. Catal. A: Gen.,
261, 37−46, 2004. DOI: 10.1016/j.apcata.2003.10.032.
[105] Stachurski, J.; Thomas, J. M., “Structural Aspects of the Lindlar Catalyst for
Selective Hydrogenation”, Catal. Lett., 1, 67−72, 1988. DOI:
10.1007/BF00765356.
[106] Navarro, R. M.; Pawelec, B.; Trejo, J. M.; Mariscal, R.; Fierro, J. L. G.,
“Hydrogenation of Aromatics on Sulfur-Resistant Ptpd Bimetallic
Catalysts”,. J. Catal., 189, 184−194, 2000. DOI: 10.1006/jcat.1999.2693.
[107] Serna, P.; ConcepciÓN, P.; Corma, A., “Design of Highly Active and
Chemoselective Bimetallic Gold-Platinum Hydrogenation Catalysts through
Kinetic and Isotopic Studies”, . J. Catal., 265, 19−25, 2009. DOI:
10.1016/j.jcat.2009.04.004.
[108] Carter, J. H.; Althahban, S.; Nowicka, E.; Freakley, S. J.; Morgan, D. J.;
Shah, P. M.; Golunski, S.; Kiely, C. J.; Hutchings, G. J., “Synergy and Anti-
Synergy between Palladium and Gold in Nanoparticles Dispersed on a
Reducible Support” ACS Catal., Vol 6, 6623−6633, 2016. DOI:
10.1021/acscatal.6b01275.
[109] Jang, M. G.; Yoon, S.; Shin, D.; Kim, H. J.; Huang, R.; Yang, E.; Kim, J.;
Lee, K.-S.; An, K.; Han, J. W., “Boosting Support Reducibility and Metal
Dispersion by Exposed Surface Atom Control for Highly Active Supported
Metal Catalysts”, ACS Catal., 12, 4402−4414, 2022. DOI:
10.1021/acscatal.2c00476.
[110] Karatok, M.; Madix, R. J.; Van Der Hoeven, J. E. S.; Aizenberg, J.; Reece,
C., “Quantifying Oxygen Induced Surface Enrichment of a Dilute Pdau
Alloy Catalyst”, Catal. Sci. Technol., 11, 7530−7534, 2021. DOI:
10.1039/D1CY01337H.
[111] Ro, I.; Xu, M.; Graham, G. W.; Pan, X.; Christopher, P., “Synthesis of
Heteroatom Rh-ReOx Atomically Dispersed Species on Al2O3 and their Tunable Catalytic Reactivity in Ethylene Hydroformylation”, ACS Catal.,
Vol 9, 10899−10912, 2019. DOI: 10.1021/acscatal.9b02111.
124
[112] Malta, G.; Kondrat, S. A.; Freakley, S. J.; Davies, C. J.; Dawson, S.; Liu, X.;
Lu, L.; Dymkowski, K.; Fernandez-Alonso, F.; Mukhopadhyay, S.; et al., “
Deactivation of a Single-Site Gold-on-Carbon Acetylene Hydrochlorination
Catalyst: An X-Ray Absorption and Inelastic Neutron Scattering Study”,
ACS Catal. Vol 8, 8493−8505. 2018. DOI: 10.1021/acscatal.8b02232.
[113] Zhao, J.; Xu, J.; Xu, J.; Ni, J.; Zhang, T.; Xu, X.; Li, X., “Activated- Carbon-
Supported Gold-Cesium(I) as Highly Effective Catalysts for
Hydrochlorination of Acetylene to Vinyl Chloride”, ChemPlusChem., 80,
196−201, 2015. DOI: 10.1002/cplu.201402176.
[114] Appel, C., Ma, L.Q., Rhue, R.D., and Kennelley, E., “Point of zero charge
determination in soils and minerals via traditional methods and detection of
electroacoustic mobility”. Geoderma, Vol 113, 77-93, 2003. DOI:
10.1016/S0016-7061(02)00316-6.
[115] Parks, G.A. and Bruyn, P.L.D, “Zero point of charge of oxides”. Journal of
Physical Chemistry, Volume 66, 967-974, 1962. DOI: 10.1021/j100812a002.
[116] Brunauer, S., Emmett, P.H. and Teller, E., “Adsorption of Gases in
Multimolecular Layers”, Journal of the American Chemical Society, Volume
60, 309-319, 1938. DOI: 10.1021/ja01269a023.
[117] J. W. Niemantsverdriet, Spectroscopy in Catalysis, Wiley-VCH, Second
Edition, 2000.
[118] P. Machnitzki, M. Tepper, K. Wenz, O. Stelzer and E. Herdtweck, J.
Organomet , “Water soluble phosphines: Part XIII. Chiral phosphine ligands
with amino acid moieties”, Journal of Organometallic Chemistry, Volume
598, Issue 1, 25, Pages 116-126, March 2000. DOI: 10.1016/S0022-
328X(99)00689-0.
[119] Bragg, W. H.; Bragg, W. L. "The Reflexion of X-rays by Crystals". Proc. R.
Soc. Lond. A. , Volume 88, 428, 1913. DOI: 10.1098/rspa.1913.0040.
[120] Patterson, A. , "The Scherrer Formula for X-Ray Particle Size
Determination". Phys. Rev. , Vol 56 (10): 978–982, 1939. DOI:
10.1103/PhysRev.56.978.
[121] Sneha Krishnamurthy, Andrea Esterle, Nilesh C Sharma & Shivendra V
Sahi, “Yucca-derived synthesis of gold nanomaterial and their catalytic
potential”, Nanoscale Research Letters, 9-62, 2014. DOI: 10.1186/1556-
276X-9-627.
[122] Paula Maria Vilarinho, Yossi Rosenwaks, Angus Kingon, “Scanning Probe
Microscopy: Characterization, Nanofabrication and Device Application of
Functional Materials”, NATO science series. Mathematics, Physics and
Chemistry, Vol 186, Springer 2005. DOI:10.1007/1-4020-3019-3.
[123] Paudler, William, Nuclear Magnetic Resonance, First Edition, Pearson Allyn
& Bacon; pp. 9–11, 1974.
[124] Gasser, R.P.H, An introduction to chemisorption and catalysis by metals,
First Edition. Oxford University Press; (May 23, 1985).
125
[125] J.F.Watts, J.Wolstenholme An Introduction to Surface Analysis by XPS and
Chichester, UK. AES, published by Wiley & Sons, 2003.
[126] Dzmitry V. Yakimchuk at el. Morphology and Microstructure Evolution of
Gold Nanostructures in the Limited Volume Porous Matrices, Sensors
20(16):4397.
[127] Zavoisky E. "Spin-magnetic resonance in paramagnetics". J. Phys.
(USSR). Vol 9: 245, 1945.
[128] Cristiana Di Valentina Andrea Scagnellia Gianfranco Pacchionia, “EPR
properties of Au atoms adsorbed on various sites of the MgO(1 0 0) surface
from relativistic DFT calculations”, Suface science. ,Volume 600, Issue 12,
Pages 2434-2442, 15 June 2006. DOI: 10.1016/j.susc.2006.03.048.
[129] Thompson, Michael; Walsh, J. Nicholas, Handbook of Inductively Coupled
Plasma Spectrometry, Second Edition, SpringerLink, 1989.
[130] Mavlyankariev, S. A.; Ahlers, S. J.; Kondratenko, A. V.; Linke, D.;
Kondratenko, E. V, “Effect of Support and Promoter on Activity and
Selectivity of Gold Nanoparticles in Propanol Synthesis from CO2, C2H4, and H2”, ACS Catal., Vol. 6, 3317−3325, 2016. DOI: 10.1021/acscatal.6b00590. [131] Denise Heyl, Uwe Rodemerck, and Ursula Bentrup “Mechanistic study of
low-temperature CO2 hydrogenation over modified Rh/Al2O3 catalysts”, ACS Catalysis ,Vol. 6 (9), 6275-6284, 2016. DOI: 10.1021/acscatal.6b01295.
[132] Zhenyuan Zhang,Alexander Berg, Haim Levanon, Richard W.
Fessenden, and Dan Meisel, “On the Interactions of Free Radicals with Gold
Nanoparticles”, J. Am. Chem. Soc. , Vol 26, 7959–7963, 2003. DOI:
doi.org/10.1021/ja034830z.
[133] Abdallah.I.M. Rabee a b, Dan Zhao a, Sebastian Cisneros a, Carsten
R. Kreyenschulte a, Vita Kondratenko a, Stephan Bartling a, Christoph Kubis
a, EvgeniiV. Kondratenko a, Angelika Brückner a c, Jabor Rabeah, “Role of
interfacial oxygen vacancies in low-loaded Au-based catalysts for the low-
temperature reverse water gas shift reaction”, Applied Catalysis B:
Environmental, Volume 321, 122083, February 2023. DOI:
10.1016/j.apcatb.2022.122083.
[134] Van Druten, G. M. R.; Ponec, V., “Hydrogenation of carbonylic
compounds”, Appl. Catal., A, 191, 153−162, 2000. DOI:
10.1016/j.jcat.2023.115248.
126
LIST OF PUBLICATIONS
1. Duc Duc Truong, Phuong Thi Mai Pham, Evgenii V. Kondratenko and Minh
Thang Le. Au/SiO2-Based Catalysts for Propanol/Propanal Synthesis from CO2, C2H4, and H2 in a Dual-reactor System. ACS Sustainable Chem. Eng. 2022, 10, 50, 16548–16554.
2. Trương Dực Đức, Nguyễn Trung Huy, Lê Minh Thắng. Nâng cao hoạt tính xúc
tác Au/SiO2 trong phản ứng chuyển hóa trực tiếp CO2, C2H4 và H2 thành propanol trên hệ hai thiết bị phản ứng nối tiếp. Tạp chí xúc tác và hấp phụ Việt Nam, 2020,
Volume 9, p. 82-87.
3. Truong Duc Duc, Dinh Phuc Kien, Le Minh Thang. Performance of supported
ionic liquid phase and nano gold catalystsover titania support for hydroformylation
of ethylene. Tạp chí xúc tác và hấp phụ Việt Nam, 2019, Volume 8, p. 107-112.
4. Truong Duc Duc, Le Minh Thang. The formation of Rh-complexes and
deactivation of supported ionic liquid phase (SILP) catalysts in hydroformylation of
ethylene. Tạp chí xúc tác và hấp phụ Việt Nam, 2018, Volume 7, p. 37-43.
5. Truong Duc Duc, Le Minh Thang. Effects of synthesis methods on particle sizes
of gold over titania support and catalytic activities in conversion of ethyelene into
propanol with CO and H2. Tạp chí Hóa học, 2018, Volume 56, p. 479-483.
6. Van Chuc Nguyen, Van Hung Do, Duc Duc Truong, Anders Riisager, Rasmus
Fehrmann, Minh Thang Le. The influence of supports on Rh-TPPTS supported
ionic liquid-phase catalysts for the hydroformylation of ethylene. Chemistry Select,
Volume 6, Issue 37, 2021, p. 9888-9893.
127
APPENDIX
Appendix 1: SEM images of 0,5Au/TiO2 catalysts prepared by different procedures
All samples contained amorphous phases
Figure A. 1. SEM images of the fresh 0.5Au/TiO2 catalysts prepared by different methods
Appendix 2: Additional TEM images of catalysts
Figure A. 2. TEM images of the fresh 1Au/SiO2 catalysts which is observed in different points.
Figure A. 3. TEM images of the fresh 1Au/SBA-15 catalysts which is observed in
different points.
Figure A. 4. TEM images of the fresh 2Cs1Au/SiO2 catalysts which is observed in different points.
0.5Au/TiO2 QT1 0.5Au/TiO2 QT2 0.5Au/TiO2 QT3 0.5Au/TiO2 QT4
128
Figure A. 5. TEM images of the fresh 2Co1Au/SiO2 catalysts which is observed in different points.
Appendix 3: Additional EPR spectra of catalysts
Figure A. 6. EPR spectra of 0,2Rh-L/Rh=10-IL=5%-TiO2 fresh and spent (after deactivation).
Figure A. 7. EPR spectra of 0,2Rh-L/Rh=10-IL=10%-TiO2 fresh and spent (after deactivation).
-500000
0
500000
0 2000 4000 6000 8000Int
en
sity
G
fresh
-1000000
0
1000000
2000000
0 2000 4000 6000 8000
Int
en
sity
G
spent
-500000
0
500000
0 2000 4000 6000 8000Int
en
sity
G
fresh
-1000000
0
1000000
0 2000 4000 6000 8000Int
en
sity
G
spent
129
Appendix 4: Catalyst stability
Figure A. 8. Catalytic
activity of 2AuSiO2 on
reaction time in dual-
reactor mode at 2MPa,
contact time of 50
g.min.L-1 , temperature of
the first reactor was kept
constantly of 650oC,
nominal feedstock of
CO2/H2/C2H4/N2 = 1/1/1/1.
Figure A. 9. Catalytic
activity of 4Cs2AuSiO2 on
reaction time in dual-
reactor mode at 2MPa,
contact time of 50
g.min.L-1 , temperature of
the first reactor was kept
constantly of 650oC,
nominal feedstock of
CO2/H2/C2H4/N2 = 1/1/1/1.
Figure A. 10. Catalytic
activity of 4Ce2Cs2AuSiO2
on reaction time in dual-
reactor mode at 2MPa,
contact time of 50
g.min.L-1 , temperature of
the first reactor was kept
constantly of 650oC,
nominal feedstock of
CO2/H2/C2H4/N2 = 1/1/1/1.