Luận án Tổng hợp vật liệu Composite trên cơ sở g-C₃N₄, ứng dụng trong điện hóa và quang xúc tác

Khả năng tái sử dụng TiO2/g-C3N4 Việc tái sử dụng hiệu quả chất xúc tác sau phản ứng quang hóa được xem là yêu cầu quan trọng cùng với hoạt tính xúc tác cao. Chất xúc tác đã qua sử dụng được tách ra bằng cách nung trong không khí ở 500 oC trong 3 giờ trước khi sử dụng lại. Hình 3.36 cho thấy sự thay đổi của hiệu suất phân hủy MB sau ba lần tái sử dụng. Sau mỗi lần sử dụng, hiệu suất giảm khoảng 6% so với lần sử dụng trước. Giản đồ XRD của chất xúc tác là không thay đổi, cho thấy chất xúc tác hiện tại là ổn định và có triển vọng trong xử lý nước thải phẩm màu. Hoạt tính quang xúc tác phân hủy một số chất màu trên TiO2/g-C3N4 Để khẳng định khả năng làm mất màu quang hóa dưới bức xạ khả kiến của vật liệu TiO2/g-C3N4, chúng tôi cũng tiến hành thêm các thí nghiệm khảo sát với ba chất màu hữu cơ có cấu trúc hóa học khác so với MB là Malachite Green (MG), Methyl Blue (MyB) và Methyl Red (MR) (Hình .37). Việc đánh giá sự phân hủy chất màu dựa vào sự thay đổi cường độ peak hấp thụ chính của MG, MyB và MR ở (MG) = 617 nm, (MyB) = 6 7 nm và (MR) = 521 nm. Kết quả khảo sát (Hình .38) cho thấy vật liệu TiO2/g-C3N4 thể hiện khả năng xúc tác hiệu quả trong việc phân hủy các chất màu hữu cơ khác nhau. Hiệu suất khử màu quang hóa các chất màu MG (chất màu cation) sau 8 phút chiếu sáng là 1 %, MyB (chất màu anion) sau chiếu sáng 1 phút là 7,8 % và MR (chất màu trung hòa) sau 120 phút chiếu sáng là 6 , %.

pdf154 trang | Chia sẻ: huydang97 | Ngày: 27/12/2022 | Lượt xem: 401 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Tổng hợp vật liệu Composite trên cơ sở g-C₃N₄, ứng dụng trong điện hóa và quang xúc tác, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
tính xúc tác tuyệt vời đối với phân hủy Methylene Blue trong vùng ánh sáng khả kiến. goài ra, TiO2/g-C3N4 cũng thể hiện sự phân hủy chất xúc tác quang hiệu quả đối với các thuốc nhuộm có bản chất khác nhau như Malachite Green(chất màu cation), Methyl Blue (chất màu anion) và Methyl Red (chất màu trung hòa). Do tính chất thân thiện với môi trường và khả năng tái sinh khá cao, vật liệu TiO2/g-C3N4 có tiềm năng trong việc xử lý nước thải chứa các chất màu hữu cơ khó phân hu . 2. Kiến nghị Từ các kết quả nghiên cứu của luận án, chúng tôi rút ra một số kiến nghị như sau: - Phát triển vật liệu điện cực biến tính thành các điện cực in để có thể đo trực tiếp tại hiện trường. - Phát triển vật liệu xúc tác quang trong phân tích các hợp chất hữu cơ khó phân hủy. 111 DANH MỤC CÁC CÔNG TRÌNH CÔNG B KẾT QUẢ NGHIÊN CỨU C A LUẬN ÁN I. Tạp chí trong nước 1. Đặng Thị Ngọc Hoa, guyễn Thị Thanh Tú (2020), ghiên cứu tổng hợp vật liệu TiO2/g-C3N4 làm xúc tác quang hóa phân hủy xanh methylen trong vùng ánh sáng khả kiến, Tạp chí úc tác và hấp phụ iệt Nam, tập , số , tr.21-26, 20/9/2020. 2. Đặng Thị Ngọc Hoa, Nguyễn Thị Thanh Tú, Lê Thị Kim Dung (2021), ghiên cứu tổng hợp vật liệu composite -67/Fe2O3/g-C3N4 và ứng dụng, Tạp chí hoa học và công nghệ, Trường ại học Khoa học, ại học Huế, tập 18, số 2, 2 21. 3. Đặng Thị Ngọc Hoa, guyễn Đức Hồng (2022), Tổng hợp phức titanium peroxyde và khảo sát hoạt tính xúc tác của hệ TiO2/g-C3N4, Tạp chí hoa học ại học ế: hoa học tự nhiên, số 131-1A-2 22 (đã nhận đăng). II. Tạp chí quốc tế (ISI) 4. Dang Thi Ngoc Hoa, Tran Thanh Tam Toan, Tran Xuan Mau, Nguyen Thi Vuong Hoan, Tran Thi Nhat Tram, Tran Duc Manh, Vo Thang Nguyen, Vu Thi Duyen, Pham Le Minh Thong and Dinh Quang Khieu (2020), Voltammetric determination of auramine o with ZIF-67/Fe2O3/g-C3N4-modified electrode, Journal of Materials Science: Materials in Electronics, 26/9/2020 (SCIE, Q2, IF = 2.210). 5. Dang Thi Ngoc Hoa, Nguyen Thi Thanh Tu, Le Van Thanh Son, Le Vu Truong Son, Tran Thanh Tam Toan, Pham Le Minh Thong, Dao Ngoc Nhiem, Pham Khac Lieu and Dinh Quang Khieu (2021), Electrochemical determination of diclofenac by using ZIF-67/g-C3N4 modified electrode, Adsorption Science & Technology, Volume 2021 (SCIE, Q1, IF = 4.232). 112 TÀI LIỆU THAM KHẢO Tiếng Việt [1]. Lâm Thị Hằng, Lê Thị Mai Oanh, Mạc Thị Thu, Đào Việt Thắng, Nguyễn Mạnh Hùng, Đỗ Danh Bích (2 18), Chế tạo và nghiên cứu tính chất vật lí, khả năng quang xúc tác của vật liệu tổ hợp g-C3N4/TiO2. Tạp chí Nghiên cứu &CN n sự. CBES2(04–2018):136–42. [2]. Đinh Quang Khiếu (2015), Một số phư ng pháp ph n tích hóa lý, hà xuất bản Đại học Huế. [3]. Nguyễn Văn Kim (2 16), ghiên cứu tổng hợp, đặc trưng và khả năng quang xúc tác của composit g-C3N4 với GaN– nO và Ta2O5. Luận án tiến sĩ hóa học, p. 41. [4]. Hồ Viết Quý (2 ), h n tích lý hóa, hà xuất bản Giáo dục, Hà ội. [5]. Nguyễn Đình Triệu (1999), Các phư ng pháp vật lý ứng dụng trong hóa học, hà xuất bản Đại học Quốc gia Hà ội. [6]. Nguyễn Thị Thanh Tú (2 2 ), Tổng hợp, biến tính và ứng dụng vật liệu khung hữu cơ - kim loại ZIF-67. Luận án tiến sĩ hóa học, p. 52. Tiếng Anh [7]. Adeyeye CM, Li P-K. (1990), Diclofenac sodium. Analytical profiles of drug substances. Elsevier. 19:123–44. [8]. Afkhami A, Bahiraei A, Madrakian T. (2016), Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetricsensor for the determination of diclofenac sodium. Mater. Sci. Eng. C. 59:168–76 [9]. Aliahmad M, Nasiri Moghaddam N. (2013), Synthesis of maghemite (γ- Fe2O3) nanoparticles by thermal-decomposition of magnetite (Fe3O4) nanoparticles. Mater. Sci. Pol. 31(2):264–68 113 [10]. Alquadeib BT. (2019), Development and validation of a new HPLC analytical method for the determination of diclofenac in tablets. Saudi Pharm. J. 27(1):66–70 [11]. Amalraj A, Pius A. (2014), Photocatalytic degradation of alizarin red S and bismarck brown R using TiO2 photocatalyst. J.Chem. Appl. Biochem.1(1):1–7 [12]. Anjum M, Kumar R, Abdelbasir SM, Barakat MA. (2018), Carbon nitride/titania nanotubes composite for photocatalytic degradation of organics in water and sludge: pre-treatment of sludge, anaerobic digestion and biogas production. J. Environ. Manage. 223:495–502 [13]. Arancibia JA, Boldrini MA, Escandar GM. (2000), Spectrofluorimetric determination of diclofenac in the presence of α-cyclodextrin. Talanta. 52(2):261–68 [14]. Arancibia JA, Escandar GM. (1999), Complexation study of diclofenac with β-cyclodextrin and spectrofluorimetric determination. Analyst. 124(12):1833– 38 [15]. Arcelloni C, Lanzi R, Pedercini S, Molteni G, Fermo I, et al. (2001), High- performance liquid chromatographic determination of diclofenac in human plasma after solid-phase extraction. J. Chromatogr. B Biomed. Sci. Appl. 763(1–2):195–200 [16]. rmstrong R, rmstrong G, Canales , García R, Bruce PG. (2 ), Lithium‐ion intercalation into TiO2‐B nanowires. Adv. Mater. 17(7):862–65 [17]. Asfaram A, Ghaedi M. (2016), Simultaneous determination of cationic dyes in water samples with dispersive liquid–liquid microextraction followed by spectrophotometry: experimental design methodology. New J. Chem. 40(5):4793–4802 [18]. Asfaram A, Ghaedi M, Goudarzi A, Soylak M. (2015), Comparison between dispersive liquid–liquid microextraction and ultrasound-assisted nanoparticles-dispersive solid-phase microextraction combined with microvolume spectrophotometry method for the determination of auramine-o 114 in water samples. RSC Adv. 5(49):39084–96 [19]. Atchudan R, Edison TNJI, Perumal S, Karthikeyan D, Lee YR. (2016), Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation. J. Photochem. Photobiol. B Biol. 162:500–510 [20]. Aulbur WG, önsson L, Wilkins JW. (2000), Quasiparticle calculations in solids. Solid state Phys. (New York. 1955). 54:1–218 [21]. Awadallah-F A, Hillman F, Al-Muhtaseb SA, Jeong H-K. (2019), On the nanogate-opening pressures of copper-doped zeolitic imidazolate framework ZIF-8 for the adsorption of propane, propylene, isobutane, and n-butane. J. Mater. Sci. 54(7):5513–27 [22]. Bai X, Wang L, Wang Y, Yao W, Zhu Y. (2014), Enhanced oxidation ability of g-C3N4 photocatalyst via C60 modification. Appl. Catal. B Environ. 152:262–70 [23]. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, et al. (2008), High- throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science (80-. ). 319(5865):939–43 [24]. Bard AJ, Faulkner LR. (2001), Fundamentals and applications: electrochemical methods. John Wiley & Sons, Inc. 2(482):580–632 [25]. Barreca D, Massignan C, Daolio S, Fabrizio M, Piccirillo C, et al. (2001), Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition. Chem. Mater. 13(2):588–93 [26]. Bi G, Wen J, Li X, Liu W, Xie J, et al. (2016), Efficient visible-light photocatalytic H2 evolution over metal-free g-C3N4 Co-modified with robust acetylene black and Ni(OH)2 as dual co-catalysts. RSC Adv. 6(37):31497–506 [27]. Bojdys MJ. (2009), On new allotropes and nanostructures of carbon nitrides., Doctoral Thesis, Universität otsdam. p. 1–117 115 [28]. Bojdys M , Müller , Antonietti M, Thomas A. (2008), Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem. Eur. J. 14(27):8177–82 [29]. Brinker CJ, Scherer GW. (2013), Sol-gel science: the physics and chemistry of sol-gel processing. Academic press, Inc. 21-91 [30]. Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J. (2009), Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 131(44):16000–1 [31]. Cancer IA for R on. (1978), IARC monographs on the evaluation of the carcinogenic risk of chemicals to man. vol. 16. some aromatic amines and related nitro compounds-hair dyes, colouring agents and miscellaneous industrial chemicals. Environmental Research. vol. 17, issue 3, p. 480 [32]. Cao S, Low J, Yu J, Jaroniec M. (2015), Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27(13):2150–76 [33]. Cao X, Tan C, Sindoro M, Zhang H. (2017), Hybrid micro-/nano-structures derived from metal–organic frameworks: preparation and applications in energy storage and conversion. Chem. Soc. Rev. 46(10):2660–77 [34]. Castner DG, Watson PR, Chan IY. (1989), X-ray absorption spectroscopy, X- ray photoelectron spectroscopy, and analytical electron microscopy studies of cobalt catalysts. 1. characterization of calcined catalysts. J. Phys. Chem. 93(8):3188–94 [35]. Chau TTL, Le DQT, Le HT, Nguyen CD, Nguyen LV, Nguyen TD. (2017), Chitin liquid-crystal-templated oxide semiconductor aerogels. ACS Appl. Mater. Interfaces. 9(36):30812–20 [36]. Chen X, Mao SS. (2007), Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev.2007,107(7):28 1−2 [37]. Chen Y, Li J, Hong Z, Shen B, Lin B, Gao B. (2014), Origin of the enhanced 116 visible-light photocatalytic activity of CNT modified g-C3N4 for H2 production. Phys. Chem. Chem. Phys. 16(17):8106–13 [38]. Cheon YE, Park J, Suh MP. (2009), Selective gas adsorption in a magnesium- based metal–organic framework. Chem. Commun., pp. 5436–38 [39]. Chitravathi S, Munichandraiah N. (2016), Voltammetric determination of paracetamol, tramadol and caffeine using poly (Nile blue) modified glassy carbon electrode. J. Electroanal. Chem. 764:93–103 [40]. Cleuvers M. (2004), Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol. Environ. Saf. 59(3):309–15 [41]. Dixit S, Khanna SK, Das M. (2011), A simple method for simultaneous determination of basic dyes encountered in food preparations by reversed- phase HPLC. J. AOAC Int. 94(6):1874–81 [42]. Dong F, Wang Z, Sun Y, Ho W-K, Zhang H. (2013), Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. J. Colloid Interface Sci. 401:70–79 [43]. Du X-D, Wang C-C, Liu J-G, Zhao X-D, Zhong J, et al. (2017), Extensive and selective adsorption of ZIF-67 towards organic dyes: performance and mechanism. J. Colloid Interface Sci. 506:437–41 [44]. Du Y, Xu Y, Zhou W, Yu Y, Ma X, et al. (2021), MOF-derived zinc manganese oxide nanosheets with valence-controllable composition for high- performance li storage. Green Energy Environ. 6(5):703–14 [45]. Duan C, Yu Y, Hu H. (2020), Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis. Green Energy Environ. [46]. Dyjak S, Kiciński W, Huczko A. (2015), Thermite-driven melamine condensation to CxNyHz graphitic ternary polymers: towards an instant, large-scale synthesis of g-C3N4. J. Mater. Chem. A. 3(18):9621–31 117 [47]. Ensafi AA, Izadi M, Karimi-Maleh H. (2013), Sensitive voltammetric determination of diclofenac using room-temperature ionic liquid-modified carbon nanotubes paste electrode. Ionics (Kiel). 19(1):137–44 [48]. Eteya MM, Rounaghi GH, Deiminiat B. (2019), Fabrication of a new electrochemical sensor based on AuPt bimetallic nanoparticles decorated multi-walled carbon nanotubes for determination of diclofenac. Microchem. J. 144:254–60 [49]. Farrusseng D, Aguado S, Pinel C. (2009), Metal-organic frameworks: opportunities for catalysis. Angew. Chemie Int. Ed. 48(41):7502–13 [50]. érey G. (2 8), Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37(1):191–214 [51]. Firoozi M, Rafiee Z, Dashtian K. (2020), New MOF/COF hybrid as a robust adsorbent for simultaneous removal of Auramine O and Rhodamine B dyes. ACS omega. 5(16):9420–28 [52]. Franklin EC. (1922), The ammono carbonic acids. J. Am. Chem. Soc. 44(3):486–509 [53]. Fu T, Hu P, Wang T, Dong Z, Xue N, et al. (2015), High selectivity to p- chloroaniline in the hydrogenation of p-chloronitrobenzene on Ni modified carbon nitride catalyst. Chinese J. Catal. 36(11):2030–35 [54]. Galvan J, Borsoi MX, Julek L, Bordin D, Cabral LPA, et al. (2021), Methylene blue for the treatment of health conditions: a scoping review. Brazilian Arch. Biol. Technol. 64 [55]. Gao J, Zhou Y, Li Z, Yan S, Wang N, Zou Z. (2012), High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity. Nanoscale. 4(12):3687–92 [56]. Gao S, Han Y, Fan M, Li Z, Ge K, et al. (2020), Metal-organic framework- based nanocatalytic medicine for chemodynamic therapy. Sci. China Mater. 63(12):2429–34 118 [57]. Giannakopoulou T, Papailias I, Todorova N, Boukos N, Liu Y, et al. (2017), Tailoring the energy band gap and edges’ potentials of g-C3N4/TiO2 composite photocatalysts for nox removal. Chem. Eng. J. 310:571–80 [58]. Goettmann F, Fischer A, Antonietti M, Thomas A. (2006), Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal‐free catalyst for friedel–crafts reaction of benzene. Angew. Chemie Int. Ed. 45(27):4467–71 [59]. Goyal RN, Chatterjee S, Agrawal B. (2010), Electrochemical investigations of diclofenac at edge plane pyrolytic graphite electrode and its determination in human urine. Sensors Actuators B Chem. 145(2):743–48 [60]. Graat PCJ, Somers MAJ. (1996), Simultaneous determination of composition and thickness of thin iron-oxide films from XPS Fe2p spectra. Appl. Surf. Sci. 100:36–40 [61]. Gureev AP, Shaforostova EA, Popov VN, Starkov AA. (2019), Methylene blue does not bypass complex III antimycin block in mouse brain mitochondria. FEBS Lett. 593(5):499–503 [62]. Habib HA, Sanchiz J, Janiak C. (2009), Magnetic and luminescence properties of Cu (II), Cu (II)4O4 core, and Cd (II) mixed-ligand metal–organic frameworks constructed from 1, 2-bis (1, 2, 4-triazol-4-yl) ethane and benzene-1, 3, 5-tricarboxylate. Inorganica Chim. Acta. 362(7):2452–60 [63]. Han JW, Hill CL. (2007), A coordination network that catalyzes O2-based oxidations. J. Am. Chem. Soc. 129(49):15094–95 [64]. Hao R, Wang G, Jiang C, Tang H, Xu Q. (2017), In situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for rhodamine b degradation. Appl. Surf. Sci. 411:400–410 [65]. Hao R, Wang G, Tang H, Sun L, Xu C, Han D. (2016), Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl. Catal. B Environ. 187:47–58 119 [66]. Haque E, Jun JW, Talapaneni SN, Vinu A, Jhung SH. (2010), Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol. J. Mater. Chem. 20(48):10801–3 [67]. Hasegawa G, Tanaka M, Vequizo JJM, Yamakata A, Hojo H, et al. (2019), Sodium titanium oxide bronze nanoparticles synthesized via concurrent reduction and Na + -doping into TiO2 (b). Nanoscale. 11(3):1442–50 [68]. Hayashi H, Cote P, urukawa H, O’Keeffe M, Yaghi OM. (2 7), eolite a imidazolate frameworks. Nat. Mater. 6(7):501–6 [69]. He K, Xie J, Liu Z-Q, Li N, Chen X, et al. (2018), Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light. J. Mater. Chem. A. 6(27):13110–22 [70]. Heyrovský , Kůta . (2 1 ), Principles of polarography. Czechoslovak Academy of Sciences. 17-523 [71]. Hillman F, Zimmerman JM, Paek S-M, Hamid MRA, Lim WT, Jeong H-K. (2017), Rapid microwave-assisted synthesis of hybrid zeolitic–imidazolate frameworks with mixed metals and mixed linkers. J. Mater. Chem. A. 5(13):6090–99 [72]. Hoan NTV, Minh NN, Nhi TTK, Van Thang N, Tuan VA, et al. (2020), TiO2/diazonium/graphene oxide composites: synthesis and visible-light- driven photocatalytic degradation of methylene blue. J. Nanomater. 2020. https://doi.org/10.1155/2020/4350125 [73]. Hosseini H, Ahmar H, Dehghani A, Bagheri A, Tadjarodi A, Fakhari AR. (2013), A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine. Biosens. Bioelectron. 42:426–29 [74]. Hou Y, Li J, Wen Z, Cui S, Yuan C, Chen J. (2014), N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries. Nano Energy. 8:157–64 [75]. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J-M. (2001), Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. 120 B Environ. 31(2):145–57 [76]. Hu K, Li R, Ye C, Wang A, Wei W, et al. (2020), Facile synthesis of Z- scheme composite of TiO2 nanorod/g-C3N4 nanosheet efficient for photocatalytic degradation of ciprofloxacin. J. Clean. Prod. 253:120055 [77]. Hu M, Xing Z, Cao Y, Li Z, Yan X, et al. (2018), Ti 3+ self-doped mesoporous black TiO2/SiO2/g-C3N4 sheets heterojunctions as remarkable visible- lightdriven photocatalysts. Appl. Catal. B Environ. 226:499–508 [78]. Hu S, Jin R, Lu G, Liu D, Gui J. (2014), The properties and photocatalytic performance comparison of Fe 3+ -doped g-C3N4 and Fe2O3/g-C3N4 composite catalysts. Rsc Adv. 4(47):24863–69 [79]. Hu S, Ma L, Li F, Fan Z, Wang Q, et al. (2015), Construction of g-C3N4/Sg- C3N4 metal-free isotype heterojunctions with an enhanced charge driving force and their photocatalytic performance under anoxic conditions. RSC Adv. 5(110):90750–56 [80]. Hu Y, Zhou L, Liu H, Guo X. (2014), Visible light photocatalytic degradation of methylene blue over N-doped TiO2. Key Eng. Mater. 609–610:141–46 [81]. Ilie AG, Scarisoareanu M, Morjan I, Dutu E, Badiceanu M, Mihailescu I. (2017), Principal component analysis of raman spectra for TiO2 nanoparticle characterization. Appl. Surf. Sci. 417:93–103 [82]. Jian Q, Jin Z, Wang H, Zhang Y, Wang G. (2019), Photoelectron directional transfer over a g-C3N4/CdS heterojunction modulated with WP for efficient photocatalytic hydrogen evolution. Dalt. Trans. 48(13):4341–52 [83]. Jiang H-L, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. (2009), Au@ ZIF-8: co oxidation over gold nanoparticles deposited to metal− organic framework. J. Am. Chem. Soc. 131(32):11302–3 [84]. Jiang J, Ou-yang L, Zhu L, Zheng A, Zou J, et al. (2014), Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: a study by raman spectroscopy coupled with first-principles calculations. Carbon N. Y. 80:213–21 121 [85]. Jiao Y, Han D, Lu Y, Rong Y, Fang L, et al. (2017), Characterization of pine- sawdust pyrolytic char activated by phosphoric acid through microwave irradiation and adsorption property toward cdnb in batch mode. Desalin. Water Treat. 77:247–55 [86]. Jin H, Wang J, Yang S, Wu Q, Zhang B. (2021), ZIF-67-derived micron-sized cobalt-doped porous carbon-based microwave absorbers with g-C3N4 as template. Ceram. Int. 47(8):11506–13 [87]. Jin W, Zhang J. (2000), Determination of diclofenac sodium by capillary zone electrophoresis with electrochemical detection. J. Chromatogr. A. 868(1):101–7 [88]. Jin Z, Murakami N, Tsubota T, Ohno T. (2014), Complete oxidation of acetaldehyde over a composite photocatalyst of graphitic carbon nitride and tungsten (VI) oxide under visible-light irradiation. Appl. Catal. B Environ. 150:479–85 [89]. Jiokeng SLZ, Tonle IK, Walcarius A. (2019), Amino-attapulgite/mesoporous silica composite films generated by electro-assisted self-assembly for the voltammetric determination of diclofenac. Sensors Actuators B Chem. 287:296–305 [90]. Kakihana M, Kobayashi M, Tomita K, Petrykin V. (2010), Application of water-soluble titanium complexes as precursors for synthesis of titanium- containing oxides via aqueous solution processes. Bull. Chem. Soc. Jpn. 83(11):1285–1308 [91]. Khalid NR, Hammad A, Tahir MB, Rafique M, Iqbal T, et al. (2019), Enhanced photocatalytic activity of al and Fe co-doped ZnO nanorods for methylene blue degradation. Ceram. Int. 45(17):21430–35 [92]. Khezrianjoo S, Revanasiddappa H. (2012), Langmuir-hinshelwood kinetic expression for the photocatalytic degradation of metanil yellow aqueous solutions by zno catalyst. Chem. Sci. J. 2012(2012):85–85 [93]. Kim JR, Santiano B, Kim H, Kan E. (2013), Heterogeneous oxidation of 122 methylene blue with surface-modified iron-amended activated carbon [94]. Kroke E, Schwarz M. (2004), Novel group 14 nitrides. Coord. Chem. Rev. 248(5–6):493–532 [95]. Kromidas S. (2008), HPLC made to measure: a practical handbook for optimization. Wiley-VCH Verlag GmbH & Co.KGaA;Weinheim. 3–623 pp. [96]. Kumar A, Prasad B, Mishra IM. (2008), Adsorptive removal of acrylonitrile by commercial grade activated carbon: kinetics, equilibrium and thermodynamics. J. Hazard. Mater. 152(2):589–600 [97]. Laviron Ejj. (1979), General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 101(1):19–28 [98]. Le QTD, Truong VC, Do PA. (2011), The effect of TiO2 nanotubes on the sintering behavior and properties of PZT ceramics. Adv. Nat. Sci. Nanosci. Nanotechnol. 2(2): [99]. Li C. (2007), Electrochemical determination of dipyridamole at a carbon paste electrode using cetyltrimethyl ammonium bromide as enhancing element. Colloids Surfaces B Biointerfaces. 55(1):77–83 [100]. Li C, Sun Z, Xue Y, Yao G, Zheng S. (2016), A facile synthesis of g- C3N4/TiO2 hybrid photocatalysts by sol–gel method and its enhanced photodegradation towards methylene blue under visible light. Adv. Powder Technol. 27(2):330–37 [101]. Li G, Nie X, Chen J, Jiang Q, An T, et al. (2015), Enhanced visible-light- driven photocatalytic inactivation of escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Res. 86:17–24 [102]. Li J-R, Kuppler RJ, Zhou H-C. (2009), Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38(5):1477–1504 [103]. Li J, Ding X-M, Liu D-D, Guo F, Chen Y, et al. (2013), Simultaneous 123 determination of eight illegal dyes in chili products by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B. 942:46–52 [104]. Li K, Gao S, Wang Q, Xu H, Wang Z, et al. (2015), In-situ-reduced synthesis of Ti 3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under led light irradiation. ACS Appl. Mater. Interfaces. 7(17):9023–30 [105]. Li X, Liu C, Wu D, Li J, Huo P, Wang H. (2019), Improved charge transfer by size-dependent plasmonic au on C3N4 for efficient photocatalytic oxidation of RhB and CO2 reduction. Chinese J. Catal. 40(6):928–39 [106]. Li Y, Li L, Li C, Chen W, Zeng M. (2012), Carbon nanotube/titania composites prepared by a micro-emulsion method exhibiting improved photocatalytic activity. Appl. Catal. A Gen. 427:1–7 [107]. Li Y, Zhou K, He M, Yao J. (2016), Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption. Microporous Mesoporous Mater. 234:287–92 [108]. Liao Y, Que W, Jia Q, He Y, Zhang J, Zhong P. (2012), Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single- crystalline rutile nanorods array. J. Mater. Chem. 22(16):7937 [109]. Lin K-YA, Chang H-A. (2015), Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere. 139(1):624–31 [110]. Lin K-YA, Lee W-D. (2016), Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole. Chem. Eng. J. 284:1017–27 [111]. Lin Z, Yu B, Huang J. (2020), Cellulose-derived hierarchical g-C3N4/TiO2- nanotube heterostructured composites with enhanced visible-light photocatalytic performance. Langmuir. 36(21):5967–78 [112]. Linnemann J, Taudien L, Klose M, Giebeler L. (2017), Electrodeposited films to MOF-derived electrochemical energy storage electrodes: a concept of 124 simplified additive-free electrode processing for self-standing, ready-to-use materials. J. Mater. Chem. A. 5(35):18420–28 [113]. Liu DY, Dong JH, Liu FM, Gao XF, Yu Y, et al. (2019), Synthesis and photocatalytic performance of g-C3N4 composites. J. Ovonic Res. 15(4):239– 46 [114]. Liu Y, Sun K, Jiang J, Zhou W, Shang Y, et al. (2021), Metallurgical pyrolysis toward Co@ nitrogen-doped carbon composite for lithium storage. Green Energy Environ. 6(1):91–101 [115]. Liu Y, Yuan X, Wang H, Chen X, Gu S, et al. (2015), Novel visible light- induced g-C3N4–Sb2S3/Sb4O5Cl2 composite photocatalysts for efficient degradation of methyl orange. Catal. Commun. 70:17–20 [116]. Long B, Lin J, Wang X. (2014), Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis. J. Mater. Chem. A. 2(9):2942–51 [117]. Lotsch B V, Schnick W. (2006), From triazines to heptazines: novel nonmetal tricyanomelaminates as precursors for graphitic carbon nitride materials. Chem. Mater. 18(7):1891–1900 [118]. Low Z-X, Yao J, Liu Q, He M, Wang Z, et al. (2014), Crystal transformation in zeolitic-imidazolate framework. Cryst. Growth Des. 14(12):6589–98 [119]. Lu L, Wang G, Zou M, Wang J, Li J. (2018), Effects of calcining temperature on formation of hierarchical TiO2/g-C3N4 hybrids as an effective Z-scheme heterojunction photocatalyst. Appl. Surf. Sci. 441:1012–23 [120]. Lu N, Wang C, Sun B, Gao Z, Su Y. (2017), Fabrication of TiO2-doped single layer graphitic-C3N4 and its visible-light photocatalytic activity. Sep. Purif. Technol. 186:226–32 [121]. Luo Z, Yao J. (2017), Raman investigations of atomic/molecular clusters and aggregates. In Raman Spectroscopy and Applications. InTech [122]. Madsen KG, Skonberg C, Jurva U, Cornett C, Hansen SH, et al. (2008), 125 Bioactivation of diclofenac in vitro and in vivo: correlation to electrochemical studies. Chem. Res. Toxicol. 21(5):1107–19 [123]. Mamakhel , Tyrsted C, Bøjesen ED, Hald P, Iversen BB. (2013), Direct formation of crystalline phase pure rutile TiO2 nanostructures by a facile hydrothermal method. Cryst. Growth Des. 13(11):4730–34 [124]. Manea F, Ihos M, Remes A, Burtica G, Schoonman J. (2010), Electrochemical determination of diclofenac sodium in aqueous solution on Cu‐doped zeolite‐expanded graphite‐epoxy electrode. Electroanalysis. 22(17‐ 18):2058–63 [125]. Matthews JA. (2014), 5220 chemical oxygen demand (COD)*. In Encyclopedia of Environmental Change, 20th edition 1998 Preparado por: American Public Health Association American Water Works Association Water Environment Federation, pp. 14–19. [126]. McCusker LB. (1994), Advances in powder diffraction methods for zeolite structure analysis. Stud. Surf. Sci. Catal. 84(C):341–56 [127]. Meng Z, Xie Y, Cai T, Sun Z, Jiang K, Han W-Q. (2016), Graphene-like g- C3N4 nanosheets/sulfur as cathode for lithium–sulfur battery. Electrochim. Acta. 210:829–36 [128]. Mirsalari SA, Nezamzadeh-Ejhieh A. (2020), The catalytic activity of the coupled CdS-AgBr nanoparticles: a brief study on characterization and its photo-decolorization activity towards methylene blue. Desalin. Water Treat. 175:263–72 [129]. Mo Z, She X, Li Y, Liu L, Huang L, et al. (2015), Synthesis of g-C3N4 at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution. RSC Adv. 5(123):101552– 62 [130]. Moulder JF. (1995), Handbook of X-ray photoelectron spectroscopy. Phys. Electron., pp. 230–32 [131]. Mousavi B, Chaemchuen S, Moosavi B, Luo Z, Gholampour N, Verpoort F. 126 (2016), Zeolitic imidazole framework-67 as an efficient heterogeneous catalyst for the conversion of CO2 to cyclic carbonates. New J. Chem. 40(6):5170–76 [132]. Nasiri F, Rounaghi GH, Ashraf N, Deiminiat B. (2021), A new electrochemical sensing platform for quantitative determination of diclofenac based on gold nanoparticles decorated multiwalled carbon nanotubes/graphene oxide nanocomposite film. Int. J. Environ. Anal. Chem. 101(2):153–66 [133]. Ngo HT, Hoa LT, Khanh NT, Hoa TTB, Toan TTT, et al. (2020), ZIF-67/g- C3N4-modified electrode for simultaneous voltammetric determination of uric acid and acetaminophen with cetyltrimethylammonium bromide as discriminating agent. J. Nanomater. Vol.2020. https://doi.org/10.1155/2020/7915878 [134].Nguyen LTL, Le KKA, Truong HX, Phan NTS. (2012), Metal–organic frameworks for catalysis: the knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catal. Sci. Technol. 2(3):521–28 [135]. Nguyen Thi Kim T, Bui TT, Pham AT, Duong VT, Le THG. (2019), Fast determination of auramine o in food by adsorptive stripping voltammetry. J. Anal. Methods Chem. Vol.2019. https://doi.org/10.1155/2019/8639528 [136]. Niemantsverdriet JW. (2007), Spectroscopy in catalysis: an introduction. Wiley-VCH Verlag GmbH & Co.KGaA;Weinheim. 41–182. [137]. Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P. (2016), Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116(12):7159–7329 [138]. Parodi S, Santi L, Russo P, Albini A, Vecchio D, et al. (1982), DNA damage induced by Auramine O in liver, kidney, and bone marrow of rats and mice, and in a human cell line (alkaline elution assay and sce induction). J. Toxicol. 127 Environ. Heal. Part A Curr. Issues. 9(5–6):941–52 [139]. Pauling L, Sturdivant JH. (1937), The structure of cyameluric acid, hydromelonic acid and related substances. Proc. Natl. Acad. Sci. U. S. A. 23(12):615 [140]. Phan Anh, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’keeffe M, Yaghi OM. (2009), Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43(1): 58–67 [141]. Pinheiro MF, Rodrigues GS, Junior JA de QL, de Sousa R de CS, da Costa R. (2 2 ), nálise da capacidade de adsortiva do carvão da palha do café arábica utilizando o corante azul de metileno. Brazilian J. Dev. 6(1):2861–68 [142]. Pori P, Vilčnik , Petrič M, Škapin S, Mihelčič M, et al. (2016), Structural studies of TiO2/wood coatings prepared by hydrothermal deposition of rutile particles from TiCl4 aqueous solutions on spruce (picea abies) wood. Appl. Surf. Sci. 372:125–38 [143]. Qian J, Sun F, Qin L. (2012), Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 82:220–23 [144]. Qin J, Wang S, Wang X. (2017), Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co- catalyst. Appl. Catal. B Environ. 209:476–82 [145]. Rambabu A, Kishore B, Munichandraiah N, Krupanidhi SB, Barpanda P. (2017), Na2Ti6O13 thin films as anode for thin film sodium ion batteries. AIP Conf. Proc. 1832:1–4 [146]. Redemann CE, Lucas HJ. (1940), Some derivatives of cyameluric acid and probable structures of melam, melem and melon. J. Am. Chem. Soc. 62(4):842–46 [147]. Roosendaal SJ, Van Asselen B, Elsenaar JW, Vredenberg AM, Habraken F. (1999), The oxidation state of Fe (100) after initial oxidation in O2. Surf. Sci. 442(3):329–37 128 [148]. Roy JS, Dugas G, Morency S, Ribeiro SJL, Messaddeq Y. (2020), Enhanced photocatalytic activity of silver vanadate nanobelts in concentrated sunlight delivered through optical fiber bundle coupled with solar concentrator. SN Appl. Sci. 2(2):1–11 [149]. Sasal A, Tyszczuk-Rotko K, Wójciak M, Sowa . (2 20), First electrochemical sensor (screen-printed carbon electrode modified with carboxyl functionalized multiwalled carbon nanotubes) for ultratrace determination of diclofenac. Materials (Basel). 13(3):781 [150]. Scherb C. (2009), Controlling the Surface Growth of Metal-Organic Frameworks. Dissertation, Faculty of Chemistry and Pharmacy, Ludwig- Maximilians University, Munich. 32–44. [151]. Schwarzenbach G, Muehlebach J, Mueller K. (1970), Peroxo complexes of titanium. Inorg. Chem. 9(11):2381–90 [152]. Sehnert J, Baerwinkel K, Senker J. (2007), Ab initio calculation of solid-state nmr spectra for different triazine and heptazine based structure proposals of g-C3N4. J. Phys. Chem. B. 111(36):10671–80 [153]. Semencha A V, Blinov LN. (2010), Theoretical prerequisites, problems, and practical approaches to the preparation of carbon nitride: a review. Glas. Phys. Chem. 36(2):199–208 [154]. Shakya S, Shrestha NJ, Subedi KU. (2020), Methemoglobinemia in a newborn. Med. J. Shree Birendra Hosp. 19(1):45–47 [155]. Shao J, Wan Z, Liu H, Zheng H, Gao T, et al. (2014), Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for li storage. J. Mater. Chem. A. 2(31):12194–200 [156]. She X, Wu J, Xu H, Zhong J, Wang Y, et al. (2017), High efficiency photocatalytic water splitting using 2D α‐Fe2O3/g‐C3N4 Z-scheme catalysts. Adv. Energy Mater. 7(17):1-25 [157]. Shearier E, Cheng P, Zhu Z, Bao J, Hu YH, Zhao F. (2016), Surface defection reduces cytotoxicity of Zn (2-methylimidazole) 2 (ZIF-8) without 129 compromising its drug delivery capacity. RSC Adv. 6(5):4128–35 [158]. Shekhah O, Liu , ischer R , Wöll C. (2 11), MOF thin films: existing and future applications. Chem. Soc. Rev. 40(2):1081–1106 [159]. Shen R, Liu W, Ren D, Xie J, Li X. (2019), Co1. 4NiO. 6P cocatalysts modified metallic carbon black/g-C3N4 nanosheet schottky heterojunctions for active and durable photocatalytic H2 production. Appl. Surf. Sci. 466:393– 400 [160]. Shi H, Du J, Hou J, Ni W, Song C, et al. (2020), Solar-driven CO2 conversion over Co 2+ doped 0D/2D TiO2/g-C3N4 heterostructure: insights into the role of Co 2+ and cocatalyst. J. CO2 Util. 38(January):16–23 [161]. Shi L, Wang T, Zhang H, Chang K, Ye J. (2015), Electrostatic self‐assembly of nanosized carbon nitride nanosheet onto a zirconium metal–organic framework for enhanced photocatalytic CO2 reduction. Adv. Funct. Mater. 25(33):5360–67 [162]. Shi X, Fujitsuka M, Lou Z, Zhang P, Majima T. (2017), In situ nitrogen- doped hollow-TiO2/g-C3N4 composite photocatalysts with efficient charge separation boosting water reduction under visible light. J. Mater. Chem. A. 5(20):9671–81 [163]. Soleymani J, Hasanzadeh M, Shadjou N, Jafari MK, Gharamaleki JV, et al. (2016), A new kinetic–mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. Mater. Sci. Eng. C. 61:638–50 [164]. Stuart B. (2004), Infrared spectroscopy: Fundamentals and applications. John Wiley & Sons, Ltd. 18-24 [165]. Sun P, He X, Wang W, Ma J, Sun Y, Lu G. (2012), Template-free synthesis of monodisperse α-Fe2O3 porous ellipsoids and their application to gas sensors. CrystEngComm. 14(6):2229–34 [166]. Sun Z, Li C, Yao G, Zheng S. (2016), In situ generated g-C3N4/TiO2 hybrid 130 over diatomite supports for enhanced photodegradation of dye pollutants. Mater. Des. 94:403–9 [167]. Tahir M, Cao C, Mahmood N, Butt FK, Mahmood A, et al. (2014), Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Appl. Mater. Interfaces. 6(2):1258–65 [168]. Takai O, Lee KH, Ohta R, Saito N. (2002), Carbon nitrides. Seimitsu Kogaku Kaishi/Journal Japan Soc. Precis. Eng. 68(12):1526–29 [169]. Tatebe C, Zhong X, Ohtsuki T, Kubota H, Sato K, Akiyama H. (2014), A simple and rapid chromatographic method to determine unauthorized basic colorants (Rhodamine B, Auramine O, and Pararosaniline) in processed foods. Food Sci. Nutr. 2(5):547–56 [170]. Teter DM, Hemley RJ. (1996), Low-compressibility carbon nitrides. Science (80-. ). 271(5245):53–55 [171]. Thanh HTM, Tu NTT, Hung NP, Tuyen TN, Mau TX, Khieu DQ. (2019), Magnetic iron oxide modified MIL-101 composite as an efficient visible- light-driven photocatalyst for methylene blue degradation. J. Porous Mater. 26(6):1699–1712 [172]. Thomas , ischer , Goettmann , ntonietti M, Müller -O, et al. (2008), Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18(41):4893–4908 [173]. Tian W, Shen Q, Li N, Zhou J. (2016), Efficient degradation of methylene blue over boron-doped g-C3N4/Zn0.8Cd0.2S photocatalysts under simulated solar irradiation. RSC Adv. 6(30):25568–76 [174]. Tian Y, Zhao Y, Chen Z, Zhang G, Weng L, Zhao D. (2007), Design and generation of extended zeolitic metal–organic frameworks (ZMOFs): synthesis and crystal structures of zinc (II) imidazolate polymers with zeolitic topologies. Chem. Eur. J. 13(15):4146–54 [175]. Tonda S, Kumar S, Kandula S, Shanker V. (2014), Fe-doped and-mediated 131 graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. J. Mater. Chem. A. 2(19):6772–80 [176]. Tong Z, Yang D, Shi J, Nan Y, Sun Y, Jiang Z. (2015), Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance. ACS Appl. Mater. Interfaces. 7(46):25693–701 [177]. Tong Z, Yang D, Zhao X, Shi J, Ding F, et al. (2018), Bio-inspired synthesis of three-dimensional porous g-C3N4@ carbon microflowers with enhanced oxygen evolution reactivity. Chem. Eng. J. 337:312–21 [178]. Tran UPN, Le KKA, Phan NTS. (2011), Expanding applications of metal− organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. Acs Catal. 1(2):120–27 [179]. Tu NTT, Sy PC, Minh TT, Thanh HTM, Thien TV, et al. (2019), Synthesis of (Zn/Co)-based zeolite imidazole frameworks and their applications in visible light-driven photocatalytic degradation of congo red. J. Incl. Phenom. Macrocycl. Chem. 95(1–2):99–110 [180]. Tung J, Huang W, Yang J, Chen G, Fan C, et al. (2017), Auramine O, an incense smoke ingredient, promotes lung cancer malignancy. Environ. Toxicol. 32(11):2379–91 [181]. Tuyen LTT, Quang DA, Tam Toan TT, Tung TQ, Hoa TT, et al. (2018), Synthesis of CeO2/TiO2 nanotubes and heterogeneous photocatalytic degradation of methylene blue. J. Environ. Chem. Eng. 6(5):5999–6011 [182]. Usov PM, McDonnell-Worth C, Zhou F, MacFarlane DR, D’ lessandro DM. (2015), The electrochemical transformation of the zeolitic imidazolate framework ZIF-67 in aqueous electrolytes. Electrochim. Acta. 153:433–38 [183]. Wang C-C, Ying JY. (1999), Sol− gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 11(11):3113–20 [184]. Wang C, Yang F, Sheng L, Yu J, Yao K, et al. (2016), Zinc-substituted ZIF- 67 nanocrystals and polycrystalline membranes for propylene/propane 132 separation. Chem. Commun. 52(85):12578–81 [185]. Wang J. (2006), Analytical electrochemistry, 3rd edition, Wiley. Vol. 38. 5538- 90 [186]. Wang L, Zhu H, Shi Y, Ge Y, Feng X, et al. (2018), Novel catalytic micromotor of porous zeolitic imidazolate framework-67 for precise drug delivery. Nanoscale. 10(24):11384–91 [187]. Wang R, Yan T, Han L, Chen G, Li H, et al. (2018), Tuning the dimensions and structures of nitrogen-doped carbon nanomaterials derived from sacrificial g-C3N4/metal-organic frameworks for enhanced electrocatalytic oxygen reduction. J. Mater. Chem. A. 6(14):5752–61 [188]. Wang W, Fang J, Shao S, Lai M, Lu C. (2017), Compact and uniform TiO2@ g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. Appl. Catal. B Environ. 217:57–64 [189]. Wang X, Blechert S, Antonietti M. (2012), Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal. 2(8):1596–1606 [190]. Wang X, Li Y, Wang C, Gan T, Yan J, Wang J. (2016), Ultrathin Na2Ti9O19 heterostructural nanosheets modified with TiO2 nanoparticles for enhanced photocatalysis. Mater. Lett. 178:140–43 [191]. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, et al. (2009), A metal- free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1):76–80 [192]. Wang Y, Zhang J, Wang X, Antonietti M, Li H. (2010), Boron‐and fluorine‐ containing mesoporous carbon nitride polymers: metal‐free catalysts for cyclohexane oxidation. Angew. Chemie Int. Ed. 49(19):3356–59 [193]. Wang ZJ, Garth K, Ghasimi S, Landfester K, Zhang KAI. (2015), Conjugated microporous poly (benzochalcogenadiazole) s for photocatalytic oxidative coupling of amines under visible light. ChemSusChem. 8(20):3459–64 [194]. Wei F, Jiang J, Yu G, Sui Y. (2015), A novel cobalt–carbon composite for the 133 electrochemical supercapacitor electrode material. Mater. Lett. 146:20–22 [195]. Wei K, Li K, Yan L, Luo S, Guo H, et al. (2018), One-step fabrication of g- C3N4 nanosheets/TiO2 hollow microspheres heterojunctions with atomic level hybridization and their application in the multi-component synergistic photocatalytic systems. Appl. Catal. B Environ. 222:88–98 [196]. Wei W, Chen W, Ivey DG. (2008), Rock salt-spinel structural transformation in anodically electrodeposited Mn-Co-O nanocrystals. Chem. Mater. 20(5):1941–47 [197]. Wuttke S, Zimpel A, Bein T, Braig S, Stoiber K, et al. (2017), Validating metal‐organic framework nanoparticles for their nanosafety in diverse biomedical applications. Adv. Healthc. Mater. 6(2):1600818 [198]. Xiang Q, Yu J, Jaroniec M. (2011), Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys. Chem. C. 115(15):7355–63 [199]. Xu L, Xia J, Xu H, Yin S, Wang K, et al. (2014), Reactable ionic liquid assisted solvothermal synthesis of graphite-like C3N4 hybridized α-Fe2O3 hollow microspheres with enhanced supercapacitive performance. J. Power Sources. 245:866–74 [200]. Xu Q, Zhu B, Jiang C, Cheng B, Yu J. (2018), Constructing 2D/2D Fe2O3/g- C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance. Sol. RRL. 2(3):1–10 [201].Xu Y, Schoonen MAA. (2000), The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85(3– 4):543–56 [202]. Yamashita T, Hayes P. (2008), Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials. Appl. Surf. Sci. 254(8):2441–49 [203]. Yan H, Yang H. (2011), TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J. Alloys Compd. 509(4):26–29 134 [204]. Yan J, Huang X, Liu S, Yang J, Yuan Y, et al. (2016), A simple and sensitive method for Auramine O detection based on the binding interaction with bovin serum albumin. Anal. Sci. 32(8):819–24 [205]. Yan SC, Li ZS, Zou ZG. (2009), Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir. 25(17):10397–401 [206]. Yan T, Chen H, Wang X, Jiang F. (2013), Adsorption of perfluorooctane sulfonate (PFOS) on mesoporous carbon nitride. RSC Adv. 3(44):22480–89 [207]. Yan Z, Liu L, Shu H, Yang X, Wang H, et al. (2015), A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries. J. Power Sources. 274:8–14 [208]. Yang K, Yu QB, Li HQ, Ren XX, Pan J, et al. (2021), Preparation of α- Fe2O3/g-C3N4 with Co-Fe bonds as a electrochemical sensor for glucose detection. J.Nano Research .67:43-54 [209]. Yang L, Yu L, Sun M, Gao C. (2014), Zeolitic imidazole framework-67 as an efficient heterogeneous catalyst for the synthesis of ethyl methyl carbonate. Catal. Commun. 54:86–90 [210]. Yoshimura M, Byrappa K. (2008), Hydrothermal processing of materials: past, present and future. J. Mater. Sci. 43(7):2085–210 [211]. Yu H, Lv R, Wu H, Qian C, Wang S, Chen M. (2020), Fabrication of ternary hierarchical nanosheets rGO/PANI/Fe2O3 as electrode material with high capacitance performance. J. Electrochem. Soc. 167(4):40501 [212]. Yu J, Wang S, Low J, Xiao W. (2013), Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 15(39):16883–90 [213]. Yuan, B., Long, Y., Wu, L., Liang, K., Wen, H., Luo, S., Huo, H., Yang, H. and Ma J. (2016), TiO2@ h-CeO2: a composite yolk-shell microsphere with enhanced photodegradation activity. Catal. Sci. Technol. 6:6396–6405 [214]. Zeng B, Zhang L, Wan X, Song H, Lv Y. (2015), Fabrication of α-Fe2O3/g- 135 C3N4 composites for cataluminescence sensing of H2S. Sensors Actuators, B Chem. 211:370–76 [215]. Zhang B, He X, Ma X, Chen Q, Liu G, et al. (2020), In situ synthesis of ultrafine TiO2 nanoparticles modified g-C3N4 heterojunction photocatalyst with enhanced photocatalytic activity. Sep. Purif. Technol. 247:1-33 [216]. Zhang C, Huang K. (2017), MOF-derived iron as an active energy storage material for intermediate-temperature solid oxide iron–air redox batteries. Chem. Commun. 53(76):10564–67 [217]. Zhang F, Yang H, Xie X, Li L, Zhang L, et al. (2009), Controlled synthesis and gas-sensing properties of hollow sea urchin-like α-Fe2O3 nanostructures and α-Fe2O3 nanocubes. Sensors Actuators, B Chem. 141(2):381–89 [218]. Zhang H, Li Z, Chen T, Qin B. (2017), Quantitative determination of Auramine O by terahertz spectroscopy with 2DCOS-PLSR model. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 184:335–41 [219]. Zhang J, Chen X, Takanabe K, Maeda K, Domen K, et al. (2010), Synthesis of a carbon nitride structure for visible‐light catalysis by copolymerization. Angew. Chemie Int. Ed. 49(2):441–44 [220]. Zhang J, Yu W, Liu J, Liu B. (2015), Illustration of high-active Ag2CrO4 photocatalyst from the first-principle calculation of electronic structures and carrier effective mass. Appl. Surf. Sci. 358:457–62 [221]. Zhang J, Zhang M, Zhang G, Wang X. (2012), Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis. Acs Catal. 2(6):940–48 [222]. ZHANG J, Song YAN, Lu FU, Fei W, Mengqiong Y, et al. (2011), Photocatalytic degradation of Rhodamine B on anatase, rutile, and brookite TiO2. Chinese J. Catal. 32(6–8):983–91 [223]. Zhang W, Qin H, Liu Z, Du H, Li H, et al. (2020), Quantitative determination of Auramine O in bean curd sheets by dispersive solid phase extraction with dynamic surfaced-enhanced raman spectroscopy. Anal. Lett. 53(8):1282–93 136 [224]. Zhang W, Tan Y, Gao Y, Wu J, Hu J, et al. (2016), Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications. J. Appl. Electrochem. 46(4):441–50 [225]. Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y. (2013), Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135(1):18–21 [226]. Zhang Y-Z, Wang Y, Xie Y-L, Cheng T, Lai W-Y, et al. (2014), Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale. 6(23):14354–59 [227]. Zhang Y, Hou H, Yang X, Chen J, Jing M, et al. (2016), Sodium titanate cuboid as advanced anode material for sodium ion batteries. J. Power Sources. 305:200–208 [228]. Zhang Y, Liu J, Wu G, Chen W. (2012), Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale. 4(17):5300–5303 [229]. Zhao C, Li Q, Xie Y, Zhang L, Xiao X, et al. (2020), Three-dimensional assemblies of carbon nitride tubes as nanoreactors for enhanced photocatalytic hydrogen production. J. Mater. Chem. A. 8(1):305–12 [230]. Zhao S, Chen S, Yu H, Quan X. (2012), g-C3N4/TiO2 hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation. Sep. Purif. Technol. 99:50–54 [231]. Zhao X, Johnston C, Grant PS. (2009), A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode. J. Mater. Chem. 19(46):8755–60 [232]. Zhou J, Zhang M, Zhu Y. (2015), Photocatalytic enhancement of hybrid C3N4/TiO2 prepared via ball milling method. Phys. Chem. Chem. Phys. 17(5):3647–52 137 [233]. Zhou L, Wang L, Zhang J, Lei J, Liu Y. (2017), The preparation, and applications of gC3N4/TiO2 heterojunction catalysts—a review. Res. Chem. Intermed. 43(4):2081–2101 [234]. Zhou L, Xu Y, Yu W, Guo X, Yu S, et al. (2016), Ultrathin two-dimensional graphitic carbon nitride as a solution-processed cathode interfacial layer for inverted polymer solar cells. J. Mater. Chem. A. 4(21):8000–8004 [235]. Zhu B, Xia P, Ho W, Yu J. (2015), Isoelectric point and adsorption activity of porous g-C3N4. Appl. Surf. Sci. 344:188–95 [236]. Zhu J-H, Li M-M, Liu S-P, Liu Z-F, Li Y-F, Hu X-L. (2015), Fluorescent carbon dots for Auramine O determination and logic gate operation. Sensors Actuators B Chem. 219:261–67 [237]. Zhu J, Xiao P, Li H, Carabineiro SAC. (2014), Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces. 6(19):16449–65

Các file đính kèm theo tài liệu này:

  • pdfluan_an_tong_hop_vat_lieu_composite_tren_co_so_g_cn_ung_dung.pdf
  • pdf1-BIA-luan an-HOA.pdf
  • pdf2.1-tom tat-tieng Viet-DANGTHINGOCHOA.pdf
  • pdf2.2-tom tat-tieng Anh-DANGTHINGOCHOA.pdf
  • pdf3.1.Dong-gop-moi-tieng-Viet-DANGTHINGOCHOA.pdf
  • pdf3.2.Dong-gop-moi-tieng-Anh-DANGTHINGOCHOA.pdf
  • pdf4.1-Trich yeu luan an-tieng Viet-DANGTHINGOCHOA.pdf
  • pdf4.2-Trich yeu luan an-tieng Anh-DANGTHINGOCHOA.pdf
  • pdfNCS - Dang Thi Ngoc Hoa - DHH - Quyet dinh Hoi dong.pdf