Một số yếu tố khác có thể tác động đến khả năng tạo cellulose của A. xylinum chưa được khảo sát trong luận văn này: các nguồn cơ chất khác, các chủng vi sinh vật khác, điều kiện nuôi cấy có bổ sung oxy, khả năng tạo cellulose của các chủng A. xylinum đột biến
Vì thế, một số đề nghị nghiên cứu như sau:
- Khảo sát ảnh hưởng của các nguồn cơ chất khác nhằm tìm ra các nguồn cơ chất hiệu quả mà rẻ tiền, giảm chi phí sản xuất.
- Khảo sát khả năng tạo cellulose của các chủng A. xylinum mới khác để tìm ra nguồn giống vi sinh vật tốt hơn.
- Khảo sát tính chất vật lý và hóa học của các sản phẩm cellulose tạo thành dưới các điều kiện nuôi cấy tĩnh nhằm nâng cao các tính chất cần thiết cho việc ứng dụng cellulose vi khuẩn làm màng bao chống vi sinh vật trong thực phẩm.
62 trang |
Chia sẻ: lvcdongnoi | Lượt xem: 5431 | Lượt tải: 3
Bạn đang xem trước 20 trang tài liệu Nghiên cứu sản xuất cellulose - Vi khuẩn từ acetobacter, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ng nuôi cấy, tốc độ sinh trưởng tế bào cũng tăng lên. Do đó, khả năng sản xuất với tỷ lệ lớn là có thể, thiết bị lên men có khuấy đảo và có sục khí được nghiên cứu và mong muốn tạo ra cellulose dạng II. Độ nhớt cao của môi trường và sức cản mạnh là trở ngại của phương pháp. Với phương pháp này thì sợi cellulose tạo ra có cấu trúc không bình thường (Kouda et al., 1997).
Aûnh hưởng của áp suất oxy đến quá trình tổng hợp cellulose vi khuẩn
Sự hình thành cellulose diễn ra tại vị trí mặt phân cách giữa không khí và lớp màng cellulose chứ không phải tại mặt phân cách giữa môi trường và cellulose. Do đó oxy là nhân tố quan trọng cho quá trình tổng hợp cellulose (Borzano & Desouza et al., 1995).
Watanabe và Yamanaka (1995) phát hiện ra áp suất oxy ảnh hưởng đến cả sự hình thành cellulose cũng như sức sản xuất màng. Cellulose tăng trưởng dưới áp suất oxy thấp có sự phân nhánh nhiều hơn so với cellulose tăng trưởng trong điều kiện áp suất cao hơn. Điều này có thể ảnh hưởng trực tiếp đến tính dai của lớp màng. Hơn nữa, với áp suất oxy là 10% tính sản xuất cellulose cao hơn 25% mà không ảnh hưởng đến sự tăng trưởng của tế bào. Sự tổng hợp cellulose tại áp suất 10% và 15% cao hơn so với điều kiện áp suất khí quyển. Tuy nhiên, hàm lượng oxy cao trên 50% lại hạn chế khả năng tổng hợp cellulose của vi sinh vật. (Yamanaka & Watanabe et al., 1995).
Aûnh hưởng của pH và nhiệt độ đến sản phẩm cellulose vi khuẩn
1. Ảnh hưởng của pH
Sự chuyển hóa glucose thành acid gluconic trong quá trình tổng hợp cellulose là nguyên nhân chính của sự giảm pH của môi trường lên men. pH ảnh hưởng rất lớn đến sự phát triển của tế bào và sự hình thành cellulose (Hwang, J.W et al., 1999). Các báo cáo trước đây đã đưa ra các kết luận cho thấy pH tối ưu cho sự tổng hợp cellulose từ A. xylinum là trong khoảng 4 – 7. Trong khi đó, trong báo cáo của mình, Fiedler et al. (1989) đưa ra khảng pH tối ưu là 5 - 7. Masaoka et al. (1993) thì thấy rằng khoảng này là 4 - 6. Qua các kết quả nghiên cứu đó cho chúng ta kết luận rằng pH thấp hơn 7 là thích hợp cho sự tổng hợp cellulose và sự phát triển của tế bào vi sinh vật A. xylinum.
A. xylinum đồng thời tổng hợp cả cellulose và cellulase. Cellulase ít được tổng hợp ở pH thấp (pH < 5) và được tổng hợp nhiều hơn ở pH cao. Độ bền cơ học của tấm cellulose nuôi cấy tại pH 4 cao hơn độ bền của tấm cellulose nuôi ở pH 6 (Toda et al., 1997).
2. Ảnh hưởng của nhiệt độ
Sự tổng hợp cellulose phụ thuộc khá nhiều vào nhiệt độ. Nhiệt độ từ 25 - 300C là thích hợp cho sự tổng hợp cellulose (Canon & Anderson, 1991). Hầu hết các nghiên cứu đều sử dụng khoảng nhiệt độ từ 25 - 300C.
Sự thay đổi nhiệt độ không những chỉ thay đổi hiệu suất tổng hợp cellulose mà còn thay đổi cả cấu trúc của cellulose, đặc biệt là khả năng giữ nước và mức độ polymer hóa. cellulose được sản xuất ở 300C có mức độ polymer hóa thấp hơn và khả năng giữ nước cao hơn so với cellulose được sản xuất ở nhiệt độ thấp hơn (Geyer et al., 1994).
Nhiệt độ cao (khoảng 1000C trong 3 giờ) không gây ảnh hưởng cho cấu trúc cellulose nhưng nhiệt độ thấp (-20 0C) sẽ làm tăng tính mềm dẻo của cellulose vi khuẩn (Zou et al., 2006).
Ảnh hưởng của thành phần môi trường nuôi cấy
Ảnh hưởng của nguồn nitơ
Môi trường cơ bản cho các nghiên cứu về quá trình tổng hợp cellulose của chủng A. xylinum là môi trường do Hestrin và Schramm (1954) thiết lập, có nguồn nitơ là dịch chiết nấm men và peptone với tỉ lệ tương ứng là 5:3. Từ khi thành phần môi trường này được đưa ra, nó đã trở thành môi trường cơ bản cho hầu hết các nghiên cứu về sản xuất cellulose vi khuẩn. Nhiều nhóm nghiên cứu khác nhau đã có sự thay đổi thành phần môi trường liên quan đến phần trăm của nitơ từ các nguồn khác nhau như dịch chiết nấm men, CSL (corn steep liquor), peptone, trypton, cao thịt, proteopeptone…Tất cả các nguồn nitơ này đều được ứng dụng, trong đó CSL là nguồn nitơ được cho là có hiệu quả nhất, tác động tăng trưởng tế bào và tốc độ tạo cellulose cao so với các nguồn nitơ khác và đây cũng là nguồn nitơ có giá thành tương đối rẻ (Klemm et al., 2001; Jonas et al., 1998; Toda et al., 1997).
Một vài amino acid bắt buộc phải có là methionine và glutamate. Masaoka et al. (1993) đã chứng minh methionine có tác dụng quan trọng đến sự tăng trưởng tế bào và tăng hiệu suất tạo cellulose so với môi trường không có amino acid này.
Các vitamin pyridoxine, nicotinic acid, p-aminobezoic acid và biotin được xác định là cần thiết cho sự tăng trưởng và tổng hợp cellulose, trong khi pantothanate và riboflavin cho kết quả ngược lại (Yang et al., 1998).
Ảnh hưởng của nguồn carbon.
Rất nhiều cơ chất được sử dụng làm nguồn carbon cho sự hình thành cellulose bởi vi khuẩn A. xylinum. Các chủng vi khuẩn khác nhau tổng hợp cellulose với những lượng khác nhau đối với các cơ chất khác nhau.
Glucose được xem là nguồn carbon tốt nhất cho A. xylinum IFO 13693 tổng hợp cellulose, lượng cellulose có thể đạt được lên tới 0,6 g/g glucose/ngày sau 2 - 4 ngày lên men (Masaoka et al., 1993). Tuy nhiên, hàm lượng cellulose được tổng hợp bởi A. xylinum Ku-1 khi sử dụng nguồn cơ chất là mannitol và arabitol cao hơn 3 lần so với khi sử dụng cơ chất là glucose (Oikawa et al., 1995). Bên cạnh đó, fructose lại là nguồn cơ chất thích hợp nhất cho A. xylinum BPR2001 tổng hợp cellulose (Matsuoka et al., 1996).
Jonas & Farah (1998) đã so sánh lượng cellulose tổng hợp bởi vi khuẩn A. xylinum IFO 13693 khi sử dụng các nguồn carbon khác nhau, glucose được chọn làm nguồn carbon để đối chứng (bảng 2.4).
Bảng 2.4: Ảnh hưởng của nguồn carbon lên sự tổng hợp cellulose của
A. xylinum IFO 13693 (Jonas & Farah, 1998)
Nguồn Carbon
Năng suất tổng hợp cellulose (%)
Monosaccharides
D-Glucose
D-Fructose
D-Galactose
D-Xylose
D-Arabinose
D-Sorbose
Disaccharides
Lactose
Malnose
Sucrose
Cellobiose
Polysaccharides
Tinh bột
Ethanol
Ethylene glycol
Propylene glycol
Glycerol
D-Arabitol
D-Mannitol
Acid hữu cơ
Citrate
L-Malate
Succinate
Những chất khác
Glucono-lactate
O-methyl-glucose
100
92
15
11
14
11
16
7
33
7-11
18
4
1
8
93
620
380
20
15
12
62
0.5
Tỷ lệ diện tích bề mặt – thể tích (S/V)
Bởi vì sự hình thành cellulose diễn ra trên mặt tiếp xúc giữa không khí và môi trường (Masaoka et al.,1993) nên tỉ lệ diện tích bề mặt tiếp xúc và thể tích môi trường là nhân tố có vai trò khá quan trọng trong sự hình thành và tổng hợp cellulose. Tỉ lệ tốt nhất đối với các chủng vi khuẩn khác nhau và điều kiện môi trường đang sử dụng khác nhau là khác nhau. Vandamme et al. (1998) đưa ra kết luận tỉ lệ S/V khoảng 2,2 cm-1 cho kết quả tốt nhất khi khảo sát trên dải tỉ lệ từ 1 đến 3 cm-1. Trong khi đó, lượng cellulose thu được cao nhất khi S/V bằng 0,7 cm-1 khi khảo sát trên dải tỉ lệ từ 0,27 đến 2,13 cm-1 (Krystynowicz et al., 2002).
Ứng dụng của cellulose vi khuẩn.
Mặc dù bản chất hóa học tương tự cellulose thực vật nhưng nhờ sản xuất dễ dàng, đặc tính cơ học cao, tính ổn định dưới hóa chất và nhiệt độ cao, cellulose vi khuẩn là vật liệu được chọn cho nhiều ứng dụng (Watanabe et al., 1998).
Thực phẩm
Các loại vi khuẩn gây thối rữa là nguyên nhân làm cho thực phẩm bị hư hỏng và làm giảm thời gian sử dụng của sản phẩm thực phẩm. Vấn đề bảo quản sản phẩm thực phẩm tránh khỏi các vi sinh vật gây hư hỏng được đặc biệt quan tâm. Có nhiều cách để bảo quản sản phẩm, ví dụ như dùng các hoá chất bảo quản chống vi sinh vật là một cách khá phổ biến. Tuy nhiên, với cellulose vi khuẩn, người ta có thể ứng dụng để làm màng bao chống vi sinh vật. Theo đó, chất chống vi sinh vật sẽ được kết hợp với màng, làm các chất bảo quản này tập trung trên màng bao làm thành bức tường bảo vệ thực phẩm, đồng thời giảm lượng hoá chất bảo quản trong thực phẩm, khi sử dụng sản phẩm, màng này có thể được loại bỏ dễ dàng. Ứng dụng làm màng bao bảo quản thực phẩm là một trong những ứng dụng quan trọng của cellulose vi khuẩn trong ngành công nghệ bao bì trong những năm gần đây (Yoshinaga et al., 1997).
Một sản phẩm thực phẩm được biết đến khá nhiều mà bản chất là cellulose vi khuẩn đó là thạch dừa (Nata de coco). Nata de coco là một chất màng màu trắng hoặc màu vàng kem được tổng hợp trong quá trình lên men của A. xylinum trên bề mặt của môi trường có đường và acid, ví dụ nhu nước trái cây. Nata de coco được cho rằng có thể làm thực phẩm ăn kiêng giúp chống lại bệnh ung thư ruột, chứng xơ cứng động mạch, chứng nhồi máu cơ tim và nhiều bệnh khác (El-Saied et al., 2004). Nata de coco đã trở thành món ăn truyền thống của Philippine và rất phổ biến ở nhiều quốc gia khác, trong đó có Việt Nam (Lapuz et al., 1967).
Y học
Vì khả năng giữ nước cao nên cellulose vi khuẩn có thể được sử dụng như tấm da nhân tạo tạm thời để chữa phỏng. Hơn nữa, cellulose vi khuẩn còn làm tăng khả năng phát triển tế bào da người. Sản phẩm ứng dụng màng cellulose vi khuẩn trong lĩnh vực y học là làm da tạm thời khá phổ biến như chế phẩm Biofill®. Tại Việt Nam, bộ môn Vi sinh khoa Dược trường Đại học Y dược nghiên cứu sản xuất màng trị phỏng bằng màng cellulose vi khuẩn có tẩm dầu mù u và mang lại hiệu quả cao khi sử dụng cho bệnh nhân.
Một nhóm các nhà khoa học, sinh học và giải phẫu học phát triển sản phẩm là BASYC® (Bacterial Synthesised Cellulose). BASYC® là ống sản xuất theo phương pháp tĩnh được sử dụng thay thế mạch máu. Nghiên cứu này bắt nguồn từ cấu trúc mạng sợi siêu mịn, tính chất bền cơ cao và độ trương phồng cao của cellulose vi khuẩn (Klemm et al., 2001).
Các ngành công nghiệp khác
Sản xuất cellulose vi khuẩn quy mô lớn của Weyerhaeuser Co. (Tacoma, Washington USA) và Cetus Co. (Emeryville, California, USA) đưa tới sự phát triển của cellulon® với nhiều ứng dụng rộng rãi. Ví dụ bao gồm ứng dụng trong bộ phận khai mỏ, trong ứng dụng nối và phủ để cố định màng và như thành phần thực phẩm để làm chất độn, chất kết cấu hay làm giảm celorie.
Ứng dụng của cellulose vi khuẩn làm chất cố định tế bào được Friedleer et al mô tả. Biopolymer Research Co. Ltd, Japan thiết lập mục đích xa hơn của kỹ thuật ứng dụng công nghiệp của polymer sinh học và bây giờ đang tập trung nghiên cứu “Biocellulose”. Tính chất của polymer hiệu dụng có nguồn gốc vi sinh vật cũng đang được xem xét (Watanabe et al., 1998).
Cellulose vi khuẩn hiện được mong đợi là vật liệu hóa sinh mới với những ứng dụng thú vị và đang tiếp tục nghiên cứu, phát triển sản xuất hàng loạt.
Các lĩnh vực ứng dụng cellulose vi khuẩn được trình bày trong bảng 2.5
Bảng 2.5: Ứùng dụng cellulose vi khuẩn trong nhiều lĩnh vực khác nhau
Lĩnh vực
Sản phẩm
Thực phẩm
Thực phẩm tráng miệng (Nata de coco, kem, kẹo, snack, khoai tây chiên ít calorie)
Thực phẩm giảm cân
Thịt nhân tạo
Bao bọc thịt và xúc xích
Giảm huyết thanh cholesterol
Thuốc rượu Kombucha hay trà Manchurian
Y tế
Màng trị thương, màng trị phỏng
Tác nhân vận chuyển thuốc
Da nhân tạo
Mạch máu nhân tạo
Màng bao sụn
Mỹ phẩm
Kem thoa da
Chất laøm se, chất ổn đñịnh
Màng nhân tạo
Chất làm dày và tăng cứng cho thuốc đánh bòng móng tay
Môi trường
Vật liệu hút vết dầu tràn hay chất độc hại
Màng siêu lọc làm sạch nguồn nước
Dầu mỏ
Vật liệu thu hồi và tái sinh khoáng chất và dầu
Da giầy
Da nhân tạo
Thể thao ngoài trời
Lều dùng một lần và đồ dùng cắm trại
Tiện ích công cộng
Màng thẩm thấu ngược
Chăm sóc trẻ em
Tã giấy dùng một lần có khả năng tái sinh
Aâm thanh
Màng rung chuyển đổi âm thanh
Công nghiệp gỗ
Chất tăng cứng cho gỗ nhân tạo
Chất bổ sung làm giấy
Thùng chứa chịu lực cao
Công nghiệp giấy
Giấy lưu trữ hồ sơ
Giấy làm tiền tệ
Giấy điện tử
Máy móc tự động và máy bay
Thân xe hơi
Yếu tố cấu trúc cho máy bay
Màng bao tàu vũ trụ
Phòng thí nghiệm
Giá thể nuôi cấy mô tế bào thực vật
Lĩnh vực khác
Màng composite
Chương 3: NGUYÊN LIỆU
VÀ PHƯƠNG PHÁP
Nguyên liệu
Chủng vi sinh vật
Chủng vi sinh vật được sử dụng để sinh tổng hợp cellulose là chủng của vi khuẩn A. xylinum được cung cấp bởi phòng Thí nghiệm Sinh học, trường Đại học Bách khoa thành phố Hồ Chí Minh. Chủng vi sinh vật được giữ trên thạch nghiêng ở 40C trong môi trường tự nhiên có thành phần chính là nước dừa.
Môi trường nuôi cấy vi sinh vật
Các thí nghiệm đều sử dụng môi trường cơ bản là môi trường Hestrin – Schramm (HS) bao gồm thành phần như sau: glucose 20 gl-1, cao nấm men 5 gl-1, peptone 3 gl-1, Na2HPO4 5 gl-1, acid citric 1,15 gl-1, nếu môi trường đặc thì có thêm agar 20 gl-1, nước cất vừa đủ 1 lít (Schramm et al., 1954).
Môi trường nhân giống được chuẩn vị bằng cách lấy một khuẩn lạc riêng rẽ, cho vào 10 ml môi trường HS trong ống nghiệm đã được tiệt trùng ở 1210C, 20 phút. Nuôi cấy 3 ngày, sau đó lọc để tách lấy dịch giống đi nhân giống cấp 2.
Môi trường nhân giống cấp 2 cũng có thành phần dinh dưỡng như đối với môi trường nhân giống cấp 1, tuy nhiên được chuẩn bị trong bình erlen 250 ml chứa 90 ml môi trường HS. Thể tích giống cấp 1 cho vào là 10% (v/v).
Môi trường lên men được chuẩn bị vào các erlen 250 ml chứa 90 ml môi trường HS và được thanh trùng ở nhiệt độ 1000C, thời gian 20 phút. Lượng dịch giống sử dụng lên men là 10% (v/v).
Kế hoạch thí nghiệm xây dựng như phần thiết kế thí nghiệm sau.
Thiết kế thí nghiệm
NỘI DUNG THÍ NGHIỆM
Thí nghiệm 1: Khảo sát quá trình phát triển của chủng vi khuẩn A. xylinum trên môi trường HS.
Thí nghiệm 4: Khảo sát sự ảnh hưởng của nguồn carbon đến quá trình sinh tổng hợp cellulose của A. xylinum.
Thí nghiệm 6: Tối ưu hóa môi trường bằng phương pháp quy hoạch thực nghiệm.
Thí nghiệm 2: Khảo sát quá trình sinh tổng hợp cellulose của vi khuẩn A. xylinum trên môi trường HS.
Thí nghiệm 3: Khảo sát ảnh hưởng của pH lên hiệu suất tổng hợp cellulose trên môi trường HS.
Thí nghiệm 5: Khảo sát sự ảnh hưởng của nguồn nitơ đến quá trình sinh tổng hợp cellulose của A. xylinum.
Khảo sát quá trình nhân giống.
Chủng A. xylinum từ ống nghiệm thạch nghiêng được bảo quản trong tủ lạnh. Chuẩn bị môi trường HS vào các hộp Petri. Cấy giống vi khuẩn từ ống thạch nghiêng lên các hộp Petri đó nhằm phân lập, đảm bảo nguồn giống đưa vào sử dụng được phát triển từ một khuẩn lạc. Sau khoảng 30 ngày tiến hành phân lập lại một lần nhằm đảm bảo giống có hoạt tính sinh học cao nhất.
Sau 2 ngày, các khuẩn lạc đã phát triển trên hộp Petri thành từng khuẩn lạc riêng rẽ. Từ một khuẩn lạc đó, cấy lên các ống nghiệm chứa 10 ml môi trường nhân giống cấp 1, nuôi cấy trong tủ ấm tại nhiệt độ 280C, thời gian 3 ngày. Sau thời gian 3 ngày, lọc dịch nhân giống trong điều kiện vô trùng để tách các sợi cellulose, thu dịch giống cấp 1 . Sau đó dùng dịch giống đó tiến hành nhân giống cấp 2.
Chuẩn bị 90 ml môi trường HS đã tiệt trùng vào erlen 250 ml, cho 10 ml dịch giống cấp 1 vào, lắc đều và để ở nhiệt độ 280C, không khuấy đảo. Tiến hành xác định mật độ tế bào ngay sau khi bắt đầu nhân giống cấp 2 và sau mỗi khoảng thời gian 24 giờ.
Mục đích của thí nghiệm nhằm đánh giá khả năng phát triển của chủng A. xylinum hiện có trong điều kiện môi trường hoá học, từ đó chọn thời gian lên men cho các thí nghiệm tiếp theo.
Khảo sát quá trình sinh tổng hợp cellulose.
Nuôi cấy thu nhận cellulose từ với chủng vi khuẩn đã được nhân giống cấp 2, xây dựng thí nghiệm như sau:
Cho 10ml dịch giống cấp 2 vào erlen 250 ml chứa 90 ml môi trường HS đã thanh trùng ở nhiệt độ 1000C, thời gian 20 phút. Sau khi cấy giống, để ở nhiệt độ 280C, không lắc đảo. Đến ngày thứ 5 thì bắt đầu thu cellulose, khảo sát khối lượng cellulose thu được tại các ngày thứ 4, thứ 5, thứ 6, thứ 7.
Chỉ tiêu theo dõi:
Khối lượng cellulose thu được ở các ngày thứ 4, 5, 6, 7.
pH của môi trường trong thời gian 4, 5, 6, 7 ngày.
Khảo sát ảnh hưởng của pH lên hiệu suất tổng hợp cellulose của vi khuẩn A. xylinum
Nhằm đánh giá tác động của pH lên khả năng tổng hợp cellulose của chủng A. xylinum hiện tại, chúng tôi tiến hành nuôi cấy thu cellulose tại các giá trị pH ban đầu khác nhau, từ đó rút ra khoảng pH tối ưu cho khả năng sinh tổng hợp cellulose của chủng vi khuẩn này. Phương pháp thí nghiệm như sau: nuôi cấy A. xylinum trên môi trường cơ bản HS trong erlen 250 ml, tỉ lệ giống cấy là 10%, thay đổi pH ban đầu từ 3 đến 7, nuôi cấy ở nhiệt độ 280C. Sau khi kết thúc quá trình lên men, thu nhận cellulose và nhận xét ảnh hưởng của pH lên khả năng tổng hợp cellulose của chủng vi khuẩn A. xylinum.
Khảo sát ảnh hưởng độc lập của nguồn carbon và nitơ lên hiệu suất tổng hợp cellulose của vi khuẩn A. xylinum
Sau khi đã xác định được thời gian nhân giống cho chủng vi khuẩn A. xylinum, thực hiện khảo sát tác động độc lập của nguồn carbon và nitơ đến hiệu suất sinh tổng hợp cellulose. Đây là thí nghiệm nhằm chọn lựa nguồn carbon và nitơ tốt nhất cho chủng A. xylinum hiện tại.
Dịch giống sau khi nhân giống cấp 2 sẽ được lên men trong các môi trường được chuẩn bị với các thành phần như môi trường HS nhưng nguồn carbon và nguồn nitơ được thay đổi, các thành phần khác của môi trường được giữ nguyên. Cụ thể, nguồn carbon được thay đổi giữa các chất sau: mannitol, glucose, fructose, sucrose. Nguồn nitơ được sử dụng gồm: cao nấm men, cao thịt, peptone, tryptone, (NH4)2HPO4, (NH4)2SO4. Sau khi thu nhận cellulose, so sánh kết quả, đánh giá hiệu suất của các nguồn cơ chất trên đối với khả năng sinh tổng hợp cellulose của A. xylinum.
Khảo sát ảnh hưởng đồng thời của nguồn carbon và nitơ lên hiệu suất tổng hợp cellulose của vi khuẩn A. xylinum
Sau khi đã xác định được nguồn carbon và nguồn nitơ thích hợp nhất làm thành phần cho môi trường cho chủng A. xylinum này tổng hợp cellulose, chúng tôi khảo sát ảnh hưởng đồng thời của hai nguồn cơ chất carbon và nitơ lên khả năng tổng hợp cellulose của vi khuẩn A. xylinum.
Nguồn carbon thích hợp nhất và nguồn nitơ thích hợp nhất theo kết quả của thí nghiệm trên sẽ được khảo sát tại nhiều hàm lượng khác nhau, đánh giá hiệu suất thu nhận cellulose tại các hàm lượng đó, từ các số liệu thực nghiệm, xây dựng phương trình hồi quy, rút ra hàm lượng nguồn carbon và nitơ thích hợp nhất cho A. xylinum tổng hợp cellulose.
Sử dụng phương pháp quy hoạch thực nghiệm để tìm điểm tối ưu cho thành phần môi trường lên men. Thiết kế thí nghiệm như bảng 3.1 và 3.2.
Bảng 3.1: Bảng thiết kế thí nghiệm tối ưu nguồn carbon và nguồn nitơ
TN
Biến
y
y*
x1
x2
1
-1
0
2
-1
+1
3
0
-1
4
0
+1
5
+1
0
6
+1
+1
7
-1
-1
8
+1
-1
9
0
0
10
0
0
11
0
0
Trong đó, y là hàm lượng cellulose trung bình thực tế thu được trong các thí nghiệm, y* là hàm lượng cellulose thu được theo phương trình hồi quy trong các thí nghiệm, x1 là yếu tố ảnh hưởng thứ nhất (nguồn carbon), x2 là yếu tố ảnh hưởng thứ hai (nguồn nitơ).
Các biến độc lập sẽ được tiến hành thu số liệu ở 3 giá trị nồng độ: mức trên (+) và mức dưới (-) và mức trung bình (0).
Đối với nguồn nitơ:
Nếu peptone được sử dụng làm nguồn nitơ thì hàm lượng được cho ở mức 8 gl-1.
Nếu peptone và cao nấm men cùng được sử dụng làm nguồn nitơ thì chọn tổng hàm lượng là 8 gl-1 với tỉ lệ 1:1
Bảng 3.2: Bảng mã hoá các yếu tố ảnh hưởng cần khảo sát
Kí hiệu
Nguồn carbon
x1 (gl-1)
Nguồn nitơ
x2 (gl-1)
0
25
8
-1
20
6
+1
30
10
Các phương pháp phân tích.
Số lượng vi khuẩn
Số vi khuẩn được xác định bằng phương pháp đếm khuẩn lạc trên đĩa thạch. Dịch lên men được pha loãng với 0,1% peptone (pH 5). Cho 0,1 ml dịch lên men đã pha loãng lên đĩa chứa môi trường agar HS, nuôi cấy ở 280C. Số khuẩn lạc được xác định sau 3 ngày nuôi cấy (Koula et al., 1997).
Hàm lượng cellulose
Cellulose ướt thu được từ bình lên men được rửa với nước cất để loại bỏ các thành phần môi trường còn sót lại. Sau đó, khối cellulose ướt được xử lý với dung dịch NaOH 0,5M ở 90oC trong thời gian 1 giờ để loại bỏ hoàn toàn các tế bào vi khuẩn còn sót. Sau đó, khối cellulose được rửa lại bằng nước cất đến khi pH dung dịch nước rửa về trung tính. Sấy cellulose sạch thu được ở 1050C đến khi khối lượng không đổi. Cân xác định khối lượng của cellulose thu được (Son et al., 2001).
Phân tích thống kê
Số liệu nghiên cứu được biểu diễn bằng trung bình kết quả của 3 lần lặp lại với sai số tương đối. Sự khác nhau của các giá trị riêng lẻ được kiểm định bằng t – test bằng phần mềm R cho Windows® với mức ý nghĩa 5% (P < 0,05).
Chương 4: KẾT QUẢ VÀ BÀN LUẬN
Khảo sát quá trình nhân giống vi khuẩn A. xylinum
Nhân giống cấp 2 với tỉ lệ giống cấy cấp 1 là 10%, trong môi trường cơ bản HS trong bình erlen 250 ml chứa 90 ml môi trường, nhiệt độ nuôi cấy 280C, thời gian 7 ngày. Mật độ tế bào vi khuẩn A. xylinum được xác định ngay từ khi bắt đầu tính thời gian nhân giống.
Đồ thị đường cong sinh trưởng của chủng vi khuẩn A. xylinum đang sử dụng trong thí nghiệm này thu được như sau.
Hình 4.1: Đường cong sinh trưởng của A. xylinum
Thời gian 24 giờ đầu của quá trình nhân giống, dưới đáy erlen bắt đầu xuất hiện những sợi nhỏ, mỏng, lơ lửng, đó là những dải sợi cellulose đầu tiên do A. xylinum tạo ra trong môi trường, sau đó các dải cellulose này sẽ chồng chập, xoắn lại với nhau, bắt đầu tạo thành lớp màng cellulose mỏng, màu trắng đục trên bề mặt môi trường sau ngày thứ ba, thứ tư của quá trình nhân giống.
Thời gian tổng hợp cellulose và khả năng tổng hợp cellulose có liên quan đến số lượng tế bào vi khuẩn A. xylinum. Mật độ tế bào ban đầu được xác định ngay khi dịch giống được lắc đều trong bình nhân giống (7,39 ± 0,05 log cfu ml-1) và tại các thời điểm xác định sau mỗi 24 giờ. Mật độ này liên tục tăng lên trong quá trình nhân giống, đạt số lượng 8,73 ± 0,06 (log cfu ml-1) sau 96 giờ phát triển.
Mật độ tế bào tăng nhanh trong 24 giờ đầu của quá trình nuôi cấy, tương ứng với thời gian tế bào đang ở pha thích nghi. Đến giai đoạn pha sinh trưởng thì mật độ tế bào bắt đầu tăng chậm lại, sự tăng chậm lại này diễn ra vào khoảng thời gian từ 24 giờ đến 96 giờ nhân giống. Mật độ tế bào đạt số lượng lớn nhất tại 96 giờ, sau đó giữ ổn định ở pha cân bằng rồi giảm dần khi vào pha suy vong. Từ đường cong sinh trưởng, ta sử dụng dịch giống sau 96h nhân giống để tiến hành lên men thu cellulose là tốt nhất.
Vậy, kết quả thí nghiệm cho thấy, trên môi trường hoá học, chủng A. xylinum này cũng có khả năng phát triển tốt như trên môi trường tự nhiên với thành phần chính là nước dừa.
Khảo sát quá trình sinh tổng hợp cellulose.
Sau khi xác định được thời gian nhân giống thích hợp, cần xác định thời gian kết thúc quá trình lên men cho các thí nghiệm sao cho phù hợp. Do đó, chúng tôi thực hiện khảo sát quá trình sinh tổng hợp cellulose của vi khuẩn A. xylinum nhằm chọn thời điểm kết thúc quá trình lên men một cách thích hợp nhất.
Sử dụng dịch giống cấp 2 với tỉ lệ giống cấy là 10% để nuôi cấy thu nhận cellulose trên môi trường cơ bản HS trong bình erlen 250 ml chứa 100 ml dịch lên men, nhiệt độ nuôi cấy là 280C. Trong quá trình nuôi cấy, khảo sát hàm lượng cellulose được được tổng hợp trong các khoảng thời gian khác nhau, đồng thời xác định pH của dịch lên men.
Kết quả thu được cho thấy, trong suốt quá trình lên men, A. xylinum liên tục tổng hợp cellulose, tương ứng với quá trình sinh trưởng và phát triển của vi khuẩn.
Ở ngày đầu tiên, do vừa chuyển từ môi trường nhân giống sang môi trường lên men nên có sự thay đổi đột ngột về môi trường, số lượng tế bào trong môi trường chưa đủ lớn nên sự tạo thành cellulose hầu như chưa có. Sau 2 ngày xuất hiện những sợi cellulose mảnh lơ lửng trong môi trường và trên bề mặt bắt đầu xuất hiện một lớp màng cellulose mỏng, màu trắng. Sang ngày thứ 3 tốc độ tạo cellulose tăng lên đáng kể khi bề mặt bình lên men có một lớp màng cellulose khá dày. Tuy nhiên, lượng cellulose tạo ra sau 3 ngày lên men vẫn rất ít nên chưa thể xác định được khối lượng. Lượng cellulose tăng nhanh từ ngày lên men thứ tư đến ngày thứ sáu. Đây là thời gian vi khuẩn sinh tổng hợp cellulose mạnh nhất sau khi đã thích nghi với môi trường và số lượng tế bào đã đủ lớn. Lượng cellulose thu được tăng lên từ 4,9 ± 0,3 gl-1 lên 7,4 ± 0,3 gl-1. Sang ngày thứ sáu thì tốc độ tăng lên của cellulose được sinh tổng hợp ra đã giảm dần, sự chênh lệch là 0,6 gl-1/ngày thay vì 1,19 gl-1/ngày như sự chênh lệch giữa ngày thứ tư và ngày thứ năm. Đến ngày thứ bảy thì lượng cellulose thu được hầu như không tăng hơn so với ngày lên men thứ sáu, đạt 7,5 ± 0,4 gl-1. Sự tăng lên này là không đáng kể. (P = 0,21 > 0,05).
Hình 4.2: Đồ thị biểu diễn trọng lượng cellulose thu được và giá trị pH
tại các ngày lên men thứ 4, 5, 6, 7
Mặt khác, trong quá trình lên men, pH của dịch lên men giảm dần từ pH ban đầu là 5 tới pH sau ngày thứ bảy là 3,52. Kết quả cho thấy, song song với sự tổng hợp cellulose, lượng cellulose càng tăng lên thì pH của dịch lên men giảm. Sự giảm pH này có nguyên nhân được xác định rằng trong quá trình sinh trưởng và phát triển, A. xylinum đã sử dụng đường để tạo ra acid gluconic (Tahara et al., 1997). Tuy nhiên, đến ngày thứ 6 thì pH bắt đầu trở nên ổn định, ít thay đổi. Quá trình chuyển hoá đường thành acid gluconic đã giảm. Cũng khảo sát biến động của pH trong quá trình tổng hợp cellulose, trong nghiên cứu của mình, Vandame et al. (1998) thấy rằng, pH dịch lên men giảm rõ rệt vào ngày thứ tư và thứ năm của quá trình lên men, đó cũng là khoảng thời gian cellulose được vi khuẩn tổng hợp mạnh nhất. Khảo sát sự chuyển hoá của đường, Vandame et al. (1998) thấy rằng A. xylinum sử dụng gần 50% lượng glucose trong môi trường chỉ sau ngày lên men thứ hai, và phần lớn lượng glucose này được chuyển hoá thành gluconate và acid gluconic. Bên cạnh đó, Hai-Peng et al. (2002) nghiên cứu trên chủng A. xylinum sucrofermentans BPR2001 cũng cho thấy, sau giai đoạn thích nghi, glucose được chuyển thành acid gluconic rất mạnh và pH dịch lên men giảm rõ rệt. Mặt khác, sự oxy hóa glucose, acid gluconic được tạo ra và giải phóng ra trong môi trường nuôi cấy. Nếu quá trình này xảy ra mạnh sẽ là nguyên nhân làm cho pH môi trường giảm từ 1 tới 3 đơn vị trong quá trình nuôi cấy, và kiềm chế sự tạo thành cellulose (Krystynowicz et al., 2002). Do đó, khi pH ổn định cũng có thể là dấu hiệu kết thúc quá trình lên men.
Kết quả cho thấy, tuy trọng lượng cellulose thu được sau 7 ngày lên men là cao nhất nhưng so với ngày thứ sáu thì sự chênh lệch đó không đáng kể (P > 0,05). Do đó, để rút ngắn thời gian lên men, chọn thời gian kết thúc lên men thống nhất cho các thí nghiệm tiếp theo là sau 6 ngày lên men.
Khảo sát ảnh hưởng của pH lên hiệu suất sinh tổng hợp cellulose của vi khuẩn A. xylinum
Tiến hành lên men thu nhận cellulose khi nuôi cấy vi khuẩn A. xylinum trên môi trường HS như thí nghiệm trên tại các điểm pH ban đầu khác nhau. Các giá trị pH được khảo sát là 3; 3,5; 4; 4,5; 5; 5,5; 6; 6,5 và 7. Khảo sát hàm lượng cellulose thu được, đánh giá ảnh hưởng của pH lên khả năng tạo cellulose của vi khuẩn. Từ đó chọn pH tốt nhất cho môi trường lên men.
Kết quả thu được cho thấy, tại các giá trị pH khác nhau lượng cellulose thu được là khác nhau, điều này chứng tỏ pH là một yếu tố ảnh hưởng đến hiệu suất tổng hợp cellulose của A. xylinum.
Khoảng pH cho chủng A. xylinum trong thí nghiệm này là khoảng từ 4 – 5,5, lượng cellulose thu được ~5,1 gl-1. Lượng cellulose tạo ra tại các giá trị pH khác nhau trong khoảng trên thì sự khác biệt không rõ ràng (P > 0,05). Ngoài khoảng pH trên thì khả năng tổng hợp cellulose của A. xylinum giảm chỉ đạt từ 3,5 gl-1 đến 4,6 gl-1.
Ảnh hưởng của pH lên hiệu suất sinh tổng hợp cellulose, xem hình 4.3
Hình 4.3: Ảnh hưởng của pH lên hiệu suất sinh tổng hợp cellulose của A. xylinum
Song song với quá trình tổng hợp cellulose, A. xylinum còn tổng hợp cả cellulase. Khi cellulase được tạo ra nhiều thì khả năng polymer hóa tạo cellulose của vi khuẩn giảm, lượng cellulose được tạo ra ít hơn. Khi pH cao (pH > 5), lượng cellulase được tạo ra nhiều hơn làm cho cellulose giảm, khi pH thấp (pH < 5) cellulase tạo ra ít, sự tạo thành cellulose tăng lên. Theo nghiên cứu của Tahara et al. (1997) đối với chủng A. xylinum BPR2001, tại pH 4 mức độ polymer hóa của cellulose vào khoảng 14000 – 16000, nhưng với pH 5, DP giảm từ 16800 xuống còn 11000. Độ bền cơ học của cellulose được tổng hợp tại pH 4 cũng cao hơn độ bền cơ của cellulose được sản xuất tại pH 5 (Tahara et al., 1997).
Theo nghiên cứu của Hutchen et al. (2006), với chủng vi khuẩn Gluconacetobacter hansenii, nguồn carbon là mannitol thì khi pH đầu là 5,5 lượng cellulose được tạo ra cao hơn đáng kể so với khi pH 6,5. Nhưng cũng trong nghiên cứu này, nếu thay đổi nguồn carbon là glucose thì pH 6,5 lại giúp chủng vi khuẩn này tổng hợp cellulose tốt hơn tại pH 5,5.
Mặt khác, trong quá trình tổng hợp cellulose, sự oxy hóa glucose xảy ra cung cấp cho quá trình trao đổi chất các điện tử làm cho phần glucose dùng cho việc tạo thành cellulose giảm. Các sản phẩm phụ được tạo ra khi glucose bị oxy hóa bởi một số enzyme cũng có thể giải thích tại sao các nguồn carbon khác nhau thì các chủng vi sinh vật khác nhau có hiệu suất sinh tổng hợp cellulose khác nhau tại các giá trị pH khác nhau (Krystynowicz et al., 2002).
Như vậy, pH cũng là một yếu tố có thể gây ảnh hưởng đến hiệu suất tổng hợp cellulose của vi khuẩn. Vi khuẩn A. xylinum tổng hợp cellulose tốt hơn ở môi trường có pH thấp hơn 5.
Khảo sát ảnh hưởng của nguồn carbon và nitơ lên hiệu suất sinh tổng hợp cellulose của vi khuẩn A. xylinum
Ảnh hưởng của nguồn carbon
Để khảo sát ảnh hưởng của nguồn carbon lên hiệu suất sinh tổng hợp cellulose, A. xylinum được nuôi cấy trên môi trường HS với các nguồn carbon khác nhau: glucose, mannitol, sucrose, fructose. Sau 6 ngày lên men ở nhiệt độ 280C, cellulose được thu nhận và xử lý, phân tích hiệu suất.
Sau 6 ngày lên men, chiều dày lớp cellulose thu được trong trường hợp môi trường có nguồn carbon là mannitol xấp xỉ bằng chiều cao của lớp dịch môi trường ban đầu. Đây cũng được coi là lượng cellulose lớn nhất thu được trong quá trình lên men so với các nguồn carbon khác (P < 0,05). Khối lượng cellulose đạt được 7,6 ± 0,4 gl-1 (hình 4.4). Mặt khác, cellulose ướt tạo thành có cấu trúc đều, bề mặt nhẵn, khối cellulose chắc, hiệu suất thu cellulose sau khi sấy khô cao.
Glucose là nguồn carbon cho kết quả tạo cellulose ở mức trung bình, hiệu suất tổng hợp cellulose khá ổn định, lượng cellulose đạt được ~5,7 ± 0,5 gl-1. Hai nguồn carbon khác là fructose và sucrose không thích hợp với chủng vi khuẩn A. xylinum này nên khả năng sử dụng hai nguồn carbon này kém. Lượng cellulose chỉ đạt khoảng 3,5 gl-1.
Bằng việc thay đổi nguồn carbon sử dụng, kết quả cho thấy rằng chủng vi khuẩn này có thể sử dụng nhiều loại cơ chất khác nhau nhưng các nguồn carbon khác nhau có sự thích hợp cho khả năng tạo cellulose của chủng vi khuẩn cũng khác nhau. Mỗi chủng vi sinh vật A. xylinum khác nhau sẽ thích hợp với một nguồn carbon khác nhau, tùy chủng vi sinh vật mà các nguồn carbon sẽ thay đổi để sử dụng cho phù hợp, từ đó tạo ra hiệu suất tổng hợp cellulose cao nhất. Kết quả cho thấy sự sai khác về khả năng sử dụng nguồn cơ chất carbon của chủng vi khuẩn A. xylinum này so với các chủng A. xylinum đã được nghiên cứu. Chẳng hạn, với kết quả này, chủng vi khuẩn A. xylinum sử dụng trong các thí nghiệm này sử dụng nguồn cơ chất carbon thích hợp nhất là mannitol, không giống như kết quả mà Masaoka et al. (1993) đã đạt được, kết quả của ông cho thấy rằng, glucose mới là nguồn carbon thích hợp nhất cho sự tạo thành cellulose của vi khuẩn A. xylinum IFO 13693, lượng cellulose có thể đạt được lên tới 0,6 g/g glucose/ngày sau 2 - 4 ngày lên men. Matsuoka et al. (1996) thấy rằng fructose là nguồn carbon thích hợp nhất cho A. xylinum BPR2001. Fructose cũng được xem là nguồn carbon tốt nhất cho A. xylinum E22 tổng hợp cellulose (Krystynowicz et al., 2002).
Tuy nhiên, kết quả trong nghiên cứu này phù hợp với kết quả nghiên cứu của Oikawa et al. (1995) với vi khuẩn A. xylinum Ku-1, hàm lượng cellulose được tổng hợp bởi A. xylinum Ku-1 khi sử dụng nguồn cơ chất là mannitol cao hơn 3 lần so với khi sử dụng cơ chất là glucose. Hutchens et al. (2006) với chủng A. xylinum hansenii, kết quả của các ông cũng thấy rằng mannitol là nguồn carbon thích hợp nhất cho các chủng A. xylinum đó tổng hợp cellulose.
Hình 4.4: Trọng lượng cellulose thu được khi nguồn carbon thay đổi
Trong quá trình tổng hợp cellulose, sự oxy hóa glucose xảy ra cung cấp cho quá trình trao đổi chất các điện tử làm cho phần glucose dùng cho việc tạo thành cellulose giảm, do đó cần giảm thiểu quá trình thất thoát glucose do quá trình oxy hóa này. Có thể giảm sự oxy hóa glucose bằng cách thêm ethanol hay glycerol vào môi trường nuôi cấy như là một nguồn điện tử dồi dào nhằm tăng khả năng sử dụng cơ chất carbon cho mục đích tạo cellulose, từ đó tăng hiệu suất sinh tổng hợp cellulose (Park et al., 2003). Mannitol, một polyol, cung cấp điện tử cho sự trao đổi chất của vi khuẩn và kích thích sự tạo thành cellulose tốt hơn so với glucose, điều này đã được báo cáo trong nghiên cứu của Brown et al. (1986).
Khi môi trường được cung cấp nguồn carbon là mannitol, sự acid hóa không xảy ra trong quá trình nuôi cấy, điều này phù hợp với con đường trao đổi chất của vi khuẩn sử dụng mannitol, mannitol được A. xylinum chuyển hóa thành fructose (Matsushita et al., 2003), sau đó oxy hóa tiếp thành 5-keto-d-fructose trước khi hấp thu (Mowshoitz et al., 1973). Với việc hạn chế sự tạo thành acid, glucose ít bị tổn thất, lượng cellulose tạo thành cũng cao hơn.
Khi các yếu tố môi trường khác được giữ cố định, thay đổi nguồn carbon, đối với chủng A. xylinum sử dụng trong nghiên cứu này, mannitol là nguồn carbon thích hợp nhất cho khả năng tạo cellulose của vi khuẩn.
Ảnh hưởng của nguồn nitơ
Sau khi chọn được nguồn carbon thích hợp nhất cho chủng A. xylinum hiện có để tổng hợp cellulose, khảo sát tiếp theo nhằm đánh giá ảnh hưởng của nguồn nitơ lên hiệu suất tổng hợp cellulose. Cũng chuẩn bị môi trường HS, nguồn carbon được giữ cố định là manitol và nguồn nitơ được thay đổi: cao nấm men, cao thịt, peptone, (NH4)2SO4 và (NH4)2HPO4, nuôi ở 280C, thời gian 6 ngày.
Kết quả cho thấy, khi lấy tryptone làm nguồn nitơ thì sự tổng hợp cellulose rất yếu, không đáng kể (0,5 ± 0,1 gl-1). Chứng tỏ đối với chủng vi khuẩn A. xylinum trong thí nghiệm này, nguồn nitơ trên không phù hợp cho chúng sinh tổng hợp cellulose.
Hai hợp chất khác được dùng làm nguồn nitơ trong thí nghiệm là (NH4)2SO4 và (NH4)2HPO4, lượng cellulose thu được cao hơn đối với tryptone nhưng hiệu suất tạo cellulose cũng rất thấp, chỉ đạt 2,5 ± 0,6 gl-1 và 2,3 ± 0,6 gl-1.
Đối với peptone, trọng lượng cellulose tạo ra ở mức trung bình (4,7 ± 0,3 gl-1), đđiều này cho thấy peptone là nguồn nitơ phù hợp cho chủng A. xylinum này hơn (NH4)2SO4 và (NH4)2HPO4 (P < 0,05).
Khi nguồn nitơ được thay bằng cao nấm men và peptone với tỉ lệ 5:3 hoặc cao thịt thì khả năng tạo cellulose của vi khuẩn tăng lên đáng kể, đạt tương ứng 6,8 ± 0,5 gl-1 và 6,1 ± 0,5 gl-1.
Lượng cellulose đạt được cao nhất khi sử dụng nguồn nitơ là cao nấm men (8,1 ± 0,8 gl-1). Điều này cho phép kết luận rằng, đối với chủng vi khuẩn A. xylinum đang khảo sát thì nguồn nitơ tốt nhất trong môi trường lên men để tạo cellulose là cao nấm men.
Các kí hiệu: YE + Pep – Cao nấm men và peptone
YE - Cao nấm men Pep – Peptone
Tryp – Tryptone ME – Cao thịt
Hình 4.5: Trọng luợng cellulose thu được khi thay đổi nguồn nitơ
Nitơ là nguồn dinh dưỡng rất quan trọng đối với A. xylinum. Cũng như đối với nguồn carbon, nguồn nitơ đóng vai trò quyết định đến khả năng sinh trưởng và phát triển của vi sinh vật, đặc biệt đối với quá trình chuyển hóa tổng hợp cellulose. Nguồn nitơ hữu cơ tốt hơn cho vi sinh vật sinh trưởng và phát triển. Do đó, nguồn nitơ hữu cơ cũng tốt cho A. xylinum tổng hợp cellulose hơn khi so sánh với nguồn nitơ vô cơ.
Với việc thay đổi các nguồn nitơ khác nhau, kết quả cho thấy rằng chủng vi khuẩn A. xylinum nghiên cứu cũng có khả năng sử dụng nhiều nguồn cơ chất nitơ khác nhau. Với những nguồn nitơ tôi tìm được và thử nghiệm trong nghiên cứu này, nấm men là nguồn nitơ thích hợp nhất cho chủng vi khuẩn A. xylinum phát triển và tạo cellulose. Một số nghiên cứu khác cho thấy corn steep liquor (CSL) là nguồn nitơ thích hợp nhất để A. xylinum tạo cellulose. Ví dụ, CSL là nguồn nitơ thích hợp nhất cho chủng A. xylinus BRC5 (Yang et al., 1998), A. xylinus BPR2001 (Matsuoka et al., 1996). Cao nấm men là nguồn nitơ hữu cơ, ngoài thành phần nitơ ra, còn chứa các thành phần dinh dưỡng khác tốt cho vi khuẩn phát triển và hỗ trợ sự tạo thành ATP trong quá trình phát triển của vi khuẩn (Sakairi et al., 1998)
Tóm lại, qua các thí nghiệm trên, nguồn carbon và nguồn nitơ thích hợp nhất cho môi trường nuôi cấy vi khuẩn A. xylinum để thu nhận cellulose là mannitol và cao nấm men, các thí nghiệm sau đều sử dụng nguồn carbon là mannitol và nguồn nitơ là cao nấm men cho môi trường lên men tổng hợp cellulose. Vấn đề đặt ra là cần phải chọn hàm lượng nguồn carbon và nitơ với hàm lượng như thế nào là tốt nhất cho môi trường lên men. Để giải quyết yêu cầu này, cần tiến hành thí nghiệm tiếp theo, tìm điểm tối ưu của thí nghiệm.
Tối ưu hoá nồng độ nguồn carbon và nitơ.
Nguồn carbon thích hợp nhất là mannitol và nguồn nitơ thích hợp nhất theo kết quả của thí nghiệm trên là cao nấm men được khảo sát với các nồng độ khác nhau, đánh giá hiệu suất thu nhận cellulose tại các hàm lượng đó, từ các số liệu thực nghiệm, xây dựng phương trình hồi quy, rút ra hàm lượng nguồn carbon và nitơ thích hợp nhất cho A. xylinum tổng hợp cellulose.
Chuẩn bị môi trường HS, nguồn carbon là mannitol, nguồn nitơ là cao nấm men với nồng độ theo mô hình thí nghiệm tối ưu như bảng 4.1 và 4.2.
Sau khi thu được kết quả thí nghiệm, số liệu được xử lý theo phương pháp quy hoạch thực nghiệm để tìm điểm tối ưu cho thành phần môi trường lên men.
Phương trình hồi quy bậc hai biểu diễn sự biến động của các yếu tố ảnh hưởng đến các kết quả thí nghiệm có dạng sau đây:
Trong đó:
y – khối lượng cellulose khô (g)
x1 , x2 - các yếu tố ảnh hưởng
b - các hệ số của phương trình hồi quy.
Bảng 4.1: Bảng kết quả thí nghiệm tối ưu
TN
Biến
y
x1
x2
1
-1
0
0,737
2
-1
+1
0,793
3
0
-1
0,801
4
0
+1
0,733
5
+1
0
0,807
6
+1
+1
0,817
7
-1
-1
0,807
8
+1
-1
0,713
9
0
0
0,811
10
0
0
0,820
11
0
0
0,791
Bảng 4.2: Bảng mã hoá các yếu tố ảnh hưởng cần khảo sát
Kí hiệu
Nguồn carbon
x1 (gl-1)
Nguồn nitơ
x2 (gl-1)
0
25
8
-1
20
6
+1
30
10
Trong thí nghiệm này, số lượng các yếu tố cần tối ưu là 2 yếu tố, đó là hàm lượng nguồn carbon (mannitol – x1) và hàm lượng nguồn nitơ (cao nấm men - x2). Các yếu tố khác được giữ không thay đổi.
Sau khi hoàn thành thí nghiệm, các số liệu được xử lý thống kê và xác định các hệ số của phương trình hồi quy.
Các hệ số của phương trình hồi quy trên đã được kiểm tra tính ý nghĩa theo tiêu chuẩn Student với t0.05(2) = 2,12 đã loại đi các hệ số không có ý nghĩa thống kê.
Sau khi bỏ đi các hệ số không ý nghĩa, loại đi các hệ số b1 của biến x1 và b11 của biến x12, phương trình hồi quy thu được như sau:
Phương trình hồi quy được kiểm tra sự tương thích với thực nghiệm theo tiêu chuẩn Fisher (F). Kiểm tra hệ số F với giá trị F0,05(f1, f2). f1, f2 tương ứng là các bậc tự do, f1 = 7; f2 = 2.
Sau khi kiểm tra sự tương thích của phương trình hồi quy với thực nghiệm cho thấy Ftính = 3,7 , F0,05 (7;2)= 4,7. Như vậy phương trình tương thích với thực nghiệm.
Chuyển phương trình hồi quy thu được (dạng mã hóa) về dạng phương trình trong hệ trục tự nhiên. Ta được phương trình như sau:
Tối ưu hóa thực nghiệm được thực hiện bằng phương pháp đường dốc nhất, bắt đầu từ điểm không, là mức cơ sở: x1 = 15 và x2 = 6
Chọn bước chuyển động của yếu tố x2 là , suy ra bước chuyển động của yếu tố x1 là .
Sau khi khảo sát các giá trị thực nghiệm tối ưu hóa theo phương trình hồi quy cho thấy tại vị trí x1 = 15,5 gl-1; x2 = 6,5 gl-1 cho hiệu suất sinh tổng hợp cellulose là cao nhất, y* = 8,76 gl-1. Đó chính là điểm tối ưu thỏa mãn yêu cầu của thí nghiệm.
Để kiểm tra sự sai lệch giữa lý thuyết và thực nghiệm, một thí nghiệm nuôi cấy thu nhận cellulose với thành phần môi trường lên men như điều kiện tối ưu lý thuyết trên. Kết quả cho thấy hiệu suất thu nhận cellulose không đạt được như lý thuyết, tuy nhiên tại điều kiện đó, lượng cellulose thu được cũng cao hơn tại các điều kiện khác. Lượng cellulose đạt được ~8,3 gl-1. Như vậy, kết quả lý thuyết thu được có sự chênh lệch so với thực tế (5,5%), tuy nhiên sự chênh lệch này có thể chấp nhận được.
Mannitol là một polyol, nó vừa đóng vai trò là cơ chất cho sự tổng hợp cellulose, vừa là nguồn năng lượng cho sự sản sinh ATP, giúp tế bào tăng trưởng và tăng khả năng tạo thành cellulose (Naritomi et al., 1998). Với nồng độ mannitol 15,5 gl-1, nồng độ cao nấm men 6,5 gl-1, lượng cellulose thu được có thể đạt ~8,7 gl-1. Tuy nhiên, nồng độ của mannitol cao hơn 16 gl-1 và nồng độ cao nấm men cao hơn 6,5 gl-1 lại không làm tăng lượng cellulose tạo thành mà ngược lại, lượng cellulose tạo ra lại có xu hướng giảm khi nồng độ mannitol quá cao. Điều này khá phù hợp với kết quả nghiên cứu của một số tác giả khác, chẳng hạn Masaoka et al. (1993), Oikawa et al. (1995), hay S.A. Hutchens et al. (2006). Điều này có thể giải thích bởi sự ức chế A. xylinum tại nồng độ cơ chất quá cao.
Như vậy, qua các thí nghiệm đã thực hiện, lượng cellulose được tổng hợp tốt nhất với môi trường hoá học, lượng cellulose có thể đạt được ~8,3 gl-1 khi A. xylinum được nuôi cấy dưới điều kiện môi trường gồm có 15,5 gl-1 mannitol; 6,5 gl-1 cao nấm men; 5 gl-1 Na2HPO4; 1,15 gl-1 acid citric; tại pH 5 và nhiệt độ 280C.
Chương 5: KẾT LUẬN VÀ ĐỀ NGHỊ
Kết luận
Như vậy, khi khảo sát quá trình sinh trưởng của chủng vi khuẩn A. xylinum được cung cấp bởi phòng thí nghiệm Sinh học, giữ giống ở 4oC trên môi trường có thành phần dinh dưỡng tự nhiên mà thành phần chính có bổ sung nước dừa, cho thấy chủng A. xylinum này có khả năng sinh trưởng tốt trên môi trường hoá học.
Kết quả khảo sát cũng cho thấy rằng, chủng A. xylinum này có khả năng sinh tổng hợp cellulose tốt trên môi trường hoá học và hiệu suất sinh tổng hợp cellulose của A. xylinum bị tác động nhiều bởi các yếu tố điều kiện nuôi cấy và môi trường nuôi cấy, trong đó có pH, nguồn carbon và nguồn nitơ. Có thể nâng cao hiệu suất sinh tổng hợp cellulose của A. xylinum bằng cách tác động đến các yếu tố ảnh hưởng này. Cụ thể, chọn pH cho môi trường nuôi cấy thích hợp, loại nguồn carbon, loại nguồn nitơ thích hợp nhất đồng thời chọn nồng độ các nguồn carbon và nitơ tối ưu cho quá trình sinh tổng hợp cellulose của A. xylinum. Ví dụ, có thể điều kiện nuôi cấy được điều chỉnh như sau: 15,5 gl-1 mannitol; 6,5 gl-1 cao nấm men; 5 gl-1 Na2HPO4; 1,15 gl-1 acid citric; tại pH 5 và nhiệt độ 280C.
Đề nghị
Một số yếu tố khác có thể tác động đến khả năng tạo cellulose của A. xylinum chưa được khảo sát trong luận văn này: các nguồn cơ chất khác, các chủng vi sinh vật khác, điều kiện nuôi cấy có bổ sung oxy, khả năng tạo cellulose của các chủng A. xylinum đột biến …
Vì thế, một số đề nghị nghiên cứu như sau:
Khảo sát ảnh hưởng của các nguồn cơ chất khác nhằm tìm ra các nguồn cơ chất hiệu quả mà rẻ tiền, giảm chi phí sản xuất.
Khảo sát khả năng tạo cellulose của các chủng A. xylinum mới khác để tìm ra nguồn giống vi sinh vật tốt hơn.
Khảo sát tính chất vật lý và hóa học của các sản phẩm cellulose tạo thành dưới các điều kiện nuôi cấy tĩnh nhằm nâng cao các tính chất cần thiết cho việc ứng dụng cellulose vi khuẩn làm màng bao chống vi sinh vật trong thực phẩm.
Nghiên cứu thêm các khả năng ứng dụng cellulose vi khuẩn trong thực phẩm và sinh học: màng bao thực phẩm chống vi sinh vật, cố định vi sinh vật, thực phẩm chức năng …
TÀI LIỆU THAM KHẢO
Bae, S., Sugano, Y. & Shoda, M. (2004) Improvement of becterial cellulose production by addition of agar in a jar fermentor. Journal of Bioscience and Bioengineering. 97: 33-38.
Bielecki, S., Krystynowicz, A. Turkiewicz, M. Kalinowska, H (2001) Bacterial cellulose. Institute of Technical Biochemistry, Technical Chemistry of Lódz, Stefanowskiego: 37-46
Brown, R.M., Willison, J.H. & Richarson, C.L (1986) Cellulose biosynthesis in Acetobacter xylinum - Visualization of site of synthesis and direct measurement of in vivo process. Proceeding of the National Academic of Sciences of the United States of America. 73: 4565 - 4569.
Chao, Y., Ishida, Sugano, Y. & Shoda, M. (2000) Bacterial cellulose production by Acetobacter xylinum in a 50L internal-loop airlift reactor. Biotechnol Bioeng. 68: 345– 352.
Chao, Y.P., Sugano. Y., Kouda, T., Yoshinaga, F., Shoda, M. (1997) Production of Bacterial cellulose by Acetobacter xylinum with an air lift reactor. Biotechnology Techniques. 11: 829-832
El-Saied, H., Basta, A.H., & Gobran, R.H. (2004) Research progress in friendly invironmental technology for the production of cellulose products (bacterial and its application). Polymer-plastic Technology and Engineering. 43: 797-820.
DeWulf, P., Joris., & Vandamme, K. (1996) Improved cellulose formation by an Acetobacter xylinum mutant limited In (Keto)Gluconate synthesis. Journal of Chemical Technology and Biotechnology. 67: 376-380.
Galas, E., Kristynowicz, A. Tarabasz - Szymanska (1999) Optimization of the production of Bacterial cellulose using multivariable linear regression analysis. Biotechnology. 19: 251-260.
George, J., Ramana, K.V., Sabapathy, S.N., Bawa, A.S. (2005) Physico-mechanical properties of chemically treated bacterial (Acetobacter xylinum) cellulose membrane. Microbiology and Biotechnology. 21: 1323-1327.
Gindl, W., Keckes, J. (2004) Tensile properties of cellulose acetate butyrate composites reinforce with bacterial cellulose. Composites science and Technology. 64: 2407-2413.
Hai Peng, C. (2002) Cultivation af Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor. Biotechnol. Appl. Biochem: 25-132.
Hestrin, S., & Schramm, M. (1954) Synthesis of cellulose by Acetobacter xylinum 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J. 58: 345–352.
Hwang, J.W., Hwang, J.K., Pyun, Y. R., Kim, Y.S. (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Ferment Bioeng. 88: 183–188.
Iguchi, M., Yamanaka, S., Budhiono, A. (2000) “Bacterial cellulose - a masterpiece of nature's arts,” Journal Of Materials Science 35 (2): 261-270
Jonas, R.F., Luiz (1998) Production and application of microbial cellulose. Polymer Degradation and Stability. 59: 101-106.
Klemm D., Udhardt, U., Marsch, S.P (2001) Bacterial cellulose - artificial blood vessels for microsurgery. Progress in Polymer Science. 26: 1561-1603.
Klemm, C. (2006) Influence of protective agents for preservation of Gluconacetobacter xylinus on its cellulose production. Cellulose 13: 485 –492.
Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, M., Goncalves-Miskiewicz, M., Turkiewicz and Bielecki, S. (2002) Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology & Biotechnology. 29: 189 – 195
Lê Văn Việt Mẫn & Lại Mai Hương (2006) Thí nghiệm vi sinh vật học thực phẩm. Nhà xuất bản Đại học quốc gia Tp. Hồ Chí Minh.
Masaoka, S. (1993) Production of cellulose from glucose by Acetobacter xylinum. Journal of fermentation and bioengineering. 75: 18-22.
Nguyễn Cảnh (2004) Quy hoạch thực nghiệm. Nhà xuất bản Đại học quốc gia Tp. Hồ Chí Minh.
Nguyễn Thị Diễm Chi, Hoàng Tuyền Yến Linh và Nguyễn Vũ Thanh (2002) Nghiên cứu nuôi cấy Acetobacter xylinum làm màng sinh học trị phỏng và các tổn thương da. Y học Tp.HCM. 6: 139-141.
Nguyễn Thúy Hương (2006) Tuyển chọn và cải thiện các chủng Acetobacter xylinum tạo cellulose vi khuẩn để sản xuất và ứng dụng ở quy mô pilot. Luận án tiến sĩ.
Naritomi, T., Kouda, T., Yano, H., Yoshinaga, F (1998) Effect of ethanol on Bacterial cellulose production from fructose in continous culture. Fermentation and Bioengineer. 85: 598-603.
Sakairi, N., Asano, M., Ogawa., Nishi, N., & Tokura, S (1998) A method for direct harvest of bacterial cellulose filaments during continuous cultivation of Acetobacter xylinum. Carbohydrate Polymers. 35: 233–237.
Schramm, M., & Hestrin, S. (1954) Factors affecting production of cellulose at the air liquid interface of a culture of Acetobacter xylinum. Journal of Genneral Microbiology. 11: 123 –129.
Son, H.J., Heo, M.S., Kim, Y.G., Lee, S.J. (2001) Optimization of fermentation conditions for the production of Bacterial cellulose by a newly isolated Acetobacter sp.A9 in shaking cultures. Biotechnology and Applied Biochemistry. 33: 1-5.
Toda, K., Asukua, T. (1997) Cellulose production by acid acetic-resistant Acetobacter xylinum. Fermentation and Bioengineering. 84: 228-231.
Vandamme, E.J., De Baets, S., Vanbaelen, A., Joris, K. & De Wulf, P. (1998) Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability. 59: 93-99
Watanabe K., T.M., Morinaga Y., Yoshinaga F. (1998) Structure features and properties of Bacterial cellulose produced in agitated culture. Cellulose. 5: 187-200.
Yang, L.Z. (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol. 34: 483–489.
Yang, Y.K. (1998) Cellulose production by Acetobacter xylinum BRC5 under agitated condition. Fermentation and Bioengineering. 85: 312-317.
Yoshinaga, T.T. (1997) Production of Bacterial cellulose by agitation culture systems. Pure and application chemistry. 69: 2453-2458.
Zou, K., Wu, S.C., Wu, W.T. (2006) A hybrid model combining hydrodynamic and biological effects of bacterial cellulose with a pilot scale airlift reactor. Biochemical Engineer 29: 81-90.
PHỤ LỤC
Các công thức sử dụng để tính toán trong thí nghiệm:
Phương trình hồi quy tuyến tính có dạng:
Trong đó: b là các hệ số
Số hệ số của phương trình hồi quy được tính theo công thức:
Trong đó, m là số hệ số của phương trình, k là số yếu tố ảnh hưởng
Tính toán các hệ số của phương trình:
Phương sai của các hệ số:
Kiểm tra tính ý nghía của các hệ số của phương trình hồi quy theo tiêu chuẩn Student, so sánh ttính với ttra
Kiểm tra sự tương thích với thực nghiệm của phương trình hồi quy bằng tiêu chuẩn Fisher, so sánh Ftính với Ftra
F được tính theo công thức:
Trong đó:
N là số thí nghiệm, l là số hệ số của phương trình hồi quy, si là các phương sai của các thí nghiệm, y là khối lượng cellulose ở các thí nghiệm.
Các file đính kèm theo tài liệu này:
- nghien_cuu_san_xuat_cellulose_vi_khuan_tu_acetobacter_4405.doc