Luận án Study on the hydroformylation of ethylene with co and CO₂ using supported ionic liquid phase silp/TiO₂ and nano Au/TiO₂ (SiO₂) catalyst

The performance of catalysts in dual-reactor mode above revealed that the concept of “dual-reactor” suggested by our research group which actually worked in practially. This could help to overcome the hinder of different thermodynamic barriers between RWGS and hydroformylation. In comparison with the previous study, in which, the oxo-selectivity based on ethylene was achieved maximum of ca. 15% [78-80]. The catalytic activities could increase the oxo-selectivity based on ethylene up to ca. 60% applying in dual-reactor system. This is very prospective to apply this process in industry if it is considered that ethylene is much valuable than CO2. Moreover, oxo products (propanal and propanol) are easily separated from product-flow by condensation resulted in a possibility to recycle a part of product gases (C2H4, C2H6.) that could help to hinder the C2H4 hydrogenation, but it also increases the hydroformylation. In dual-reactor mode, the catalyst performance depended strongly on Au NP size. The Au NP size of higher than 10nm was believed is not active for hydroformylation but promoted the ethylene hydrogenation. Conversely, the Au NP size of lower than 4nm was not active both C2H4 hydrogenation and hydroformylation. The loading content of 1%wt Au was suitable to achieve Au NP size of 6 nm over SiO2 support that resulted in highest oxo-selectivity in comparison to those of different Au loading samples. The dualreactor concept again confirmed clearly about the mechanistic scheme of CO2 conversion with C2H4 to propanol/propanal in the presence of H2, in which the process occurs through 2 separated steps: the first one is RGWS to produce CO, then follow with hydroformylation of CO and C2H4 to form oxo products. The Au NP supported catalyst only produced propanal via hydroformylation, propanol was formed by later hydrogenation of propanal as a side-reaction. Hence, it need to supply a further catalytic process to convert propanal to propanol completely. In addition to the effect of Cs, loading Cs on Au NP supported SiO2 did not help to increase catalytic activity as expected. In contrary, Cs loading resulted in an increase of Au NP size which dropped the catalyst performance. On the other hand, Cs loading could reduce the surface area of catalyst by collapsing pore structure because of reaction between Cs2O and water vapor formed in RWGS step.

pdf134 trang | Chia sẻ: Kim Linh 2 | Ngày: 11/11/2024 | Lượt xem: 65 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Study on the hydroformylation of ethylene with co and CO₂ using supported ionic liquid phase silp/TiO₂ and nano Au/TiO₂ (SiO₂) catalyst, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
21, USA. [Online]. Availabe: https://www.spglobal.com/commodityinsights/en/ci/products/oxo-chemical- economics-handbook.html. [26] Market Reseach Future, “Oxo Alcohol Market Research Report Information by Type (n-butanol, iso-butanol, 2-ethylhexanol, and others), Application (Plasticizers, Acrylates, Acetates, Resins, Solvents, Glycol Ethers, Lube Oil 117 Additives), and Region (Asia-Pacific, Europe, and RoW)- Forecast to 2030” USA, August 2024. [Online]. Availabe: https://www.marketresearchfuture.com/reports/oxo-alcohol-market-6637. [27] Boy Cornils, and Wolfgang A. Herrmann, “Concepts in homogeneous catalysis the industrial view”, Journal of Catalysis, Volume 216, p. 23–31, 2003. DOI: 10.1016/S0021-9517(02)00128-8. [28] Frohning, C. D. and Kohlpaintner, C. W. Applied homogeneous catalysts with organometallic compounds, Vol. 1, Ch. 2.1, VCH, Weinheim, 1996. [29] Maurice Abou Rid Anthony K. Smith, “Bimetallic hydroformylation catalyst high regioselectivity through heterobimetallic cooperativity”, Journal of Molecular Catalysis A: Chemical, Volume 202, p. 87–95, 2003. DOI: 10.1016/S1381-1169(03)00234-6. [30] Hong Sang Ahn, Sung Hwan Han, Sung Jin Uhm Won Kyung Seok, Heung Nae Lee, G.A. Korneevac, “Hydroformylation of olefins with formaldehyde in the presence of RhHCO(PPh3)3”, Journal of Molecular Catalysis A: Chemical , Volume 144,p. 295–306, 1999. DOI: 10.1016/S1381-1169(99)00002-3. [31] Imre T&h, Ipin Guo, Brian E. Hanson, “Alternative supported aqueous- phase catalyst systems”, Journal of Molecular Catalysis A: Chemical , Volume 116, p. 217-229, 1997. DOI: 10.1016/S1381-1169(96)00141-0. [32] Peter Wasserscheid, Roy van Hal and Andreas Bosmann, “1-n-Butyl-3- Methylimidazolium ([BMIM]) octylsulfate – an even ‘greener’ ionic liquid”, Green Chemistry, Volume 4, 400-404, 2002. DOI: doi.org/10.1039/B205425F. [33] Balakos, M. W. and Chuang, S. S. C., “Transient response of propionaldehyde formation during CO/H2/C2H4 reaction on Rh/SiO2”, J. Catal. Volume 151 p.253–265, 1995. DOI: doi.org/10.1006/jcat.1995.1026. [34] Arnoldo J. Bruss , Marcos A. Gelesky Giovanna Machado, Jairton Dupont, “Rh(0) nanoparticles as catalyst precursors for the solventless hydroformylation of olefins”, Journal of Molecular Catalysis A: Chemical , Volume 252 p.212–218, 2006. DOI: 10.1016/j.molcata.2006.02.063. [35] Barbara Kirchner, Ionic liquids, Springer Heidelberg Dordrecht London New York, e-ISBN 978-3-642-01780-3, 2009. [36] Bassam E1 Ali, Jimoh Tijani, Mohammed Fettouhi, “Hydroformylation of alkyl alkenes catalyzed by rhodium supported on MCM-41 - The effect of H3PW12O40 on the catalytic activity and recycling”, Journal of Molecular Catalysis A: Chemical Volume 250, p.153–162, 2006. DOI: 10.1016/j.molcata.2006.01.057. [37] Anders Riisager, Rasmus Fehrmann, Supported liquid catalysts, Handbook of Heterogeneous Catalysis (ISBN: 3527312412), p: 631-644: 4270, Wiley- VCH, Weinheim, 2008. [38] Anders Riisager, Rasmus Fehrmann, Marco Haumann, Babu S. K. Gorle and Peter Wasserscheid, “Stability and Kinetic Studies of Supported Ionic Liquid Phase Catalysts for Hydroformylation of Propene”, Ind. Eng. Chem. Res., Volume 44, 9853-9859, 2005. DOI: 10.1021/ie050629g. [39] Anders Riisager, “Catalytic SILP materials”, Topics in Organometallic Chemistry (ISSN: 1436-6002), vol: 23, p. 149-162, Springer, 2008. DOI 10.1007/3418_042. 118 [40] Scott A. Hedrick, Steven S. C. Chuang, and Mark A. Brundage, “Deuterium Pulse Transient Analysis for Determination of Heterogeneous Ethylene Hydroformylation Mechanistic Parameters”, Journal of Catalysis, Volume 185, 73–90, 1999. DOI: 10.1006/jcat.1999.2481. [41] N. Sivasankar, H. Frei, “Direct Observation of Kinetically Competent Surface Intermediates upon Ethylene Hydroformylation over Rh/Al2O3 under Reaction Conditions by Time-Resolved Fourier Transform Infrared Spectroscopy”, J. Phys. Chem. C , Volume 115, 7545-7553, 2011. DOI: 10.1021/jp112391n. [42] A. Fusi, R. Psaro, C. Dossi, L. Garlaschelli, F. Cozzi., “A molecular approach to heterogeneous catalysis. Ethylene hydroformylation catalysed by silica- supported [Rh12(CO)30]2−0O)lecular approach to heterogeneous catalysis. Et+, Na+, K+, Zn2+,” J. Mol. Catal. A: Chem. ,Volume 107, 255-261, 1996. DOI: 10.1016/1381-1169(95)00215-4. [43] L. Alvarado Rupflin, J. Mormul, M. Lejkowski, S. Titlbach, R. Papp, R. Gläser, M. Dimitrakopoulou, X. Huang, A. Trunschke, M. G. Willinger, R. Schlögl, F. Rosowski, S. A. Schunk, “Platinum Group Metal Phosphides as Heterogeneous Catalysts for the Gas-Phase Hydroformylation of Small Olefins”, ACS Catal. , Volume 7, 3584-3590, 2017. DOI: 10.1021/acscatal.7b00499. [44] D. G. Hanna, S. Shylesh, P. A. Parada, A. T. Bell., “Hydrogenation of butanal over silica-supported Shvo’s catalyst and its use for the gas-phase conversion of propene to butanol via tandem hydroformylation and hydrogenation”, J. Catal., Volume 311, 52-58, 2014. DOI: 10.1016/j.jcat.2013.11.012. [45] N. Navidi, J. W. Thybaut, G. B. Marin, “Experimental investigation of ethylene hydroformylation to propanal on Rh and Co based catalysts”, Appl. Catal., A, Volume 469, 357-366, 2014. DOI: 10.1016/j.apcata.2013.10.019. [46] L. Sordelli, M. Guidotti, D. Andreatta, G. Vlaic, R. Psaro., “Characterization and catalytic performances of alkali-metal promoted Rh/SiO2 catalysts for propene hydroformylation”, J. Mol. Catal. A: Chem. , Volume 204, 509-518, 2003. DOI: 10.1016/S1381-1169(03)00333-9. [47] T. Hanaoka, H. Arakawa, T. Matsuzaki, Y. Sugi, K. Kanno, Y. Abe. “Ethylene hydroformylation and carbon monoxide hydrogenation over modified and unmodified silica supported rhodium catalysts”, Catal. Today, Volume 58, 271-280, 2000. DOI: 10.1016/S0920-5861(00)00261-3. [48] E. J. Rode, M. E. Davis, B. E. Hanson., “Propylene hydroformylation on rhodium zeolites X and Y: II. In situ Fourier transform infrared spectroscopy”, J. Catal., Volume 96, 574-585, 1985. DOI: 10.1016/0021-9517(85)90325-2. [49] I. Horiuti, M. Polanyi, “Exchange reactions of hydrogen on metallic catalysts”, Trans. Faraday Soc., Volume 30, 1164-1172, 1934. DOI: 10.1039/TF9343001164. [50] M. Lenarda, L. Storaro, R. Ganzerla, “Hydroformylation of simple olefins catalyzed by metals and clusters supported on unfunctionalized inorganic carriers” , J. Mol. Catal. A: Chem., 111, 203-237, 1996. DOI: 10.1016/1381- 1169(96)00211-7. 119 [51] Liu, X.; Hu, B.; Fujimoto, K.; Haruta, M.; Tokunaga, M, “Hydroformylation of olefins by Au/Co3O4 catalysts”, Appl. Catal., B, 92, 411−421, 2009. DOI: 10.1016/j.apcatb.2009.08.021. [52] R.F. Heck and D.S. Breslow, “The Reaction of Cobalt Hydrotetracarbonyl with Olefins”, J. Am. Chem. Soc., 83 4023-4027, 1961. DOI: 10.1021/ja01480a017. [53] R.F. Heck and D.S. Breslow, “Acylcobalt Carbonyls and their Triphenylphosphine Complexes”, Journal of the American Chemical Society , Volume 84, 13, 2499-2502, 1962. DOI: 10.1021/ja00872a009. [54] Wilkinson G., Brown C.K , “The mechanism of phosphine-modified rhodium- catalyzed hydroformylation studied by CIR-FTIR”, Journal of the American Chemical Society, p.1392, 1970. DOI: 10.1016/0304-5102(87)80106-2. [55] Piet W.N.M. van Leeuwen, Carmen Claver. Rhodium Catalyzed Hydroformylation, Catalysis by Metal Complexes, Vol. 22, Netherlands, ISBN 10: 1402004214, 2002. [56] Henrici-Olivé, G. and Olivé, S., The chemistry of the catalysed hydrogenation of carbon monoxide, Springer-Verlag, Berlin, Volume 231, 1984. [57] Chuang, S. S. C. and Pien, S. I., “Infrared study of the CO insertion reaction on reduced, oxidised, and sulfided Rh/SiO2 catalysts”, Journal of Catalysis , Volume 135, p. 618–634, 1992. DOI: 10.1016/0021-9517(92)90058-P. [58] Sachtler, W. M. H. and Ichikawa, M., “Catalytic sites requirements for elementary steps in syngas conversion to oxygenates over promoted Rh”, J. Phys. Chem. , Volume 90, p.4752–4758, 1986. DOI: 10.1021/j100411a009. [59] Scott A. Hedrick, Steven S. C. Chuang, and Mark A. Brundage, “Deuterium Pulse Transient Analysis for Determination of Heterogeneous Ethylene Hydroformylation Mechanistic Parameters”, Journal of Catalysis, Volume 185, 73–90, 1999. DOI: 10.1006/jcat.1999.2481. [60] M. K. Ko, H. Frei., “Millisecond FT-IR Spectroscopy of Surface Intermediates of C2H4 Hydrogenation over Pt/Al2O3 Catalyst under Reaction Conditions” , J. Phys. Chem. B , 108, 1805-1808, 2004. DOI: 10.1021/jp030920e. [61] K. J. Williams, A. B. Boffa, M. Salmeron, A. T. Bell, G. A. Somorjai, “The kinetics of CO2 hydrogenation on a Rh foil promoted by titania overlayers”, Catal. Lett., Volume 11, 77-88, 1991. DOI: 10.1007/bf00764834. [62] D. S. Jordan, A. T. Bell, “Catalytic Reactions of Carbon Monoxide”, J. Phys. Chem., Volume 90, 4797-4805, 1986. DOI: 10.1021/j150517a010. [63] S. Naito, M. Tanimoto, “Effect of sodium cation addition on the hydroformylation of propene over silica-supported Group VIII metal catalysts”, J. Chem. Soc., Chem. Commun., 1403-1404, 1989. DOI: 10.1039/C39890001403. [64] D. Y. Murzin, A. Bernas, T. Salmi, “Kinetic Modeling of Regioselectivity in Alkenes Hydroformylation over Rhodium”, J. Mol. Catal. A: Chem., Volume 315, 148-154, 2010. DOI: 10.1016/j.molcata.2009.06.023. [65] Marco Haumann, Michael Jakuttis, Sebastian Werner, Peter Wasserscheid, “Supported ionic liquid phase (SILP) catalyzed hydroformylation of 1-butene 120 in a gradient-free loop reactor”, Journal of Catalysis. , Volume 263, Issue 2, 25, Pages 321-327, April 2009. DOI: 10.1016/j.jcat.2009.02.024. [66] “MACBETH has received funding from the European Union's Horizon 2020”, Research and Innovation Programme under Grant Agreement No 869896 [Online]. Availabe: https://www.macbeth-project.eu/introduction/. [Accessed: August 2020] [67] Morten Logemann, Jakob Maximilian Marinkovic, Markus Schörner, Eduardo José García-Suárez, Corinna Hecht, Robert Franke, Matthias Wessling, Anders Riisager, Rasmus Fehrmann and Marco Haumann, “Continuous gas-phase hydroformylation of but-1-ene in a membrane reactor by supported liquid-phase (SLP) catalysis”, Green Chemistry, Issue 17, 2020. DOI: 10.1039/D0GC01483D. [68] Andre Kaftan, Andreas Schönweiz, Ioannis Nikiforidis, Wolfgang Hieringer, Katrin,M. Dyballa , Robert Franke, Andreas Görling , Jörg Libuda, Peter Wass erscheid, Mathias Laurin, Marco Haumann, “Supported homogeneous catalyst makes its own liquid phase”, Journal of Catalysis. Volume 321, Pages 32- 38, January 2015. DOI: 10.1016/j.jcat.2014.10.019. [69] D. J. Cole-Hamilton, R. P. Tooze, Catalyst Separation, Recovery and Recycling, Volume 30, Springer, Dordrecht, 2006. [70] M. Schörner, S. Kämmerle, D. Wisser, B. Baier, M. Hartmann, M. Thommes, R. Franke, M. Haumann, “Influence of support texture and reaction conditions on the accumulation and activity in the gas-phase aldol condensation of n- pentanal on porous silica”, React. Chem. Eng., Volume 7 , pp. 2445-2459, 2022. DOI: 10.1039/D2RE00143H. [71] Markus Schörner, Andreas Schönweiz, Stefanie Vignesh, Liudmila Mokrushin a, Matthias Thommes, Robert Franke, Marco Haumann , “Tuning catalyst performance in the SILP-catalyzed gas-phase hydroformylation of but-1-ene by choice of the ionic liquid”, Journal of Ionic Liquids, Volume 3, Issue 2, December 2023. DOI: 10.1016/j.jil.2023.100061. [72] W. Wang, S. P. Wang, X. B. Ma, J. L. Gong, “Recent advances in catalytic hydrogenation of carbon dioxide”, Chem. Soc. Rev., 40, 3703-3727, 2011. DOI: 10.1039/C1CS15008A. [73] W. Pan, C. Song. Carbon Dioxide as Chemical Feedstock, WILEY, VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 249-266 2010. [74] S. S. Ail, S. Dasappa, “Biomass to liquid transportation fuel via Fischer Tropsch synthesis – Technology review and current scenario”, Renewable Sustainable Energy Rev., 58, 267-286, 2016. DOI: 10.1016/j.rser.2015.12.143. [75] S. Maiti, G. Gallastegui, S. J. Sarma, S. K. Brar, Y. Le Bihan, P. Drogui, G. Buelna, M. Verma, “A re-look at the biochemical strategies to enhance butanol production”, Biomass Bioenergy, Volume 94, 187-200, 2016. DOI: 10.1016/j.biombioe.2016.09.001. [76] J. M. Matter, M. Stute, S. Ó. Snæbjörnsdottir, E. H. Oelkers, S. R. Gislason, E. S. Aradottir, B. Sigfusson, I. Gunnarsson, H. Sigurdardottir, E. Gunnlaugsson, G. Axelsson, H. A. Alfredsson, D. Wolff-Boenisch, K. Mesfin, D. F. d. l. R. Taya, J. Hall, K. Dideriksen, W. S. Broecker, “Rapid carbon mineralization 121 for permanent disposal of anthropogenic carbon dioxide emissions”, Science, Volume 352, 1312-1314, 2016. DOI: 10.1126/science.aad8132. [77] C. J. Keturakis, F. Ni, M. Spicer, M. G. Beaver, H. S. Caram, I. E. Wachs, “Monitoring Solid Oxide CO2 Capture Sorbents in Action”, ChemSusChem, volume 7, 3459-3466, 2014. DOI: 10.1002/cssc.201402474. [78] Stefan J. Ahlers, Ursula Bentrup, David Linke, and Evgenii V. Kondratenko, “An Innovative Approach for Highly Selective Direct Conversion of CO2 into Propanol using C2H4 and H2”, ChemSusChem, volume 7, 2631 – 2639, 2014. DOI: 10.1002/cssc.201402212. [79] Stefan J. Ahlers, Marga-Martina Pohl, Joerg Radnik, David Linke, Evgenii V. Kondratenko, “Catalytic role and location of Cs promoter in Cs–Au/TiO2 catalysts for propanol synthesis from CO2, C2H4 and H2”, Applied Catalysis B: Environmental, Volumes 176–177, Pages 570-577, October 2015. DOI: 10.1016/j.apcatb.2015.04.034. [80] Stefan J. Ahlers, Ralph Kraehnert, Carsten Kreyenschulte , Marga-Martina Pohl ,David Linke, Evgenii V. Kondratenko, “Propanol formation from CO2 and C2H4 with H2 over Au/TiO2: Effect of support and K doping”, Catalysis Today , Volume 258, 684–690, 2015. DOI: 10.1016/j.cattod.2015.04.006. [81] S. J. Ahlers, M.-M. Pohl, M. Holena, D. Linke and E. V. Kondratenko, “Direct propanol synthesis from CO2, C2H4, and H2 over Cs–Au/TiO2 rutile: effect of promoter loading, temperature and feed composition”. Catal. Sci. Technol., Volume 6, 2171, 2016. DOI: 10.1039/C5CY01425E. [82] Yasuo Izumi, “Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond”, Coord. Chem. Rev., Volume 257, 171-186, 2013. DOI: 10.1016/j.ccr.2012.04.018. [83] L. Zhang, Z.-J. Zhao, J. Gong, “Nanostructured Materials for Heterogeneous Electrocatalytic CO2 Reduction and their Related Reaction Mechanisms”, Angew. Chem. Int. Ed., Volume 56, 11326-11353, 2017. DOI: 10.1002/anie.201612214. [84] D. Kim, J. Resasco, Y. Yu, A. M. Asiri, P. D. Yang, “Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles”, Nature Communications , volume 5, Article number: 4948, 2014. DOI: 10.1038/ncomms5948. [85] J. Klankermayer, S. Wesselbaum, K. Beydoun, W. Leitner, “Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry”, Angew. Chem. Int. Ed., Volume 55, 7296-7343, 2016. DOI: 10.1002/anie.201507458. [86] T. D. Veras, T. S. Mozer, D. D. R. M. dos Santos, A. D. Cesar, “Hydrogen: Trends, production and characterization of the main process worldwide”, Int. J. Hydrogen Energy, Volume 42, 2018-2033, 2017. DOI: 10.1016/j.ijhydene.2016.08.219. [87] J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, F. Su, “A thermodynamic analysis of methanation reactions of carbon oxides for the production of 122 synthetic natural gas”, RSC Adv., Volume 2, 2358, 2012. DOI: 10.1039/C2RA00632D. [88] Zhongliang Huang, Yujia Yuan, Miaomiao Song, Zhimian Hao, Jingran Xiao, Dongren Cai,Abdul-Rauf Ibrahim, Guowu Zhan, “CO2 hydrogenation over mesoporous Ni-Pt/SiO2 nanorod catalysts:Determining CH4/CO selectivity by surface ratio of Ni/Pt”, Chemical Engineering Science, Volume 247, 117106, 2022. DOI: 10.1016/j.ces.2021.117106. [89] Lahijani P., Zainal Z.A., Mohammadi M., Mohamed A.R, “Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review”, Renew. Sustain. Energy Rev., Volume 41:615–632, 2015. DOI: 10.1016/j.rser.2014.08.034. [90] Y. A. Daza, J. N. Kuhn, “CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels”, RSC Adv., Volume 6, 49675-49691, 2016. DOI: 10.1039/C6RA05414E. [91] M. D. Porosoff, B. H. Yan, J. G. G. Chen, “Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities”, Energy Environ. Sci., Vol 9, 62-73, 2016. DOI: 10.1039/C5EE02657A. [92] P. Panagiotopoulou, “Hydrogenation of CO2 over supported noble metal catalysts”, Appl. Catal., A, Vol 542, 63-70, 2017. DOI: 10.1016/j.apcata.2017.05.026. [93] J. Kehres, J. W. Andreasen, F. C. Krebs, A. M. Molenbroek, I. Chorkendorff, T. Vegge, J, “Combined in situ small- and wide-angle X-ray scattering studies of TiO2 nanoparticle annealing to 1023 K”, Appl. Crystallogr., Vol 43, 1400-1408, 2010. DOI:10.1107/S0021889810041907. [94] H. Sakurai, A. Ueda, T. Kobayashi, M. Haruta, “Low-temperature water–gas shift reaction over gold deposited on TiO2”, Chem. Commun., 271-272, 1997. DOI: 10.1039/A606192C. [95] B. Cornils, New Synthesis with Carbon monoxide, J. Falbe (Ed.), Springer, pages 12, 1980. [96] V. Kyriakou, A. Vourros, I. Garagounis, S. A. C. Carabineiro, F. J. Maldonado-Hódar, G. E. Marnellos, M. Konsolakis, “Highly active and stable TiO2-supported Au nanoparticles for CO2 reduction”, Catal. Commun., Vol 98, 52-56, 2017. DOI: 10.1016/j.catcom.2017.05.003. [97] H. Kusama, K. K. Bando, K. Okabe, H. Arakawa, “Characterization of Rh- Co/SiO2 catalysts for CO2 hydrogenation with TEM, XPS and FT-IR”, Appl. Catal., A, Vol 197, 255-268, 2000. DOI: 10.1016/S0926-860X(00)00611-6. [98] G. A. Mills, F. W. Steffgen, “Heterogeneous methanation: Initial rate of CO hydrogenation on supported ruthenium and nickel”, Catal. Rev.: Sci. Eng., 8, 159-210, 1974. DOI: 10.1016/0021-9517(74)90182-1. [99] P. Frontera, A. Macario, M. Ferraro, P. Antonucci, “Supported Catalysts for CO2 Methanation: A Review”, Catalysts, Vol 7, 59, 2017. DOI: 10.3390/catal7020059. 123 [100] D. Li, N. Ichikuni, S. Shimazu, T. Uematsu, “Catalytic properties of sprayed Ru/Al2O3 and promoter effects of alkali metals in CO2 hydrogenation”, Appl. Catal., A, Vol 172, 351-358, 1998. DOI: 10.1016/S0926-860X(98)00139-2. [101] K. K. Bando, K. Soga, K. Kunimori, H. Arakawa, “Effect of Li additive on CO2 hydrogenation reactivity of zeolite supported Rh catalysts”, Appl. Catal., A, 175, 67-81, 1998. DOI: 10.1016/S0926-860X(98)00202-6. [102] Bogdan Jurca, Lu Peng, Ana Primo, Alvaro Gordillo, Amarajothi Dhakshinamoorthy, Vasile I. Parvulescu, and Hermenegildo García, “Promotional Effects on the Catalytic Activity of Co-Fe Alloy Supported on Graphitic Carbon for CO2 Hydrogenation”, Nanomaterials (Basel). 12(18): 3220, 2022. DOI: 10.3390/nano12183220. [103] G. M. Torres, R. Frauenlob, R. Franke, A. Börner, “Production of alcohols via hydroformylation”, Catal. Sci. Technol., 5, 34-54, 2015. DOI: 10.1039/C4CY01131G. [104] Macleod, N.; Keel, J. M.; Lambert, R. M., “The Effects of Ageing a Bimetallic Catalyst under Industrial Conditions: A Study of Fresh and Used Pd-Au-K/Silica Vinyl Acetate Synthesis Catalysts”, Appl. Catal. A: Gen., 261, 37−46, 2004. DOI: 10.1016/j.apcata.2003.10.032. [105] Stachurski, J.; Thomas, J. M., “Structural Aspects of the Lindlar Catalyst for Selective Hydrogenation”, Catal. Lett., 1, 67−72, 1988. DOI: 10.1007/BF00765356. [106] Navarro, R. M.; Pawelec, B.; Trejo, J. M.; Mariscal, R.; Fierro, J. L. G., “Hydrogenation of Aromatics on Sulfur-Resistant Ptpd Bimetallic Catalysts”,. J. Catal., 189, 184−194, 2000. DOI: 10.1006/jcat.1999.2693. [107] Serna, P.; ConcepciÓN, P.; Corma, A., “Design of Highly Active and Chemoselective Bimetallic Gold-Platinum Hydrogenation Catalysts through Kinetic and Isotopic Studies”, . J. Catal., 265, 19−25, 2009. DOI: 10.1016/j.jcat.2009.04.004. [108] Carter, J. H.; Althahban, S.; Nowicka, E.; Freakley, S. J.; Morgan, D. J.; Shah, P. M.; Golunski, S.; Kiely, C. J.; Hutchings, G. J., “Synergy and Anti- Synergy between Palladium and Gold in Nanoparticles Dispersed on a Reducible Support” ACS Catal., Vol 6, 6623−6633, 2016. DOI: 10.1021/acscatal.6b01275. [109] Jang, M. G.; Yoon, S.; Shin, D.; Kim, H. J.; Huang, R.; Yang, E.; Kim, J.; Lee, K.-S.; An, K.; Han, J. W., “Boosting Support Reducibility and Metal Dispersion by Exposed Surface Atom Control for Highly Active Supported Metal Catalysts”, ACS Catal., 12, 4402−4414, 2022. DOI: 10.1021/acscatal.2c00476. [110] Karatok, M.; Madix, R. J.; Van Der Hoeven, J. E. S.; Aizenberg, J.; Reece, C., “Quantifying Oxygen Induced Surface Enrichment of a Dilute Pdau Alloy Catalyst”, Catal. Sci. Technol., 11, 7530−7534, 2021. DOI: 10.1039/D1CY01337H. [111] Ro, I.; Xu, M.; Graham, G. W.; Pan, X.; Christopher, P., “Synthesis of Heteroatom Rh-ReOx Atomically Dispersed Species on Al2O3 and their Tunable Catalytic Reactivity in Ethylene Hydroformylation”, ACS Catal., Vol 9, 10899−10912, 2019. DOI: 10.1021/acscatal.9b02111. 124 [112] Malta, G.; Kondrat, S. A.; Freakley, S. J.; Davies, C. J.; Dawson, S.; Liu, X.; Lu, L.; Dymkowski, K.; Fernandez-Alonso, F.; Mukhopadhyay, S.; et al., “ Deactivation of a Single-Site Gold-on-Carbon Acetylene Hydrochlorination Catalyst: An X-Ray Absorption and Inelastic Neutron Scattering Study”, ACS Catal. Vol 8, 8493−8505. 2018. DOI: 10.1021/acscatal.8b02232. [113] Zhao, J.; Xu, J.; Xu, J.; Ni, J.; Zhang, T.; Xu, X.; Li, X., “Activated- Carbon- Supported Gold-Cesium(I) as Highly Effective Catalysts for Hydrochlorination of Acetylene to Vinyl Chloride”, ChemPlusChem., 80, 196−201, 2015. DOI: 10.1002/cplu.201402176. [114] Appel, C., Ma, L.Q., Rhue, R.D., and Kennelley, E., “Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility”. Geoderma, Vol 113, 77-93, 2003. DOI: 10.1016/S0016-7061(02)00316-6. [115] Parks, G.A. and Bruyn, P.L.D, “Zero point of charge of oxides”. Journal of Physical Chemistry, Volume 66, 967-974, 1962. DOI: 10.1021/j100812a002. [116] Brunauer, S., Emmett, P.H. and Teller, E., “Adsorption of Gases in Multimolecular Layers”, Journal of the American Chemical Society, Volume 60, 309-319, 1938. DOI: 10.1021/ja01269a023. [117] J. W. Niemantsverdriet, Spectroscopy in Catalysis, Wiley-VCH, Second Edition, 2000. [118] P. Machnitzki, M. Tepper, K. Wenz, O. Stelzer and E. Herdtweck, J. Organomet , “Water soluble phosphines: Part XIII. Chiral phosphine ligands with amino acid moieties”, Journal of Organometallic Chemistry, Volume 598, Issue 1, 25, Pages 116-126, March 2000. DOI: 10.1016/S0022- 328X(99)00689-0. [119] Bragg, W. H.; Bragg, W. L. "The Reflexion of X-rays by Crystals". Proc. R. Soc. Lond. A. , Volume 88, 428, 1913. DOI: 10.1098/rspa.1913.0040. [120] Patterson, A. , "The Scherrer Formula for X-Ray Particle Size Determination". Phys. Rev. , Vol 56 (10): 978–982, 1939. DOI: 10.1103/PhysRev.56.978. [121] Sneha Krishnamurthy, Andrea Esterle, Nilesh C Sharma & Shivendra V Sahi, “Yucca-derived synthesis of gold nanomaterial and their catalytic potential”, Nanoscale Research Letters, 9-62, 2014. DOI: 10.1186/1556- 276X-9-627. [122] Paula Maria Vilarinho, Yossi Rosenwaks, Angus Kingon, “Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials”, NATO science series. Mathematics, Physics and Chemistry, Vol 186, Springer 2005. DOI:10.1007/1-4020-3019-3. [123] Paudler, William, Nuclear Magnetic Resonance, First Edition, Pearson Allyn & Bacon; pp. 9–11, 1974. [124] Gasser, R.P.H, An introduction to chemisorption and catalysis by metals, First Edition. Oxford University Press; (May 23, 1985). 125 [125] J.F.Watts, J.Wolstenholme An Introduction to Surface Analysis by XPS and Chichester, UK. AES, published by Wiley & Sons, 2003. [126] Dzmitry V. Yakimchuk at el. Morphology and Microstructure Evolution of Gold Nanostructures in the Limited Volume Porous Matrices, Sensors 20(16):4397. [127] Zavoisky E. "Spin-magnetic resonance in paramagnetics". J. Phys. (USSR). Vol 9: 245, 1945. [128] Cristiana Di Valentina Andrea Scagnellia Gianfranco Pacchionia, “EPR properties of Au atoms adsorbed on various sites of the MgO(1 0 0) surface from relativistic DFT calculations”, Suface science. ,Volume 600, Issue 12, Pages 2434-2442, 15 June 2006. DOI: 10.1016/j.susc.2006.03.048. [129] Thompson, Michael; Walsh, J. Nicholas, Handbook of Inductively Coupled Plasma Spectrometry, Second Edition, SpringerLink, 1989. [130] Mavlyankariev, S. A.; Ahlers, S. J.; Kondratenko, A. V.; Linke, D.; Kondratenko, E. V, “Effect of Support and Promoter on Activity and Selectivity of Gold Nanoparticles in Propanol Synthesis from CO2, C2H4, and H2”, ACS Catal., Vol. 6, 3317−3325, 2016. DOI: 10.1021/acscatal.6b00590. [131] Denise Heyl, Uwe Rodemerck, and Ursula Bentrup “Mechanistic study of low-temperature CO2 hydrogenation over modified Rh/Al2O3 catalysts”, ACS Catalysis ,Vol. 6 (9), 6275-6284, 2016. DOI: 10.1021/acscatal.6b01295. [132] Zhenyuan Zhang,Alexander Berg, Haim Levanon, Richard W. Fessenden, and Dan Meisel, “On the Interactions of Free Radicals with Gold Nanoparticles”, J. Am. Chem. Soc. , Vol 26, 7959–7963, 2003. DOI: doi.org/10.1021/ja034830z. [133] Abdallah.I.M. Rabee a b, Dan Zhao a, Sebastian Cisneros a, Carsten R. Kreyenschulte a, Vita Kondratenko a, Stephan Bartling a, Christoph Kubis a, EvgeniiV. Kondratenko a, Angelika Brückner a c, Jabor Rabeah, “Role of interfacial oxygen vacancies in low-loaded Au-based catalysts for the low- temperature reverse water gas shift reaction”, Applied Catalysis B: Environmental, Volume 321, 122083, February 2023. DOI: 10.1016/j.apcatb.2022.122083. [134] Van Druten, G. M. R.; Ponec, V., “Hydrogenation of carbonylic compounds”, Appl. Catal., A, 191, 153−162, 2000. DOI: 10.1016/j.jcat.2023.115248. 126 LIST OF PUBLICATIONS 1. Duc Duc Truong, Phuong Thi Mai Pham, Evgenii V. Kondratenko and Minh Thang Le. Au/SiO2-Based Catalysts for Propanol/Propanal Synthesis from CO2, C2H4, and H2 in a Dual-reactor System. ACS Sustainable Chem. Eng. 2022, 10, 50, 16548–16554. 2. Trương Dực Đức, Nguyễn Trung Huy, Lê Minh Thắng. Nâng cao hoạt tính xúc tác Au/SiO2 trong phản ứng chuyển hóa trực tiếp CO2, C2H4 và H2 thành propanol trên hệ hai thiết bị phản ứng nối tiếp. Tạp chí xúc tác và hấp phụ Việt Nam, 2020, Volume 9, p. 82-87. 3. Truong Duc Duc, Dinh Phuc Kien, Le Minh Thang. Performance of supported ionic liquid phase and nano gold catalystsover titania support for hydroformylation of ethylene. Tạp chí xúc tác và hấp phụ Việt Nam, 2019, Volume 8, p. 107-112. 4. Truong Duc Duc, Le Minh Thang. The formation of Rh-complexes and deactivation of supported ionic liquid phase (SILP) catalysts in hydroformylation of ethylene. Tạp chí xúc tác và hấp phụ Việt Nam, 2018, Volume 7, p. 37-43. 5. Truong Duc Duc, Le Minh Thang. Effects of synthesis methods on particle sizes of gold over titania support and catalytic activities in conversion of ethyelene into propanol with CO and H2. Tạp chí Hóa học, 2018, Volume 56, p. 479-483. 6. Van Chuc Nguyen, Van Hung Do, Duc Duc Truong, Anders Riisager, Rasmus Fehrmann, Minh Thang Le. The influence of supports on Rh-TPPTS supported ionic liquid-phase catalysts for the hydroformylation of ethylene. Chemistry Select, Volume 6, Issue 37, 2021, p. 9888-9893. 127 APPENDIX Appendix 1: SEM images of 0,5Au/TiO2 catalysts prepared by different procedures  All samples contained amorphous phases Figure A. 1. SEM images of the fresh 0.5Au/TiO2 catalysts prepared by different methods Appendix 2: Additional TEM images of catalysts Figure A. 2. TEM images of the fresh 1Au/SiO2 catalysts which is observed in different points. Figure A. 3. TEM images of the fresh 1Au/SBA-15 catalysts which is observed in different points. Figure A. 4. TEM images of the fresh 2Cs1Au/SiO2 catalysts which is observed in different points. 0.5Au/TiO2 QT1 0.5Au/TiO2 QT2 0.5Au/TiO2 QT3 0.5Au/TiO2 QT4 128 Figure A. 5. TEM images of the fresh 2Co1Au/SiO2 catalysts which is observed in different points. Appendix 3: Additional EPR spectra of catalysts Figure A. 6. EPR spectra of 0,2Rh-L/Rh=10-IL=5%-TiO2 fresh and spent (after deactivation). Figure A. 7. EPR spectra of 0,2Rh-L/Rh=10-IL=10%-TiO2 fresh and spent (after deactivation). -500000 0 500000 0 2000 4000 6000 8000Int en sity G fresh -1000000 0 1000000 2000000 0 2000 4000 6000 8000 Int en sity G spent -500000 0 500000 0 2000 4000 6000 8000Int en sity G fresh -1000000 0 1000000 0 2000 4000 6000 8000Int en sity G spent 129 Appendix 4: Catalyst stability Figure A. 8. Catalytic activity of 2AuSiO2 on reaction time in dual- reactor mode at 2MPa, contact time of 50 g.min.L-1 , temperature of the first reactor was kept constantly of 650oC, nominal feedstock of CO2/H2/C2H4/N2 = 1/1/1/1. Figure A. 9. Catalytic activity of 4Cs2AuSiO2 on reaction time in dual- reactor mode at 2MPa, contact time of 50 g.min.L-1 , temperature of the first reactor was kept constantly of 650oC, nominal feedstock of CO2/H2/C2H4/N2 = 1/1/1/1. Figure A. 10. Catalytic activity of 4Ce2Cs2AuSiO2 on reaction time in dual- reactor mode at 2MPa, contact time of 50 g.min.L-1 , temperature of the first reactor was kept constantly of 650oC, nominal feedstock of CO2/H2/C2H4/N2 = 1/1/1/1.

Các file đính kèm theo tài liệu này:

  • pdfluan_an_study_on_the_hydroformylation_of_ethylene_with_co_an.pdf
  • pdf03 - TRICH YEU LUAN AN TIEN SI-Truong Duc Duc.pdf
  • pdf11- Tom tat luan an - Tieng Anh - Truong Duc Duc (full).pdf
  • pdf11- Tom tat luan an - Tieng Viet - Truong Duc Duc (full).pdf
  • pdf12 - Ban thong tin tom tat ve nhung ket luan moi cua luan an Tien Si.pdf
Luận văn liên quan