Protein IL-11 được biểu hiện và tinh sạch từ tế bào E. coli Rosetta 2 dưới dạng
dung hợp với SUMO. Để đánh giá đặc tính một cách chính xác cho protein IL-11
thì cần cắt chúng ra khỏi thể dung hợp đó. Enzyme có khả năng nhận biết đặc hiệu
SUMO và cắt phân tử IL-11 ngay tại vị trí nối đó là SUMO protease 2. Theo lý
thuyết, sản phẩm cắt sẽ gồm các phân tử IL-11, SUMO, một lượng nhỏ SUMO
protease và protein SUMO-IL11 dư. Trong đó trừ protein IL-11, tất cả các phân tử
còn lại đều chứa đuôi his-tag ở đầu N nên có thể lợi dụng sắc ký ái lực Ni-NTA để
thu protein IL-11 từ dòng chảy phía dưới. Tuy nhiên khi kiểm tra hỗn hợp cắt 2 mg
SUMO-IL11 lên cột Hitrap 1 ml và điện di mẫu protein IL-11 đi ra thì thấy rằng
protein có nồng độ thấp và không đồng nhất
                
              
                                            
                                
            
 
            
                 179 trang
179 trang | 
Chia sẻ: tueminh09 | Lượt xem: 966 | Lượt tải: 0 
              
            Bạn đang xem trước 20 trang tài liệu Nghiên cứu biểu hiện, tinh chế và bước đầu đánh giá đặc tính sinh học của interleukin - 11 người tái tổ hợp, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
 is used to treat haematopoietic 
disorders. The recombinant human IL-11 was first approved by the FDA for 
prevention of severe thrombocytopenia and the reduction of the need for platelet 
transfusions following myelosuppressive chemotherapy in adult patients. This protein 
is formulated and sold to the market under a trade name of Neumega. Interleukin-11 
is not easy to be expressed as monomer under the recombinant form. This reasons 
127 
why the publications on this type of cytokine are scattered and biocharacteristics of 
the protein have not been fully evaluated. In Vietnam, research on this interleukin is 
limited and has just been conducted at the Genetic Engineering Lab, Institute of 
Biotechnology. Therefore, the study to create a biosimilar as Neumega on the basis of 
the recombinant protein IL-11 is necessary in order to be active for production 
technology towards this cytokine for pharmaceutical uses. 
Although there are certain drawbacks, such as protein expression in inclusion 
body, endotoxin accumulation, limited protein secreting to the periplasm etc. 
Escherichia coli is still the most common recombinant protein expression system 
used today. This host has outstanding advantages over other complicated expression 
systems with simple handle, fast growth-rate, high cell density, inexpensive medium, 
recombinant protein up to 50% of total protein in case of suitable plasmid design. In 
application, E. coli is treated to be easy to receive recombinant plasmids, multiply 
and express the genes derived from Prokaryotic and Eukaryotic. Moreover, E. coli 
strains used in production are relatively safe, less harmful in humans and animals. In 
addition, the genetic and physiological characteristics of E. coli have been fully 
investigated. On the market, there are many types of vector and mutant strains for the 
purpose of cloning and gene expression such as E. coli BL21 (high protein 
expression); SoluBL21 (solubility improvement); Origami B (creation of oxidative 
environment for S = S bridge); JM109 (stable plasmid); BL21 CodonPlus-RIL, BL21 
CodonPlus-RP, Rosetta (overcoming rare codon obstacles)... That is reason why E. 
coli is increasingly used to produce industrial and pharmaceutical proteins. 
The yeast strains of Pichia pastoris and Saccharomyces serevisae have some 
advantages over E. coli strain. They are able to express recombinant protein which is 
close to its natural form, less hydrolysis nor inclusion body formation. However, the 
yeasts usually express extracellular protein at a low productivity. In contrast, 
intracellular proteins expression in yeast are difficult to purify. In addition, the 
disadvantage of yeast cells is that it is difficult to break the cell wall. Compared to E. 
coli, the protein expression level in yeast is often lower. There are also fewer vector 
128 
types available for gene expression in yeast. In addition, there are other common 
expression system such as insect cells, CHO cells, BHK, genetically modified plants. 
These systems have the best apparatus for protein to arrange correctly. However, their 
main drawback is costly due to the long growing time, slow growth rate, expensive 
media etc. Therefore, it is neccessary to choose an appropriate gene expression 
system. 
Aim of the study 
- Expressing the recombinant human IL-11 in Escherichia coli. 
- Purifying the recombinant IL-11 protein to meet the requirement as an 
injection product. 
- Initially evaluating biocharacteristics of the recombinant IL-11 protein. 
Research contents: 
1. Expressing recombinant human IL-11 protein in E. coli: (i) Cloning gene 
encoded for IL-11 protein; (ii) Expressing the recombinant IL-11 protein in E. 
coli and improving its expression level; 
2. Producing a product of recombinant IL-11 protein which cab be use as a drug: 
(i) Purifying of IL-11 protein from E. coli; (ii) Evaluating the purified IL-11 
samples; (iii) Formulating, endotoxin removing and free-drying the IL-11 
product. 
3. Initially evaluating the biological characteristics of the recombinant protein 
such as the proliferation on TF-1 cell line and its safety on animal models 
(mice, rat, and rabbit). 
Results: 
A nucleotite sequence encoding for mature IL-11 of human without proline (177 
amino acid) was cloned into three expression vectors named pET22_il-11 (without 
codon modification), pET22_il-11opt (codon modification) and pSUMO_il-11opt 
(codon modification). After transformation into E. coli BL21, JM 109, Rosetta 2 and 
SoluBL21 by heat shock and screening for protein expression, both of the first 
constructs expressed the recombinant IL-11 protein at a very low level. This protein 
129 
has molecular mass of about 19 kDa which was hardly seen on Coomassie gel but on 
PVDF as a faint band. However, the third construct of pSUMO_il-11opt expressed a 
fusion protein of SUMO-IL11 with a molecular mass of about 36 kDa in E. coli 
Rosetta 2 (both seen on Coomassie gel and PVDF membrane). The IL-11 protein is 
known as one of the most difficult expression proteins due to its high isoelectric point 
(pI = 11,6). By gene contruction with SUMO expression system, the expression of 
SUMO-IL11 level was improved significantly in comparision with the first two 
constructs. Especially, SUMO-IL11 protein expressed as soluble form in cytoplasm 
of E. coli Rossetta 2 that would favor for purification and maintenance of biological 
activity. 
Different factors affected on SUMO-IL11 expression in E. coli Rossetta 2 were 
tested in shake flasks to push up SUMO-IL11 product via high cell density. Under 
screened conditions such as TB medium, pH 7, 0.05 mM IPTG at 37
o
C, induction at a 
cell density of OD600 ≈ 2, length of induction of 7 hours, SUMO-IL11 productivity 
reached to 1.43 g/l cell culture by ELISA (14.3-fold higher than the initial 
fermentation conditions). The cell density increased over 9 folds. 
The SUMO-IL11 protein was purified successfully by affinity chromatography 
using a XK26 column (Amersharm) containing 50 ml of Ni-NTA. Amount of 
SUMO-IL11 in total eluates was 88.61 mg, accordingly 0.71 g/l culture medium. 
SUMO-IL11 was subjected to a home-made SUMO protease 2 resulted in SUMO 
protein (17 kDa) and IL-11 protein (19 kDa). The IL-11 protein was then collected 
from the enzymatic reaction as inclusion form by centrifugation. These pellets were 
recovered as soluble form by dissolving in a suitable buffer containing 10 mM 
sodium phosphate, 300 mM glycine, 1% sucrose, tween-20 0.02%, 10 mM 
methionine, 20 mM histidine, pH 7. From 88.75 mg of SUMO-IL11 protein, 38 mg 
IL-11 was collected. The recovery yield of IL-11 from fermentation and purification 
steps was 34.68%. 
The IL-11 protein was more than 99% pure assessed by SDS-PAGE, 
QuantityOne and gel filtration. The endotoxin in the IL-11 protein was removed 
130 
efficiently by ultrafiltration using an Ultracel membrane having 30 kDa cut-off 
(Millipore, USA) in combination with 0.05 to 0.1 mM Ca
2+
. Endotoxin level in the 
resulting IL-11 protein tested by LAL test was lower than threshold set by US 
Pharmacopoeia and Neumega (<175 EU/dose of 5 mg protein). The recombinant IL-
11 protein was lyophilised in a smooth, uniformly and white powder. When 
reconstituted with distilled water, the entire mass dissolved completely into a clear 
solution. There was no significant change in IL-11 content prior and after 
lyophilization. The protein was observed not to be broken down into small bands on 
the Coomassie brilliant blue gel. 
By a proliferation assay on the TF-1 cell line, the specific bioactivity of the IL-
11 product was determined to be 4.17x10
5
 IU/mg. By administering 50 µg/kg 
subcutaneous dose on the clinical trials in mice, rats and rabbits (including 
extrapolative coefficient), the recombinant IL-11 protein was proved to be safe with 
no signs of acute toxicity, subacute toxicity, temperature rise. The protein also has 
general safety on mice and guinea pig. All assessments of general condition, weight, 
hematopoietic function, liver function, liver cell destruction, kidney function, 
histopathology of liver and kidney are within the normal range. There were no 
significant differences between the treatment groups and control group. 
In conclusion, the study demonstrated that the recombinant human IL-11 was 
produced efficiently in E. coli Rosetta 2 using a fusion SUMO system. The IL-11 
protein was purified successfully from the crude exxtract by a single step and split 
from SUMO by a home-made SUMO protease. It suggests a feasibility and large-
scale production of the protein for pharmaceutics. The resulting IL-11 product 
showed to stimulate the TF-1 cell line proliferation. The animal trials with 
subcutaneous injections of the IL-11 protein have fulfiled the safety test. Therefore, 
this purified protein produced in bacterial expression system may act as an promising 
cadidate for hematopoiectic pharmaceutics. 
131 
TÀI LIỆU THAM KHẢO 
1. Adrio JL, Demain AL (2010) Recombinant organisms for production of 
industrial products. Bioeng Bugs 1: 116–131. 
2. Agathos SN (1991) Production scale insect cell culture. Biotechnol Adv 9: 51–
68. 
3. Aguilar MI, Hearn MT (1996) High-resolution reversed-phase high-
performance liquid chromatography of peptides and proteins. Methods 
Enzymol 270: 3–26 
4. Ahmed N, Khan MA, Shahid N, Nasir IA, Zafar AU (2011) One step 
purification of biological active human interleukin-2 protein produced in yeast: 
Pichia Pastoris. Afr J Biotechnol 10: 15170–15178. 
5. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, 
Struhl K (2003) Current Protocols in Molecular Biology. John Wiley & Sons, 
Inc. 
6. Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K, Jin DK, Dias S, 
Zhang F, Hartman TE, et al. (2004) Chemokine-mediated interaction of 
hematopoietic progenitors with the bone marrow vascular niche is required for 
thrombopoiesis. Nat Med 10: 64–71. 
7. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr 
Opin Biotechnol 10: 411–421. 
8. Barton VA, Hall MA, Hudson KR, Heath JK (2000) Interleukin-11 signals 
through the formation of a hexameric receptor complex. J Biol Chem 275: 
36197–36203. 
9. Basu A, Li X, Leong SSJ (2011) Refolding of proteins from inclusion bodies: 
rational design and recipes. Appl Microbiol Biotechnol 92: 241–251. 
10. Berlec A, Strukelj B (2013) Current state and recent advances in 
biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. 
J Ind Microbiol Biotechnol 40: 257–274. 
132 
11. Bhatia M, Davenport V, Cairo MS (2007) The role of interleukin-11 to prevent 
chemotherapy-induced thrombocytopenia in patients with solid tumors, 
lymphoma, acute myeloid leukemia and bone marrow failure syndromes. Leuk 
Lymphoma 48: 9–15. 
12. Bhopale GM, Nanda (2005) Recombinant DNA expression products for 
human therapeutic use. Current Science 89. 
13. Bird LE (2011) High throughput construction and small scale expression 
screening of multi-tag vectors in Escherichia coli. Methods San Diego Calif 
55: 29–37. 
14. Bis RL, Stauffer TM, Singh SM, Lavoie TB, Mallela KMG (2014) High yield 
soluble bacterial expression and streamlined purification of recombinant 
human interferon α-2a. Protein Expr Purif 99: 138–146. 
15. Blommel PG, Becker KJ, Duvnjak P, Fox BG (2007) Enhanced bacterial 
protein expression during auto-induction obtained by alteration of lac repressor 
dosage and medium composition. Biotechnol Prog 23: 585–598. 
16. Bradford MM (1976) A rapid and sensitive method for the quantitation of 
microgram quantities of protein utilizing the principle of protein-dye binding. 
Anal Biochem 72: 248–254. 
17. Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins 
from sodium dodecyl sulfate--polyacrylamide gels to unmodified 
nitrocellulose and radiographic detection with antibody and radioiodinated 
protein A. Anal. Biochem 112: 195–203. 
18. Bussel JB, Mukherjee R, Stone AJ (2001) A pilot study of rhuIL-11 treatment 
of refractory ITP. Am J Hematol 66: 172–177. 
19. Butt TR, Edavettal SC, Hall JP, Mattern MR (2005) SUMO fusion technology 
for difficult-to-express proteins. Protein Expr Purif 43: 1–9. 
20. Cairo MS, Davenport V, Bessmertny O, Goldman SC, Berg SL, Kreissman 
SG, Laver J, Shen V, Secola R, van de Ven C, et al. (2005) Phase I/II dose 
escalation study of recombinant human interleukin-11 following ifosfamide, 
133 
carboplatin and etoposide in children, adolescents and young adults with solid 
tumours or lymphoma: a clinical, haematological and biological study. Br. J. 
Haematol. 128: 49–58. 
21. Carrington JC, Cary SM, Parks TD, Dougherty WG (1989) A second 
proteinase encoded by a plant potyvirus genome. Embo J 8: 365–370. 
22. Catanzariti AM, Soboleva TA, Jans DA, Board PG, Baker RT (2004) An 
efficient system for high-level expression and easy purification of authentic 
recombinant proteins. Protein Sci Publ Protein Soc 13: 1331–1339. 
23. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the 
methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24: 45–66. 
24. Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant 
proteins using Escherichia coli. Appl Microbiol Biotechnol 64: 625–635. 
25. Chou CP (2007) Engineering cell physiology to enhance recombinant protein 
production in Escherichia coli. Appl Microbiol Biotechnol 76: 521–532 
26. Costa S, Almeida A, Castro A, Domingues L (2014) Fusion tags for protein 
solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 
system. Front. Microbiol 5: 63. 
27. Cotreau MM, Stonis L, Strahs A, Schwertschlag US (2004) A multiple-dose, 
safety, tolerability, pharmacokinetics and pharmacodynamic study of oral 
recombinant human interleukin-11 (oprelvekin). Biopharm Drug Dispos 25: 
291–296. 
28. Cregg JM, Cereghino JL, Shi J, Higgins DR (2000) Recombinant protein 
expression in Pichia pastoris. Mol Biotechnol 16: 23–52. 
29. Czupryn MJ, McCoy JM, Scoble HA (1995). Structure-function relationships 
in human interleukin-11: Identification of regions involved in activity by 
chemical modification and site-directed mutagenesis. J Biol Chem 270: 978–
985. 
134 
30. Dams-Kozlowska H, Gryska K, Kwiatkowska-Borowczyk E, Izycki D, Rose-
John S, Mackiewicz A (2012) A designer hyper interleukin 11 (H11) is a 
biologically active cytokine. BMC Biotechnol 12: 8. 
31. Demain AL, Vaishnav P (2009) Production of recombinant proteins by 
microbes and higher organisms. Biotechnol Adv 27: 297–306. 
32. Deutsch VR, Tomer A (2006) Megakaryocyte development and platelet 
production. Br J Haematol 134: 453–466. 
33. Dimitrov D (2012) Therapeutic Proteins. Humana Press: 1–26. 
34. Doherty AJ, Connolly BA, Worrall AF (1993) Overproduction of the toxic 
protein, bovine pancreatic DNaseI, in Escherichia coli using a tightly 
controlled T7-promoter-based vector. Gene 136: 337–340. 
35. Du X, Williams DA (1997) Interleukin-11: review of molecular, cell biology, 
and clinical use. Blood 89: 3897–3908. 
36. Du XX, Williams DA (1994) Interleukin-11: a multifunctional growth factor 
derived from the hematopoietic microenvironment. Blood 83: 2023–2030. 
37. Du XX, Neben T, Goldman S, Williams DA (1993) Effects of recombinant 
human interleukin-11 on hematopoietic reconstitution in transplant mice: 
acceleration of recovery of peripheral blood neutrophils and platelets. Blood 
81: 27–34. 
38. Du XX, Doerschuk CM, Orazi A, Williams DA (1994) A bone marrow 
stromal-derived growth factor, interleukin-11, stimulates recovery of small 
intestinal mucosal cells after cytoablative therapy. In Blood: 33–37. 
39. Ersson B, Rydén L, Janson JC (1998) Introduction to protein purification. In 
Protein Purification. Wiley-VCH: pp. 1–40. 
40. Farajnia S, Hassanpour R, Lotfipour F (2010) Cloning and expression of 
human IL-11 in E. coli. Pharm Sci: 353–359. 
41. Ferrer M, Chernikova TN, Yakimov MM (2003). Chaperonins govern growth 
of Escherichia coli at low temperatures. Nat Biotechnol 21: 1266–1267. 
135 
42. Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-
based production of biopharmaceuticals. Curr Opin Plant Biol 7: 152–158. 
43. Fuhrer DK, Yang YC (1996) Activation of Src-family protein tyrosine kinases 
and phosphatidylinositol 3-kinase in 3T3-L1 mouse preadipocytes by 
interleukin-11. Exp Hematol 24: 195–203. 
44. Gao X, Chen W, Guo C, Qian C, Liu G, Ge F, Huang Y, Kitazato K, Wang Y, 
Xiong S (2010) Soluble cytoplasmic expression, rapid purification, and 
characterization of cyanovirin-N as a His-SUMO fusion. Appl Microbiol 
Biotechnol 85: 1051–1060. 
45. Garbers C, Scheller J (2013) Interleukin-6 and interleukin-11: same same but 
different. Biol Chem 394: 1145–1161. 
46. Ghalib R, Levine C, Hassan M, McClelland T, Goss J, Stribling R, Seu P, Patt 
YZ (2003) Recombinant human interleukin-11 improves thrombocytopenia in 
patients with cirrhosis. Hepatology 37: 1165–1171. 
47. Gordon, MS, McCaskill-Stevens WJ, Battiato LA, Loewy J, Loesch D, 
Breeden E, Hoffman R, Beach KJ, Kuca B, Kaye J, et al. (1996) A phase I trial 
of recombinant human interleukin-11 (neumega rhIL-11 growth factor) in 
women with breast cancer receiving chemotherapy. Blood 87: 3615–3624 
48. di Guan C, Li P, Riggs PD, Inouye H (1988) Vectors that facilitate the 
expression and purification of foreign peptides in Escherichia coli by fusion to 
maltose-binding protein. Gene 67: 21–30. 
49. Guengerich FP, Gillam EM, Ohmori S, Sandhu P, Brian WR, Sari MA, 
Iwasaki, M (1993) Expression of human cytochrome P450 enzymes in yeast 
and bacteria and relevance to studies on catalytic specificity. Toxicology 82: 
21–37. 
50. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous 
protein expression. Trends Biotechnol 22: 346–353. 
51. Hagel L (2001) Gel-filtration chromatography Curr Protoc Mol Biol Chapter 
10: Unit 10.9. 
136 
52. Han W, Zhang Y, Yan Z, Shi J (2003) Construction of a new tumour necrosis 
factor fusion-protein expression vector for high-level expression of 
heterologous genes in Escherichia coli. Biotechnol Appl Biochem 37: 109–113. 
53. Hangoc G, Yin T, Cooper S, Schendel P, Yang YC, Broxmeyer HE (1993) In 
vivo effects of recombinant interleukin-11 on myelopoiesis in mice. In Blood: 
965–972. 
54. Hatano S, Asano H, Nagai H, Murate T, Mori N, Kawashima K, Saito H, 
Kinoshita T (2002) In vitro effects of recombinant human IL-11 on human 
malignant lymphoma cells. J Clin Exp Hematop 42: 55–60. 
55. Hawley RG, Fong AZC, Ngan BY, de Lanux VM, Clark SC, Hawley TS 
(1993) Progenitor cell hyperplasia with rare development of myeloid leukemia 
in interleukin 11 bone marrow chimeras. J Exp Med 178: 1175–1188. 
56. Hermann JA, Hall MA, Maini RN, Feldmann M, Brennan FM (1998) 
Important immunoregulatory role of interleukin-11 in the inflammatory 
process in rheumatoid arthritis. Arthritis Rheum 41: 1388–1397. 
57. Huang Y, Su Z, Li Y, Zhang Q, Cui L, Su Y, Ding C, Zhang M, Feng C, Tan 
Y, et al. (2009) Expression and Purification of glutathione transferase-small 
ubiquitin-related modifier-metallothionein fusion protein and its neuronal and 
hepatic protection against D-galactose-induced oxidative damage in mouse 
model. J Pharmacol Exp Ther 329: 469–478. 
58. Ishihara K, Hirano T (2002) Molecular basis of the cell specificity of cytokine 
action. Biochim Biophys Acta 1592: 281–296. 
59. Italiano JE, Lecine P, Shivdasani RA, Hartwig JH (1999) Blood platelets are 
assembled principally at the ends of proplatelet processes produced by 
differentiated megakaryocytes. J Cell Biol 147: 1299–1312. 
60. Janson JC, Rydéns L (1998) Protein purification: Principles, high resolution 
methods, and application. Wiley-VCH, second edition: 1-679. 
137 
61. Jenny RJ, Mann KG, Lundblad RL (2003) A critical review of the methods for 
cleavage of fusion proteins with thrombin and factor Xa. Protein Expr Purif 
31: 1–11. 
62. Jia D, Yang H, Wan L, Cheng J, Lu X (2012) Production of bioactive, SUMO-
modified, and native-like TNF-α of the rhesus monkey, Macaca mulatta, in 
Escherichia coli. Appl Microbiol Biotechnol 93: 2345–2355. 
63. Johnson ES, Blobel G (1999) Cell cycle-regulated attachment of the ubiquitin-
related protein SUMO to the yeast septins. J Cell Biol 147, 981–994. 
64. Johnstone CN, Chand A, Putoczki TL, Ernst M (2015) Emerging roles for IL-
11 signaling in cancer development and progression: Focus on breast cancer. 
Cytokine Growth Factor Rev 26: 489–498. 
65. Joseph BC, Pichaimuthu S, Srimeenakshi S, Murthy M, Selvakumar K, 
Ganesan M, Manjunath SR (2015) An overview of the parameters for 
recombinant protein expression in Escherichia coli. J Cell Sci Ther 6: 1–7. 
66. Kane JF (1995) Effects of rare codon clusters on high-level expression of 
heterologous proteins in Escherichia coli. Curr Opin Biotechnol 6: 494–500. 
67. Karlsson E, Rydén L, Brewer J (1998) Ion exchange chromatography. In 
Protein Purification, Wiley-VCH, second edition: 145–205. 
68. Kawashima I, Ohsumi J, Mita-Honjo K, Shimoda-Takano K, Ishikawa H, 
Sakakibara S, Miyadai K, Takiguchi Y (1991) Molecular cloning of cDNA 
encoding adipogenesis inhibitory factor and identity with interleukin-11. FEBS 
Lett 283: 199–202. 
69. Kaye JA (1998) FDA licensure of NEUMEGA to prevent severe 
chemotherapy-induced thrombocytopenia. Stem Cells Dayt Ohio 16 Suppl 2: 
207–223. 
70. Kong B, Guo GL (2011) Enhanced in vitro refolding of fibroblast growth 
factor 15 with the assistance of SUMO fusion partner. PloS One 6: e20307. 
71. LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM 
(1993) A thioredoxin gene fusion expression system that circumvents 
138 
inclusion body formation in the E. coli cytoplasm. Biotechnol Nat Publ Co 11: 
187–193. 
72. Lee SJ, Lee SY (2002) Efficient high-level production of spider silk protein by 
fed-batch cultivation of recombinant Escherichia coli and its purification. 
Theories and Applications of Chem Eng 8: 246–359. 
73. Lee CD, Sun HC, Hu SM, Chiu CF, Homhuan A, Liang SM, Leng CH, Wang 
TF (2008) An improved SUMO fusion protein system for effective production 
of native proteins. Protein Sci Publ Protein Soc 17: 1241–1248. 
74. Lee CD, Yan YP, Liang SM, Wang TF (2009) Production of FMDV virus-like 
particles by a SUMO fusion protein approach in Escherichia coli. J Biomed Sci 
16: 69. 
75. Léon A, Wang XM, Champion-Arnaud P, Sobczyk A, Pain B, Content J, 
Jacques Y, Valarché I (2005) Expression of a bioactive recombinant human 
interleukin-11 in chicken HD11 cell line. Cytokine 30: 382–390. 
76. Leonard JP, Quinto CM, Kozitza MK, Neben TY, Goldman SJ (1994) 
Recombinant human interleukin-11 stimulates multilineage hematopoietic 
recovery in mice after a myelosuppressive regimen of sublethal irradiation and 
carboplatin. Blood 83: 1499–1506. 
77. Levin J, Bang FB (1968) Clottable protein in Limulus: its localization and 
kinetics of its coagulation by endotoxin. Thromb Diath Haemorrh 19: 186–
197. 
78. Li H, Li N, Gao X, Kong X, Li S, Xu A, Jin S, Wu D (2011a) High level 
expression of active recombinant human interleukin-3 in Pichia pastoris. 
Protein Expr Purif 80: 185–193. 
79. Li H, Wang Y, Xu A, Li S, Jin S, Wu D (2011b) Large-scale production, 
purification and bioactivity assay of recombinant human interleukin-6 in the 
methylotrophic yeast Pichia pastoris. FEMS Yeast Res 11: 160–167. 
139 
80. Li JF, Cui XW, Ji HY, Qiu T, Ji XM, Du MX, Wu HT, Xu XZ, Zhang SQ 
(2011c). High efficient expression of bioactive human BMP-14 in E. coli using 
SUMO fusion partner. Protein J 30: 592–597. 
81. Ma JKC, Drake PMW, Christou P (2003). The production of recombinant 
pharmaceutical proteins in plants. Nat Rev Genet 4: 794–805. 
82. Ma Q, Yu Z, Han B, Wang Q, Zhang R (2012) Expression and purification of 
lacticin Q by small ubiquitin-related modifier fusion in Escherichia coli. J 
Microbiol Seoul Korea 50: 326–331. 
83. Magalhães PO, Lopes AM, Mazzola PG, Rangel-Yagui C, Penna TC, Pessoa, 
AJ (2007) Methods of endotoxin removal from biological preparations: a 
review. J Pharm Pharm Sci 10: 388–404. 
84. Makrides SC (1996) Strategies for achieving high-level expression of genes in 
Escherichia coli. Microbiol Rev 60: 512–538. 
85. Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR 
(2004) SUMO fusions and SUMO-specific protease for efficient expression 
and purification of proteins. J Struct Funct Genomics 5: 75–86. 
86. Mant CT, Hodges RS (1996) Analysis of peptides by high-performance liquid 
chromatography. Methods Enzymol 271: 3–50. 
87. Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR (2006) 
Comparison of SUMO fusion technology with traditional gene fusion systems: 
enhanced expression and solubility with SUMO. Protein Sci Publ Protein Soc 
15: 182–189. 
88. Martich GD, Boujoukos AJ, Suffredini AF (1993) Response of man to 
endotoxin. Immunobiology 187: 403–416. 
89. Matakas JD, Balan V, Carson WF, Gao D (2013) Plant-produced recombinant 
human interleukin-2 and its activity against splenic CD4 + T-cells. Int J LifeSc 
Bt & Pharm Res 2: 192–203. 
140 
90. McKinley D, Wu Q, Yang-Feng T, Yang YC (1992) Genomic sequence and 
chromosomal location of human interleukin-11 gene (IL11). Genomics 13: 
814–819. 
91. Menzella HG (2011) Comparison of two codon optimization strategies to 
enhance recombinant protein production in Escherichia coli. Microb Cell 
Factories 10: 15. 
92. Moreland L, Gugliotti R, King K, Chase W, Weisman M, Greco T, Fife R, 
Korn J, Simms R, Tesser J et al. (2001) Results of a phase-I/II randomized, 
masked, placebo-controlled trial of recombinant human interleukin-11 (rhIL-
11) in the treatment of subjects with active rheumatoid arthritis. Arthritis Res 
3: 247–252. 
93. Morris JC, Neben S, Bennett F, Finnerty H, Long A, Beier DR, Kovacic S, 
McCoy JM, DiBlasio-Smith E, La Vallie ER, et al (1996) Molecular cloning 
and characterization of murine interleukin-11. Exp Hematol 24: 1369–1376. 
94. Mossessova E, Lima CD (2000) Ulp1-SUMO crystal structure and genetic 
analysis reveal conserved interactions and a regulatory element essential for 
cell growth in yeast. Mol Cell 5: 865–876. 
95. Musashi M, Clark SC, Sudo T, Urdal DL, Ogawa M (1991) Synergistic 
interactions between interleukin-11 and interleukin-4 in support of 
proliferation of primitive hematopoietic progenitors of mice. Blood 78: 1448–
1451. 
96. Nausch H, Huckauf J, Koslowski R, Meyer U, Broer I, Mikschofsky H (2013). 
Recombinant production of human interleukin 6 in Escherichia coli. PloS One 
8: e54933. 
97. Neben TY, Loebelenz J, Hayes L, McCarthy K, Stoudemire J, Schaub R, 
Goldman SJ (1993) Recombinant human interleukin-11 stimulates 
megakaryocytopoiesis and increases peripheral platelets in normal and 
splenectomized mice. Blood 81: 901–908. 
141 
98. Nelson LL (1978) Removal of pyrogens from parenteral solutions by 
ultrafiltration. Pharm Technol 2: 46–52. 
99. OECD (2008) Test No. 407: Repeated Dose 28-day Oral Toxicity Study in 
Rodents (Paris: Organisation for Economic Co-operation and Development). 
100. Orazi A, Cooper R, Tong J, Gordon MS, Battiato L, Sledge GW, Kaye J, 
Hoffman R (1993) Recombinant human interleukin-11 (NeumegaTM rhIL-11 
growth factor: rhIL-11) has multiple profound effects on human 
hematopoiesis. In Blood. 
101. Pang L, Weiss MJ, Poncz M (2005) Megakaryocyte biology and related 
disorders J Clin Invest 115: 3332–3338. 
102. Pearson FC (1985) Pyrogens: Endotoxins, LAL Testing, and depyrogenation. 
Journal of Pharmaceutical Science 75: 822–823. 
103. Peciak K, Tommasi R, Choi J, Brocchini S, Laurine E (2014) Expression of 
soluble and active interferon consensus in SUMO fusion expression system in 
E. coli. Protein Expr Purif 99: 18–26. 
104. Petsch D, Anspach FB (2000) Endotoxin removal from protein solutions. J. 
Biotechnol 76: 97–119. 
105. Pugsley AP, Francetic O, Driessen AJ, de Lorenzo V (2004) Getting out: 
protein traffic in prokaryotes. Mol Microbiol 52: 3–11. 
106. Putoczki T, Ernst M (2010) More than a sidekick: the IL-6 family cytokine IL-
11 links inflammation to cancer. J Leukoc Biol 88: 1109–1117. 
107. Putoczki TL, Dobson RCJ, Griffin MDW (2014) The structure of human 
interleukin-11 reveals receptor-binding site features and structural differences 
from interleukin-6. Acta Crystallogr D Biol Crystallogr 70: 2277–2285. 
108. Rietschel ET. Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, 
Ulmer AJ, Zähringer U, Seydel U, Di Padova F, et al. (1994) Bacterial 
endotoxin: molecular relationships of structure to activity and function. 
FASEB J 8: 217–225. 
142 
109. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in 
Escherichia coli: advances and challenges. Front Microbiol 5. 
110. Sadeghi A, Mahdieh M, Salimi S (2016) Production of Recombinant Human 
Interleukin-11 (IL-11) in Transgenic Tobacco (Nicotiana tabacum) Plants. J 
Plant Biotechnol 43: 432–437. 
111. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory 
manual. Cold Spring Harbor Laboratory Press. 
112. Sands BE, Winston BD, Salzberg B, Safdi M, Barish C, Wruble L, Wilkins R, 
Shapiro M, Schwertschlag US, RHIL-11 Crohn’s Study group (2002) 
Randomized, controlled trial of recombinant human interleukin-11 in patients 
with active Crohn’s disease. Aliment Pharmacol Ther 16: 399–406. 
113. Satakarni M, Curtis R (2011) Production of recombinant peptides as fusions 
with SUMO. Protein Expr Purif 78: 113–119. 
114. Schindler M, Osborn MJ (1979) Interaction of divalent cations and polymyxin 
B with lipopolysaccharide. Biochemistry Mosc 18: 4425–4430. 
115. Schwertschlag US, Trepicchio WL, Dykstra KH, Keith JC, Turner KJ, Dorner 
AJ (1999) Hematopoietic, immunomodulatory and epithelial effects of 
interleukin-11. Leukemia 13: 1307–1315. 
116. Sedov SA, Belogurova NG, Shipovskov S, Levashov AV, Levashov PA 
(2011). Lysis of Escherichia coli cells by lysozyme: discrimination between 
adsorption and enzyme action. Colloids Surf B Biointerfaces 88: 131–133. 
117. Sengupta P, Meena K, Mukherjee R, Jain SK, Maithal K (2008) Optimized 
conditions for high-level expression and purification of recombinant human 
interleukin-2 in E. coli. Indian J Biochem Biophys 45: 91–97. 
118. Sokolov AS, Kazakov AS, Solovyev VV, Ismailov RG, Uversky VN, Lapteva 
YS, Mikhailov RV, Pavlova EV, Terletskaya IO, Ermolina LV, et al (2016) 
Expression, purification, characterization of Interleukin-11 orthologues. Mol 
Basel Switz 21. 
143 
119. Sorensen HP, Mortensen KK (2005) Advanced genetic strategies for 
recombinant protein expression in Escherichia coli. J Biotechnol 115: 113–
128. 
120. Souto RB, Stamm FP, Ribela MT, de CP, Bartolini P, Calegari GZ, Dalmora 
SL (2012) Validation of a stability-indicating RP-LC method for the 
assessment of recombinant human interleukin-11 and its correlation with 
bioassay. Anal Sci Int J Jpn Soc Anal Chem 28: 215–220. 
121. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA 
polymerase to direct expression of cloned genes. Methods Enzymol 185: 60–
89. 
122. Sweadner KJ, Forte M, Nelsen LL (1977) Filtration removal of endotoxin 
(pyrogens) in solution in different states of aggregation. Appl Environ 
Microbiol 34: 382–385. 
123. Taga T (1997) The signal transducer gp130 is shared by interleukin-6 family 
of haematopoietic and neurotrophic cytokines. Ann Med 29: 63–72. 
124. Tan H, Dan G, Gong H, Cao L (2005) Purification and characterization of 
recombinant truncated human interleukin-11 expressed as fusion protein in 
Escherichia coli. Biotechnol Lett 27: 905–910. 
125. Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH, 
Hay RT (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to 
protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276: 35368–35374. 
126. Teramura M, Kobayashi S, Hoshino S, Oshimi K, Mizoguchi H (1992) 
Interleukin-11 enhances human megakaryocytopoiesis in vitro. Blood 79: 327–
331. 
127. Terpe K (2006) Overview of bacterial expression systems for heterologous 
protein production: from molecular and biochemical fundamentals to 
commercial systems. Appl Microbiol Biotechnol 72: 211–222. 
128. Tsuji K, Lyman SD, Sudo T, Clark SC, Ogawa M (1992) Enhancement of 
murine hematopoiesis by synergistic interactions between steel factor (ligand 
144 
for c-kit), interleukin-11, and other early acting factors in culture. Blood 79: 
2855–2860. 
129. Turner PV, Brabb T, Pekow C, Vasbinder MA (2011) Administration of 
Substances to Laboratory Animals: Routes of Administration and Factors to 
Consider. J Am Assoc Lab Anim Sci JAALAS 50: 600–613. 
130. Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Högbom 
M, van Wijk KJ, Slotboom DJ, Persson JO, et al (2008) Tuning Escherichia 
coli for membrane protein overexpression. Proc Natl Acad Sci U. S. A. 105: 
14371–14376. 
131. Walsh G (2010) Biopharmaceutical benchmarks 2010. Nat Biotechnol 28: 
917–924. 
132. Wang C, Castro AF, Wilkes DM, Altenberg GA (1999) Expression and 
purification of the first nucleotide-binding domain and linker region of human 
multidrug resistance gene product: comparison of fusions to glutathione S-
transferase, thioredoxin and maltose-binding protein. Biochem J 338: 77–81. 
133. Wang H, Xiao Y, Fu L, Zhao H, Zhang Y, Wan X, Qin Y, Huang Y, Gao H, 
Li X (2010) High-level expression and purification of soluble recombinant 
FGF21 protein by SUMO fusion in Escherichia coli. BMC Biotechnol 10: 14. 
134. Wang Z, Li N, Wang Y, Wu Y, Mu T, Zheng Y, Huang L, Fang X (2012) 
Ubiquitin-intein and SUMO2-intein fusion systems for enhanced protein 
production and purification. Protein Expr Purif 82: 174–178. 
135. Warne NW, Ingram RL, Macmillan S (2006) Formulations for IL-11. 
US7033992 B2. 
136. Waugh DS (2011) An overview of enzymatic reagents for the removal of 
affinity tags. Protein Expr Purif 80: 283–293. 
137. Weich NS, Wang A, Fitzgerald M, Neben TY, Donaldson D, Giannotti J, 
Yetz-Aldape J, Leven RM, Turner KJ (1997) Recombinant human interleukin-
11 directly promotes megakaryocytopoiesis in vitro. Blood 90: 3893–3902. 
145 
138. Whetstone PA, Butlin NG, Corneillie TM, Meares CF (2004) Element-coded 
affinity tags for peptides and proteins. Bioconjug Chem 15: 3–6. 
139. Xu XJ, Niu XM, Guo ZW, He HQ, Qiu DF, Liu C, Lin SH, Song K, Ren ZJ, 
Li WC, et al. (2011) Effects of recombinant human interleukin 11 on 
hematological malignancy after allogeneic hematopoietic cell transplantation. 
91: 100–102. 
140. Yang G, Ma F, Zhong M, Fang L, Peng Y, Xin X, Zhong J, Zhu W, Zhang Y 
(2014) Interleukin-11 induces the expression of matrix metalloproteinase 13 in 
gastric cancer SCH cells partly via the PI3K-AKT and JAK-STAT3 pathways. 
Mol Med Rep 9: 1371–1375. 
141. Yin J, Li G, Ren X, Herrler G (2007) Select what you need: a comparative 
evaluation of the advantages and limitations of frequently used expression 
systems for foreign genes. J Biotechnol 127: 335–347. 
142. Yonemura Y, Kawakita M, Masuda T, Fujimoto K, Kato K, Takatsuki K 
(1992) Synergistic effects of interleukin 3 and interleukin 11 on murine 
megakaryopoiesis in serum-free culture. Exp Hematol 20: 1011–1016. 
143. Yuzhalin AE, Kutikhin AG (2014) Interleukins in cancer biology: Thier 
heterogeneous role. Elsevier. 
144. Zhang QR. (2004) Progress on research and clinical application of interleukin-
11 in treatment of leukemia-review. J Exp Hematol Chin Assoc Pathophysiol 
12: 718–720. 
145. Zhang CC, Lodish HF (2008) Cytokines regulating hematopoietic stem cell 
function. Curr Opin Hematol 15: 307–311. 
146. Zhu F, Wang Q, Pu H, Gu S, Luo L, Yin Z (2013) Optimization of soluble 
human interferon-γ production in Escherichia coli using SUMO fusion partner. 
World J Microbiol Biotechnol 29: 319–325. 
147. www.lookfordiagnosis.com 
148. www2.nau.edu/~fpm/immunology/lectures/Chapter012.pdf
1 
PHỤ LỤC 
Phụ lục 1: Trình tự cassette biểu hiện gen il-11 đƣợc thiết kế và đặt tổng hợp 
gồm: NdeI/pelB/gen il-11/NotI. Ký tự gạch chân là trình tự lần lượt của NdeI và 
NotI. Ký tự in đậm là trình tự của tín hiệu tiết pelB (66 nucleotit). Phần còn lại là gen 
il-11 (Nu 203-733: 531 Nu chưa kể bộ ba kết thúc). 
AGGCCATATGAAATACCTGCTGCCGACCGCTGCTGCTGGTCTGCTGCTCCTCGCTGCCCAGC
CGGCGATGGCCGGGCCACCACCTGGCCCCCCTCGAGTTTCCCCAGACCCTCGGGCCGA 
GCTGGACAGCACCGTGCTCCTGACCCGCTCTCTCCTGGCGGACACGCGGCAGCTGGCTGC 
ACAGCTGAGGGACAAATTCCCAGCTGACGGGGACCACAACCTGGATTCCCTGCCCACCCT 
GGCCATGAGTGCGGGGGCACTGGGAGCTCTACAGCTCCCAGGTGTGCTGACAAGGCTGCG 
AGCGGACCTACTGTCCTACCTGCGGCACGTGCAGTGGCTGCGCCGGGCAGGTGGCTCTTC 
CCTGAAGACCCTGGAGCCCGAGCTGGGCACCCTGCAGGCCCGACTGGACCGGCTGCTGCG 
CCGGCTGCAGCTCCTGATGTCCCGCCTGGCCCTGCCCCAGCCACCCCCGGACCCGCCGGC 
GCCCCCGCTGGCGCCCCCCTCCTCAGCCTGGGGGGGCATCAGGGCCGCCCACGCCATCCT 
GGGGGGGCTGCACCTGACACTTGACTGGGCCGTGAGGGGACTGCTGCTGCTGAAGACTCG 
GCTGTGAGCGGCCGCATTAG 
2 
3 
Phụ lục 2: Cải biến trình tự gen il-11 ngƣời phù hợp với hệ biểu hiện E. coli (trên 
3 thông số: chỉ số phù hợp codon CAI (Codon Adaption Index), sự phân bố phần 
trăm mã bộ ba sử dụng hiệu quả, hàm lượng GC và sự phân bố của GC trong gen). 
4 
Phụ lục 3: Trình tự gen il-11opt trong cassette biểu hiện gen gồm: NdeI/gen il-
11opt/NotI: 
5 
Sau khi cải biến, gen il-11opt mã hóa trình tự axit amin giống của Neumega 
(nhưng có thêm methionine đầu N): ký tự gạch chân là trình tự lần lượt của NdeI và 
NotI. Phần ký tự còn lại là gen il-11opt (Nu: 203-733 gồm cả bộ ba kết thúc): 
catatgggtccgccgccgggtccgccgcgtgtttcaccggatccgcgtgccgaactggat 
 H M G P P P G P P R V S P D P R A E L D 
tctaccgtcctgctgacccgctcgctgctggcggatacccgtcagctggcagcacaactg 
 S T V L L T R S L L A D T R Q L A A Q L 
cgtgacaaatttccggccgatggcgaccataacctggattcactgccgaccctggcgatg 
 R D K F P A D G D H N L D S L P T L A M 
tcggcaggtgcactgggtgcactgcagctgccgggtgtgctgacgcgtctgcgtgcagat 
 S A G A L G A L Q L P G V L T R L R A D 
ctgctgagctatctgcgtcacgttcaatggctgcgtcgcgctggcggtagctctctgaaa 
 L L S Y L R H V Q W L R R A G G S S L K 
accctggaaccggaactgggtacgctgcaggcacgtctggatcgtctgctgcgtcgcctg 
 T L E P E L G T L Q A R L D R L L R R L 
cagctgctgatgagtcgtttagcattaccacagccaccaccagacccgcctgcacctcca 
 Q L L M S R L A L P Q P P P D P P A P P 
ctggctcctccaagttctgcatggggtggtattagagcagctcatgctatcctgggcggt 
 L A P P S S A W G G I R A A H A I L G G 
ctgcacctgacgctggattgggctgttcgtggtttattattgttaaaaacccgcctgtaa 
 L H L T L D W A V R G L L L L K T R L - 
gcggccgc 
 A A 
6 
Phụ lục 4: Sơ đồ cấu trúc của vector pET22b(+) (Novagen): 
7 
Phụ lục 5: Sơ đồ cấu trúc của vector pE-SUMO3 (LifeSensors): 
8 
Phụ lục 6: Kết quả giải trình tự gen il-11 trong vector biểu hiện pET22b(+) và 
pE-SUMO3: 
* Giải trình tự gen il-11 trong vector pET22_pelB_il-11: 
- Giải trình tự gen il-11 bằng mồi xuôi: Trình tự tương đồng với trình tự mã hóa tín 
hiệu tiết pelB (vị trí 63-132, đánh dấu bằng mũi tên đường liền) và toàn bộ gen il-11 
kể cả bộ ba mã kết thúc (tương đương vị trí Nu 133-674 trên trình tự, đánh dấu bằng 
mũi tên đường đứt quãng): 
9 
- Giải trình tự gen il-11 bằng mồi ngược: Trình tự tương đồng với đoạn trình tự của 2 
enzyme giới hạn và tín hiệu tiết pelB (tương đương vị trí Nu 616-685 trên trình tự, vị 
trí mũi tên đường liền) và toàn bộ trình tự gen il-11 kể cả bộ ba mã kết thúc (tương 
đương vị trí Nu 75-615, vị trí mũi tên đứt quãng): 
10 
- Trình tự nucleotit của gen pelB_il-11 sau khi giải trình tự (trong đó phần ký tự in 
đậm là trình tự của pelB, phần còn lại là gen il-11) là: 
CATATGAAATACCTGCTGCCGACCGCTGCTGCTGGTCTGCTGCTCCTCGCTGCCCAGCCGGCGATGGCCGGG
CCACCACCTGGCCCCCCTCGAGTTTCCCCAGACCCTCGGGCCGAGCTGGACAGCACCGTGCTCCTGACCCGCT
CTCTCCTGGCGGACACGCGGCAGCTGGCTGCACAGCTGAGGGACAAATTCCCAGCTGACGGGGACCACAAC
CTGGATTCCCTGCCCACCCTGGCCATGAGTGCGGGGGCACTGGGAGCTCTACAGCTCCCAGGTGTGCTGACA
AGGCTGCGAGCGGACCTACTGTCCTACCTGCGGCACGTGCAGTGGCTGCGCCGGGCAGGTGGCTCTTCCCTG
AAGACCCTGGAGCCCGAGCTGGGCACCCTGCAGGCCCGACTGGACCGGCTGCTGCGCCGGCTGCAGCTCCT
GATGTCCCGCCTGGCCCTGCCCCAGCCACCCCCGGACCCGCCGGCGCCCCCGCTGGCGCCCCCCTCCTCAGCC
TGGGGGGGCATCAGGGCCGCCCACGCCATCCTGGGGGGGCTGCACCTGACACTTGACTGGGCCGTGAGGG
GACTGCTGCTGCTGAAGACTCGGCTGTGAGCGGCCGC 
11 
- Kết quả so sánh trình tự nucleotit của gen pelB_il-11 sau khi đọc từ vector 
pET22_pelB_il-11 (ký hiệu là Query) với gen il-11opt thiết kế (ký hiệu là Sbjct) bằng 
phần mềm Expasy Aligment Tools: 
Query 1 CATATGAAATACCTGCTGCCGACCGCTGCTGCTGGTCTGCTGCTCCTCGCTGCCCAGCCG 60 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 1 CATATGAAATACCTGCTGCCGACCGCTGCTGCTGGTCTGCTGCTCCTCGCTGCCCAGCCG 60 
Query 61 GCGATGGCCGGGCCACCACCTGGCCCCCCTCGAGTTTCCCCAGACCCTCGGGCCGAGCTG 120 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 61 GCGATGGCCGGGCCACCACCTGGCCCCCCTCGAGTTTCCCCAGACCCTCGGGCCGAGCTG 120 
Query 121 GACAGCACCGTGCTCCTGACCCGCTCTCTCCTGGCGGACACGCGGCAGCTGGCTGCACAG 180 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 121 GACAGCACCGTGCTCCTGACCCGCTCTCTCCTGGCGGACACGCGGCAGCTGGCTGCACAG 180 
Query 181 CTGAGGGACAAATTCCCAGCTGACGGGGACCACAACCTGGATTCCCTGCCCACCCTGGCC 240 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 181 CTGAGGGACAAATTCCCAGCTGACGGGGACCACAACCTGGATTCCCTGCCCACCCTGGCC 240 
Query 241 ATGAGTGCGGGGGCACTGGGAGCTCTACAGCTCCCAGGTGTGCTGACAAGGCTGCGAGCG 300 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 241 ATGAGTGCGGGGGCACTGGGAGCTCTACAGCTCCCAGGTGTGCTGACAAGGCTGCGAGCG 300 
Query 301 GACCTACTGTCCTACCTGCGGCACGTGCAGTGGCTGCGCCGGGCAGGTGGCTCTTCCCTG 360 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 301 GACCTACTGTCCTACCTGCGGCACGTGCAGTGGCTGCGCCGGGCAGGTGGCTCTTCCCTG 360 
Query 361 AAGACCCTGGAGCCCGAGCTGGGCACCCTGCAGGCCCGACTGGACCGGCTGCTGCGCCGG 420 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 361 AAGACCCTGGAGCCCGAGCTGGGCACCCTGCAGGCCCGACTGGACCGGCTGCTGCGCCGG 420 
Query 421 CTGCAGCTCCTGATGTcccgcctggccctgccccagccacccccggacccgccggcgccc 480 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 421 CTGCAGCTCCTGATGTCCCGCCTGGCCCTGCCCCAGCCACCCCCGGACCCGCCGGCGCCC 480 
Query 481 ccgctggcgccccccTCCTCAGCCTgggggggCATCAGGGCCGCCCACGCCATCCTgggg 540 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 481 CCGCTGGCGCCCCCCTCCTCAGCCTGGGGGGGCATCAGGGCCGCCCACGCCATCCTGGGG 540 
Query 541 gggCTGCACCTGACACTTGACTGGGCCGTGAGGGGACTGCTGCTGCTGAAGACTCGGCTG 600 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 541 GGGCTGCACCTGACACTTGACTGGGCCGTGAGGGGACTGCTGCTGCTGAAGACTCGGCTG 600 
Query 601 TGAGCGGCCGCATTAG 616 
 |||||||||||||||| 
Sbjct 601 TGAGCGGCCGCATTAG 616 
12 
* Giải trình tự gen il-11opt trong vector pSUMO_il-11opt: 
- Giải trình tự gen il-11opt bằng mồi xuôi: Trình tự tương đồng với gen il-11opt 
từ Nu 18-534 (tương đương vị trí Nu 3-523 trên trình tự, đánh đấu bằng mũi 
tên): 
13 
- Giải trình tự gen il-11opt bằng mồi ngược: Trình tự tương đồng với gen il-
11opt từ Nu 1-506 (tương đương vị trí Nu 518-12 trên trình tự, đánh dầu bằng 
mũi tên). 
- Trình tự nucleotit của gen il-11opt giải được là: 
GGTCCGCCGCCGGGTCCGCCGCGTGTTTCGCCGGATCCGCGTGCCGAACTGGATTCTACCGTCCTGCTGACC
CGCTCGCTGCTGGCGGATACCCGTCAGCTGGCAGCACAACTGCGTGACAAATTTCCGGCCGATGGCGACCAT
AACCTGGATTCACTGCCGACCCTGGCGATGTCGGCAGGTGCACTGGGTGCACTGCAGCTGCCGGGTGTGCTG
ACGCGTCTGCGTGCAGATCTGCTGAGCTATCTGCGTCACGTTCAATGGCTGCGTCGCGCTGGCGGTAGCTCTC
TGAAAACCCTGGAACCGGAACTGGGTACGCTGCAGGCACGTCTGGATCGTCTGCTGCGTCGCCTGCAGCTGC
TGATGAGTCGTTTAGCATTACCACAGCCACCACCAGACCCGCCTGCACCTCCACTGGCTCCTCCAAGTTCTGCA
TGGGGTGGTATTAGAGCAGCTCATGCTATCCTGGGCGGTCTGCACCTGACGCTGGATTGGGCTGTTCGTGGT
TTATTATTGTTAAAAACCCGCCTGTAA 
14 
- Kết quả so sánh trình tự nucleotit của gen il-11opt sau khi đọc từ vector 
pSUMO_il-11opt (ký hiệu là Query) với gen il-11opt thiết kế (ký hiệu là Sbjct) 
bằng phần mềm Expasy Aligment Tools: 
Query 1 GGTCCGCCGCCGGGTCCGCCGCGTGTTTCACCGGATCCGCGTGCCGAACTGGATTCTACC 60 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 1 GGTCCGCCGCCGGGTCCGCCGCGTGTTTCACCGGATCCGCGTGCCGAACTGGATTCTACC 60 
Query 61 GTCCTGCTGACCCGCTCGCTGCTGGCGGATACCCGTCAGCTGGCAGCACAACTGCGTGAC 120 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 61 GTCCTGCTGACCCGCTCGCTGCTGGCGGATACCCGTCAGCTGGCAGCACAACTGCGTGAC 120 
Query 121 AAATTTCCGGCCGATGGCGACCATAACCTGGATTCACTGCCGACCCTGGCGATGTCGGCA 180 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 121 AAATTTCCGGCCGATGGCGACCATAACCTGGATTCACTGCCGACCCTGGCGATGTCGGCA 180 
Query 181 GGTGCACTGGGTGCACTGCAGCTGCCGGGTGTGCTGACGCGTCTGCGTGCAGATCTGCTG 240 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 181 GGTGCACTGGGTGCACTGCAGCTGCCGGGTGTGCTGACGCGTCTGCGTGCAGATCTGCTG 240 
Query 241 AGCTATCTGCGTCACGTTCAATGGCTGCGTCGCGCTGGCGGTAGCTCTCTGAAAACCCTG 300 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 241 AGCTATCTGCGTCACGTTCAATGGCTGCGTCGCGCTGGCGGTAGCTCTCTGAAAACCCTG 300 
Query 301 GAACCGGAACTGGGTACGCTGCAGGCACGTCTGGATCGTCTGCTGCGTCGCCTGCAGCTG 360 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 301 GAACCGGAACTGGGTACGCTGCAGGCACGTCTGGATCGTCTGCTGCGTCGCCTGCAGCTG 360 
Query 361 CTGATGAGTCGTTTAGCATTACCACAGCCACCACCAGACCCGCCTGCACCTCCACTGGCT 420 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 361 CTGATGAGTCGTTTAGCATTACCACAGCCACCACCAGACCCGCCTGCACCTCCACTGGCT 420 
Query 421 CCTCCAAGTTCTGCATGGGGTGGTATTAGAGCAGCTCATGCTATCCTGGGCGGTCTGCAC 480 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 421 CCTCCAAGTTCTGCATGGGGTGGTATTAGAGCAGCTCATGCTATCCTGGGCGGTCTGCAC 480 
Query 481 CTGACGCTGGATTGGGCTGTTCGTGGTTTATTATTGTTAAAAACCCGCCTGTAA 534 
 |||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct 481 CTGACGCTGGATTGGGCTGTTCGTGGTTTATTATTGTTAAAAACCCGCCTGTAA 534 
15 
Phụ lục 7: Số liệu khảo sát điều kiện nuôi cấy cảm ứng ảnh hƣởng đến mật độ tế 
bào của chủng E. coli Rosetta 2 tái tổ hợp 
Bảng 1: Ảnh hƣởng của nồng độ IPTG đến mật độ tế bào ở thời điểm thu mẫu 
Nồng độ IPTG 
(mM) 
Mật độ tế bào thu mẫu (OD600)
Trung Bình 
Lần 1 Lần 2 Lần 3 
0 5,42 5,38 5,72 5,51 
0,05 4,88 5,09 5,28 5,08 
0,1 2,48 2,21 2,70 2,46 
0,3 1,52 1,79 2,02 1,78 
0,5 1,62 1,92 1,80 1,78 
1 1,49 1,82 1,79 1,70 
1,5 1,38 1,58 1,74 1,57 
2 1,52 1,83 1,71 1,69 
Bảng 2: Ảnh hƣởng của nhiệt độ đến mật độ tế bào ở thời điểm thu mẫu 
Nhiệt độ 
(
o
C) 
Mật độ tế bào thu mẫu (OD600)
Trung Bình 
Lần 1 Lần 2 Lần 3 
20 2,2 2,45 2,64 2,43 
25 5,5 5,63 6,05 5,73 
30 4,76 4,92 5,57 5,08 
37 5,42 4,92 5,66 5,33 
40 4,52 4,02 3,82 4,12 
16 
Bảng 3: Ảnh hƣởng của pH môi trƣờng nuôi cấy đến mật độ tế bào thu mẫu 
pH môi trƣờng 
nuôi cấy 
Mật độ tế bào thu mẫu (OD600)
Trung Bình 
Lần 1 Lần 2 Lần 3 
5 1,62 1,74 2,26 1,87 
5,5 4,86 4,54 3,88 4,43 
6 5,53 5,08 4,82 5,14 
6,5 5,12 5,82 4,98 5,31 
7 6,38 5,8 5,68 5,95 
7,5 5,76 5,58 6,02 5,79 
8 5,72 6,07 5,92 5,90 
Bảng 4: Ảnh hƣởng của thời điểm cảm ứng đến mật độ tế bào thu mẫu 
Thời điểm cảm ứng 
(OD600) 
Mật độ tế bào thu mẫu (OD600)
Trung Bình 
Lần 1 Lần 2 Lần 3 
0,4 5,85 5,62 6,85 6,11 
0,8 7,78 6,3 6,74 6,94 
1 8,12 6,6 7,18 7,30 
1,5 8,05 10,52 9,42 9,33 
2 17,48 21,2 19,02 19,23 
2,5 12,7 11,6 10,5 11,60 
3 8,68 8,12 10,56 9,12 
3,5 7,84 8,12 9,48 8,48 
4 8,02 6,64 7,06 7,24 
17 
Phụ lục 8: Biểu đồ của 19 axit amin chuẩn dùng để phân tích các axit amin giải 
phóng từ phản ứng phân giải Edman 
Phụ lục 9: Biểu đồ phân tích trình tự 15 axit amin đầu N của protein IL-11 
ngƣời tái tổ hợp: 
 Biểu đồ gốc axit amin 1: G Biểu đồ gốc axit amin 2: P 
 Biểu đồ gốc axit amin 3: P Biểu đồ gốc axit amin 4: P 
18 
 Biểu đồ gốc axit amin 5: G Biểu đồ gốc axit amin 6: P 
 Biểu đồ gốc axit amin 7: P Biểu đồ gốc axit amin 8: R 
 Biểu đồ gốc axit amin 9: V Biểu đồ gốc axit amin 10: S 
19 
 Biểu đồ gốc axit amin 11: P Biểu đồ gốc axit amin 12: D 
Biểu đồ gốc axit amin 13: P Biểu đồ gốc axit amin 14: R 
Biểu đồ gốc axit amin 15: A 
18 
Phụ lục 10: Số liệu khảo sát hoạt tính của IL-11 tái tổ hợp trên dòng tế bào TF-1 
C 
(ng/ml) 
100 50 10 5 2.5 1 0.5 0.125 0.0125 0.001 
Log10C 2 1,69897 1 0,69897 0,39794 0 -0.30103 -0,90309 -1,90309 -3 
Độ hấp phụ 
5516,903 5409,089 5164,103 4603,274 4106,603 3560,05 3509,463 3404,767 3497,592 3396,893 
6000,803 5341,833 5248,871 4990,701 4044,043 3771,140 3808,297 3056,572 3324,528 3260,772 
7019,369 6512,216 6051,024 5385,464 4711,997 3937,543 3888,521 3262,85 3164,494 2837,798 
Trung bình 6179,025 5375,461 5487,999 4993,146 4287,548 3756,244 3735,427 3241,396 3328,871 3165,154 
Độ lệch chuẩn 766,9246 47,55717 489,4323 391,1007 368,9124 189,1868 199,7593 175,0861 166,5915 291,5542 
Ghi chú: C: Nồng độ của IL-11 tái tổ hợp 
19 
Phụ lục 11: Đồ thị biểu diễn sự tăng sinh của tế bào TF-1 đối với nồng độ 
IL-11 tái tổ hợp (đối chứng dƣơng của Biovision) đo ở bƣớc sóng 550 nm 
và 615 nm 
Logarit của nồng độ protein IL-11 tái tổ hợp (Biovision) đối với 
sự tăng sinh của tế bào (lặp lại 3 lần): 
Độ hấp phụ thấp nhất: 3264 
Độ hấp phụ cao nhất: 5870 
Logarit của nồng độ IL-11 - Biovision có tác 
dụng kích thích tế bào tăng lên 50%: 
0,8352 
Nồng độ của IL-11 - Biovision kích thích tế 
bào tăng lên 50%: 
6,843 (ng/ml) 
Sự chênh lệch giữa độ hấp phụ cao nhất và 
độ hấp phụ thấp nhất: 
2606 
Log conc (ng/ml)
R
P
M
-2 -1 0 1 2
2500
3500
4500
5500
BV Human; control O/N 
Đ
ộ
 h
ấ
p
 p
h
ụ
Logarit của nồng độ IL-11 - Biovision (ng/ml) 
            Các file đính kèm theo tài liệu này:
 nghien_cuu_bieu_hien_tinh_che_va_buoc_dau_danh_gia_dac_tinh.pdf nghien_cuu_bieu_hien_tinh_che_va_buoc_dau_danh_gia_dac_tinh.pdf