Nghiên cứu ảnh hưởng của sét hữu cơ đến các tính chất của epoxy

MỤC LỤC Trang MỞ ĐẦU1 CHƯƠNG 1: TỔNG QUAN3 1.1. GIỚI THIỆU BENTONITE, SÉT HỮU CƠ, EPOXY3 1.1.1. Giới thiệu về bentonite3 1.1.1.1. Cấu tạo3 1.1.1.2. Tính chất5 1.1.1.3. Ứng dụng6 1.1.1.4. Nguồn bentonite ở nước ta hiện nay7 1.1.2. Giới thiệu về sét hữu cơ 8 1.1.2.1. Cấu tạo9 1.1.2.2. Biến tính sét hữu cơ10 1.1.3. Giới thiệu về epoxy15 1.2. GIỚI THIỆU VỀ VẬT LIỆU COMPOSITE, VẬT LIỆU NANO VÀ VẬT LIỆU NANOCOMPOSITE16 1.2.1. Giới thiệu về vật liệu composite16 1.2.2. Giới thiệu về vật liệu nano18 1.2.3. Giới thiệu về vật liệu nanocomposite19 1.2.4. Giới thiệu về vật liệu polyme - clay nanocomposite20 1.2.4.1. Các loại vật liệu polyme - clay nanocomposite21 1.2.4.2. Tính chất của polyme - clay nanocomposite22 1.2.4.3. Công nghệ chế tạo vật liệu polyme clay nanocomposite24 CHƯƠNG 2: THỰC NGHIỆM26 2.1. DỤNG CỤ, HÓA CHẤT26 2.1.1. Dụng cụ26 2.1.2. Hóa chất26 2.2. PHƯƠNG PHÁP NGHIÊN CỨU27 2.2.1. Phương pháp nhiễu xạ tia X (XRD)27 2.2.2. Phương pháp phổ hấp thụ hồng ngoại (IR)28 2.2.3. Phương pháp kính hiển vi điện tử quét (SEM)28 2.2.4. Phương pháp phân tích nhiệt28 2.2.5. Phương pháp xác định hàm lượng chất đóng rắn 29 2.2.6. Các phương pháp xác định tính chất cơ lý của vật liệu29 2.2.6.1. Phương pháp xác định độ bền va đập 29 2.2.6.2. Phương pháp xác định độ cứng của màng phủ31 2.2.6.3. Phương pháp xác định độ bền uốn33 2.2.6.4. Phương pháp xác định độ bám dính34 2.3. PHƯƠNG PHÁP THỰC NGHIỆM36 2.3.1. Điều chế sét hữu cơ36 2.3.2. Tổng hợp composite từ sét hữu cơ và epoxy38 2.3.3. Khảo sát một số tính chất cơ lý của màng phủ epoxy – clay composite.39 CHƯƠNG 3: KẾT QUẢ VÀ THẢO LUẬN40 3.1.TỔNG HỢP SÉT HỮU CƠ40 3.1.1.Khảo sát ảnh hưởng của nhiệt độ phản ứng đến giá trị d001 và mức độ thâm nhập của DMDOA vào bentonite40 3.1.2. Khảo sát ảnh hưởng của tỷ lệ khối lượng DMDOA/bentonite đến giá trị d001 và mức độ thâm nhập của DMDOA vào bentonite45 3.1.3.Khảo sát ảnh hưởng của pH dung dịch đến giá trị d001 trong sét hữu cơ.49 3.1.4. Khảo sát ảnh hưởng của thời gian phản ứng đến giá trị d001 trong sét hữu cơ50 3.2. KHẢO SÁT KHẢ NĂNG GIA CƯỜNG CỦA SÉT HỮU CƠ CHO MÀNG PHỦ EPOXY-CLAY NANOCOMPOSITE59 3.2.1. Xác định hàm lượng chất đóng rắn59 3.2.2. Khảo sát lớp phủ epoxy – clay composite.60 3.2.3. Ảnh hưởng của sét hữu cơ đến tính chất của màng phủ epoxy – clay composite63 3.2.3.1. Tính chất cơ lý của màng phủ63 3.2.3.1. Độ bền nhiệt của màng phủ65 KẾT LUẬN68 TÀI LIỆU THAM KHẢO70

doc75 trang | Chia sẻ: lvcdongnoi | Lượt xem: 2877 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Nghiên cứu ảnh hưởng của sét hữu cơ đến các tính chất của epoxy, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
MỤC LỤC Trang MỞ ĐẦU 1 CHƯƠNG 1: TỔNG QUAN 3 1.1. GIỚI THIỆU BENTONITE, SÉT HỮU CƠ, EPOXY 3 1.1.1. Giới thiệu về bentonite 3 1.1.1.1. Cấu tạo 3 1.1.1.2. Tính chất 5 1.1.1.3. Ứng dụng 6 1.1.1.4. Nguồn bentonite ở nước ta hiện nay 7 1.1.2. Giới thiệu về sét hữu cơ 8 1.1.2.1. Cấu tạo 9 1.1.2.2. Biến tính sét hữu cơ 10 1.1.3. Giới thiệu về epoxy 15 1.2. GIỚI THIỆU VỀ VẬT LIỆU COMPOSITE, VẬT LIỆU NANO VÀ VẬT LIỆU NANOCOMPOSITE 16 1.2.1. Giới thiệu về vật liệu composite 16 1.2.2. Giới thiệu về vật liệu nano 18 1.2.3. Giới thiệu về vật liệu nanocomposite 19 1.2.4. Giới thiệu về vật liệu polyme - clay nanocomposite 20 1.2.4.1. Các loại vật liệu polyme - clay nanocomposite 21 1.2.4.2. Tính chất của polyme - clay nanocomposite 22 1.2.4.3. Công nghệ chế tạo vật liệu polyme clay nanocomposite 24 CHƯƠNG 2: THỰC NGHIỆM 26 2.1. DỤNG CỤ, HÓA CHẤT 26 2.1.1. Dụng cụ 26 2.1.2. Hóa chất 26 2.2. PHƯƠNG PHÁP NGHIÊN CỨU 27 2.2.1. Phương pháp nhiễu xạ tia X (XRD) 27 2.2.2. Phương pháp phổ hấp thụ hồng ngoại (IR) 28 2.2.3. Phương pháp kính hiển vi điện tử quét (SEM) 28 2.2.4. Phương pháp phân tích nhiệt 28 2.2.5. Phương pháp xác định hàm lượng chất đóng rắn 29 2.2.6. Các phương pháp xác định tính chất cơ lý của vật liệu 29 2.2.6.1. Phương pháp xác định độ bền va đập 29 2.2.6.2. Phương pháp xác định độ cứng của màng phủ 31 2.2.6.3. Phương pháp xác định độ bền uốn 33 2.2.6.4. Phương pháp xác định độ bám dính 34 2.3. PHƯƠNG PHÁP THỰC NGHIỆM 36 2.3.1. Điều chế sét hữu cơ 36 2.3.2. Tổng hợp composite từ sét hữu cơ và epoxy 38 2.3.3. Khảo sát một số tính chất cơ lý của màng phủ epoxy – clay composite. 39 CHƯƠNG 3: KẾT QUẢ VÀ THẢO LUẬN 40 3.1.TỔNG HỢP SÉT HỮU CƠ 40 3.1.1.Khảo sát ảnh hưởng của nhiệt độ phản ứng đến giá trị d001 và mức độ thâm nhập của DMDOA vào bentonite 40 3.1.2. Khảo sát ảnh hưởng của tỷ lệ khối lượng DMDOA/bentonite đến giá trị d001 và mức độ thâm nhập của DMDOA vào bentonite 45 3.1.3.Khảo sát ảnh hưởng của pH dung dịch đến giá trị d001 trong sét hữu cơ .49 3.1.4. Khảo sát ảnh hưởng của thời gian phản ứng đến giá trị d001 trong sét hữu cơ 50 3.2. KHẢO SÁT KHẢ NĂNG GIA CƯỜNG CỦA SÉT HỮU CƠ CHO MÀNG PHỦ EPOXY-CLAY NANOCOMPOSITE 59 3.2.1. Xác định hàm lượng chất đóng rắn 59 3.2.2. Khảo sát lớp phủ epoxy – clay composite. 60 3.2.3. Ảnh hưởng của sét hữu cơ đến tính chất của màng phủ epoxy – clay composite 63 3.2.3.1. Tính chất cơ lý của màng phủ 63 3.2.3.1. Độ bền nhiệt của màng phủ 65 KẾT LUẬN 68 TÀI LIỆU THAM KHẢO 70 MỞ ĐẦU Trong những năm gần đây, việc nghiên cứu chế tạo ra những loại vật liệu mới có nhiều tính năng ưu việt nhằm đáp ứng những yêu cầu, đòi hỏi của các ngành công nghệ cao như công nghệ thông tin, điện tử, công nghệ hàng không vũ trụ, công nghệ quân sự, công nghệ sinh học, y dược… là một trong những mục tiêu hàng đầu của nhiều viện nghiên cứu, phòng thí nghiệm trên thế giới. Trong đó việc nghiên cứu ứng dụng vật liệu polyme là hướng nghiên cứu quan trọng bởi đây là một loại vật liệu có phạm vi ứng dụng vô cùng to lớn và ngày càng được mở rộng. Tuy nhiên vật liệu này cũng có những tính chất hạn chế như: độ bền nhiệt kém, độ cứng, chịu mài mòn, khả năng chịu đựng hóa chất…thường không cao. Do đó việc nghiên cứu cải thiện tính chất của loại vật liệu này luôn là một vấn đề cấp thiết và là một hướng nghiên cứu hấp dẫn. Việc nghiên cứu ứng dụng công nghệ nano và vật liệu composite là một hướng đi chủ yếu, đã và đang được nhiều quốc gia quan tâm phát triển, là trọng tâm nghiên cứu của nhiều phòng thí nghiệm. Vật liệu tổ hợp (composite) là một loại vật liệu được nghiên cứu và ứng dụng rộng rãi nhất trong những năm gần đây, chúng được chia thành nhiều nhóm loại khác nhau, tuỳ thuộc vào chất phụ gia tăng cường. Ngày nay vật liệu composite đã trở nên phổ biến trong đời sống. Những tính năng tuyệt vời của chúng luôn là các đề tài mới hay mảnh đất màu mỡ cho những nhà hóa học khai thác, nghiên cứu để chế tạo những vật liệu có các tính năng mong muốn nhờ các chất gia cường mới. Vật liệu polyme nanocomposite trên cơ sở nanoclay là một trong những hướng nghiên cứu như thế. Với việc sử dụng những hạt nanoclay đưa vào trong mạng polyme ở kích thước nano, nhiều tính chất của polyme đã được cải thiện đáng kể. Hơn nữa, bentonite là một loại khoáng sét phổ biến, quá trình tinh chế, biến tính đơn giản, do đó nanoclay có khả năng ứng dụng cao để làm chất độn gia cường. Với mong muốn tiếp cận hướng nghiên cứu trong lĩnh vực mới này nhằm tạo ra vật liệu polyme có tính chất ưu việt, chúng tôi đã chọn đề tài: “Nghiên cứu ảnh hưởng của sét hữu cơ đến một số tính chất của epoxy” làm luận văn thạc sĩ khoa học Mục tiêu của đề tài: - Nghiên cứu xác định các điều kiện phản ứng chế tạo sét hữu cơ từ 2 nguồn bentonite khác nhau, Prolabo (Pháp) và Bình Thuận (Việt Nam), so sánh đánh giá chất lượng của khoáng bentonite Bình Thuận. - Khảo sát khả năng gia cường của sét hữu cơ được đề tài điều chế đến một số tính chất của vật liệu epoxy. CHƯƠNG 1: TỔNG QUAN 1.1. GIỚI THIỆU BENTONITE, SÉT HỮU CƠ, EPOXY 1.1.1. Giới thiệu về bentonite 1.1.1.1. Cấu tạo Bentonite là loại khoáng sét tự nhiên có thành phần chính là montmorillonite (MMT), vì vậy có thể gọi bentonite theo thành phần chính là MMT. Công thức đơn giản nhất của MMT là Al2O3.4SiO2.nH2O ứng với nửa tế bào đơn vị cấu trúc. Trong trường hợp lý tưởng công thức của MMT là Si8Al4O20(OH)4 ứng với một đơn vị cấu trúc. Tuy nhiên thành phần của MMT luôn khác với thành phần biểu diễn lý thuyết do có sự thay thế đồng hình của ion kim loại Al3+, Fe3+, Fe2+, Mg2+… với ion Si4+ trong tứ diện SiO4 và Al3+ trong bát diện AlO6. Như vậy thành phần hóa học của MMT ngoài sự có mặt của Si và Al còn thấy các nguyên tố khác như Fe, Zn, Mg, Na, K… trong đó tỷ lệ Al2O3: SiO2 thay đổi từ 1: 2 đến 1: 4.  Hình 1.1: Cấu trúc tứ diện SiO4 và bát diện MeO6 Trên cơ sở cấu trúc tứ diện và bát diện, nếu sét chỉ có lớp tứ diện sắp xếp theo trật tự kế tiếp liên tục thì sẽ hình thành cấu trúc kiểu 1:1, đây là cấu trúc tinh thể kiểu caolinite. Nếu lớp bát diện nhôm oxit bị kẹp giữa hai lớp silic oxit thì khoáng sét đó thuộc cấu trúc 2:1. Sét có cấu trúc 2:1 điển hình là bentonite và vermiculite. Montmorillonite là thành phần chính của sét bentonite (60 ÷ 70%), với hàm lượng lớn montmorillonite nên bentonite được gọi tên theo khoáng vật chính là montmorillonite. Ngoài ra vì bentonite tồn tại ở dạng khoáng sét tự nhiên nên trong thành phần khoáng sét bentonite còn chứa nhiều loại khoáng sét khác như saponite, beidellite, mica, các muối, các chất hữu cơ. Cấu trúc tinh thể của MMT được giới thiệu trên hình 1.2. Khi phân ly trong nước MMT dễ dàng trương nở và phân tán thành những hạt nhỏ cỡ micromet và dừng lại ở trạng thái lỏng lẻo với lực hút Van der Waals. Chiều dày mỗi lớp cấu trúc của MMT là 9,2 ÷ 9,8 Å. Khoảng cách lớp giữa trong trạng thái trương nở khoảng từ 5 ÷ 12 Å tùy theo cấu trúc tinh thể và trạng thái trương nở.  Hình 1.2: Cấu trúc tinh thể 2:1 của MMT Trong tự nhiên khoáng sét MMT thường có sự thay thế đồng hình của các cation hóa trị II (như Mg2+, Fe2+…) với Al3+ và Al3+ với Si4+ hoặc do khuyết tật trong mạng nên chúng tích điện âm. Để trung hòa điện tích của mạng, MMT tiếp nhận các cation từ ngoài. Chỉ một phần rất nhỏ các cation này (Na+, K+, Li+…) định vị ở mặt ngoài của mạng còn phần lớn nằm trong vùng không gian giữa các lớp. Trong khoáng MMT các cation này có thể trao đổi với các cation ngoài dung dịch với dung lượng trao đổi cation khác nhau tùy thuộc vào mức độ thay thế đồng hình trong mạng. Lực liên kết giữa các cation thay đổi nằm giữa các lớp cấu trúc mạng. Các cation này (Na+, K+, Li+…) có thể chuyển động tự do giữa mặt phẳng tích điện âm và bằng phản ứng trao đổi ion ta có thể biến tính MMT. Lượng trao đổi ion của MMT dao động trong khoảng 70 ÷ 150 mgdl/100g. Quá trình trương nở và quá trình xâm nhập những cation khác vào khoảng xen giữa mạng và làm thay đổi khoảng cách giữa chúng biểu diễn trên hình 1.3:  Hình 1.3: Quá trình xâm nhập của cation vào trao đổi cation Na+ trong khoảng giữa hai lớp MMT Quá trình xâm nhập cation vào không gian hai lớp MMT làm giãn khoảng cách cơ sở từ 9,6 Å lên vài chục Å tùy thuộc vào loại cation thay thế. 1.1.1.2. Tính chất Bentonite thể hiện một số tính chất đặc trưng sau: - Tính trương nở: tính trương nở là khi bentonite hấp thụ hơi nước hay tiếp xúc với nước, các phân tử nước sẽ xâm nhập vào bên trong các lớp, làm khoảng cách này tăng lên từ 12,5 Å đến 20 Å tùy thuộc vào loại bentonite và lượng nước bị hấp thụ. Sự tăng khoảng cách d001 được giải thích do sự hydrat hóa của các cation giữa các lớp. Sự trương nở phụ thuộc vào bản chất khoáng sét, cation trao đổi, sự thay thế đồng hình trong môi trường phân tán. Lượng nước được hấp thụ vào giữa các lớp phụ thuộc vào khả năng hydrat hóa của các cation. - Khả năng trao đổi ion: đặc trưng cơ bản của bentonite là trao đổi ion, tính chất đó là do sự thay thế đồng hình cation. Khả năng trao đổi ion phụ thuộc vào lượng điện tích âm bề mặt và số lượng ion trao đổi. Nếu số lượng điện tích âm càng lớn, số lượng cation trao đổi càng lớn thì dung lượng trao đổi ion càng lớn. Nếu biết khối lượng phân tử M và giá trị điện tích lớp của bentonite thì dung lượng trao đổi cation được tính bằng phương trình : CEC ( cmol/kg ) = 105ζ/M ζ : điện tích tổng cộng của các lớp. - Tính hấp thụ/hấp phụ: tính chất hấp thụ/hấp phụ được quyết định bởi đặc tính bề mặt và cấu trúc lớp của chúng. Do bentonite có cấu trúc tinh thể và độ phân tán cao nên có cấu trúc xốp và bề mặt riêng lớn. Cấu trúc xốp ảnh hưởng lớn đến tính chất hấp phụ của các chất, đặc trưng của nó là tính chọn lọc chất bị hấp phụ. Chỉ có phân tử nào có đường kính đủ nhỏ so với lỗ xốp thì mới chui vào được. Dựa vào điều này người ta hoạt hóa sao cho có thể dùng bentonite làm vật liệu tách chất. Đây cũng là một điểm khác nhau giữa bentonite và các chất hấp phụ khác. 1.1.1.3. Ứng dụng Nhờ khả năng hấp phụ cao, bentonite được sử dụng rộng rãi trong các ngành công nghiệp. Ngành tiêu thụ chủ yếu loại này là ngành công nghiệp dầu mỏ, sử dụng để xử lý chưng cất dầu mỏ, làm dung dịch khoan trong ngành khoan dầu khí, địa chất, xây dựng; làm keo chống thấm trong các đập nước thủy điện, thủy lợi, làm nguyên liệu hấp phụ tẩy rửa, làm chất kết dính trong khuôn đúc hay phụ gia tăng dẻo trong gốm sứ. Ngoài ra, bentonite còn được dùng làm xúc tác cho một loạt các phản ứng như oxy hóa các alcol, oxy hóa ghép đôi các thiol, các phản ứng tạo ra nhóm cacbonyl từ thioaxetal hoặc thiocabonyl…các phản ứng này xảy ra dễ dàng (nhiệt độ, áp suất thường) và cho độ chọn lọc cao. 1.1.1.4. Nguồn bentonite ở nước ta hiện nay Hiện nay, nguồn bentonite của nước ta khá phong phú, có thể cho khai thác với trữ lượng 20.000 – 24.000 tấn/năm trong 15 năm. Bentonite phân bố ở Cổ Định (Thanh Hoá), Tam Bố, Đa Lé (Lâm Đồng), Nha Mé (Bình Thuận) và Bà Rịa – Vũng Tàu. Tuy nhiên, bentonite hiện mới chỉ được Công ty dịch vụ dầu khí khai thác với quy mô lớn phục vụ cho công nghệ khoan, trong khi đó diện tích đất bạc màu, đất cát, đất thoái hoá cần cải tạo phục vụ cho nông nghiệp của nước ta rất lớn. Trữ lượng quặng bentonite của Việt Nam đã xác định và dự báo khoảng 95 triệu tấn [13]. Mỏ sét bentonite thuộc thung lũng Nha Mé (tại xã Phong Phú – huyện Tuy Phong – Tỉnh Bình Thuận, Việt Nam) là mỏ bentonite kiềm duy nhất ở Việt Nam có trữ lượng hàng triệu tấn, thuộc loại lớn trên thế giới hiện nay. Mỏ sét bentonite do Công ty TNHH Minh Hà sở hữu và khai thác có thành phần khoáng montmorillonite thuộc loại kiềm, dung tích trao đổi cation chiếm chủ yếu là Na+ , K+ (sodium montmorillonite), một số đặc trưng thành phần khoáng, hóa của bentonite Tuy Phong – Bình Thuận được giới thiệu trong bảng 1.1: Bảng 1.1: Đặc trưng thành phần khoáng chất và hóa học của bentonite Tuy Phong – Bình Thuận [3] Tên khoáng chất  Hàm lượng (%)  Thành phần hóa học  Hàm lượng (%)   Montmorillonite  49- 51  SiO2  51,90   Illite  7 – 9  Al2O3  15,60   Kaolinite Clorite  13 – 15  Fe2O3  2,83   Thạch anh  6 – 8  FeO  0,21   Felspate  7 - 9  CaO, MgO  4,05   Gơtite  4 - 6  K2O, Na2O  4,05   Canxite  4 - 6  Thành phần khác  7,62     Mất khi nung  15,67   Các kết quả của nhiều tác giả đã cho thấy rằng khả năng trao đổi ion của khoáng sét Tuy Phong - Bình Thuận từ 96 ÷ 105 mgdl/100g, trong khi đó dung lượng trao đổi ion trong bentonite của hãng Southerm clay Co là 110 ÷ 115 mgdl/100g, của hãng Merck khoảng 120 mgdl/100g [1, 3]. Vì vậy chúng ta hoàn toàn có thể kỳ vọng vào nguồn bentonite có đầy đủ các tính chất để đáp ứng được nhu cầu trong nước, hạn chế việc nhập khẩu và còn nâng cao trữ lượng để xuất khẩu ra thị trường bên ngoài [13]. 1.1.2. Giới thiệu về sét hữu cơ [9,13] Bentonite biến tính hay sét hữu cơ là sản phẩm của quá trình tương tác giữa bentonite và các hợp chất hữu cơ có khả năng hoạt động bề mặt, đặc biệt là các amin bậc 1, bậc 2, bậc 3, bậc 4, mạch thẳng, nhánh và vòng. Mục đích của việc biến tính khoáng sét bằng phản ứng hữu cơ hóa MMT là nhằm tạo ra vật liệu từ dạng ưa nước chuyển sang dạng ưa dầu với những gốc thế khác nhau và có khả năng trương nở trong dung môi hữu cơ, khuếch tán và tương hợp tốt trong các polyme thông qua quá trình hòa tan trong dung môi hữu cơ hoặc quá trình nóng chảy. Sản phẩm được ứng dụng rộng rãi hơn, đặc biệt dùng để điều chế vật liệu nanocomposite. 1.1.2.1. Cấu tạo Hữu cơ hóa MMT là phản ứng trao đổi giữa các cation kim loại có trong cấu trúc khoáng sét với các cation amoni hữu cơ. Đây chính là quá trình trao đổi ion Na+, K+ với nhóm mang điện tích dương ở đầu mạch của hợp chất hữu cơ mà điển hình là nhóm cation amoni với phần đuôi là các gốc hữu cơ khác nhau.  Phần đuôi của hợp chất này có tính ưa dầu và là tác nhân đẩy xa khoảng cách giữa các lớp khoáng sét. Sự tương tác cũng làm thay đổi sự phân cực của các lớp bằng sự giảm năng lượng tự do trên bề mặt của sét. Số các ion có thể xếp vào các khe phụ thuộc vào mật độ điện tích của sét và dung lượng cation trao đổi. Độ dài mạch của chất hoạt động bề mặt cũng sẽ ảnh hưởng đến khoảng cách cơ bản giữa các lớp. Ở mật độ điện tích nhỏ, chất hoạt động bề mặt thâm nhập và tạo thành một đơn lớp trong khe giữa các lớp. Khi mật độ điện tích tăng lên có thể tạo ra hai lớp, ba lớp chất hoạt động bề mặt trong khe giữa các lớp. Ở những dung lượng cation trao đổi cation rất cao (trên 120 mgdl/100g) và các chất hoạt động bề mặt có mạch cacbon dài (trên 15C), sự thâm nhập có thể được sắp xếp như cấu trúc loại parafin. Các đầu điện tích dương gắn chặt vào bề mặt của lớp sét, còn đuôi hữu cơ lấp đầy khoảng không gian giữa các lớp, vì vậy mà khoảng cách cơ bản d001 của sét hữu cơ sẽ lớn hơn của sét ban đầu.  Hình 1.4: Mô tả cấu trúc của sét sau khi biến tính hữu cơ (organoclay) Quá trình giãn khoảng cách lớp MMT làm tăng khả năng xâm nhập của các chất hữu cơ hay polyme vào khoảng xen giữa các lớp. 1.1.2.2. Biến tính sét hữu cơ  Hình 1.5: Trạng thái phân ly của khoáng sét trong dung dịch Bentonite là chất vô cơ, có tính ưa nước, trong khi đó nền polyme có tính kỵ nước nên bentonite rất khó trộn hợp với polyme. Để tăng sự tương hợp giữa bentonite và polyme, người ta đã phải biến tính bentonite. Một số phương pháp có thể dùng để biến tính bentonite như: phương pháp trao đổi ion, phương pháp dùng chất hoạt động bề mặt, phương pháp trùng hợp các monome tạo polyme trực tiếp, trong đó thường sử dụng là phương pháp trao đổi ion được mô tả trong hình 1.5. Phản ứng hữu cơ hóa MMT xảy ra theo phương trình sau: R - N+ + Na+ - MMT  MMT - N+ - R + Na+ Khả năng khuếch tán của muối alkyl amoni phụ thuộc vào điện tích thứ bậc của muối amoni và cấu tạo gốc R. Các gốc hữu cơ càng cồng kềnh thì khả năng khuếch tán càng khó nhưng khả năng làm giãn khoảng cách giữa hai lớp MMT càng cao và do đó khả năng khuếch tán sét trong polyme càng lớn [1,3]. Phương pháp trao đổi ion Để làm cho MMT trở nên kị nước, tương hợp tốt với polyme, các cation ở khoảng giữa các lớp clay được thay thế bằng các chất hoạt động bề mặt cation như ankyl amoni hay ankyl photphat. Các cation có thể thay thế thông dụng nhất là Na+, Ca2+, Mg2+, H+, K+ và NH4+ . Quá trình thay thế xảy ra như sau: Khi biến tính bằng các chất hoạt động bề mặt cation thì đầu mang điện dương hướng về phía các mặt sét (do tương tác điện Culong) còn các mạch ankyl hướng ra ngoài. Sau khi biến tính hữu cơ, bề mặt sét trở nên kị nước một phần, năng lượng bề mặt của nó giảm nên dễ tương hợp với các polyme hữu cơ. Kích thước của nhóm ankyl càng lớn thì tính kỵ nước và khoảng cách giữa các lớp sét càng cao. Sự sắp xếp mạch ankyl trong khoảng giữa các lớp sét phụ thuộc vào 2 yếu tố là mật độ điện tích của sét và loại chất hoạt động bề mặt. Mạch ankyl càng dài, mật độ điện tích của sét càng lớn thì khoảng cách giữa các lớp càng lớn. Mạch ankyl có thể sắp xếp song song với bề mặt sét tạo nên cấu trúc đơn lớp (khi mạch ankyl ngắn), hai lớp (khi mạch ankyl trung bình), hoặc giả ba lớp (khi mạch ankyl dài) (Hình 1.4). Tuy nhiên mạch ankyl cũng có thể không nằm song song mà lại nằm chéo so với bề mặt sét, khi đó tạo ra cấu trúc paraffin. Cấu trúc paraffin cũng có thể đơn lớp hoặc hai lớp (hình 1.4).Khi mật độ điện tích sét cao và chất hoạt động bề mặt có kích thước lớn thường tạo thành dạng 2 lớp giống chất lỏng. Với dạng đơn lớp, hai lớp, giả ba lớp, khoảng cách cơ sở giữa các lớp sét tương ứng là d = 13,2Å; 18,0Å; 22,7Å thể hiện sự sắp xếp không trật tự, giống chất lỏng. Với dạng prafin, thì sự sắp xếp có trật tự hơn, các mạch ankyl không nằm song song với các mặt sét nữa mà nằm chéo với các ion dương ở vị trí đối nhau. Một số chất biến tính sét theo cơ chế trao đổi ion Chất đầu tiên được dùng để biến tính sét trong công nghệ chế tạo vật liệu nanocomposite là amino axit. Nhưng nhóm chất phổ biến nhất là các ion ankyl amoni, do chúng có khả năng trao đổi dễ dàng với các ion nằm giữa các lớp clay. Ion ankyl amoni: Montmorillonite sau khi trao đổi cation với các ion ankyl amoni mạch dài thì có thể phân tán được trong các chất lỏng hữu cơ phân cực tạo nên cấu trúc gel. Các ion ankyl amoni có thể xen vào giữa các lớp sét một cách dễ dàng tạo ra amino axit để tổng hợp nên nanocomposite trên cơ sở polyme. Ion ankyl amoni được sử dụng rộng rãi nhất là các ion tạo bởi các ankyl bậc 1 trong môi trường axit. Công thức hoá học chung của chúng là: CH3 - (CH2)n - NH3+, trong đó n =1 ÷ 18. Amino axit: Amino axit là những phân tử có chứa cả nhóm amino (- NH2) mang tính bazơ và nhóm cacboxylic (-COOH) mang tính axit. Trong môi trường axit, một proton của nhóm -COOH chuyển sang nhóm -NH2 tạo thành NH3+. Lúc này có sự trao đổi cation giữa NH3+ và các cation tồn tại ở giữa các lớp sét (như Na+, K+) làm cho sét biến tính có tính ưa dầu [4]. Trong công trình nghiên cứu chế tạo vật liệu nanocomposite trên cơ sở polyamit-6 và sét của nhóm các nhà khoa học thuộc tập đoàn Toyota, loại ω-amino axit này đã được sử dụng thành công để biến tính sét [9]. Một số phương pháp biến tính khác Ngoài phương pháp trao đổi ion, người ta còn có thể dùng một số chất hoạt động bề mặt để biến tính sét mà tiêu biểu trong số đó là hợp chất silan. Silan thường được sử dụng trong chế tạo vật liệu nanocomposite trên cơ sở polyeste không no và sét. Silan là các monome silicon hữu cơ được đặc trưng bởi công thức hoá học R-SiX3. Trong đó, R là nhóm chức hữu cơ được gắn vào Si, X là nhóm có thể bị thuỷ phân để tạo thành nhóm silanol. Silan có thể phản ứng với bề mặt của các chất vô cơ tạo nên các liên kết oxan hoặc hydro. Các bề mặt này có đặc trưng là chứa các nhóm OH gắn vào nguyên tử Si hoặc Al. Trong nanoclay, các nhóm OH xuất hiện trên bề mặt các lớp sét. Silan trước tiên được chuyển thành các hợp chất silanol bằng phản ứng thuỷ phân. Sau đó silanol phản ứng với các nhóm OH trên bề mặt sét tạo thành các liên kết oxan và liên kết hydro. [4] Các chất khác Một số chất biến tính sét khác có thể được sử dụng trực tiếp trong lúc chế tạo vật liệu polyme - nanocomposite vì các chất này có thể hoặc tham gia trực tiếp vào phản ứng trùng hợp hoặc xúc tác phản ứng trùng hợp. Ví dụ khi chế tạo vật liệu polyme - nanocomposite trên cơ sở polystyren và sét, người ta có thể sử dụng amoni metyl styren hoặc LFRP (chất khơi mào phản ứng trùng hợp gốc tự do sống) làm chất biến tính cho sét. [4] Các tác nhân hữu cơ thường sử dụng để biến tính MMT được giới thiệu trong bảng 1.2: Bảng 1.2: Các chất hữu cơ dùng làm tác nhân biến tính MMT đang được sử dụng [1] Công thức hóa học  Tên gọi  Tnc (0C)   CH3N+Cl-  Methylamine hyđrochloride  228   CH3(CH2)2NH2  Proyl amine  - 83   CH3(CH2)3NH2  Butyl amin  -50   CH3(CH2)7NH2  Octyl amine  -3   CH3(CH2)9NH2  Decyl amine  13   CH3(CH2)11NH2  Dodecyl amine  30   CH3(CH2)15NH2  Hexadecyl amine  46   CH3(CH2)17NH2  Octadecylamine  57   HOOC(CH2)5NH2  Axit 6 - Aminohexanoic  205   HOOC(CH2)11NH2  Axit 12 - Aminododecanoin  186   (CH3)4 N+Cl-  Tetramethyl ammonium chloride  > 300   CH3 (CH2 )17 NH(CH3)  N - Methyl octadecyl ammonium bromide  45   CH3(CH2)17N+(CH3)3Br-  Octaecyl trimethy ammonium bromide  6   CH3(CH2)11N (CH3)3Br-  Dodecyl dimethyl ammonium bromide  -   (CH3(CH2)17)2N+(CH3)2Cl-  Đioctadecyl đimethyl amonium clorua  69   CH2(CH2)17N+(C6H5)CH2 (CH3)2Br-  Dimethyl benzyl octadecyl aminium bromide  -   CH3(CH2)17 N+(HOCH2CH2)2CH2CI-  Bis(2-hydroxyethyl)methyl octadecyl ammonium chloride  -   CH3(CH2)14CH2(C6H5N+)B-  1 - Hexadecylpyridium bromide  -   H2 N(CH2)6NH2  1,6 - Hexamethylene diamine  44   H2N(CH2)12NH2  1,12 - Dodecane diamine  70   1.1.3. Giới thiệu về epoxy Nhựa epoxy chưa đóng rắn tồn tại ở dạng oligome có khối lượng phân tử thấp. Oligome epoxy thông dụng nhất là sản phẩm của phản ứng giữa bisphenol A và epichlohydrin với sự có mặt của xúc tác NaOH:  Chỉ số n có các giá trị rất khác nhau nên khối lượng phân tử của oligome epoxy cũng thay đổi từ vài trăm cho đến hàng nghìn. Epoxy có thể tồn tại ở trạng thái lỏng hay rắn. Tính chất của nhựa epoxy phụ thuộc vào khối lượng phân tử của oligome. Nhựa epoxy có thể đóng rắn với các chất chứa nhóm chức có khả năng phản ứng với nhóm epoxy như các nhóm OH, COOH, NH2 ... Trong đó, các chất amin được sử dụng nhiều nhất để đóng rắn nhựa epoxy.  Sản phẩm sau quá trình đóng rắn có cấu trúc mạng lưới không gian nên có độ bền cơ học cao. Phẩn ứng đóng rắn là phản ứng cộng, không có sản phẩm phụ nên độ co ngót của sản phẩm thấp. Nhờ có nhóm epoxy mà sản phẩm có độ bám dính cao trên bề mặt kim loại, có tính ổn định hoá học, bền hoá chất. Việc sử dụng nhựa epoxy trên nền cốt sợi thuỷ tinh làm tăng tính bền cơ lên đáng kể và rất thích hợp để chế tạo lớp bọc lót bảo vệ thiết bị chống ăn mòn hoá chất. Nhựa epoxy không có nhóm este, do đó khả năng kháng nước của epoxy rất tốt. Ngoài ra, do có hai vòng thơm ở vị trí trung tâm nên nhựa epoxy chịu ứng suất cơ và nhiệt tốt hơn mạch thẳng, vì vậy epoxy rất cứng, dai và kháng nhiệt tốt. Nhựa epoxy được sử dụng trong nhiều lĩnh vực kỹ thuật và cuộc sống hàng ngày. Keo dán từ nhựa epoxy đã được sử dụng để dán các cấu kiện bằng thép. Composite nền nhựa epoxy với sợi thủy tinh có độ bền rất cao và mềm dẻo, để chế tạo mũ bảo vệ trong thể thao và nghiệp vụ cảnh sát. Sơn trên cơ sở nhựa epoxy có khả năng bảo vệ chống ăn mòn cao, làm việc lâu dài ở các nơi luôn tiếp xúc với nước và hóa chất. Các lớp phủ bảo vệ sử dụng nhựa epoxy có độ cách điện cao, dùng để bọc bịt các đầu cáp điện và cáp viễn thông. 1.2. GIỚI THIỆU VỀ VẬT LIỆU COMPOSITE, VẬT LIỆU NANO VÀ VẬT LIỆU NANOCOMPOSITE 1.2.1. Giới thiệu về vật liệu composite Vật liệu composite đã xuất hiện từ rất lâu trong cuộc sống, khoảng 5.000 năm trước Công nguyên người cổ đại đã biết vận dụng vật liệu composite vào cuộc sống (sử dụng bột đá trộn với đất sét để đảm bảo sự dãn nở trong quá trình nung đồ gốm). Người Ai Cập đã biết vận dụng vật liệu composite từ khoảng 3.000 năm trước Công nguyên, sản phẩm điển hình là vỏ thuyền làm bằng lau, sậy tẩm nhựa cây. Sau này các thuyền đan bằng tre nứa được trát mùn cưa và bitum. Các vách tường đan tre nứa đươc trát bùn với rơm, rạ là những sản phẩm composite được áp dụng rộng rãi trong đời sống xã hội. Sự phát triển của vật liệu composite đã được khẳng định và mang tính đột biến vào những năm 1930 khi mà Stayer và Thomat đã nghiên cứu, ứng dụng thành công sợi thuỷ tinh. Fillis và Foster đã dùng sợi thủy tinh để gia cường cho nhựa polyeste không no, giải pháp này đã được áp dụng rộng rãi trong ngành công nghiệp chế tạo máy bay, tàu chiến phục vụ cho đại chiến thế giới lần thứ hai. Năm 1950 bước đột phá quan trọng trong ngành vật liệu composite đó là sự xuất hiện nhựa epoxy và các sợi gia cường như polyeste, nylon,… Từ năm 1970 đến nay vật liệu composite nền chất dẻo đã được đưa vào sử dụng rộng rãi trong các ngành công nghiệp, dân dụng, y tế, thể thao, quân sự,…[13] Composite là loại vật liệu nhiều pha khác nhau về mặt hóa học, hầu như không tan vào nhau, phân cách nhau bằng ranh giới pha, kết hợp lại nhờ sự can thiệp kỹ thuật của con người theo những ý đồ thiết kế trước, nhằm tận dụng và phát triển những tính chất ưu việt của từng pha trong composite cần chế tạo. Tính chất của composite chịu ảnh hưởng của các pha nhưng không phải là cộng đơn thuần các tính chất của chúng khi đứng riêng rẽ mà chỉ chọn lấy những tính chất tốt và phát huy thêm. Các pha trong composite là pha nền và pha cốt. Pha cốt là pha không liên tục, tạo nên độ bền, môđun đàn hồi (độ cứng vững) cao cho composite. Do vậy cốt phải bền, nhẹ. Cốt có thể là kim loại, ceramic và polyme. Pha nền là pha liên tục có tác dụng liên kết toàn bộ các phần tử thành một khối thống nhất, tạo hình chi tiết theo thiết kế, che phủ, bảo vệ cốt tránh các hư hỏng do các tác động hóa học, cơ học và của môi trường. Pha nền trong vật liệu polyme composite thường được sử dụng từ nhựa epoxy, nhựa polyeste không no. 1.2.2. Giới thiệu về vật liệu nano Mặc dù mới chỉ được chú ý trong thời gian gần đây nhưng công nghệ nano đã sớm chiếm một vị trí quan trọng trong lĩnh vực khoa học công nghệ. Đây là một lĩnh vực có tiềm năng phát triển to lớn. Trong khoa học vật liệu đã có những bước tiến dài kể từ khi ứng dụng công nghệ nano. Người ta đã có thể chế tạo ra những vật liệu siêu bền, siêu nhẹ, siêu hấp thụ, vật liệu tự phân hủy, vật liệu mô phỏng sinh học… Trong ngành công nghiệp hiện nay, các tập đoàn sản xuất điện tử đã bắt đầu đưa công nghệ nano vào ứng dụng tạo ra các sản phẩm có tính cạnh tranh từ chiếc máy nghe nhạc đến các con chip có dung lượng lớn với tốc độ xử lý cực nhanh, các loại vật liệu nanocomposit được sử dụng trong các bộ phận của ôtô, máy bay, tàu vũ trụ… Trong y học, các hạt nano được chế tạo có đặc tính sinh học và có tác động lên con người y hệt như kháng thể, tức là chúng có thể lập trình để truy diệt tế bào ung thư. Các chất liệu từ công nghệ nano có thể hỗ trợ việc chẩn đoán bệnh tật hay khảo sát cơ thể như khi gắn những chuỗi ADN vào những hạt nano có khả năng cảm thụ đặc tính sinh học của tế bào và gửi tín hiệu ra bên ngoài. Ngoài ra, các nhà khoa học tìm cách đưa công nghệ nano vào việc giải quyết các vấn đề mang tính toàn cầu như thực trạng ô nhiễm môi trường ngày càng gia tăng. Việc cải tiến các thiết bị quân sự có sử dụng công nghệ nano đã tạo ra các trang thiết bị, vũ khí rất tối tân mà sức công phá khiến ta không thể hình dung nổi. Do các ứng dụng kỳ diệu của công nghệ nano mà trên thế giới hiện nay đang xảy ra cuộc chạy đua sôi động về nghiên cứu phát triển và ứng dụng công nghệ nano. Có thể kể đến một số cường quốc đang chiếm lĩnh thị trường công nghệ này hiện nay là: Hoa Kỳ, Nhật Bản, Trung Quốc, Đức, Nga và một số nước Châu Âu…Ở những quốc gia trên, chính phủ dành một khoản ngân sách đáng kể để hổ trợ cho việc nghiên cứu và ứng dụng thực tiễn của ngành công nghệ nano. Không chỉ các trường đại học có các phòng thí nghiệm với các thiết bị nghiên cứu quy mô mà các tập đoàn sản xuất cũng tiến hành nghiên cứu và phát triển công nghệ nano với các phòng thí nghiệm có tổng chi phí nghiên cứu tương đương với ngân sách chính phủ dành cho lĩnh vực này. Ở Việt Nam, tuy chỉ mới tiếp cận với công nghệ nano trong những năm gần đây nhưng cũng có những bước chuyển tạo ra sức hút mới đối với lĩnh vực đầy cam go, thử thách này. Nhà nước cũng đã dành một khoản ngân sách khá lớn cho chương trình nghiên cứu công nghệ nano cấp quốc gia với sự tham gia của nhiều trường Đại học và Viện nghiên cứu. Vật liệu nano là loại vật liệu mà trong cấu trúc của các thành phần cấu tạo nên nó ít nhất phải có một chiều ở kích thước nanomet. Vật liệu ở thang đo nano bao gồm các lá nano, sợi và ống nano, hạt nano được điều chế bằng nhiều cách khác nhau. Ở cấp độ nano, vật liệu sẽ có những tính năng đặc biệt mà vật liệu truyền thống không có được đó là do sự thu nhỏ kích thước dẫn đến việc tăng diện tích mặt ngoài của loại vật liệu này. 1.2.3. Giới thiệu về vật liệu nanocomposite Vật liệu composite truyền thống chứa các loại cốt liệu gia cường như bột vô cơ, hữu cơ, các loại sợi... được phân tán trong pha liên tục hay là còn gọi vật liệu nền. Với sự xuất hiện của các chất độn gia cường có kích thước nano đã tạo ra sự khác biệt rất lớn so với các chất độn thông thường. Trước hết là do kích thước nhỏ hơn hàng trăm đến hàng nghìn lần và khả năng tạo ra các tương tác vượt trội giữa pha liên tục với chất độn. Do có kích thước nano mà các chất độn gia cường này đã khắc phục được rất nhiều các hạn chế của vật liệu composite truyền thống như độ trong, độ bền cơ lý được cải thiện, khả năng bền nhiệt tốt hơn... Khi phân tán đều các chất độn này trong nền polyme chúng sẽ tạo ra diện tích tương tác lớn giữa các tiểu phân nano và polyme nền. Diện tích này có thể đạt đến hàng trăm m2/g. Khi đó, khoảng cách giữa các phân tử nano sẽ tương đương với kích thước của chúng và tạo ra những tương tác khác biệt so với các chất độn truyền thống. Vật liệu vô cơ dùng trong nanocomposite gồm hai loại: - Vật liệu có kích thước hạt nano như các hạt vô cơ Au, Ag, TiO2, SiO2. - Vật liệu có cấu trúc nano như bentonite, cacbon ống nano, sợi nano, nano xốp. Vật liệu polyme - nanocomposite là loại vật liệu polyme composite với hàm lượng chất gia cường thấp (1-7%) và chất gia cường này phải ở kích thước nanomet. Pha gia cường ở kích thước nanomet được sử dụng trong lĩnh vực nanocomposite thường là hạt nano và cacbon ống nano (carbon nanotube). Các phương pháp được sử dụng phổ biến hiện nay để chế tạo vật liệu polyme nanocomposite là phương pháp trùng hợp, phương pháp trộn hợp, phương pháp dung dịch [1,3]. 1.2.4. Giới thiệu về vật liệu polyme - clay nanocomposite Trong số các vật liệu có kích thước hay cấu trúc nano thì sét thu hút được sự quan tâm chú ý của rất nhiều các nhà khoa học bởi các đặc tính ưu việt của nó như diện tích bề mặt riêng lớn cỡ 700 ( 800 m2/g, giá thành rẻ, dễ điều chế... Chỉ với một lượng nhỏ cỡ vài phần trăm khối lượng được đưa vào polyme người ta có thể nâng cao nhiều tính chất cơ lý của vật liệu, nâng cao khả năng chống cháy, hệ số chống thấm khí lên rất nhiều lần mà không làm tăng đáng kể trọng lượng, độ trong của vật liệu [6, 9 ,12]. Vật liệu polyme - clay nanocomposite đã được nghiên cứu từ khá sớm, chẳng hạn vật liệu nylon 6 - clay nanocomposite là vật liệu nanocomposite đầu tiên được hãng Toyota nghiên cứu ứng dụng cùng công nghiệp ôtô [1]. Cho đến nay người ta đã chế tạo thành công nhiều loại polyme - clay nanocomposite trên các nền nhựa khác nhau như: epoxy, polystyren, polyamit, polyolefin (PE, PP)... Polyme - clay nanocomposite có thể làm vật liệu chống cháy, ví dụ như một số loại nanocomposite của nylon 6 - silicat, PS - silicat lớp…hay vật liệu dẫn điện như nanocomposite PEO - Li - MMT (MMT: montmorillonite, thành phần chính của khoáng sét bentonite) dùng trong pin, vật liệu phân hủy sinh học như PCL - MMT hay PLA - MMT. Ngoài ra, khi các polyme như ABS, PS, PVA…được gia cường hạt sét sẽ cải thiện đáng kể tính chất cơ lý của polyme và có những ứng dụng khác nhau như ABS - MMT làm khung xe hơi hay khung máy bay, PMMA - MMT làm kính chắn gió, PVA - MMT làm bao bì… Các hạt nano sét được sử dụng trong sơn có thể cải thiện đáng kể tính chất như làm cho lớp sơn mỏng hơn, khả năng bảo vệ tốt hơn, bền hơn…[6, 9]. 1.2.4.1. Các loại vật liệu polyme - clay nanocomposite Tuỳ theo cách thức phân bố hay dạng tồn tại của sét ở trong nền polyme mà người ta chia vật liệu polyme - clay composite thành ba loại khác nhau: dạng tách pha, dạng chèn lớp và dạng bóc tách lớp [1, 3, 6, 11]. Dạng tách pha (phase separated microcomposite) Khi polyme không có khả năng xen lớp vào giữa các lớp sét, khi đó chỉ thu được những hạt sét phân tán đều trong mạng polyme ở dạng tách pha. Vật liệu thu được chỉ đơn thuần là vật liệu composite có cấu trúc kích thước micromet. Dạng chèn lớp ( intercalated nanocomposite) Trong trường hợp này các phân tử polyme được chèn vào giữa các lớp sét và khoảng cách giữa các lớp sét được tăng lên song sét trong polyme - clay nanocomposite vẫn còn cấu trúc lớp như khi chưa kết hợp với polyme. Dạng bóc lớp (exfoliated nanocomposite) Trong trường hợp này các lớp sét được tách hoàn toàn khỏi nhau và phân tán đều trong nền polyme. Vì các lớp sét được tách hoàn toàn ra khỏi nhau và phân tán đều trong nền polyme nên tương tác giữa pha nền và pha gia cường trong trường hợp này là tốt nhất. Hiện tượng bóc lớp xảy ra khi hàm lượng sét nhỏ và pha nền polyme tương tác tốt với sét. Hình dưới mô tả các dạng tồn tại của polyme - clay composite:  Hình 1.6: Các dạng vật liệu polyme - clay composite 1.2.4.2. Tính chất của polyme - clay nanocomposite Vật liệu polyme - clay nanocomposite có những tính chất ưu việt hơn hẳn so với vật liệu polyme gia cường bằng các hạt có kích thước micro, trong đó đáng chú ý là: tính chất cơ học cao, khả năng chịu nhiệt và chống cháy tốt, có tính chất che chắn, khả năng phân huỷ sinh học… Tính chất cơ học cao: Do có tương tác và kết dính tốt giữa pha nền và pha gia cường nano, ngoài ra với kích thước nhỏ bé và khả năng phân tán tốt của hạt gia cường nên vật liệu polyme - clay nanocomposite có các tính chất cơ học vượt trội hơn hẳn so với vật liệu ban đầu khi chỉ cần thêm một lượng nhỏ hạt gia cường. Khả năng chịu nhiệt và chống cháy tốt: Khả năng chịu nhiệt và chống cháy của polyme - clay nanocomposite không thuần tuý là do khả năng chịu nhiệt và giữ nhiệt của sét như composite nền polyme gia cường bằng sét dạng hạt thông thường mà gắn liền với hiệu ứng nano. Trong vật liệu polyme - clay nanocomposite các phân tử polyme được bao bọc bởi các lớp sét, các lớp này đóng vai trò ngăn cản sự khuyếch tán của oxy cần thiết cho quá trình cháy của polyme. Mặt khác, các lớp sét có vai trò giữ nhiệt và cản trở sự thoát các sản phẩm dễ bay hơi khi polyme cháy [6]. Tính chất che chắn: Do vai trò của các lớp sét trong nền polyme cũng như sự định hướng của các lớp sét trong quá trình gia công nên polyme - clay nanocomposite có độ thấm khí rất thấp:  Hình 1.7: Sơ đồ biểu diễn khả năng che chắn của vật liệu polyme - clay nanocomposite Khí và hơi ẩm khi đi qua vật liệu sẽ không thể đi theo một đường thẳng mà sẽ bị cản lại bởi các lớp sét trong thành phần, như những hàng rào che chắn. Do đó vật liệu polyme - clay nanocomposite có khả năng che chắn sự thấm khí và hơi ẩm hơn hẳn các loại vật liệu polyme khác. Tính chất này của vật liệu polyme - clay nanocomposite được ứng dụng để làm bao gói cho thực phẩm, dược phẩm, màng sơn phủ [6, 12]. Khả năng phân huỷ sinh học cao: Polyme trong vật liệu polyme - clay nanocomposite có khả năng phân huỷ sinh học tốt hơn so với vật liệu polyme hoặc được gia cường bằng hạt thông thường. Cơ chế của quá trình này đến nay vẫn chưa được hiểu rõ nhưng có một số tác giả cho rằng đó là do vai trò xúc tác phản ứng phân huỷ polyme của sét hữu cơ. 1.2.4.3. Công nghệ chế tạo vật liệu polyme clay nanocomposite Khác với các loại vật liệu composite truyền thống là sử dụng các loại chất độn gia cường thông thường có kích thước hạt lớn cỡ vài micromet, vật liệu nanocomposite sử dụng chất độn gia cường có kích thước cỡ nano đã đem đến cho loại vật liệu composite này có những tính chất cơ lý vượt qua tầm của vật liệu composite truyền thống như: độ bền cơ học, độ trong suốt, khả năng chịu nhiệt và không tách pha và đạt đến mức vật liệu thông minh. Do đó, công nghệ chế tạo vật liệu polyme - clay nanocomposite có những nét đặc trưng riêng và trải qua các giai đoạn sau: + Lựa chọn khoáng sét có chứa hàm lượng MMT cao. + Biến tính hữu cơ hóa khoáng sét (MMT - hữu cơ hay organoclay) + Tiến hành khuếch tán MMT - hữu cơ vào trong polyme bằng các phương pháp [12]: phương pháp dung dịch; phương pháp trộn hợp; phương pháp trùng hợp, để tạo nanocomposite trạng thái xen lớp (Intercalated state) hoặc trạng thái tách lớp (Exfoliated state). * Phương pháp dung dịch Polyme nền được hoà tan trong dung môi hữu cơ. Tiếp theo cho khuếch tán sét hữu cơ vào dung dịch polyme. Dung môi hữu cơ xâm nhập vào các lớp MMT đã hữu cơ hóa. Với tính ưa dầu, MMT hữu cơ từ từ khuếch tán trong dung dịch polyme theo các giai đoạn, cuối cùng được hỗn hợp dung dịch có các phần tử MMT khuếch tán đều trong polyme. * Phương pháp trộn hợp Phương pháp trộn hợp được tiến hành cho khuếch tán trực tiếp sét hữu cơ trong dung dịch polyme nóng chảy. Phương pháp này chủ yếu áp dụng cho những polyme nhiệt dẻo và phải dùng đến máy trộn siêu tần. Phương pháp này bao gồm cả trùng hợp oligome như epoxy, polyeste. Theo phương pháp này thì đầu tiên hữu cơ hóa sét bằng hợp chất hữu cơ có gốc cation sau đó đưa tiếp chất đóng rắn nhận được nanocomposite nhiệt rắn. * Phương pháp trùng hợp Đây là phương pháp trùng hợp polyme được tiến hành trong các lớp sét của khoáng sét. Ban đầu người ta tiến hành đưa monome có điện tích dương vào trong các lớp sét của khoáng sét. Sau đó tiến hành trùng hợp polyme xen kẽ trong các lớp sét. Phương pháp này có hạn chế là chỉ tiến hành được phản ứng trùng hợp cation. CHƯƠNG 2: THỰC NGHIỆM 2.1. DỤNG CỤ, HÓA CHẤT 2.1.1. Dụng cụ - Máy khuấy từ có điều nhiệt, máy khuấy cơ. - Tủ sấy, bếp điện. - Máy ly tâm, máy nghiền bi. - Cân điện tử (độ chính xác 0,001 g). - Cốc thủy tinh 250, 500, 1000 ml. - Phễu lọc butne, giấy lọc, pipet .... - Tấm thép mỏng, tấm kính. - Chổi lông. 2.1.2. Hóa chất - Bentonite - Prolabo của Pháp (Merck). - Bentonite - Bình Thuận - Việt Nam đã qua tinh chế tại Viện Công nghệ Xạ hiếm (sản phẩm của đề tài KC.02.06/06 - 10), hàm lượng MMT trên 90%, kích thước hạt dưới 10 micron, dung lượng trao đổi ion 105 mdlg/100g, độ ẩm dưới 5%. - Cồn tuyệt đối của Trung Quốc. - Dung dịch HCl 0,1M; dung dịch NaOH 0,1M và dung dịch AgNO3 0,1M. - Tác nhân hữu cơ hóa được sử dụng là amin bậc bốn: Di (hydrogenated tallow) dimethylammonium chloride, có thành phần chính là Dimethyldioctadecylammonium cloride (DMDOA), của hãng Sigma - Aldricht, Đức. Công thức [(R)2-N(CH3)2]+Cl-, trong đó R gồm 64% C18, 31% C16, 4% C14, 1% C12. - Nhựa epoxy Epicot 1001 trong dung dịch của Shell Chemical. Khối lượng phân tử epoxy: 450-500 g, hàm lượng nhóm epoxy: 2000-2200 mmol/kg. - Chất đóng rắn Versamid 115 trong dung dịch của Henkel. Trị số amin: 230-246 mgKOH/g nhựa. - Dung môi: DMT3 – EP do Công ty cổ phần Sơn tổng hợp Hà Nội cung cấp. 2.2. PHƯƠNG PHÁP NGHIÊN CỨU 2.2.1. Phương pháp nhiễu xạ tia X (XRD) Nhiễu xạ tia X là một phương pháp quan trọng trong việc nghiên cứu cấu trúc vật liệu rắn. Các bước sóng của tia X nằm trong khoảng từ 1A0 đến 50A0.Chúng có năng lượng lớn nên có thể xuyên vào chất rắn. Khi chiếu tia X vào các mạng tinh thể,các tia X phản xạ từ hai mặt cạnh nhau có hiệu quang trình: ∆ = 2dsinθ Khi các tia này giao thoa với nhau ta sẽ thu được cực đại nhiễu xạ thỏa mãn phương trình Vulf-Bragg: ∆ = 2dsinθ = nλ với d: khoảng cách giữa hai mặt song song θ: góc giữa tia và mặt phẳng pháp tuyến n: số bậc phản xạ ( 1, 2 , 3, 4…) Như vậy khoảng cách giữa các mạng lưới tinh thể là :  Phương pháp nhiễu xạ tia X được ứng dụng để nghiên cứu cấu trúc của sét hữu cơ, của vật liệu composite cho biết khoảng cách cơ bản d001 giữa các lớp sét. Các mẫu sét hữu cơ, composite được ghi trên máy D8 Advance Brucker (CHLB Đức), ống phát tia CuKα, λ= 1,54064 Å, góc quét 2θ tahy đổi từ 0,5 ÷ 400, tốc độ 0,010/s tại Khoa Hóa học, Trường ĐH Khoa học Tự nhiên - Đại học Quốc gia Hà Nội. 2.2.2. Phương pháp phổ hấp thụ hồng ngoại (IR) Phương pháp phổ hồng ngoại được dùng để xác định các nhóm nguyên chức đặc trưng trong cấu trúc của bentonite và sét hữu cơ. Các mẫu bentonite và sét hữu cơ hấp phụ bức xạ hồng ngoại tùy thuộc vào tần số dao động của các nhóm chức trong thành phần cấu trúc của chúng như nhóm –OH. Các mẫu bentonite và sét hữu cơ được sấy khô, nghiền mịn với KBr tinh khiết, ép viên và đo mẫu. Mẫu được ghi trên máy phổ hồng ngoại GX-PerkinElmer-USA trong vùng từ 400 ( 4000 cm-1, tại Khoa Hóa học - Trường ĐH Khoa học Tự nhiên - Đại học Quốc gia. 2.2.3. Phương pháp kính hiển vi điện tử quét (SEM) Cấu trúc hình thái của vật liệu được nghiên cứu bằng kính hiển vi điện tử quét (SEM), trên thiết bị FESEM S-4800 của hãng Hitachi tại phòng thí nghiệm trọng điểm, và trên thiết bị JSM-6490 (JEOL-Nhật Bản) tại Trung tâm đánh giá hư hỏng vật liệu, Viện KH Vật liệu. Mẫu nghiên cứu được ngâm vào nitơ lỏng, dùng kìm bẻ gẫy, cắt lấy kích thước thích hợp. Mẫu tạo thành được gắn lên đế, bề mặt gẫy được phủ một lớp platin mỏng bằng phương pháp bốc bay trong chân không. Ảnh SEM bề mặt gãy thể hiện cấu trúc và độ tương hợp giữa các pha trong mẫu đo. 2.2.4. Phương pháp phân tích nhiệt Phương pháp phân tích nhiệt là phương pháp rất phổ biến để nghiên cứu sự biến đổi pha cũng như các phản ứng xảy ra trong quá trình gia nhiệt vật liệu (với tốc độ tăng nhiệt đều đặn). Sự biến đổi này được ghi nhận bằng các hiệu ứng nhiệt (thu nhiệt hay tỏa nhiệt) và các hiệu ứng mất khối lượng xảy ra trong quá trình đun nóng. Phổ phân tích nhiệt của bentonite, sét hữu cơ và composite được ghi trên máy Labsys TG/DSC SETARAM (Pháp), nhiệt độ khảo sát từ 250C ÷ 8000C, tốc độ nâng nhiệt: 100C/phút trong không khí tại Khoa Hóa học – Trường Đại học Khoa học Tự nhiên – Đại học Quốc gia. 2.2.5. Phương pháp xác định hàm lượng chất đóng rắn [12] Chất đóng rắn amin kết hợp với epoxy theo một tỉ lệ nhất định, đây là yếu tố quan trọng vì việc trộn đúng tỉ lệ đảm bảo cho phản ứng xảy ra hoàn toàn. Nếu tỉ lệ trộn không đúng thì nhựa chưa phản ứng hoặc chất đóng rắn còn dư trong hỗn hợp sẽ ảnh hưởng đến tính chất sản phẩm sau đóng rắn. Cơ sở của phương pháp này dựa vào sự giảm khối lượng của mẫu sau khi đã đóng rắn bị hòa tan khi Soxhlet trong axeton để xác định hàm lượng chất đóng rắn phù hợp. Quá trình xác định: - Chọn giấy lọc ( = 9 ( 11, trích ly giấy lọc bằng axeton trong 24 giờ, sấy 5 giờ trong tủ sấy ở 70oC (75oC, cân (m1 gam). - Dùng giấy đã trích ly gói mẫu (epoxy đã đóng rắn 1,0 ( 2,0 gam để khô trong 2 ngày ở 750C - 800C), cân (m2 gam), trích ly trong 24 giờ, sấy 2 ngày trong tủ sấy ở 70oC, cân (m3 gam). Hàm lượng chất đóng rắn (%) được tính theo công thức: . 100% 2.2.6. Các phương pháp xác định tính chất cơ lý của vật liệu 2.2.6.1. Phương pháp xác định độ bền va đập [12] Phương pháp xác định độ bền của màng phủ dựa trên cơ sở màng phủ bị biến dạng, bị bẻ gãy hoặc bị tách khỏi nền kim loại do sự rơi của tải trọng. * Dụng cụ xác định độ bền va đập (hình 2.1):  * Các đặc tính kỹ thuật của dụng cụ: Tên gọi các thông số  Giá trị   1, Tải trọng có khối lượng, kg 2, Chiều dài thang, cm 3, Giá trị vạch chia trên bảng số, mm 4, Đường kính phần làm việc của đe, mm 5, Đường kính lỗ đe, mm 6, Chiều sâu của búa thả chìm trong lỗ đe, mm 7, Đường kính viên bi của búa, mm  1 0,001 100 0,1 1 0,1 30 15 2 3   * Tấm mẫu: theo TCVN 5670 – 1992 tấm mẫu có tiết diện bề mặt rộng đủ để thực hiện phép thử có hiệu quả (100 x 100 x 0,01 mm). * Cách xác định: - Tấm mẫu được phủ màng khô theo TCVN 2069 – 1993 và được bảo quản trong điều kiện 25oC 2oC và độ ẩm tương đối là 755% . - Sự rơi của tải trọng được tiến hành theo từng bậc một và theo phương pháp thẳng đứng: + Đặt tấm mẫu ở vị trí trên đe, mặt màng phủ đặt lên phía trên. + Để tải trọng có khối lượng quy định rơi trên tấm mẫu. + Kiểm tra bằng mắt thường hoặc bằng dụng cụ phóng đại xem màng phủ trên mặt mẫu có bị gãy hoặc bị bóc tách ra khỏi nền không. + Nhắc lại phép thử cho 4 tấm mẫu khác nhau. Phép thử coi như thỏa mãn 4 tấm có màng phủ không bị gãy hoặc bóc tách khỏi nền. Ghi rõ độ cao trung bình (bằng cm) và khối lượng tải trọng (kg) mà ở đó xuất hiện sự gãy hoặc bóc tách đầu tiên của màng phủ do va đập. - Tính kết quả: độ bền va đập của màng được biểu thị bằng kg.cm là chiều cao cực đại (cm) mà từ đó tải trọng có khối lượng (kg) rơi lên tấm mẫu ở gia tốc rơi tự do, nhưng không gây nên sự phá hủy cơ học (gãy, bong, tróc). Sai lệch cho phép giữa 2 phép thử không quá 1 kg.cm. 2.2.6.2. Phương pháp xác định độ cứng của màng phủ [12] Phương pháp này dựa trên cơ sở xác định tỷ số giữa thời gian dao động của con lắc đặt trên bề mặt màng phủ với thời gian dao động của chính con lắc đó trên tấm kính ảnh (không có màng phủ). * Dụng cụ xác định độ cứng của màng phủ được giới thiệu ở hình 1.9: Tấm mẫu: theo TCVN 5670 – 1992 là một tấm kính bóng có kích thước 100 x100 x 5mm, tiến hành tạo màng phủ theo phương pháp quy định cho sản phẩm cần thử theo TCVN 2094 – 1993.  Hình 2.2: Dụng cụ đo độ cứng của màng phủ * Tiến hành thử: - Tấm chuẩn được phủ tạo màng đạt độ khô theo yêu cầu, bảo quản và tiến hành thử mẫu ở nhiệt độ 25  2oC và độ ẩm tương đối là 70 5%. Máy phải để xa các nguồn chấn động. - Kiểm tra số kính của dụng cụ con lắc, nghĩa là phải xác định thời gian dao động tắt dần của con lắc từ 12o xuống 4o đối với tấm kính chuẩn. - Xác định số kính (thời gian dao động tắt dần của con lắc) đối với màng phủ cần thử bằng cách thay thế tấm kính chuẩn bằng tấm mẫu ghi lại số thời gian bằng giây cho biên độ tắt dần của con lắc đối với tấm mẫu phải thử. - Phép thử lặp lại 3 lần và kết quả là trung bình cộng của 3 lần thử. - Độ cứng (X) của máy được tính theo công thức: X =  Trong đó: t là thời gian (s) dao động tắt dần của con lắc (12o – 4o) trên màng phủ thử, t1 là thời gian (s) dao động tắt dần của con lắc trên tấm kính chuẩn. Kết quả thử là trung bình cộng của các kết quả. Sai lệch cho phép giữa 2 phép đo là 2s cho biên độ dao động của con lắc đối với tấm mẫu phải thử. 2.2.6.3. Phương pháp xác định độ bền uốn Phương pháp xác định dựa trên cơ sở: độ bền của màng phủ bị gãy hoặc tách khỏi nền kim loại khi tấm mẫu thử bị uốn vòng quanh một trục hình trụ ở các điều kiện tiêu chuẩn. * Dụng cụ xác định độ bền uốn được giới thiệu trên hình 1.10: Hình 2.3: Dụng cụ I, II kiểm tra độ bền uốn Tấm chuẩn: là thép bóng, sắt tây bóng hoặc nhôm mềm tương ứng với yêu cầu của TCVN 5670 – 1992. Kích thước chuẩn: (100 x 50 x 0,3 mm). Tấm chuẩn có thể cắt theo kích thước trên sau khi màng phủ đã khô sao cho không có khuyết tật. Gia công: tiến hành chuẩn bị tấm mẫu theo TCVN 5670 – 1992, sau đó phủ màng theo phương pháp quét bằng chổi, vết chổi phải song song với chiều dài của tấm mẫu. * Tiến hành thử: Theo TCVN 2096 – 1993, tiến hành kiểm tra ở nhiệt độ 25 2oC. Đặt tấm mẫu lên bản kim loại, bề mặt sơn quay ra phía ốc xiết, cạnh tròn của bản kim loại quay lên trên. Ép mặt phủ cần thử vào bản kim loại và lá kép của khung. Vặn ốc để xiết chặt tấm mẫu với bản kim loại vào nẹp chắn. Dùng tay uốn mẫu phủ cần thử lượn tròn theo bản kim loại và uốn một cách đều đặn trong 1 – 2s. Độ bền uốn của màng được biểu diễn bằng đường kính của trục nhỏ nhất hoặc chiều dày nhỏ nhất của bản kim loại, mà trên đó màng phủ chưa bị biến dạng, nhắc lại phép thử có cùng kích thước trục (và độ dày của bản kim loại) này ba lần trên các tấm mẫu mới. Kết quả cuối cùng là trung bình cộng của 3 phép thử. 2.2.6.4. Phương pháp xác định độ bám dính * Dụng cụ: gồm có dao cắt bằng thép có lưỡi sắc từ 20o đến 30o và kích thước khác nhau, thước kẻ thẳng, có độ chia đến mm, chổi lông mềm, kính lúp phóng đại hai hoặc ba lần. Dụng cụ xác định độ bám dính được giới thiệu trên hình 2.4:  Hình 2.4: Dụng cụ xác định độ bám dính của màng Lấy mẫu: mẫu đại diện cho sản phẩm cần kiểm tra và chuẩn bị mẫu thử theo các tiêu chuẩn TCVN 2090 – 1993 và TCVN 5669 – 1992. * Tiến hành thử: + Tiến hành thử ở nhiệt độ 25oC 2oC và độ ẩm tương đối là 70 5% theo TCVN 5668 – 1992. Thực hiện phép thử ít nhất là ở 3 vị trí khác nhau trên tấm mẫu. Nếu các kết quả có sai số lớn hơn 1 đơn vị thì làm lại phép thử trên 3 vị trí nữa. + Số đường cắt ở mỗi hướng của mạng lưới ít nhất là 6 đường. + Khoảng cách giữa các đường cắt phải bằng nhau. Bảng 2.1: Phân loại độ bám theo kết quả thử: Điểm  Mô tả  Hình vẽ minh họa   1  Vết cắt hoàn toàn nhẵn, không có các mảng bong ra.    2  Các mảng nhỏ bị bong ra ở các điểm cắt nhau, diện tích bong chiếm không quá 5% diện tích bề mặt của mạng cắt.    3  Các màng bị bong dọc theo các vết cắt, diện tích bị bong từ 5-15% diênh tích mạng lưới.    4  Màng bị bong dọc theo vết cắt hay cả mản hình vuông, diện tích bong từ 15-30% diện tích mạng lưới.    5  Màng bị bong dọc theo vết cắt, theo các mảng rộng hay cả mảng hình vuông, diện tích bị bong chiếm hơn 35% diện tích mạng lưới. 

Các file đính kèm theo tài liệu này:

  • docNghiên cứu ảnh hưởng của sét hữu cơ đến các tính chất của epoxy.doc