Khả năng tái sử dụng TiO2/g-C3N4
Việc tái sử dụng hiệu quả chất xúc tác sau phản ứng quang hóa được xem là
yêu cầu quan trọng cùng với hoạt tính xúc tác cao. Chất xúc tác đã qua sử dụng
được tách ra bằng cách nung trong không khí ở 500 oC trong 3 giờ trước khi sử
dụng lại. Hình 3.36 cho thấy sự thay đổi của hiệu suất phân hủy MB sau ba lần tái
sử dụng. Sau mỗi lần sử dụng, hiệu suất giảm khoảng 6% so với lần sử dụng trước.
Giản đồ XRD của chất xúc tác là không thay đổi, cho thấy chất xúc tác hiện tại là
ổn định và có triển vọng trong xử lý nước thải phẩm màu.
Hoạt tính quang xúc tác phân hủy một số chất màu trên TiO2/g-C3N4
Để khẳng định khả năng làm mất màu quang hóa dưới bức xạ khả kiến của
vật liệu TiO2/g-C3N4, chúng tôi cũng tiến hành thêm các thí nghiệm khảo sát với ba
chất màu hữu cơ có cấu trúc hóa học khác so với MB là Malachite Green (MG),
Methyl Blue (MyB) và Methyl Red (MR) (Hình .37). Việc đánh giá sự phân hủy
chất màu dựa vào sự thay đổi cường độ peak hấp thụ chính của MG, MyB và MR ở
(MG) = 617 nm, (MyB) = 6 7 nm và (MR) = 521 nm. Kết quả khảo
sát (Hình .38) cho thấy vật liệu TiO2/g-C3N4 thể hiện khả năng xúc tác hiệu quả
trong việc phân hủy các chất màu hữu cơ khác nhau. Hiệu suất khử màu quang hóa
các chất màu MG (chất màu cation) sau 8 phút chiếu sáng là 1 %, MyB (chất
màu anion) sau chiếu sáng 1 phút là 7,8 % và MR (chất màu trung hòa) sau 120
phút chiếu sáng là 6 , %.
154 trang |
Chia sẻ: huydang97 | Ngày: 27/12/2022 | Lượt xem: 401 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Tổng hợp vật liệu Composite trên cơ sở g-C₃N₄, ứng dụng trong điện hóa và quang xúc tác, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
tính xúc tác tuyệt
vời đối với phân hủy Methylene Blue trong vùng ánh sáng khả kiến. goài ra,
TiO2/g-C3N4 cũng thể hiện sự phân hủy chất xúc tác quang hiệu quả đối với các
thuốc nhuộm có bản chất khác nhau như Malachite Green(chất màu cation), Methyl
Blue (chất màu anion) và Methyl Red (chất màu trung hòa). Do tính chất thân thiện
với môi trường và khả năng tái sinh khá cao, vật liệu TiO2/g-C3N4 có tiềm năng
trong việc xử lý nước thải chứa các chất màu hữu cơ khó phân hu .
2. Kiến nghị
Từ các kết quả nghiên cứu của luận án, chúng tôi rút ra một số kiến nghị như
sau:
- Phát triển vật liệu điện cực biến tính thành các điện cực in để có thể đo trực
tiếp tại hiện trường.
- Phát triển vật liệu xúc tác quang trong phân tích các hợp chất hữu cơ khó
phân hủy.
111
DANH MỤC CÁC CÔNG TRÌNH CÔNG B KẾT QUẢ NGHIÊN CỨU
C A LUẬN ÁN
I. Tạp chí trong nước
1. Đặng Thị Ngọc Hoa, guyễn Thị Thanh Tú (2020), ghiên cứu tổng hợp vật
liệu TiO2/g-C3N4 làm xúc tác quang hóa phân hủy xanh methylen trong vùng ánh
sáng khả kiến, Tạp chí úc tác và hấp phụ iệt Nam, tập , số , tr.21-26,
20/9/2020.
2. Đặng Thị Ngọc Hoa, Nguyễn Thị Thanh Tú, Lê Thị Kim Dung (2021), ghiên
cứu tổng hợp vật liệu composite -67/Fe2O3/g-C3N4 và ứng dụng, Tạp chí hoa
học và công nghệ, Trường ại học Khoa học, ại học Huế, tập 18, số 2, 2 21.
3. Đặng Thị Ngọc Hoa, guyễn Đức Hồng (2022), Tổng hợp phức titanium
peroxyde và khảo sát hoạt tính xúc tác của hệ TiO2/g-C3N4, Tạp chí hoa học ại
học ế: hoa học tự nhiên, số 131-1A-2 22 (đã nhận đăng).
II. Tạp chí quốc tế (ISI)
4. Dang Thi Ngoc Hoa, Tran Thanh Tam Toan, Tran Xuan Mau, Nguyen Thi Vuong
Hoan, Tran Thi Nhat Tram, Tran Duc Manh, Vo Thang Nguyen, Vu Thi Duyen, Pham
Le Minh Thong
and Dinh Quang Khieu (2020), Voltammetric determination of
auramine o with ZIF-67/Fe2O3/g-C3N4-modified electrode, Journal of Materials
Science: Materials in Electronics, 26/9/2020 (SCIE, Q2, IF = 2.210).
5. Dang Thi Ngoc Hoa, Nguyen Thi Thanh Tu, Le Van Thanh Son, Le Vu Truong
Son, Tran Thanh Tam Toan, Pham Le Minh Thong, Dao Ngoc Nhiem, Pham Khac
Lieu and Dinh Quang Khieu (2021), Electrochemical determination of diclofenac
by using ZIF-67/g-C3N4 modified electrode, Adsorption Science & Technology,
Volume 2021 (SCIE, Q1, IF = 4.232).
112
TÀI LIỆU THAM KHẢO
Tiếng Việt
[1]. Lâm Thị Hằng, Lê Thị Mai Oanh, Mạc Thị Thu, Đào Việt Thắng, Nguyễn
Mạnh Hùng, Đỗ Danh Bích (2 18), Chế tạo và nghiên cứu tính chất vật lí,
khả năng quang xúc tác của vật liệu tổ hợp g-C3N4/TiO2. Tạp chí Nghiên cứu
&CN n sự. CBES2(04–2018):136–42.
[2]. Đinh Quang Khiếu (2015), Một số phư ng pháp ph n tích hóa lý, hà xuất
bản Đại học Huế.
[3]. Nguyễn Văn Kim (2 16), ghiên cứu tổng hợp, đặc trưng và khả năng quang
xúc tác của composit g-C3N4 với GaN– nO và Ta2O5. Luận án tiến sĩ hóa
học, p. 41.
[4]. Hồ Viết Quý (2 ), h n tích lý hóa, hà xuất bản Giáo dục, Hà ội.
[5]. Nguyễn Đình Triệu (1999), Các phư ng pháp vật lý ứng dụng trong hóa học,
hà xuất bản Đại học Quốc gia Hà ội.
[6]. Nguyễn Thị Thanh Tú (2 2 ), Tổng hợp, biến tính và ứng dụng vật liệu
khung hữu cơ - kim loại ZIF-67. Luận án tiến sĩ hóa học, p. 52.
Tiếng Anh
[7]. Adeyeye CM, Li P-K. (1990), Diclofenac sodium. Analytical profiles of drug
substances. Elsevier. 19:123–44.
[8]. Afkhami A, Bahiraei A, Madrakian T. (2016), Gold nanoparticle/multi-walled
carbon nanotube modified glassy carbon electrode as a sensitive
voltammetricsensor for the determination of diclofenac sodium. Mater. Sci.
Eng. C. 59:168–76
[9]. Aliahmad M, Nasiri Moghaddam N. (2013), Synthesis of maghemite (γ-
Fe2O3) nanoparticles by thermal-decomposition of magnetite (Fe3O4)
nanoparticles. Mater. Sci. Pol. 31(2):264–68
113
[10]. Alquadeib BT. (2019), Development and validation of a new HPLC analytical
method for the determination of diclofenac in tablets. Saudi Pharm. J.
27(1):66–70
[11]. Amalraj A, Pius A. (2014), Photocatalytic degradation of alizarin red S and
bismarck brown R using TiO2 photocatalyst. J.Chem. Appl. Biochem.1(1):1–7
[12]. Anjum M, Kumar R, Abdelbasir SM, Barakat MA. (2018), Carbon
nitride/titania nanotubes composite for photocatalytic degradation of organics
in water and sludge: pre-treatment of sludge, anaerobic digestion and biogas
production. J. Environ. Manage. 223:495–502
[13]. Arancibia JA, Boldrini MA, Escandar GM. (2000), Spectrofluorimetric
determination of diclofenac in the presence of α-cyclodextrin. Talanta.
52(2):261–68
[14]. Arancibia JA, Escandar GM. (1999), Complexation study of diclofenac with
β-cyclodextrin and spectrofluorimetric determination. Analyst. 124(12):1833–
38
[15]. Arcelloni C, Lanzi R, Pedercini S, Molteni G, Fermo I, et al. (2001), High-
performance liquid chromatographic determination of diclofenac in human
plasma after solid-phase extraction. J. Chromatogr. B Biomed. Sci. Appl.
763(1–2):195–200
[16]. rmstrong R, rmstrong G, Canales , García R, Bruce PG. (2 ),
Lithium‐ion intercalation into TiO2‐B nanowires. Adv. Mater. 17(7):862–65
[17]. Asfaram A, Ghaedi M. (2016), Simultaneous determination of cationic dyes
in water samples with dispersive liquid–liquid microextraction followed by
spectrophotometry: experimental design methodology. New J. Chem.
40(5):4793–4802
[18]. Asfaram A, Ghaedi M, Goudarzi A, Soylak M. (2015), Comparison between
dispersive liquid–liquid microextraction and ultrasound-assisted
nanoparticles-dispersive solid-phase microextraction combined with
microvolume spectrophotometry method for the determination of auramine-o
114
in water samples. RSC Adv. 5(49):39084–96
[19]. Atchudan R, Edison TNJI, Perumal S, Karthikeyan D, Lee YR. (2016), Facile
synthesis of zinc oxide nanoparticles decorated graphene oxide composite via
simple solvothermal route and their photocatalytic activity on methylene blue
degradation. J. Photochem. Photobiol. B Biol. 162:500–510
[20]. Aulbur WG, önsson L, Wilkins JW. (2000), Quasiparticle calculations in
solids. Solid state Phys. (New York. 1955). 54:1–218
[21]. Awadallah-F A, Hillman F, Al-Muhtaseb SA, Jeong H-K. (2019), On the
nanogate-opening pressures of copper-doped zeolitic imidazolate framework
ZIF-8 for the adsorption of propane, propylene, isobutane, and n-butane. J.
Mater. Sci. 54(7):5513–27
[22]. Bai X, Wang L, Wang Y, Yao W, Zhu Y. (2014), Enhanced oxidation ability
of g-C3N4 photocatalyst via C60 modification. Appl. Catal. B Environ.
152:262–70
[23]. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, et al. (2008), High-
throughput synthesis of zeolitic imidazolate frameworks and application to
CO2 capture. Science (80-. ). 319(5865):939–43
[24]. Bard AJ, Faulkner LR. (2001), Fundamentals and applications:
electrochemical methods. John Wiley & Sons, Inc. 2(482):580–632
[25]. Barreca D, Massignan C, Daolio S, Fabrizio M, Piccirillo C, et al. (2001),
Composition and microstructure of cobalt oxide thin films obtained from a
novel cobalt (II) precursor by chemical vapor deposition. Chem. Mater.
13(2):588–93
[26]. Bi G, Wen J, Li X, Liu W, Xie J, et al. (2016), Efficient visible-light
photocatalytic H2 evolution over metal-free g-C3N4 Co-modified with robust
acetylene black and Ni(OH)2 as dual co-catalysts. RSC Adv. 6(37):31497–506
[27]. Bojdys MJ. (2009), On new allotropes and nanostructures of carbon nitrides.,
Doctoral Thesis, Universität otsdam. p. 1–117
115
[28]. Bojdys M , Müller , Antonietti M, Thomas A. (2008), Ionothermal synthesis
of crystalline, condensed, graphitic carbon nitride. Chem. Eur. J.
14(27):8177–82
[29]. Brinker CJ, Scherer GW. (2013), Sol-gel science: the physics and chemistry
of sol-gel processing. Academic press, Inc. 21-91
[30]. Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J. (2009), Zeolitic
imidazolate framework membrane with molecular sieving properties by
microwave-assisted solvothermal synthesis. J. Am. Chem. Soc.
131(44):16000–1
[31]. Cancer IA for R on. (1978), IARC monographs on the evaluation of the
carcinogenic risk of chemicals to man. vol. 16. some aromatic amines and
related nitro compounds-hair dyes, colouring agents and miscellaneous
industrial chemicals. Environmental Research. vol. 17, issue 3, p. 480
[32]. Cao S, Low J, Yu J, Jaroniec M. (2015), Polymeric photocatalysts based on
graphitic carbon nitride. Adv. Mater. 27(13):2150–76
[33]. Cao X, Tan C, Sindoro M, Zhang H. (2017), Hybrid micro-/nano-structures
derived from metal–organic frameworks: preparation and applications in
energy storage and conversion. Chem. Soc. Rev. 46(10):2660–77
[34]. Castner DG, Watson PR, Chan IY. (1989), X-ray absorption spectroscopy, X-
ray photoelectron spectroscopy, and analytical electron microscopy studies of
cobalt catalysts. 1. characterization of calcined catalysts. J. Phys. Chem.
93(8):3188–94
[35]. Chau TTL, Le DQT, Le HT, Nguyen CD, Nguyen LV, Nguyen TD. (2017),
Chitin liquid-crystal-templated oxide semiconductor aerogels. ACS Appl.
Mater. Interfaces. 9(36):30812–20
[36]. Chen X, Mao SS. (2007), Titanium dioxide nanomaterials: synthesis,
properties, modifications, and applications. Chem.
Rev.2007,107(7):28 1−2
[37]. Chen Y, Li J, Hong Z, Shen B, Lin B, Gao B. (2014), Origin of the enhanced
116
visible-light photocatalytic activity of CNT modified g-C3N4 for H2
production. Phys. Chem. Chem. Phys. 16(17):8106–13
[38]. Cheon YE, Park J, Suh MP. (2009), Selective gas adsorption in a magnesium-
based metal–organic framework. Chem. Commun., pp. 5436–38
[39]. Chitravathi S, Munichandraiah N. (2016), Voltammetric determination of
paracetamol, tramadol and caffeine using poly (Nile blue) modified glassy
carbon electrode. J. Electroanal. Chem. 764:93–103
[40]. Cleuvers M. (2004), Mixture toxicity of the anti-inflammatory drugs
diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol.
Environ. Saf. 59(3):309–15
[41]. Dixit S, Khanna SK, Das M. (2011), A simple method for simultaneous
determination of basic dyes encountered in food preparations by reversed-
phase HPLC. J. AOAC Int. 94(6):1874–81
[42]. Dong F, Wang Z, Sun Y, Ho W-K, Zhang H. (2013), Engineering the
nanoarchitecture and texture of polymeric carbon nitride semiconductor for
enhanced visible light photocatalytic activity. J. Colloid Interface Sci.
401:70–79
[43]. Du X-D, Wang C-C, Liu J-G, Zhao X-D, Zhong J, et al. (2017), Extensive
and selective adsorption of ZIF-67 towards organic dyes: performance and
mechanism. J. Colloid Interface Sci. 506:437–41
[44]. Du Y, Xu Y, Zhou W, Yu Y, Ma X, et al. (2021), MOF-derived zinc
manganese oxide nanosheets with valence-controllable composition for high-
performance li storage. Green Energy Environ. 6(5):703–14
[45]. Duan C, Yu Y, Hu H. (2020), Recent progress on synthesis of ZIF-67-based
materials and their application to heterogeneous catalysis. Green Energy
Environ.
[46]. Dyjak S, Kiciński W, Huczko A. (2015), Thermite-driven melamine
condensation to CxNyHz graphitic ternary polymers: towards an instant,
large-scale synthesis of g-C3N4. J. Mater. Chem. A. 3(18):9621–31
117
[47]. Ensafi AA, Izadi M, Karimi-Maleh H. (2013), Sensitive voltammetric
determination of diclofenac using room-temperature ionic liquid-modified
carbon nanotubes paste electrode. Ionics (Kiel). 19(1):137–44
[48]. Eteya MM, Rounaghi GH, Deiminiat B. (2019), Fabrication of a new
electrochemical sensor based on AuPt bimetallic nanoparticles decorated
multi-walled carbon nanotubes for determination of diclofenac. Microchem.
J. 144:254–60
[49]. Farrusseng D, Aguado S, Pinel C. (2009), Metal-organic frameworks:
opportunities for catalysis. Angew. Chemie Int. Ed. 48(41):7502–13
[50]. érey G. (2 8), Hybrid porous solids: past, present, future. Chem. Soc. Rev.
37(1):191–214
[51]. Firoozi M, Rafiee Z, Dashtian K. (2020), New MOF/COF hybrid as a robust
adsorbent for simultaneous removal of Auramine O and Rhodamine B dyes.
ACS omega. 5(16):9420–28
[52]. Franklin EC. (1922), The ammono carbonic acids. J. Am. Chem. Soc.
44(3):486–509
[53]. Fu T, Hu P, Wang T, Dong Z, Xue N, et al. (2015), High selectivity to p-
chloroaniline in the hydrogenation of p-chloronitrobenzene on Ni modified
carbon nitride catalyst. Chinese J. Catal. 36(11):2030–35
[54]. Galvan J, Borsoi MX, Julek L, Bordin D, Cabral LPA, et al. (2021),
Methylene blue for the treatment of health conditions: a scoping review.
Brazilian Arch. Biol. Technol. 64
[55]. Gao J, Zhou Y, Li Z, Yan S, Wang N, Zou Z. (2012), High-yield synthesis of
millimetre-long, semiconducting carbon nitride nanotubes with intense
photoluminescence emission and reproducible photoconductivity. Nanoscale.
4(12):3687–92
[56]. Gao S, Han Y, Fan M, Li Z, Ge K, et al. (2020), Metal-organic framework-
based nanocatalytic medicine for chemodynamic therapy. Sci. China Mater.
63(12):2429–34
118
[57]. Giannakopoulou T, Papailias I, Todorova N, Boukos N, Liu Y, et al. (2017),
Tailoring the energy band gap and edges’ potentials of g-C3N4/TiO2
composite photocatalysts for nox removal. Chem. Eng. J. 310:571–80
[58]. Goettmann F, Fischer A, Antonietti M, Thomas A. (2006), Chemical
synthesis of mesoporous carbon nitrides using hard templates and their use as
a metal‐free catalyst for friedel–crafts reaction of benzene. Angew. Chemie
Int. Ed. 45(27):4467–71
[59]. Goyal RN, Chatterjee S, Agrawal B. (2010), Electrochemical investigations
of diclofenac at edge plane pyrolytic graphite electrode and its determination
in human urine. Sensors Actuators B Chem. 145(2):743–48
[60]. Graat PCJ, Somers MAJ. (1996), Simultaneous determination of composition
and thickness of thin iron-oxide films from XPS Fe2p spectra. Appl. Surf. Sci.
100:36–40
[61]. Gureev AP, Shaforostova EA, Popov VN, Starkov AA. (2019), Methylene
blue does not bypass complex III antimycin block in mouse brain
mitochondria. FEBS Lett. 593(5):499–503
[62]. Habib HA, Sanchiz J, Janiak C. (2009), Magnetic and luminescence
properties of Cu (II), Cu (II)4O4 core, and Cd (II) mixed-ligand metal–organic
frameworks constructed from 1, 2-bis (1, 2, 4-triazol-4-yl) ethane and
benzene-1, 3, 5-tricarboxylate. Inorganica Chim. Acta. 362(7):2452–60
[63]. Han JW, Hill CL. (2007), A coordination network that catalyzes O2-based
oxidations. J. Am. Chem. Soc. 129(49):15094–95
[64]. Hao R, Wang G, Jiang C, Tang H, Xu Q. (2017), In situ hydrothermal
synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific
surface area for rhodamine b degradation. Appl. Surf. Sci. 411:400–410
[65]. Hao R, Wang G, Tang H, Sun L, Xu C, Han D. (2016), Template-free
preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts
with enhanced visible light photocatalytic activity. Appl. Catal. B Environ.
187:47–58
119
[66]. Haque E, Jun JW, Talapaneni SN, Vinu A, Jhung SH. (2010), Superior
adsorption capacity of mesoporous carbon nitride with basic CN framework
for phenol. J. Mater. Chem. 20(48):10801–3
[67]. Hasegawa G, Tanaka M, Vequizo JJM, Yamakata A, Hojo H, et al. (2019),
Sodium titanium oxide bronze nanoparticles synthesized via concurrent
reduction and Na
+
-doping into TiO2 (b). Nanoscale. 11(3):1442–50
[68]. Hayashi H, Cote P, urukawa H, O’Keeffe M, Yaghi OM. (2 7), eolite a
imidazolate frameworks. Nat. Mater. 6(7):501–6
[69]. He K, Xie J, Liu Z-Q, Li N, Chen X, et al. (2018), Multi-functional Ni3C
cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution
under visible light. J. Mater. Chem. A. 6(27):13110–22
[70]. Heyrovský , Kůta . (2 1 ), Principles of polarography. Czechoslovak
Academy of Sciences. 17-523
[71]. Hillman F, Zimmerman JM, Paek S-M, Hamid MRA, Lim WT, Jeong H-K.
(2017), Rapid microwave-assisted synthesis of hybrid zeolitic–imidazolate
frameworks with mixed metals and mixed linkers. J. Mater. Chem. A.
5(13):6090–99
[72]. Hoan NTV, Minh NN, Nhi TTK, Van Thang N, Tuan VA, et al. (2020),
TiO2/diazonium/graphene oxide composites: synthesis and visible-light-
driven photocatalytic degradation of methylene blue. J. Nanomater. 2020.
https://doi.org/10.1155/2020/4350125
[73]. Hosseini H, Ahmar H, Dehghani A, Bagheri A, Tadjarodi A, Fakhari AR.
(2013), A novel electrochemical sensor based on metal-organic framework
for electro-catalytic oxidation of L-cysteine. Biosens. Bioelectron. 42:426–29
[74]. Hou Y, Li J, Wen Z, Cui S, Yuan C, Chen J. (2014), N-doped
graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust
anode materials for lithium-ion batteries. Nano Energy. 8:157–64
[75]. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J-M. (2001),
Photocatalytic degradation pathway of methylene blue in water. Appl. Catal.
120
B Environ. 31(2):145–57
[76]. Hu K, Li R, Ye C, Wang A, Wei W, et al. (2020), Facile synthesis of Z-
scheme composite of TiO2 nanorod/g-C3N4 nanosheet efficient for
photocatalytic degradation of ciprofloxacin. J. Clean. Prod. 253:120055
[77]. Hu M, Xing Z, Cao Y, Li Z, Yan X, et al. (2018), Ti
3+
self-doped mesoporous
black TiO2/SiO2/g-C3N4 sheets heterojunctions as remarkable visible-
lightdriven photocatalysts. Appl. Catal. B Environ. 226:499–508
[78]. Hu S, Jin R, Lu G, Liu D, Gui J. (2014), The properties and photocatalytic
performance comparison of Fe
3+
-doped g-C3N4 and Fe2O3/g-C3N4 composite
catalysts. Rsc Adv. 4(47):24863–69
[79]. Hu S, Ma L, Li F, Fan Z, Wang Q, et al. (2015), Construction of g-C3N4/Sg-
C3N4 metal-free isotype heterojunctions with an enhanced charge driving
force and their photocatalytic performance under anoxic conditions. RSC Adv.
5(110):90750–56
[80]. Hu Y, Zhou L, Liu H, Guo X. (2014), Visible light photocatalytic degradation
of methylene blue over N-doped TiO2. Key Eng. Mater. 609–610:141–46
[81]. Ilie AG, Scarisoareanu M, Morjan I, Dutu E, Badiceanu M, Mihailescu I.
(2017), Principal component analysis of raman spectra for TiO2 nanoparticle
characterization. Appl. Surf. Sci. 417:93–103
[82]. Jian Q, Jin Z, Wang H, Zhang Y, Wang G. (2019), Photoelectron directional
transfer over a g-C3N4/CdS heterojunction modulated with WP for efficient
photocatalytic hydrogen evolution. Dalt. Trans. 48(13):4341–52
[83]. Jiang H-L, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. (2009), Au@ ZIF-8:
co oxidation over gold nanoparticles deposited to metal− organic framework.
J. Am. Chem. Soc. 131(32):11302–3
[84]. Jiang J, Ou-yang L, Zhu L, Zheng A, Zou J, et al. (2014), Dependence of
electronic structure of g-C3N4 on the layer number of its nanosheets: a study
by raman spectroscopy coupled with first-principles calculations. Carbon N.
Y. 80:213–21
121
[85]. Jiao Y, Han D, Lu Y, Rong Y, Fang L, et al. (2017), Characterization of pine-
sawdust pyrolytic char activated by phosphoric acid through microwave
irradiation and adsorption property toward cdnb in batch mode. Desalin.
Water Treat. 77:247–55
[86]. Jin H, Wang J, Yang S, Wu Q, Zhang B. (2021), ZIF-67-derived micron-sized
cobalt-doped porous carbon-based microwave absorbers with g-C3N4 as
template. Ceram. Int. 47(8):11506–13
[87]. Jin W, Zhang J. (2000), Determination of diclofenac sodium by capillary zone
electrophoresis with electrochemical detection. J. Chromatogr. A.
868(1):101–7
[88]. Jin Z, Murakami N, Tsubota T, Ohno T. (2014), Complete oxidation of
acetaldehyde over a composite photocatalyst of graphitic carbon nitride and
tungsten (VI) oxide under visible-light irradiation. Appl. Catal. B Environ.
150:479–85
[89]. Jiokeng SLZ, Tonle IK, Walcarius A. (2019), Amino-attapulgite/mesoporous
silica composite films generated by electro-assisted self-assembly for the
voltammetric determination of diclofenac. Sensors Actuators B Chem.
287:296–305
[90]. Kakihana M, Kobayashi M, Tomita K, Petrykin V. (2010), Application of
water-soluble titanium complexes as precursors for synthesis of titanium-
containing oxides via aqueous solution processes. Bull. Chem. Soc. Jpn.
83(11):1285–1308
[91]. Khalid NR, Hammad A, Tahir MB, Rafique M, Iqbal T, et al. (2019),
Enhanced photocatalytic activity of al and Fe co-doped ZnO nanorods for
methylene blue degradation. Ceram. Int. 45(17):21430–35
[92]. Khezrianjoo S, Revanasiddappa H. (2012), Langmuir-hinshelwood kinetic
expression for the photocatalytic degradation of metanil yellow aqueous
solutions by zno catalyst. Chem. Sci. J. 2012(2012):85–85
[93]. Kim JR, Santiano B, Kim H, Kan E. (2013), Heterogeneous oxidation of
122
methylene blue with surface-modified iron-amended activated carbon
[94]. Kroke E, Schwarz M. (2004), Novel group 14 nitrides. Coord. Chem. Rev.
248(5–6):493–532
[95]. Kromidas S. (2008), HPLC made to measure: a practical handbook for
optimization. Wiley-VCH Verlag GmbH & Co.KGaA;Weinheim. 3–623 pp.
[96]. Kumar A, Prasad B, Mishra IM. (2008), Adsorptive removal of acrylonitrile
by commercial grade activated carbon: kinetics, equilibrium and
thermodynamics. J. Hazard. Mater. 152(2):589–600
[97]. Laviron Ejj. (1979), General expression of the linear potential sweep
voltammogram in the case of diffusionless electrochemical systems. J.
Electroanal. Chem. Interfacial Electrochem. 101(1):19–28
[98]. Le QTD, Truong VC, Do PA. (2011), The effect of TiO2 nanotubes on the
sintering behavior and properties of PZT ceramics. Adv. Nat. Sci. Nanosci.
Nanotechnol. 2(2):
[99]. Li C. (2007), Electrochemical determination of dipyridamole at a carbon
paste electrode using cetyltrimethyl ammonium bromide as enhancing
element. Colloids Surfaces B Biointerfaces. 55(1):77–83
[100]. Li C, Sun Z, Xue Y, Yao G, Zheng S. (2016), A facile synthesis of g-
C3N4/TiO2 hybrid photocatalysts by sol–gel method and its enhanced
photodegradation towards methylene blue under visible light. Adv. Powder
Technol. 27(2):330–37
[101]. Li G, Nie X, Chen J, Jiang Q, An T, et al. (2015), Enhanced visible-light-
driven photocatalytic inactivation of escherichia coli using g-C3N4/TiO2
hybrid photocatalyst synthesized using a hydrothermal-calcination approach.
Water Res. 86:17–24
[102]. Li J-R, Kuppler RJ, Zhou H-C. (2009), Selective gas adsorption and
separation in metal–organic frameworks. Chem. Soc. Rev. 38(5):1477–1504
[103]. Li J, Ding X-M, Liu D-D, Guo F, Chen Y, et al. (2013), Simultaneous
123
determination of eight illegal dyes in chili products by liquid
chromatography–tandem mass spectrometry. J. Chromatogr. B. 942:46–52
[104]. Li K, Gao S, Wang Q, Xu H, Wang Z, et al. (2015), In-situ-reduced synthesis
of Ti
3+
self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic
performance under led light irradiation. ACS Appl. Mater. Interfaces.
7(17):9023–30
[105]. Li X, Liu C, Wu D, Li J, Huo P, Wang H. (2019), Improved charge transfer
by size-dependent plasmonic au on C3N4 for efficient photocatalytic oxidation
of RhB and CO2 reduction. Chinese J. Catal. 40(6):928–39
[106]. Li Y, Li L, Li C, Chen W, Zeng M. (2012), Carbon nanotube/titania
composites prepared by a micro-emulsion method exhibiting improved
photocatalytic activity. Appl. Catal. A Gen. 427:1–7
[107]. Li Y, Zhou K, He M, Yao J. (2016), Synthesis of ZIF-8 and ZIF-67 using
mixed-base and their dye adsorption. Microporous Mesoporous Mater.
234:287–92
[108]. Liao Y, Que W, Jia Q, He Y, Zhang J, Zhong P. (2012), Controllable
synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-
crystalline rutile nanorods array. J. Mater. Chem. 22(16):7937
[109]. Lin K-YA, Chang H-A. (2015), Ultra-high adsorption capacity of zeolitic
imidazole framework-67 (ZIF-67) for removal of malachite green from water.
Chemosphere. 139(1):624–31
[110]. Lin K-YA, Lee W-D. (2016), Self-assembled magnetic graphene supported
ZIF-67 as a recoverable and efficient adsorbent for benzotriazole. Chem. Eng.
J. 284:1017–27
[111]. Lin Z, Yu B, Huang J. (2020), Cellulose-derived hierarchical g-C3N4/TiO2-
nanotube heterostructured composites with enhanced visible-light
photocatalytic performance. Langmuir. 36(21):5967–78
[112]. Linnemann J, Taudien L, Klose M, Giebeler L. (2017), Electrodeposited films
to MOF-derived electrochemical energy storage electrodes: a concept of
124
simplified additive-free electrode processing for self-standing, ready-to-use
materials. J. Mater. Chem. A. 5(35):18420–28
[113]. Liu DY, Dong JH, Liu FM, Gao XF, Yu Y, et al. (2019), Synthesis and
photocatalytic performance of g-C3N4 composites. J. Ovonic Res. 15(4):239–
46
[114]. Liu Y, Sun K, Jiang J, Zhou W, Shang Y, et al. (2021), Metallurgical
pyrolysis toward Co@ nitrogen-doped carbon composite for lithium storage.
Green Energy Environ. 6(1):91–101
[115]. Liu Y, Yuan X, Wang H, Chen X, Gu S, et al. (2015), Novel visible light-
induced g-C3N4–Sb2S3/Sb4O5Cl2 composite photocatalysts for efficient
degradation of methyl orange. Catal. Commun. 70:17–20
[116]. Long B, Lin J, Wang X. (2014), Thermally-induced desulfurization and
conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for
hydrogen photosynthesis. J. Mater. Chem. A. 2(9):2942–51
[117]. Lotsch B V, Schnick W. (2006), From triazines to heptazines: novel nonmetal
tricyanomelaminates as precursors for graphitic carbon nitride materials.
Chem. Mater. 18(7):1891–1900
[118]. Low Z-X, Yao J, Liu Q, He M, Wang Z, et al. (2014), Crystal transformation
in zeolitic-imidazolate framework. Cryst. Growth Des. 14(12):6589–98
[119]. Lu L, Wang G, Zou M, Wang J, Li J. (2018), Effects of calcining temperature
on formation of hierarchical TiO2/g-C3N4 hybrids as an effective Z-scheme
heterojunction photocatalyst. Appl. Surf. Sci. 441:1012–23
[120]. Lu N, Wang C, Sun B, Gao Z, Su Y. (2017), Fabrication of TiO2-doped single
layer graphitic-C3N4 and its visible-light photocatalytic activity. Sep. Purif.
Technol. 186:226–32
[121]. Luo Z, Yao J. (2017), Raman investigations of atomic/molecular clusters and
aggregates. In Raman Spectroscopy and Applications. InTech
[122]. Madsen KG, Skonberg C, Jurva U, Cornett C, Hansen SH, et al. (2008),
125
Bioactivation of diclofenac in vitro and in vivo: correlation to electrochemical
studies. Chem. Res. Toxicol. 21(5):1107–19
[123]. Mamakhel , Tyrsted C, Bøjesen ED, Hald P, Iversen BB. (2013), Direct
formation of crystalline phase pure rutile TiO2 nanostructures by a facile
hydrothermal method. Cryst. Growth Des. 13(11):4730–34
[124]. Manea F, Ihos M, Remes A, Burtica G, Schoonman J. (2010),
Electrochemical determination of diclofenac sodium in aqueous solution on
Cu‐doped zeolite‐expanded graphite‐epoxy electrode. Electroanalysis. 22(17‐
18):2058–63
[125]. Matthews JA. (2014), 5220 chemical oxygen demand (COD)*. In
Encyclopedia of Environmental Change, 20th edition 1998 Preparado por:
American Public Health Association American Water Works Association
Water Environment Federation, pp. 14–19.
[126]. McCusker LB. (1994), Advances in powder diffraction methods for zeolite
structure analysis. Stud. Surf. Sci. Catal. 84(C):341–56
[127]. Meng Z, Xie Y, Cai T, Sun Z, Jiang K, Han W-Q. (2016), Graphene-like g-
C3N4 nanosheets/sulfur as cathode for lithium–sulfur battery. Electrochim.
Acta. 210:829–36
[128]. Mirsalari SA, Nezamzadeh-Ejhieh A. (2020), The catalytic activity of the
coupled CdS-AgBr nanoparticles: a brief study on characterization and its
photo-decolorization activity towards methylene blue. Desalin. Water Treat.
175:263–72
[129]. Mo Z, She X, Li Y, Liu L, Huang L, et al. (2015), Synthesis of g-C3N4 at
different temperatures for superior visible/UV photocatalytic performance
and photoelectrochemical sensing of MB solution. RSC Adv. 5(123):101552–
62
[130]. Moulder JF. (1995), Handbook of X-ray photoelectron spectroscopy. Phys.
Electron., pp. 230–32
[131]. Mousavi B, Chaemchuen S, Moosavi B, Luo Z, Gholampour N, Verpoort F.
126
(2016), Zeolitic imidazole framework-67 as an efficient heterogeneous
catalyst for the conversion of CO2 to cyclic carbonates. New J. Chem.
40(6):5170–76
[132]. Nasiri F, Rounaghi GH, Ashraf N, Deiminiat B. (2021), A new
electrochemical sensing platform for quantitative determination of diclofenac
based on gold nanoparticles decorated multiwalled carbon
nanotubes/graphene oxide nanocomposite film. Int. J. Environ. Anal. Chem.
101(2):153–66
[133]. Ngo HT, Hoa LT, Khanh NT, Hoa TTB, Toan TTT, et al. (2020), ZIF-67/g-
C3N4-modified electrode for simultaneous voltammetric determination of uric
acid and acetaminophen with cetyltrimethylammonium bromide as
discriminating agent. J. Nanomater. Vol.2020.
https://doi.org/10.1155/2020/7915878
[134].Nguyen LTL, Le KKA, Truong HX, Phan NTS. (2012), Metal–organic
frameworks for catalysis: the knoevenagel reaction using zeolite imidazolate
framework ZIF-9 as an efficient heterogeneous catalyst. Catal. Sci. Technol.
2(3):521–28
[135]. Nguyen Thi Kim T, Bui TT, Pham AT, Duong VT, Le THG. (2019), Fast
determination of auramine o in food by adsorptive stripping voltammetry. J.
Anal. Methods Chem. Vol.2019. https://doi.org/10.1155/2019/8639528
[136]. Niemantsverdriet JW. (2007), Spectroscopy in catalysis: an introduction.
Wiley-VCH Verlag GmbH & Co.KGaA;Weinheim. 41–182.
[137]. Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P. (2016), Graphitic carbon
nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and
environmental remediation: are we a step closer to achieving sustainability?
Chem. Rev. 116(12):7159–7329
[138]. Parodi S, Santi L, Russo P, Albini A, Vecchio D, et al. (1982), DNA damage
induced by Auramine O in liver, kidney, and bone marrow of rats and mice,
and in a human cell line (alkaline elution assay and sce induction). J. Toxicol.
127
Environ. Heal. Part A Curr. Issues. 9(5–6):941–52
[139]. Pauling L, Sturdivant JH. (1937), The structure of cyameluric acid,
hydromelonic acid and related substances. Proc. Natl. Acad. Sci. U. S. A.
23(12):615
[140]. Phan Anh, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’keeffe M, Yaghi OM.
(2009), Synthesis, structure, and carbon dioxide capture properties of zeolitic
imidazolate frameworks. Acc. Chem. Res. 43(1): 58–67
[141]. Pinheiro MF, Rodrigues GS, Junior JA de QL, de Sousa R de CS, da Costa
R. (2 2 ), nálise da capacidade de adsortiva do carvão da palha do café
arábica utilizando o corante azul de metileno. Brazilian J. Dev. 6(1):2861–68
[142]. Pori P, Vilčnik , Petrič M, Škapin S, Mihelčič M, et al. (2016), Structural
studies of TiO2/wood coatings prepared by hydrothermal deposition of rutile
particles from TiCl4 aqueous solutions on spruce (picea abies) wood. Appl.
Surf. Sci. 372:125–38
[143]. Qian J, Sun F, Qin L. (2012), Hydrothermal synthesis of zeolitic imidazolate
framework-67 (ZIF-67) nanocrystals. Mater. Lett. 82:220–23
[144]. Qin J, Wang S, Wang X. (2017), Visible-light reduction CO2 with
dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-
catalyst. Appl. Catal. B Environ. 209:476–82
[145]. Rambabu A, Kishore B, Munichandraiah N, Krupanidhi SB, Barpanda P.
(2017), Na2Ti6O13 thin films as anode for thin film sodium ion batteries. AIP
Conf. Proc. 1832:1–4
[146]. Redemann CE, Lucas HJ. (1940), Some derivatives of cyameluric acid and
probable structures of melam, melem and melon. J. Am. Chem. Soc.
62(4):842–46
[147]. Roosendaal SJ, Van Asselen B, Elsenaar JW, Vredenberg AM, Habraken F.
(1999), The oxidation state of Fe (100) after initial oxidation in O2. Surf. Sci.
442(3):329–37
128
[148]. Roy JS, Dugas G, Morency S, Ribeiro SJL, Messaddeq Y. (2020), Enhanced
photocatalytic activity of silver vanadate nanobelts in concentrated sunlight
delivered through optical fiber bundle coupled with solar concentrator. SN
Appl. Sci. 2(2):1–11
[149]. Sasal A, Tyszczuk-Rotko K, Wójciak M, Sowa . (2 20), First
electrochemical sensor (screen-printed carbon electrode modified with
carboxyl functionalized multiwalled carbon nanotubes) for ultratrace
determination of diclofenac. Materials (Basel). 13(3):781
[150]. Scherb C. (2009), Controlling the Surface Growth of Metal-Organic
Frameworks. Dissertation, Faculty of Chemistry and Pharmacy, Ludwig-
Maximilians University, Munich. 32–44.
[151]. Schwarzenbach G, Muehlebach J, Mueller K. (1970), Peroxo complexes of
titanium. Inorg. Chem. 9(11):2381–90
[152]. Sehnert J, Baerwinkel K, Senker J. (2007), Ab initio calculation of solid-state
nmr spectra for different triazine and heptazine based structure proposals of
g-C3N4. J. Phys. Chem. B. 111(36):10671–80
[153]. Semencha A V, Blinov LN. (2010), Theoretical prerequisites, problems, and
practical approaches to the preparation of carbon nitride: a review. Glas.
Phys. Chem. 36(2):199–208
[154]. Shakya S, Shrestha NJ, Subedi KU. (2020), Methemoglobinemia in a
newborn. Med. J. Shree Birendra Hosp. 19(1):45–47
[155]. Shao J, Wan Z, Liu H, Zheng H, Gao T, et al. (2014), Metal organic
frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors
as outstanding anodes for li storage. J. Mater. Chem. A. 2(31):12194–200
[156]. She X, Wu J, Xu H, Zhong J, Wang Y, et al. (2017), High efficiency
photocatalytic water splitting using 2D α‐Fe2O3/g‐C3N4 Z-scheme catalysts.
Adv. Energy Mater. 7(17):1-25
[157]. Shearier E, Cheng P, Zhu Z, Bao J, Hu YH, Zhao F. (2016), Surface defection
reduces cytotoxicity of Zn (2-methylimidazole) 2 (ZIF-8) without
129
compromising its drug delivery capacity. RSC Adv. 6(5):4128–35
[158]. Shekhah O, Liu , ischer R , Wöll C. (2 11), MOF thin films: existing and
future applications. Chem. Soc. Rev. 40(2):1081–1106
[159]. Shen R, Liu W, Ren D, Xie J, Li X. (2019), Co1. 4NiO. 6P cocatalysts
modified metallic carbon black/g-C3N4 nanosheet schottky heterojunctions
for active and durable photocatalytic H2 production. Appl. Surf. Sci. 466:393–
400
[160]. Shi H, Du J, Hou J, Ni W, Song C, et al. (2020), Solar-driven CO2 conversion
over Co
2+
doped 0D/2D TiO2/g-C3N4 heterostructure: insights into the role of
Co
2+
and cocatalyst. J. CO2 Util. 38(January):16–23
[161]. Shi L, Wang T, Zhang H, Chang K, Ye J. (2015), Electrostatic self‐assembly
of nanosized carbon nitride nanosheet onto a zirconium metal–organic
framework for enhanced photocatalytic CO2 reduction. Adv. Funct. Mater.
25(33):5360–67
[162]. Shi X, Fujitsuka M, Lou Z, Zhang P, Majima T. (2017), In situ nitrogen-
doped hollow-TiO2/g-C3N4 composite photocatalysts with efficient charge
separation boosting water reduction under visible light. J. Mater. Chem. A.
5(20):9671–81
[163]. Soleymani J, Hasanzadeh M, Shadjou N, Jafari MK, Gharamaleki JV, et al.
(2016), A new kinetic–mechanistic approach to elucidate electrooxidation of
doxorubicin hydrochloride in unprocessed human fluids using magnetic
graphene based nanocomposite modified glassy carbon electrode. Mater. Sci.
Eng. C. 61:638–50
[164]. Stuart B. (2004), Infrared spectroscopy: Fundamentals and applications.
John Wiley & Sons, Ltd. 18-24
[165]. Sun P, He X, Wang W, Ma J, Sun Y, Lu G. (2012), Template-free synthesis
of monodisperse α-Fe2O3 porous ellipsoids and their application to gas
sensors. CrystEngComm. 14(6):2229–34
[166]. Sun Z, Li C, Yao G, Zheng S. (2016), In situ generated g-C3N4/TiO2 hybrid
130
over diatomite supports for enhanced photodegradation of dye pollutants.
Mater. Des. 94:403–9
[167]. Tahir M, Cao C, Mahmood N, Butt FK, Mahmood A, et al. (2014),
Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced
optical, electrochemical, and photocatalyst properties. ACS Appl. Mater.
Interfaces. 6(2):1258–65
[168]. Takai O, Lee KH, Ohta R, Saito N. (2002), Carbon nitrides. Seimitsu Kogaku
Kaishi/Journal Japan Soc. Precis. Eng. 68(12):1526–29
[169]. Tatebe C, Zhong X, Ohtsuki T, Kubota H, Sato K, Akiyama H. (2014), A
simple and rapid chromatographic method to determine unauthorized basic
colorants (Rhodamine B, Auramine O, and Pararosaniline) in processed
foods. Food Sci. Nutr. 2(5):547–56
[170]. Teter DM, Hemley RJ. (1996), Low-compressibility carbon nitrides. Science
(80-. ). 271(5245):53–55
[171]. Thanh HTM, Tu NTT, Hung NP, Tuyen TN, Mau TX, Khieu DQ. (2019),
Magnetic iron oxide modified MIL-101 composite as an efficient visible-
light-driven photocatalyst for methylene blue degradation. J. Porous Mater.
26(6):1699–1712
[172]. Thomas , ischer , Goettmann , ntonietti M, Müller -O, et al. (2008),
Graphitic carbon nitride materials: variation of structure and morphology and
their use as metal-free catalysts. J. Mater. Chem. 18(41):4893–4908
[173]. Tian W, Shen Q, Li N, Zhou J. (2016), Efficient degradation of methylene
blue over boron-doped g-C3N4/Zn0.8Cd0.2S photocatalysts under simulated
solar irradiation. RSC Adv. 6(30):25568–76
[174]. Tian Y, Zhao Y, Chen Z, Zhang G, Weng L, Zhao D. (2007), Design and
generation of extended zeolitic metal–organic frameworks (ZMOFs):
synthesis and crystal structures of zinc (II) imidazolate polymers with zeolitic
topologies. Chem. Eur. J. 13(15):4146–54
[175]. Tonda S, Kumar S, Kandula S, Shanker V. (2014), Fe-doped and-mediated
131
graphitic carbon nitride nanosheets for enhanced photocatalytic performance
under natural sunlight. J. Mater. Chem. A. 2(19):6772–80
[176]. Tong Z, Yang D, Shi J, Nan Y, Sun Y, Jiang Z. (2015), Three-dimensional
porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with
excellent visible-light photocatalytic performance. ACS Appl. Mater.
Interfaces. 7(46):25693–701
[177]. Tong Z, Yang D, Zhao X, Shi J, Ding F, et al. (2018), Bio-inspired synthesis
of three-dimensional porous g-C3N4@ carbon microflowers with enhanced
oxygen evolution reactivity. Chem. Eng. J. 337:312–21
[178]. Tran UPN, Le KKA, Phan NTS. (2011), Expanding applications of metal−
organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient
heterogeneous catalyst for the knoevenagel reaction. Acs Catal. 1(2):120–27
[179]. Tu NTT, Sy PC, Minh TT, Thanh HTM, Thien TV, et al. (2019), Synthesis of
(Zn/Co)-based zeolite imidazole frameworks and their applications in visible
light-driven photocatalytic degradation of congo red. J. Incl. Phenom.
Macrocycl. Chem. 95(1–2):99–110
[180]. Tung J, Huang W, Yang J, Chen G, Fan C, et al. (2017), Auramine O, an
incense smoke ingredient, promotes lung cancer malignancy. Environ.
Toxicol. 32(11):2379–91
[181]. Tuyen LTT, Quang DA, Tam Toan TT, Tung TQ, Hoa TT, et al. (2018),
Synthesis of CeO2/TiO2 nanotubes and heterogeneous photocatalytic
degradation of methylene blue. J. Environ. Chem. Eng. 6(5):5999–6011
[182]. Usov PM, McDonnell-Worth C, Zhou F, MacFarlane DR, D’ lessandro DM.
(2015), The electrochemical transformation of the zeolitic imidazolate
framework ZIF-67 in aqueous electrolytes. Electrochim. Acta. 153:433–38
[183]. Wang C-C, Ying JY. (1999), Sol− gel synthesis and hydrothermal processing
of anatase and rutile titania nanocrystals. Chem. Mater. 11(11):3113–20
[184]. Wang C, Yang F, Sheng L, Yu J, Yao K, et al. (2016), Zinc-substituted ZIF-
67 nanocrystals and polycrystalline membranes for propylene/propane
132
separation. Chem. Commun. 52(85):12578–81
[185]. Wang J. (2006), Analytical electrochemistry, 3rd edition, Wiley. Vol. 38. 5538-
90
[186]. Wang L, Zhu H, Shi Y, Ge Y, Feng X, et al. (2018), Novel catalytic
micromotor of porous zeolitic imidazolate framework-67 for precise drug
delivery. Nanoscale. 10(24):11384–91
[187]. Wang R, Yan T, Han L, Chen G, Li H, et al. (2018), Tuning the dimensions
and structures of nitrogen-doped carbon nanomaterials derived from
sacrificial g-C3N4/metal-organic frameworks for enhanced electrocatalytic
oxygen reduction. J. Mater. Chem. A. 6(14):5752–61
[188]. Wang W, Fang J, Shao S, Lai M, Lu C. (2017), Compact and uniform TiO2@
g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of
tetracycline antibiotics. Appl. Catal. B Environ. 217:57–64
[189]. Wang X, Blechert S, Antonietti M. (2012), Polymeric graphitic carbon nitride
for heterogeneous photocatalysis. ACS Catal. 2(8):1596–1606
[190]. Wang X, Li Y, Wang C, Gan T, Yan J, Wang J. (2016), Ultrathin Na2Ti9O19
heterostructural nanosheets modified with TiO2 nanoparticles for enhanced
photocatalysis. Mater. Lett. 178:140–43
[191]. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, et al. (2009), A metal-
free polymeric photocatalyst for hydrogen production from water under
visible light. Nat. Mater. 8(1):76–80
[192]. Wang Y, Zhang J, Wang X, Antonietti M, Li H. (2010), Boron‐and fluorine‐
containing mesoporous carbon nitride polymers: metal‐free catalysts for
cyclohexane oxidation. Angew. Chemie Int. Ed. 49(19):3356–59
[193]. Wang ZJ, Garth K, Ghasimi S, Landfester K, Zhang KAI. (2015), Conjugated
microporous poly (benzochalcogenadiazole) s for photocatalytic oxidative
coupling of amines under visible light. ChemSusChem. 8(20):3459–64
[194]. Wei F, Jiang J, Yu G, Sui Y. (2015), A novel cobalt–carbon composite for the
133
electrochemical supercapacitor electrode material. Mater. Lett. 146:20–22
[195]. Wei K, Li K, Yan L, Luo S, Guo H, et al. (2018), One-step fabrication of g-
C3N4 nanosheets/TiO2 hollow microspheres heterojunctions with atomic level
hybridization and their application in the multi-component synergistic
photocatalytic systems. Appl. Catal. B Environ. 222:88–98
[196]. Wei W, Chen W, Ivey DG. (2008), Rock salt-spinel structural transformation
in anodically electrodeposited Mn-Co-O nanocrystals. Chem. Mater.
20(5):1941–47
[197]. Wuttke S, Zimpel A, Bein T, Braig S, Stoiber K, et al. (2017), Validating
metal‐organic framework nanoparticles for their nanosafety in diverse
biomedical applications. Adv. Healthc. Mater. 6(2):1600818
[198]. Xiang Q, Yu J, Jaroniec M. (2011), Preparation and enhanced visible-light
photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys.
Chem. C. 115(15):7355–63
[199]. Xu L, Xia J, Xu H, Yin S, Wang K, et al. (2014), Reactable ionic liquid
assisted solvothermal synthesis of graphite-like C3N4 hybridized α-Fe2O3
hollow microspheres with enhanced supercapacitive performance. J. Power
Sources. 245:866–74
[200]. Xu Q, Zhu B, Jiang C, Cheng B, Yu J. (2018), Constructing 2D/2D Fe2O3/g-
C3N4 direct Z-scheme photocatalysts with enhanced H2 generation
performance. Sol. RRL. 2(3):1–10
[201].Xu Y, Schoonen MAA. (2000), The absolute energy positions of conduction
and valence bands of selected semiconducting minerals. Am. Mineral. 85(3–
4):543–56
[202]. Yamashita T, Hayes P. (2008), Analysis of XPS spectra of Fe
2+
and Fe
3+
ions
in oxide materials. Appl. Surf. Sci. 254(8):2441–49
[203]. Yan H, Yang H. (2011), TiO2-g-C3N4 composite materials for photocatalytic
H2 evolution under visible light irradiation. J. Alloys Compd. 509(4):26–29
134
[204]. Yan J, Huang X, Liu S, Yang J, Yuan Y, et al. (2016), A simple and sensitive
method for Auramine O detection based on the binding interaction with bovin
serum albumin. Anal. Sci. 32(8):819–24
[205]. Yan SC, Li ZS, Zou ZG. (2009), Photodegradation performance of g-C3N4
fabricated by directly heating melamine. Langmuir. 25(17):10397–401
[206]. Yan T, Chen H, Wang X, Jiang F. (2013), Adsorption of perfluorooctane
sulfonate (PFOS) on mesoporous carbon nitride. RSC Adv. 3(44):22480–89
[207]. Yan Z, Liu L, Shu H, Yang X, Wang H, et al. (2015), A tightly integrated
sodium titanate-carbon composite as an anode material for rechargeable
sodium ion batteries. J. Power Sources. 274:8–14
[208]. Yang K, Yu QB, Li HQ, Ren XX, Pan J, et al. (2021), Preparation of α-
Fe2O3/g-C3N4 with Co-Fe bonds as a electrochemical sensor for glucose
detection. J.Nano Research .67:43-54
[209]. Yang L, Yu L, Sun M, Gao C. (2014), Zeolitic imidazole framework-67 as an
efficient heterogeneous catalyst for the synthesis of ethyl methyl carbonate.
Catal. Commun. 54:86–90
[210]. Yoshimura M, Byrappa K. (2008), Hydrothermal processing of materials:
past, present and future. J. Mater. Sci. 43(7):2085–210
[211]. Yu H, Lv R, Wu H, Qian C, Wang S, Chen M. (2020), Fabrication of ternary
hierarchical nanosheets rGO/PANI/Fe2O3 as electrode material with high
capacitance performance. J. Electrochem. Soc. 167(4):40501
[212]. Yu J, Wang S, Low J, Xiao W. (2013), Enhanced photocatalytic performance
of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of
formaldehyde in air. Phys. Chem. Chem. Phys. 15(39):16883–90
[213]. Yuan, B., Long, Y., Wu, L., Liang, K., Wen, H., Luo, S., Huo, H., Yang, H.
and Ma J. (2016), TiO2@ h-CeO2: a composite yolk-shell microsphere with
enhanced photodegradation activity. Catal. Sci. Technol. 6:6396–6405
[214]. Zeng B, Zhang L, Wan X, Song H, Lv Y. (2015), Fabrication of α-Fe2O3/g-
135
C3N4 composites for cataluminescence sensing of H2S. Sensors Actuators, B
Chem. 211:370–76
[215]. Zhang B, He X, Ma X, Chen Q, Liu G, et al. (2020), In situ synthesis of
ultrafine TiO2 nanoparticles modified g-C3N4 heterojunction photocatalyst
with enhanced photocatalytic activity. Sep. Purif. Technol. 247:1-33
[216]. Zhang C, Huang K. (2017), MOF-derived iron as an active energy storage
material for intermediate-temperature solid oxide iron–air redox batteries.
Chem. Commun. 53(76):10564–67
[217]. Zhang F, Yang H, Xie X, Li L, Zhang L, et al. (2009), Controlled synthesis
and gas-sensing properties of hollow sea urchin-like α-Fe2O3 nanostructures
and α-Fe2O3 nanocubes. Sensors Actuators, B Chem. 141(2):381–89
[218]. Zhang H, Li Z, Chen T, Qin B. (2017), Quantitative determination of
Auramine O by terahertz spectroscopy with 2DCOS-PLSR model.
Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 184:335–41
[219]. Zhang J, Chen X, Takanabe K, Maeda K, Domen K, et al. (2010), Synthesis
of a carbon nitride structure for visible‐light catalysis by copolymerization.
Angew. Chemie Int. Ed. 49(2):441–44
[220]. Zhang J, Yu W, Liu J, Liu B. (2015), Illustration of high-active Ag2CrO4
photocatalyst from the first-principle calculation of electronic structures and
carrier effective mass. Appl. Surf. Sci. 358:457–62
[221]. Zhang J, Zhang M, Zhang G, Wang X. (2012), Synthesis of carbon nitride
semiconductors in sulfur flux for water photoredox catalysis. Acs Catal.
2(6):940–48
[222]. ZHANG J, Song YAN, Lu FU, Fei W, Mengqiong Y, et al. (2011),
Photocatalytic degradation of Rhodamine B on anatase, rutile, and brookite
TiO2. Chinese J. Catal. 32(6–8):983–91
[223]. Zhang W, Qin H, Liu Z, Du H, Li H, et al. (2020), Quantitative determination
of Auramine O in bean curd sheets by dispersive solid phase extraction with
dynamic surfaced-enhanced raman spectroscopy. Anal. Lett. 53(8):1282–93
136
[224]. Zhang W, Tan Y, Gao Y, Wu J, Hu J, et al. (2016), Nanocomposites of
zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor
applications. J. Appl. Electrochem. 46(4):441–50
[225]. Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y. (2013), Enhanced
photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J.
Am. Chem. Soc. 135(1):18–21
[226]. Zhang Y-Z, Wang Y, Xie Y-L, Cheng T, Lai W-Y, et al. (2014), Porous
hollow Co3O4 with rhombic dodecahedral structures for high-performance
supercapacitors. Nanoscale. 6(23):14354–59
[227]. Zhang Y, Hou H, Yang X, Chen J, Jing M, et al. (2016), Sodium titanate
cuboid as advanced anode material for sodium ion batteries. J. Power
Sources. 305:200–208
[228]. Zhang Y, Liu J, Wu G, Chen W. (2012), Porous graphitic carbon nitride
synthesized via direct polymerization of urea for efficient sunlight-driven
photocatalytic hydrogen production. Nanoscale. 4(17):5300–5303
[229]. Zhao C, Li Q, Xie Y, Zhang L, Xiao X, et al. (2020), Three-dimensional
assemblies of carbon nitride tubes as nanoreactors for enhanced
photocatalytic hydrogen production. J. Mater. Chem. A. 8(1):305–12
[230]. Zhao S, Chen S, Yu H, Quan X. (2012), g-C3N4/TiO2 hybrid photocatalyst
with wide absorption wavelength range and effective photogenerated charge
separation. Sep. Purif. Technol. 99:50–54
[231]. Zhao X, Johnston C, Grant PS. (2009), A novel hybrid supercapacitor with a
carbon nanotube cathode and an iron oxide/carbon nanotube composite
anode. J. Mater. Chem. 19(46):8755–60
[232]. Zhou J, Zhang M, Zhu Y. (2015), Photocatalytic enhancement of hybrid
C3N4/TiO2 prepared via ball milling method. Phys. Chem. Chem. Phys.
17(5):3647–52
137
[233]. Zhou L, Wang L, Zhang J, Lei J, Liu Y. (2017), The preparation, and
applications of gC3N4/TiO2 heterojunction catalysts—a review. Res. Chem.
Intermed. 43(4):2081–2101
[234]. Zhou L, Xu Y, Yu W, Guo X, Yu S, et al. (2016), Ultrathin two-dimensional
graphitic carbon nitride as a solution-processed cathode interfacial layer for
inverted polymer solar cells. J. Mater. Chem. A. 4(21):8000–8004
[235]. Zhu B, Xia P, Ho W, Yu J. (2015), Isoelectric point and adsorption activity of
porous g-C3N4. Appl. Surf. Sci. 344:188–95
[236]. Zhu J-H, Li M-M, Liu S-P, Liu Z-F, Li Y-F, Hu X-L. (2015), Fluorescent
carbon dots for Auramine O determination and logic gate operation. Sensors
Actuators B Chem. 219:261–67
[237]. Zhu J, Xiao P, Li H, Carabineiro SAC. (2014), Graphitic carbon nitride:
synthesis, properties, and applications in catalysis. ACS Appl. Mater.
Interfaces. 6(19):16449–65