Figure 3.50 showed the activity of precious catalyst supported on Al2O3. The precious
catalyst with the Pd loading content of 0.5% wt exhibited approximate 40% CO conversion
at temperature from 150 to 350 oC. At higher temperature, this sample converted
completely CO. C3H6, NO conversion of this catalyst reached maximum value (97% and
80%, respectively) from 350 oC. Meanwhile, 40% wt MnCoCe supported on γ-Al2O3
exhibited maximum conversion of CO, NO and C3H6 correspond 200, 250, and 300 oC.
Thus, the use of noble metal Pd was not as effective as MnCeCo in this case due to the
small precious metal loading on support. 0.5% wt Pd catalyst converted CO, C3H6 and NO
at much higher temperature than that of the optimal 40% MnCoCe on Al2O3. The
maximum pollutant conversions on both catalysts are approximately the same. Moreover,
an equal activity to noble catalyst sample is already obtained for the MnCoCe sample
containing only 20-30% active phase on the support.
117 trang |
Chia sẻ: tueminh09 | Ngày: 25/01/2022 | Lượt xem: 609 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Synthesize and investigate the catalytic activity of three - Way catalysts based on mixed metal oxides for the treatment of exhaust gases from internal combustion engine, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
so able to treat
completely soot within 7 hours on stream (4.35% CO, 7.06% O2, 1.15% C3H6,
1.77% NO). However, the presence of soot led to slightly decrease of activity after
5 hours on stream. It could be improved when the ratio of catalyst-soot is increased.
In fact, a ratio of 10/1, which is suitable with a real application, results in only a
little decrease of activity.
4. The study on different MnO2-Co3O4-CeO2 catalyst with altering MnO2/Co3O4/CeO2
composition revealed that only mixture with MnO2-Co3O4=1-3 exhibited the
distinguished activity. Moreover, composition of CeO2 should be reasonable
(CeO2/MnO2 from 0.38 to 1.26) to ensure the best activity. The addition of the
fourth element in the catalyst resulted to decrease activity. MnO2-Co3O4-NiO
catalysts were also studied and showed good activity but still less than that of
MnO2-Co3O4-CeO2.
5. Effort to increase ability to treat NO by adding BaO and WO3 showed that NO
conversion was improved slightly by adding 10% BaO but CO and hydrocarbon
conversion decreased accordingly.
6. Investigation of MnO2-Co3O4-CeO2 activity after aging under H2O and SO2 at high
temperature showed that the catalytic activity at low reaction temperature decreased
significantly after aging but remained at high temperatures (>250 oC). The addition
of ZrO2 did not prevent this decrease as expected. The catalyst MnO2-Co3O4-CeO2
1-3-0.75 not only remained its catalytic activity at high temperature above 500 oC
but also converted CO and C3H6 at low temperature after activation in the flow with
O2/CO=1.6 at 100 oC. The catalyst was able to treat 100% CO and approximate
100% C3H6 without CO2 in the gas flow from room temperature. Furthermore, the
catalyst can convert 100% CO and 98.56% C3H6 with the presence of CO2 in the
reaction flow.
7. When supported on γ-Al2O3, the optimal amount of MnCoCe 1-3-0.75 was 40%.
However, 20% wt MnCoCe/γ-Al2O3 sample exhibited higher activity than that of
noble catalyst 0.5% wt Pd/γ-Al2O3 when investigating in the gas flow containing
4.35% CO, 7.06% O2, 1.15% C3H6, 1.77% NO.
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
92
REFERENCES
1 Nguyễn Đức Khiển (1997), Nghiên cứu chế tạo hộp xúc tác chống ô nhiễm khí thải
xe cơ giới, làm sạch môi trường đô thị, Thuyết minh đề tài, Sở Khoa học và Công
nghệ Môi trường
2 Lê Minh Thắng (1999) Xúc tác cho phản ứng oxy hóa hoàn toàn hydrocacbon, ứng
dụng để xử lý khí thải của các động cơ đốt trong. Luận văn Thạc Sỹ, Trường đại học
Bách Khoa Hà Nội, tr. 1-26
3 Lê Thị Hoài Nam, Nguyễn Tuấn Minh, Nguyễn Đình Tuyến, Vũ Anh Tuấn, Đỗ Xuân
Đồng, Lê Thị Kim Lan, Trịnh Tuấn Khanh, Trần Thị Như Mai, Hoàng Đăng Lãnh,
Joerg Radnik, Emil Roduner (2007) Nghiên cứu tổng hợp xúc tác Au-ZSM5 để
chuyển hóa CO thành CO2. Tuyển tập các báo cáo khoa học hội nghị xúc tác và hấp phụ
toàn quốc lần thứ 4, Thành phố Hồ Chí Minh, tr. 529-534
4 Trần Thị Minh Nguyệt, Nguyễn Quang Huấn, Lê Văn Tiệp, Nguyễn Văn Quí,
Nguyễn Công Tráng, Trần Quế Chi, Nguyễn Doãn Thai, Đỗ Thế Chân, Nguyễn
Quốc Trung (2007) Tính chất DeNOx của hỗn hợp Perovskite La1-xSrxCoO3 với một
số đơn oxit. Tuyển tập các báo cáo khoa học Hội nghị xúc tác và hấp phụ toàn quốc lần
thứ 4, Thành phố Hồ Chí Minh, tr.511-517
5 Trần Thị Như Mai, Nguyễn Thị Minh Thư, Nguyễn Hồng Quân, Bùi Phương Thảo,
Lê Thái Sơn, Lý Thế Anh (2007) Nghiên cứu chế tạo và ứng dụng xúc tác V2O5-
TiO2/Me2Ox (Me=Mo,Cu,Ce) trên gốm cấu trúc tổ ong trong xử lý khí thải. Tuyển
tập Báo cáo khoa học Hội nghị Xúc tác và Hấp phụ toàn quốc lần thứ 4, Thành phố
Hồ Chí Minh, tr. 524-528
6 Trần Quế Chi, Trần Thị Minh Nguyệt, Lưu Tiến Hưng, Quách Thị Hoàng Yến,
Nguyễn Thị Toàn, Nguyễn Doãn Thai, Nguyễn Quốc Trung, Đỗ Thế Chân, Lê Phúc
Sơn (2011) Nghiên cứu chế tạo nano vàng trên chất mang Co3O4 và hoạt tính xúc tác
của hệ Au/Co3O4. Tạp chí Hóa học 49(5AB), tr. 210-206
7 Lê Thị Hoài Nam, Lê Anh Minh, Nguyễn Thanh Tuấn, Vũ Tiến Mai, Phạm Thanh
Huyền (2011) Đánh giá hoạt tính của xúc tác Au/ZSM-5 đối với phản ứng oxy hóa
hoàn toàn toluen-so sánh với một số hệ xúc tác khác. Tạp chí Hóa học 49( 5AB), tr.
388-393
8 Trần Đại An, Nguyễn Thanh Bình (2012) Nghiên cứu hoạt tính của sét bentonit Di
Linh biến tính bởi Al và Co cho phản ứng oxy hóa hoàn toàn toluen. Tạp chí hóa học
50 (4A), tr. 295-298
9 Trần Thị Minh Nguyệt, Nguyễn Quốc Trung, Nguyễn Thị Toàn, Nguyễn Doãn Thai,
Trần Quế Chi, Quách Thị Hoàng Yến, Đỗ Thế Chân, Lê Phúc Sơn (2011) Nghiên
cứu hoạt tính xúc tác oxi hóa khí CO của hệ Co3O4-ZrO2 trên cordierit. Tạp chí hóa
học 49(5AB), tr. 415-419
10 Hoàng Tiến Cường, Nguyễn Trí, Nguyễn Phúc Hoàng Duy, Nguyễn Thị Thùy Vân,
Phạm Thị Thùy Phương, Dương Huỳnh Thanh Linh (2011), Nghiên cứu chế tạo xúc
tác ứng dụng xử lý cacbon monoxit trong khí thải lò hầm than củi. Tạp chí hóa học
49(5AB), tr. 219-227
11 Quách Thị Hoàng Yến, Trần Thị Minh Nguyệt, Nguyễn Thị Toàn, Trần Quế Chi
(2011) Tổng hợp oxit phức hợp perovskite La1-xNaxCoO3 kích thước nanomet bằng
phương pháp sol-gel citrat và nghiên cứu hoạt tính xúc tác của chúng. Tạp chí hóa
học 49(5AB), tr. 535-541
12 Trần Thị Thu Huyền (2011) Nghiên cứu hoạt tính xúc tác của Perovskit
La0,7Sr0,3MnO3 trong phản ứng oxy hóa hoàn toàn một số VOCs. Tạp chí hóa học
49(5AB), tr. 319-322
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
93
13 Nguyễn Văn Quý, Lê Văn Tiệp, Phạm Hữu Thiện, Ibticem Nadjar, Patrick Dacosta,
Gérald-Djéga Mariadassou (2007) Khử NOx hay tích trữ NOx trên xúc tác oxit hỗn
hợp Ag-Co ở nhiệt độ thấp? Tuyển tập Báo cáo khoa học Hội nghị Xúc tác và Hấp
phụ toàn quốc lần thứ 4, Thành phố Hồ Chí Minh, tr.535-539
14 Vietnamese Ministry of Transportation (2006) Overall data on vehicles which are
being used in the country in 2005 and 2006.
15 H. Chunming, Z. Ming, W. Hairong, C. Shanhu, G. Maochu, S. Zhonghua, C.
Yaoqiang (2008) Three-Way Catalyst Meeting Euro III Emission Standards for
Motorcycles. Chin Jounal of Catalysis 29(8), pp. 677–679
16 F.H.M. Dekker, J.G. Nazloomian, A. Bliek, F. Kapteijn (1997) Carbon monoxide
oxidation over platinum powder: A comparison of TAP and step-response
experiments. Applied Catalysis A: General 151 (1), pp. 247-266
17 F. Dong, T. Tanabe, A. Suda, N. Takahashi, H. Sobukawa, H. Shinjoh (2008) Investigation of
the OSC performance of Pt/CeO2-ZrO2-Y2O3 catalysts by CO oxidation and 18O/16Oisotopic
exchange reaction. Chemical Engineering Science 63 (20), pp. 5020 – 5027
18 D. M. Fernandes, C. F. Scofield, A. A. Neto, M. J. B. Cardoso, F. M. Z. Zotin (2009)
The influence of temperature on the deactivation of commercial Pd/Rh automotive
catalysts. Process Safety and Environmental Protection 87 (5), pp. 315–322
19 B. Zhao, C. Yang, Q. Wang, G. Li, R. Zhoua (2010) Influence of thermal treatment
on catalytic performance of Pd/(Ce,Zr)Ox–Al2O3 three-way catalysts. Journal of
Alloys and Compounds 494, pp. 340–346
20 Q. Wang, G. Li, B. Zhao, R. Zhou (2011) Investigation on properties of a novel
ceria–zirconia–praseodymia solid solution and its application in Pd-only three-way
catalyst for gasoline engine emission control. Fuel 90, pp. 3047–3055
21 W. Jianqiang, S. Meiqing, W. Jun, W. Wulin (2011) Steam effects over
Pd/Ce0.67Zr0.33O2 three-way catalyst. Journal of Rare Earths 29(3), pp. 217-224
22 M. V. Twigg (2011) Catalytic control of emissions from cars. Catalysis Today 163
(2011), pp. 33–41
23 J. Xu, M. P. Harold, V. Balakotaiah (2011) Modeling the effects of Pt loading on NOx
storage on Pt/BaO/Al2O3 catalysts. Applied Catalysis B: Environmental 104, pp.
305–315
24 L. Forni, C. Oliva, F.P. Vatti , M.A. Kandala, A.M. Ezerets, A.V. Vishniakov (1996)
La-Ce-Co perovskites as catalysts for exhaust gas depollution. Applied Catalysis B:
Environmental 7(3-4), pp. 269-284
25 H. Tanaka, N. Mizuno, M. Misono (2003) Catalytic activity and structural stability
of La0.9Ce0.1Co1−xFexO3 perovskite catalysts for automotive emissions control.
Applied Catalysis A: General, 244 (2), pp. 371–382
26 D. Fino, N. Russo, G. Saracco, V. Specchia (2007) Supported Pd-perovskite catalyst
for CNG engines’ exhaust gas treatment. Progress in Solid State Chemistry 35 (2-4),
pp. 501-511
27 B. Levasseur, S. Kaliaguine (2009) Effects of iron and cerium in La1-yCeyCo1-x FexO3
perovskites as catalysts for VOC oxidation. Applied Catalysis B: Environmental 88,
pp. 305–314
28 F.E. López-Suárez, M.J. Illán-Gómez, A. Bueno-López, James A. Anderson (2011)
NOx storage and reduction on a SrTiCuO3 perovskite catalyst studied by operando
DRIFTS. Applied Catalysis B: Environmental 104, pp. 261–267
29 Y. Guo, G. Lu, Z. Zhang, S. Zhang, Y. Qi, Y. Liu (2007) Preparation of CexZr1−xO2
(x = 0.75, 0.62) solid solution and its application in Pd-only three-way catalysts.
Catalysis Today 126 (3-4), pp.296-302
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
94
30 C. Neyertz, M. Volpe, D. Perez, I. Costilla, M. Sanchez, C. Gigola (2009) NO
reduction with CO in the presence and absence of H2O ove Pd/γ-Al2O3 and Pd-
VOx/γ-Al2O3 catalysts: The formation of HNCO, NH3 and stable surface species,
Applied Catalysis A: General 368, pp. 146–157
31 J. Kasˇpar, P. Fornasiero, G. Balducci, R.D. Monte, N. Hickey, V. Sergo. (2003)
Effect of ZrO2 content on textural and structural properties of CeO2–ZrO2 solid
solutions made by citrate complexation route. Inorganica Chimica Acta 349, pp. 217-
226
32 J. Kasˇpar, P. Fornasiero, M. Graziani (1999) Use of CeO2-based oxides in the three-
way catalysis. Catalysis Today 50 (2), pp.285-298
33 H. Chen, Z. Ye, X. Cui, J. Shi, D. Yan (2011) A novel mesostructured alumina–
ceria–zirconia tri-component nanocomposite with high thermal stability and its
three-way catalysis. Microporous and Mesoporous Materials 143(2-3), pp. 368-374
34 A.V. Salker , S.J. Naik (2009) Mechanistic study of acidic and basic sites for CO
oxidation over nano based Co2−xFexWO6 catalysts. Applied Catalysis B:
Environmental 89, pp. 246–254.
35 K. Jiratova, J. Mikulova´, J. Klempa , T. Grygar , Z. Bastl , F. Kovanda (2009)
Modification of Co–Mn–Al mixed oxide with potassium and its effect on deep
oxidation of VOC. Applied Catalysis A: General 361, pp. 106–116.
36 S. Todorova, H. Kolev, J.P. Holgado, G. Kadinov, Ch. Bonev, R. Pereniguez, A.
Caballero (2010) Complete n-hexane oxidation over supported Mn–Co catalysts.
Applied Catalysis B: Environmental 94, pp. 46–54
37 U. Zavyalova, P. Scholz, B. Ondruschka (2007) Influence of cobalt precursor and
fuels on the performance of combustion synthesized Co3O4/γ-Al2O3 catalysts for total
oxidation of methane. Applied Catalysis A: General 323, pp. 226–233.
38 D.N. Srivastava, N. Perkas, G.A. Seisenbaeva, Y. Koltypin, V.G. Kessler, A.
Gedanken (2003) Preparation of porous cobalt and nickel oxides from corresponding
alkoxides using a sonochemical technique and its application as a catalyst in the
oxidation of hydrocarbons. Ultrasonics Sonochemistry 10, pp. 1–9.
39 A. S. K. Sinha, V. Shankar (1993) Characterization and activity of cobalt oxide
catalysts for total oxidation of hydrocarbons. Chemical Engineering Journal 52, pp.
115-120.
40 Q. Liu, L.C. Wang, M. Chen, Y. Cao, H.Y. He, K.N. Fan (2009) Dry citrate-
precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total
oxidation of propane. Journal of Catalysis 263, pp. 104–113.
41 C.A. Miller (1995) Air pollution-control technologies, United States Environmental
Protection Agency Research Triangle Park, North Carolina.
42 R. W. Boubel, D. L. Fox, D. B. Turner, A. C. Stern (1994) Fundamental of air
pollution. Third edition, Academic press, America.
43 Ronald M. Heck, Robert J. Farrauto. (2001) Automobile exhaust catalysts. Applied
Catalysis A: General, 221 (1-2), pp. 443–457
44 W. Walerczyk, M. Zawadzki (2011) Structural and catalytic properties of
Pt/ZnAl2O4 as catalyst for VOC total oxidation. Catalysis Today 176, pp. 159– 162
45 G. Neri , G. Rizzo , F. Corigliano, I. Arrigo, M. Caprı`, L. De Luca, V. Modafferi, A.
Donato (2009) A novel Pt/zeolite-based honeycomb catalyst for selective CO
oxidation in a H2-rich mixture. Catalysis Today 147, pp. 210–S214
46 A. Tomita, K. Shimizu, K. Kato, Y. Tai (2012) Pt/Fe-containing alumina catalysts
prepared and treated with water under moderate conditions exhibit low-temperature
CO oxidation activity. Catalysis Communications 17, pp. 194-199
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
95
47 T. S. Mozer, F. B. Passos (2011) Selective CO oxidation on Cu promoted
Pt/Al2O3 and Pt/Nb2O5 catalysts. International Journal of Hydrogen Energy 36(21)
pp. 13369-13378
48 Y. Hasegawa, K. Fukumoto, T. Ishima, H. Yamamoto, M. Sano, T. Miyake (2009)
Preparation of copper-containing mesoporous manganese oxides and their catalytic
performance for CO oxidation. Applied Catalysis B: Environmental 89 (3-4), pp.
420–424
49 V.A. Sadykov, S.F. Tikhov, N.N. Bulgakov, A.P. Gerasev (2009) Catalytic oxidation
of CO on CuOx revisited: Impact of the surface state on the apparent kinetic
parameters. Catalysis Today 144 (3-4), pp. 324–333
50 Ren-Xian Zhou, Xiao-Yuan Jiang, Jian-Xin Mao, Xiao-Ming Zheng (1997)
Oxidation of carbon monoxide catalyzed by copper-zirconium composite oxides.
Applied Catalysis A: General 162, pp. 213-222
51 H. Zou, S. Chen, Z. Liu, W. Lin (2011) Selective CO oxidation over CuO–CeO2
catalysts doped with transition metal oxides. Powder Technology 207, pp. 238–244
52 H. Mai, D. Zhang, L. Shi, T. Yan, H. Li (2011) Highly active Ce1−xCuxO2
nanocomposite catalysts for the low temperature oxidation of CO. Applied Surface
Science 257, pp. 7551–7559
53 S. Lim, J. Bae, K. Kim (2009) Study of activity and effectiveness factor of noble metal
catalysts for water–gas shift reaction. International journal of hydrogen energy 34 (2), pp.
870 – 876
54 A. Iglesias-Juez, A. B. Hungria, A. M. Arias, J. A. Anderson, M. Fernandes-Garcia (2009)
Pd-based (Ce,Zr)Ox- supported catalyst: promoting effect of base metals (Cr,Cu,Ni) in CO
and NO elimination. Catalysis Today 143 (3-4), pp.195–202
55 Y. Li, X. Zhang, H. He, Y. Yu, T. Yuan, Z. Tian, J. Wang, Y. Li (2009) Effect of the
pressure on the catalytic oxidation of volatile organic compounds over Ag/Al2O3
catalyst. Applied Catalysis B: Environmental 89, pp. 659–664
56 F. N. Aguero, B. P. Barbero, L. Gambaro, L. E. Cadu´s (2009) Catalytic combustion
of volatile organic compounds in binary mixtures over MnOx/Al2O3 catalyst. Applied
Catalysis B: Environmental 91, pp. 108–112
57 S. Aouad, E. Abi-Aad, A. Aboukaı¨s (2009) Simultaneous oxidation of carbon black
and volatile organic compounds over Ru/CeO2 catalysts. Applied Catalysis B:
Environmental 88, pp.249–256
58 J. Chen, J. Zhu, Y. Zhan, X. Lin, G. Cai, K. Wei, Q. Zheng (2009) Characterization
and catalytic performance of Cu/CeO2 and Cu/MgO-CeO2 catalysts for NO reduction
by CO. Applied Catalysis A: General 363, pp. 208–215
59 M.E. Gálvez, S. Ascaso, I. Suelves, R. Moliner, R. Jiménez, X. García, A. Gordon,
M.J. Lázaro (2011) Soot oxidation in the presence of NO over alumina-supported
bimetallic catalysts K–Me (Me= Cu, Co, V). Catalysis Today 176 (1), pp. 361-364
60 K. Wang, L. Qian, L. Zhang, H. Liu, Z. Yan (2010) Simultaneous removal of NOx
and soot particulates over La0.7Ag0.3MnO3 perovskite oxide catalysts. Catalysis
Today 158, pp. 423–426
61 W. Duan, L. Jia, W. Xiaodong, S. Zhichun (2010) NOx-assisted soot oxidation over
K/CuCe catalyst. Journal of rare earths 28(4), pp. 542-546
62 Z. Zhang, M. Chen, Z. Jiang, W. Shangguan (2011) Low-temperature selective
catalytic reduction of NO with propylene in excess oxygen over the Pt/ZSM-5
catalyst. Journal of Hazardous Materials 193, pp. 330– 334
63 X. Wu, S. Liu, D. Weng, F. Lin, R. Ran (2011) MnOx–CeO2–Al2O3 mixed oxides for
soot oxidation: Activity and thermal stability. Journal of Hazardous Materials 187,
pp. 283–290
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
96
64 B. Azambre, S. Collura, P. Darcy, J.M. Trichard, P. Da Costa, A. García-García, A.
Bueno-López (2011) Effects of a Pt/Ce0.68Zr0.32O2 catalyst and NO2 on the kinetics of
diesel soot oxidation from thermogravimetric analyses. Fuel Processing Technology
92, pp. 363–371
65 F. Lin, X. Wu, Duan Weng (2011) Effect of barium loading on CuOx–CeO2 catalysts:
NOx storage capacity, NO oxidation ability and soot oxidation activity. Catalysis
Today 175(1), pp. 124-132
66 M. Zawadzki, W. Walerczyk, F.E. López-Suárez, M.J. Illán-Gómez, A. Bueno-López
(2011) CoAl2O4 spinel catalyst for soot combustion with NOx/O2. Catalysis
Communications 12, pp. 1238–1241
67 J. Kašpar, P. Fornasiero, N. Hickey (2003) Automotive catalytic converters: current
status and some perspectives. Catalysis Today 77 (4), pp. 419–449
68 R. Heck, R. Farrauto (1995) Catalytic Air Pollution Control: Commercial
Technology.Van Nostrand Reinhold, New York, pp. 67-78
69 L. Ma, H. Bart, P. Ning, A. Zhang, G. Wu, Z. Zengzang (2008) Kinetic study of
three-way catalyst of automotive exhaust gas: modeling and application. Chemical
Engineering Journal 155 (1-2), pp. 241-247
70 J. Wang, M. Shen, Y. An, J. Wang (2008) Ce–Zr–Sr mixed oxide prepared by the
reversed microemulsion method for improved Pd-only three-way catalysts. Catalysis
Communications 10 (1), pp. 103–107
71 X. Zhang, E. Long, Y. Li, J. Guo, L. Zhang, M. Gong, M. Wang, Y. Chen (2009)
CeO2-ZrO2-La2O3-Al2O3 composite oxide and its supported palladium catalyst for
the treatment of exhaust of natural gas engine vehicles. Journal of Natural Gas
Chemistry 17 (1), pp. 139–144
72 U. Lassi, R. Polvinen, S. Suhonen, K. Kallinen, A. Savimäki, M. Härkönen, M.
Valden, R.L. Keiski (2004) Effect of aging atmosphere on the deactivation of Pd/Rh
automotive exhaust gas catalysts: catalytic activity and XPS studies. Applied
Catalysis A: General 263 (2), pp. 241–248
73 S. Sharma, M.S. Hegde, R. N. Das, M. Pandey (2008) Hydrocarbon oxidation and three-
way catalytic activity on a single step directly coated cordierite monolith: High catalytic
activity of Ce0.98 Pd0.02O2-δ. Applied Catalysis A: General 337 (2), pp. 130–137
74 G. Jiaxiu, Y. Shuhua, G. Maochu, S. Mei, Z. Junbo, C. Yaoqiang (2007) Influence of
Ce0.35Zr0.55Y0.10 solid solution performance Pt-Rh three-way catalyst. Journal of Rare
Earths 25 (2), pp. 179-183
75 H. J. Kwon, J. H. Baik, Y. T. Kwon, I. Nam, Se H. Oh (2008) Enhancement effect of
water on oxidation reactions over commercial three-way catalyst. Chemical
Engineering Journal 141 (1-3), pp.194–203
76 Li CAI, Ming ZHAO, Zhan PI, Maochu GONG, Yaoqiang CHEN (2008)
Preparation of Ce-Zr-La-Al2O3 and Supported Single Palladium Three-Way Catalyst.
Chinese Journal of Catalysis 29(2), pp. 108-112
77 J. Deng, L. Zhang, H. Dai, C. Au (2009) In situ hydrothermally synthesized
mesoporous LaCoO3/SBA-15 catalysts: High activity for the complete oxidation of
toluene and ethyl acetate. Applied Catalysis A: General 352, pp. 43–49
78 W. Shan, J. Yang, L. Yang, N. Ma (2011) Catalytic combustion of soot particulates
over La2−xKxNiMnO6 catalysts. Journal of Natural Gas Chemistry 20, pp.384–388
79 L. Li, X. Shena, P. Wang, X. Meng, F. Song (2011) Soot capture and combustion for
perovskite La–Mn–O based catalysts coated on honeycomb ceramic in practical
diesel exhaust. Applied Surface Science 257, pp. 9519– 9524
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
97
80 Y. Chang, J. G. McCarty (1996) Novel oxygen storage components for advanced
catalysts for emission control in natural gas fueled vehicles. Catalysis Today 30, pp
163-170
81 R.D. Monte, J. Kasˇpar (2005) Heterogeneous environmental catalysis – a gentle art:
CeO2–ZrO2 mixed oxides as a case history. Catalysis Today 100 (1-2), pp. 27-35
82 A.V. Kucherov, G.L. Gerlock, H.-W. Jen, M. Shelef (1996) State of copper in a
working, low-concentration CuH-ZSM-5 catalyst for exhaust gas purification: in-situ
ESR monitoring. Catalysis Today, 27, pp. 79-84
83 W.F. Shangguan (1996) Simultaneous Catalytic removal of NOx and Diesel Soot
Particulates over Ternary AB2O4 spinel type oxide. Applied catalyst B: Environment,
8(2), pp. 217-227
84 R.L. Keiski, H. Raisanen, M. Harkonen, T. Maunula, P. Niemisto (1996) NOx
abatement in lean exhaust gas conditions over metal substrated zeolite catalysts.
Catalysis Today, 27 (1-2), pp. 85-90
85 H. He, H.X. Dai, L.H. Ng, K.W. Wong (2002) Pd-, Pt-, and Rh-Loaded
Ce0.6Zr0.35Y0.05O2 Three-Way Catalysts: An Investigation on Performance and Redox
Properties. Journal of Catalysis 206 (1), pp. 1-13
86 L.N. Ikryannikova, A.A. Aksenov, G.L. Markaryan, G.P. Muraveva, B.G. Kostyuk,
A.N. Kharlanov, E.V. Lunina (2001) The red–ox treatments influence on the
structure and properties of M2O3–CeO2–ZrO2 (M=Y, La) solid solutions. Applied
Catalysis A 210 (1-2), pp. 225-235
87 Claudia B. Grzona, Ileana D. Lick, Enrique Rodriguez Castellón, Marta I. Ponzi,
Esther N. Ponzi (2010) Cobalt and KNO3 supported on alumina catalysts for diesel
soot combustion, Materials Chemistry and Physics 123 (2010, pp. 557–562
88 F. Wyrwalski, J.-F. Lamonier, S. Siffert, A. Aboukaı¨s (2007) Additional effects of
cobalt precursor and zirconia support modifications for the design of efficient VOC
oxidation catalysts. Applied Catalysis B: Environmental 70, pp. 393–399
89 P. Thormählen, E. Fridell, N. Cruise, M. Skoglundh, A. Palmqvist (2001) The
influence of CO2, C3H6, NO, H2, H2O or SO2 on the low-temperature oxidation of CO
on a cobalt-aluminate spinel catalyst (Co1.66Al1.34O4). Applied Catalysis B:
Environmental 31, pp. 1–12
90 W.B. Li, J.X. Wang , H. Gong (2009) Catalytic combustion of VOCs on non-noble
metal catalysts. Catalysis Today 148, pp. 81–87
91 WEI Yuechang, LIU Jian, ZHAO Zhen, JIANG Guiyuan, DUAN Aijun, HE Hong,
WANG Xinping (2010) Preparation and Characterization of Co0.2/Ce1-xZrxO2
Catalysts and Their Catalytic Activity for Soot Combustion, Chinese Journal of
Catalysis 3, pp. 283–288
92 J. Liwei, S. Meiqing, W. Jun, C. Xia, W. Jiaming, H. Zhichang. (2008) Redox
behaviors and structural characteristics of Mn0.1Ce0.9Ox and Mn0.1Ce0.6Zr0.3Ox.
Journal of Rare Earths 26, pp. 523- 528
93 P. G.W.A. Kompio, A. Brückner, F. Hipler, G. Auer, E. Löffler, W. Grünert (2012) A
new view on the relations between tungsten and vanadium in V2O5-WO3/TiO2
catalysts for the selective reduction of NO with NH3. Journal of Catalysis 286, pp.
237–247
94 M. Casapu, A. Bernhard, D. Peitz, M. Mehring, M. Elsener, O. Kröcher (2011) A
Niobia-Ceria based multi-purpose catalyst for selective catalytic reduction of NOx,
urea hydrolysis and soot oxidation in diesel exhaust. Applied Catalysis B:
Environmental 103, pp. 79–84
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
98
95 W. Shan, F. Liu, H. He, X. Shi, C. Zhang (2012) A superior Ce-W-Ti mixed oxide
catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B:
Environmental 115– 116,pp 100– 106
96 E. S. Jimeneza, V. M. Koci´ca, M. Crockera, K. Wilson (2011) Carbon nanotube-
supported metal catalysts for NOx reduction using hydrocarbon reductants. Part 1:
Catalyst preparation, characterization and NOx reduction characteristics. Applied
Catalysis B: Environmental 102, pp. 1–8
97 L. YA. Margolis (1966) Catalytic Oxidation of Hydrocarbons. Advances in Catalysis
14, Acad. Pre, pp. 439-476
98 I. Chorkendorff, J.W. Niemantsverdriet (2003) Concepts of Modern Catalysis and
Kinetics. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
99 B. Sawatmongkhon, A. Tsolakisa, K. Theinnoi, A.P.E. York, P.J. Millington, R.R.
Rajaram (2012) Microkinetic modelling for selective catalytic reduction (SCR) of
NOx by propane in a silver-based automotive catalytic converter. Applied Catalysis
B: Environmental 111– 112, pp. 165– 177
100H. Santos, M. Costa (2008) The relative importance of external and internal
transport phenomena in three way catalysts. International Journal of Heat and Mass
Transfer 51, pp. 1409–1422
101J. Koop, O. Deutschmann (2009) Detailed surface reaction mechanism for Pt-
catalyzed abatement of automotive exhaust gases. Applied Catalysis B:
Environmental 91, pp. 47–58
102J. W. Niemantsverdriet (2000) Spectroscopy in Catalysis, Wiley-VCH, Second
Edition
103 P. J. Haines (1995) Thermal methods of analysis. Blackie Academic and
Professional (Chapman and Hall)
104 J. W. Niemantsverdriet (2007) Spectroscopy in Catalysis, Wiley-VCH, Third,
Completely Revised and Enlarged Edition
105M. T. Le, W. J. M. Van Well, I. Van Driessche, S. Hoste (2004) Influence of organic
species on surface area of bismuth molybdate catalysts in complexation and spray
drying methods. Applied Catalysis A-General 267 (2004), pp. 227-234
106Nguyen The Tien (2010) Synthesis and catalytic properties of catalyst sytem based
on CeO2-ZrO2 for the complete oxidation of hydrocarbon to treat motorcycle’s
exhaust gases. Master Thesis, Hanoi University of Science and Technology
107Zhongkui Zhao, Ronghua Jin, Ting Bao, Hongling Yang, Xiaoli Lin, Guiru Wang
(2012) Mesoporous CexMn1-xO2 composites as novel alternative carriers of supported
Co3O4 catalysts for CO preferential oxidation in H2 stream. International Journal of
hydrogen energy 37, pp 4774-4786
108Qiang Guo, Yuan Liu (2008) MnOx modified Co3O4-CeO2 catalysts for the
preferential oxidation of CO in H2-rich gases. Applied Catalysis B: Environmental
82, pp. 19–26
109Jeong-Rang Kim, Wan-Jae Myeong, Son-Ki Ihm (2009) Characteristics of CeO2–
ZrO2 mixed oxide prepared by continuous hydrothermal synthesis in supercritical
water as support of Rh catalyst for catalytic reduction of NO by CO. Journal of
Catalysis, Volume 263, pp. 123-133
110 B.R. Stanmore, J.F. Brilhac, P. Gilot (2001) The oxidation of soot: a review of
experiments, mechanisms and models. Carbon 39, pp. 2247–2268
111 Yunling Li, Jingzhe Zhao, Yuanyuan Dan, Dechong Ma, Yan Zhao, Shengnan Hou,
Haibo Lin, Zichen Wang (2011) Low temperature aqueous synthesis of highly
dispersed Co3O4 nanocubes and their electrocatalytic activity studies. Chemical
Engineering Journal 166, pp. 428–434
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
99
112 Youcun Chen, Yuanguang Zhang, Shengquan Fu (2007) Synthesis and
characterization of Co3O4 hollow spheres. Materials Letters 61, pp. 701–705
113Zhenghua Wang, Xiangying Chen, Meng Zhang, Yitai Qian, Synthesis of Co3O4
nanorods bunches from a single precursor Co(CO3)0.35Cl0.20(OH)1.10. Solid State
Sciences 7, pp. 13–15
114 Lichun Zhang, Zong-Huai Liu, Xiuhua Tang, Jianfang Wang, Kenta Ooi (2007)
Synthesis and characterization of β-MnO2 single crystals with novel tetragonous
morphology. Materials Research Bulletin 42, pp. 1432–1439
115Zhijie Yang, Yanzhao Yang, Hui Liang, Ling Liu (2009) Hydrothermal synthesis of
monodisperse CeO2 nanocubes. Materials Letters 63, pp. 1774–1777
116P. Arnoldy, J.A. Moulijn (1985) Temperature-Programed Reduction of CoO/Al2O3
catalysts, Journal of Catalysis 93, pp. 38-54
117 X. Liu, J. Lu, K. Qian, W. Huang, M. Luo (2009) A comparative study of
formaldehyde and carbon monoxide complete oxidation on MnOx-CeO2 catalysts.
Journal of rare earths 27(3), pp. 418
118M. Kang, M.W. Song, C.H. Lee (2003) Catalytic carbon monoxide oxidation over
CoOx/CeO2 composite catalysts, Applied Catalysis A 251, pp.142-156
119Q. Zhang, X. Liu, W. Fan, Y. Wang (2011) Manganese- promoted cobalt oxide as
efficient and stable non-noble metal catalysts for preferential oxidation of CO in H2
stream, Applied Catalysis B: Environmental 102, pp. 207-214
120Li-Hsin Chang, Natarajan Sasirekha, Baskaran Rajesh, Yu-Wen Chen (2007) CO
oxidation on ceria- and manganese oxide-supported gold catalysts, Separation and
Purification Technology 58, pp. 211–218
121 Zhiwei Wu, Huaqing Zhu, Zhangfeng Qin, Hui Wang, Jianfei Ding, Lichun Huang,
Jianguo Wang (2013) CO preferential oxidation in H2-rich stream over a CuO/CeO2
catalyst with high H2O and CO2 tolerance, Fuel 104, pp. 41–45
122 Said Azalim, Manuel Franco, Rachid Brahmi, Jean-Marc Giraudon, Jean-Franc¸ ois
Lamonier (2011) Removal of oxygenated volatile organic compounds by catalytic
oxidation over Zr–Ce–Mn catalysts. Journal of Hazardous Materials 188, pp. 422-
427
123Fabiola N. Agueroa, Bibiana P. Barbero, Luciano Costa Almeida, Mario Montes,
Luis E. Cadus (2011) MnOx supported on metallic monoliths for the combustion of
volatile organic compounds, Chemical Engineering Journal 166, pp. 218–223
124 Krisztina Frey, Viacheslav Iablokov, György Sáfrán, János Osán, István Sajó, Rafal
Szukiewicz, Sergey Chenakin, Norbert Kruse (2012) Nano structured MnOx as highly
active catalyst for CO oxidation, Journal of Catalysis 287, pp. 30–36
125 M. Dhakad, T. Mitshuhashi, S. Rayalu, Pradip Doggali, S. Bakardjiva, J. Subrt, D.
Fino, H. Haneda, Nitin Labhsetwar (2008) Co3O4–CeO2 mixed oxide-based catalytic
materials for diesel soot oxidation, Catalysis Today 132 (2008) 188–193
126 pollution
127 pollute.1.6529573.html
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
100
LIST OF PUBLISHMENTS
1 Nguyễn Thế Tiến, Nguyễn Thị Ái Nghĩa, Phạm Thị Mai Phương, Đỗ Văn Hưng,
Isabel Van Driessche, Lê Minh Thắng (2012) Xúc tác trên cơ sở oxit kim loại xử lý
muội trong khí thải động cơ đốt trong, Tạp chí Hóa học 50(4A), tr. 371-374
2 Nguyễn Thế Tiến, Nguyễn Thị Ái Nghĩa, Phạm Thị Mai Phương, Đỗ Văn Hưng,
Nguyễn Duy Vinh, Isabel Van Driessche, Lê Minh Thắng (2012) Hoạt tính các hệ
xúc tác trên cơ sở đơn oxit kim loại cho quá trình xử lý hydrocacbon trong khí thải xe
máy, Tạp chí Hóa học 50(5B), tr.88-92
3 Nguyễn Thế Tiến, Phạm Thị Mai Phương, Lê Minh Thắng, Isabel Van Driessche
(2013) Ảnh hưởng của BaO và WO3 đến hoạt tính của hệ xúc tác đa oxit kim loại xử
lý khí thải động cơ đốt trong, Tạp chí Hóa học 51(2C), tr. 967-970
4 Tien Nguyen The, Phuong Pham Thi Mai, Thang Le Minh, Isabel Van Driessche
(2013) Catalyst based on mixtures of CeO2-ZrO2 for propylene complete oxidation,
Tạp chí xúc tác và hấp phụ 2(2), tr. 176-181
5 Tien The Nguyen, Phuong Thi Mai Pham, Thang Minh Le, Isabel Van Driessche
(2013) Catalytic Activity of MnO2-Co3O4 for Complete Oxidation of Propylene, Kỷ
yếu hội nghị quốc tế ICEM11- Đại học Bách Khoa Hà Nội, tr. 146-151
6 Nguyễn Thế Tiến, Nguyễn Xuân Dũng, Phạm Thị Mai Phương, Lê Minh Thắng,
Isabel Van Driessche (2013) Ảnh hưởng của quá trình già hóa đến hệ xúc tác trên cơ
sở oxit hỗn hợp MnO2-Co3O4-CeO2, Tạp chí Hóa học 51(6ABC), tr. 376-379
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
101
ANNEX
Annex 1 Complete oxidation of C3H6 and CO in deficient oxygen
condition
Annex 1.1 Complete oxidation of C3H6 in deficient oxygen condition
0
10
20
30
40
250 300 350 400 450
Reaction temperature, oC
C
3H
6 c
on
ve
rs
io
n,
%
Co3O4 MnCo 1-9 MnCo 1-4 MnCo 1-3 MnCo 1-1 MnCo 7-3 MnCo 9-1 MnO2
Figure A1: C3H6 conversion of MnCo samples in deficient oxygen condition (O2/C3H6=1/1)
0
20
40
60
80
100
250 300 350 400 450
Reaction temperature, oC
C
O
2 s
el
ec
tiv
ity
, %
Co3O4 MnCo 1-9 MnCo 1-4 MnCo 1-3 MnCo 1-1 MnCo 7-3 MnCo 9-1 MnO2
Figure A2: CO2 selectivity of MnCo samples in deficient oxygen condition (O2/C3H6=1/1)
a b
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
102
c d
Figure A3: SEM images of MnCo 1-3, MnCo 7-3 before (a,c) and after reaction (b,d) in deficient
oxygen condition (O2/C3H6=1/1)
0
5
10
15
20
25
30
35
40
45
150 200 250 300 350 400 450 500 550
Temperature (oC)
pr
op
yl
en
e
co
nv
er
si
on
(%
)
Co3O4
10% CeO2
20% CeO2
50% CeO2
CeO2
Figure A4: C3H6 conversion of CeO2-Co3O4 chemical mixtures at different reaction temperatures
in deficient oxygen condition (O2/C3H6=1/1)
30
40
50
60
70
80
90
100
150 200 250 300 350 400 450 500 550
Temperature (oC)
CO
2
se
le
ct
iv
ity
(%
)
Co3O4
10% CeO2
20% CeO2
50% CeO2
CeO2
Figure A5 CO2 selectivity of CeO2-Co3O4 chemical mixtures depend on temperaturesin deficient
oxygen condition (O2/C3H6=1/1)
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
103
0
20
40
60
80
100
1 1.5 2 3 4 5 6
O2/C3H8 ratio sufficient
oxygen
C
3H
8 c
on
ve
rs
io
n,
%
200 oC 250 oC 300 oC 350 oC 400 oC 450 oC 500 oC max conversion
Figure A6: C3H8 conversion of MnCoCe 1-3-0.75 depends on O2/C3H8 ratio at different reaction
temperatures (max conversion is the conversion correspond CO2 selectivity reach 100% in the
reaction C3H8 + 5O2→ 3CO2 +4 H2O)
Annex 1.2 Complete oxidation of CO in deficient oxygen condition
Annex 1.2.1 Characterization and catalytic activity of single metallic oxides
Table A1 Specific surface area of some single metallic oxides
Samples
CeO2 ZrO2 Co3O4 MnO2 NiO CuO SnO2 V2O5 ZnO
SBET
(m2/g)
33 52.34 11.39 5.61 10.81 2.17 16.66 3.89 13.62
50
40
30
20
10
In
te
ns
ity
, a
.u
80706050403020
2theta, degrees
MnO2
MnO2
MnO2
MnO2
MnO2
400
350
300
250
In
te
ns
ity
, a
.u
706050403020
2theta, degrees
Co3O4
Co3O4
Co3O4
Co3O4 Co3O4
a b
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
104
1400
1200
1000
800
600
400
200
0
In
te
ns
ity
, a
.u
706050403020
2theta, degree
NiO
NiO
NiO
Ni2O3
100
80
60
40
20
In
te
ns
ity
, a
.u
80706050403020
2 theta, degrees
CuO
CuO
CuO CuO
CuO
c d
400
300
200
100
0
In
te
ns
ity
, a
.u
706050403020
2 theta, degrees
SnO2
SnO2
SnO2
SnO2
SnO2
60
50
40
30
20
10
6050403020
V2O5
V2O5
V2O5
V2O5
e f
40
30
20
10
In
te
ns
ity
, a
.u
80706050403020
2 theta, degrees
ZnO
ZnO
ZnO
ZnO
ZnO
ZnO
ZnO
160
140
120
100
80
60
40
20
In
te
ns
ity
, a
.u
70605040302010
2theta, degrees
ZrO2
ZrO2
ZrO2
ZrO2
g h
Figure A7 XRD of single metallic oxides synthesized by sol-gel citric method (a: MnO2, b: Co3O4,
c: NiO, d: CuO, e: SnO2 commercial, f: V2O5 commercial, g: ZnO, h: ZrO2)
0
10
20
30
40
50
60
70
200 250 300 350 400 450 500
Reaction temperature, oC
C
O
c
on
ve
rs
io
n,
%
CeO2 ZrO2 Co3O4 MnO2 NiO CuO
SnO2 V2O5 ZnO Blank
Figure A8 CO conversion of some single metallic oxides under deficient oxygen condition
(O2/CO=1/4)
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
105
Annex 1.2.2 Characterization and catalytic activity of bi-metallic oxides
80604020
2 theta, degree
before reaction
after reaction
SnO2 SnO2
SnO2
MnO2 MnO2
Figure A9 XRD patterns of MnO2-SnO2=4-6 before and after CO oxidation reaction in deficient
oxygen (O2/CO=1/4)
0
10
20
30
40
50
60
200 250 300 350 400 450 500
Reaction temperature, oC
C
O
c
on
ve
rs
io
n,
%
MnO2 MnSn 8-2 MnSn 6-4 MnSn 4-6 MnSn 2-8 SnO2
Figure A10 CO conversion of MnO2-SnO2 in deficient oxygen condition (O2/CO=1/4) at different
reaction temperatures
80604020
2 theta, degree
before
after
MnO2
ZnO
ZnO
MnO2 MnO2 ZnO
Figure A11 XRD pattern of MnO2-ZnO=5-5 before and after CO oxidation in deficient oxygen
condition
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
106
Table A2 Specic surface area of MnO2-ZnO samples
Sample
MnO2 MnZn
9-1
MnZn
8-2
MnZn
7-3
MnZn
6-4
MnZn
5-5
MnZn
4-6
MnZn
3-7
ZnO SBET
(m2/g)
5.61 6.27 23.78 21.66 14.52 23.62 32.17 22.34 13.62
0
10
20
30
40
50
60
200 250 300 350 400 450 500
Reaction temperature, oC
C
O
c
on
ve
rs
io
n,
%
MnO2 MnZn 9-1 MnZn 7-3 MnZn 4-6 MnZn 6-4 MnZn 3-7 ZnO
Figure A12 CO conversion of MnO2-ZnO in deficient oxygen condition (O2/CO=1/4) at different
reaction temperatures
0
20
40
60
80
200 250 300 350 400 450 500
Reaction temperature , oC
C
O
c
on
ve
rs
io
n,
%
MnO2 MnCo 9-1 MnCo 7-3 MnCo 5-5 MnCo 1-3 MnCo 1-9 Co3O4
Figure A13 CO conversion of MnO2-Co3O4 in deficient oxygen condition (O2/CO=1/4) at different
reaction temperatures
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
107
80706050403020
2 theta, degrees
before
After
Co3O4
Co3O4 Co3O4 MnO2
Figure A14 XRD patterns of MnO2-Co3O4=7-3 before and after CO oxidation reaction under
deficient oxygen condition (O2/CO=1/4)
a b
Figure A15 SEM images of MnO2-Co3O4 =1-3 before (a) and after (b) reaction under deficient
oxygen condition
Table A3 CO conversion of some samples under sufficient oxygen condition (Figure 3.8)
Temperature,
oC MnCo 1-3 Co3O4 MnSn 4-6 MnO2
100 6 1.8 0 100
150 93 1.8 0 100
200 92.3 10.9 0 100
250 92.1 96 100 100
300 91.6 96.7 100 100
350 91.3 100 100 100
400 91.3 100 100 100
450 92.2 100 100 100
500 92.7 100 100 100
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
108
Annex 2 The catalysts for simultaneous treatment of CO,
C3H6 and NO
Annex 2.1 The catalytic activity of bi-metallic oxides for simultaneous
treatment of CO, C3H6 and NO
0
20
40
60
80
100
100 150 200 250 300 350 400 450 500
Reaction temperature, oC
C
O
c
on
ve
rs
io
n,
%
Blank MnCo 1-3 MnSn 8-2 MnSn 9-1
a
0
20
40
60
80
100
100 150 200 250 300 350 400 450 500
Reaction temperature, oC
C
3H
6 c
on
ve
rs
io
n,
%
Blank MnCo 1-3 MnSn 8-2 MnZn 9-1
b
0
20
40
60
80
100
100 150 200 250 300 350 400 450 500
Reaction temperature, oC
N
O
c
on
ve
rs
io
n,
%
Blank MnCo 1-3 MnSn 8-2 MnZn 9-1
c
Figure A16 CO conversion (a), C3H6 conversion (b) and NO conversion (c) of some bimetallic
oxides in gas flow containing 4.35% CO, 7.06% O2, 1.15% C3H6, 1.77% NO
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
109
Annex 2.2 The catalytic activity of MnCoCe catalyst for simultaneous
treatment of CO, C3H6 and NO
Annex 2.2.1 MnO2-Co3O4-CeO2 with MnO2/Co3O4= 1/3
Table A4 CO conversion of MnCoCe catalyst with MnO2/Co3O4=1/3 in gas flow containing 4.35% CO, 7.65%
O2, 1.15% C3H6, 0.59% NO (Figure 3.23a)
Temperature,
oC
MnCoCe
1-3-0.17
MnCoCe
1-3-0.38
MnCoCe
1-3-0.75
MnCoCe
1-3-1.26
MnCoCe
1-3-1.88
100 0.49 98.40 99.6 99.58 99.63
150 2.80 98.50 99.68 99.60 99.61
200 98.71 98.42 99.56 99.67 99.54
250 98.73 98.60 99.59 99.64 99.55
300 98.75 98.67 99.73 99.66 99.41
350 98.77 98.46 99.62 99.62 99.48
400 98.81 98.44 99.77 99.75 99.51
450 98.85 98.28 99.83 100 99.4
500 98.86 98.33 99.91 100 99.48
Table A5 C3H6 conversion of MnCoCe catalyst with MnO2/Co3O4=1/3 in in gas flow containing 4.35% CO,
7.65% O2, 1.15% C3H6, 0.59% NO (Figure 3.23b)
Temperature,
oC
MnCoCe
1-3-0.17
MnCoCe
1-3-0.38
MnCoCe
1-3-0.75
MnCoCe
1-3-1.26
MnCoCe
1-3-1.88
100 96.89 98.71 97.44 97.75 3.4
150 96.51 98.32 97.01 97.1 3.8
200 96.73 98.02 96.79 97.69 95.39
250 96.91 97.99 96.73 97.2 95.52
300 97.08 97.99 96.94 97.49 95.53
350 97.28 98.07 97.2 97.5 95.77
400 97.52 98.24 97.49 97.65 95.62
450 97.73 98.58 97.73 98.44 95.99
500 97.91 98.88 98.1 98.19 96.37
Annex 2.2.2 MnO2-Co3O4-CeO2 with different MnO2/Co3O4 ratio
Table A6 CO conversion of MnCoCe catalysts in in gas flow containing 4.35% CO, 7.06% O2, 1.15% C3H6,
1.77% NO (Figure 3.24, Figure 3.26 a)
Temperature,
oC
MnCoCe
1-3-0.38
MnCoCe
1-3-0.75
MnCoCe
7-3-1.11
MnCoCe
7-3-2.5
MnCoCe
7-3-4.29
100 2.67 96.7 0 0 0
150 4.37 96.17 0.72 1.59 0
200 85.00 96.30 87.84 92.11 94.86
250 85.98 94.97 86.75 96.80 95.20
300 86.82 95.27 86.35 91.09 98.19
350 87.40 94.81 86.73 88.70 99.31
400 87.60 94.65 86.47 88.54 100
450 90.36 93.46 85.80 88.16 99.23
500 91.41 94.21 86.45 97.12 99.80
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
110
Table A7 C3H6 conversion of MnCoCe catalysts in 4.35% CO, 7.06% O2, 1.15% C3H6, 1.77% NO (Figure 3.24,
Figure 3.26b)
Temperature,
oC
MnCoCe
1-3-0.38
MnCoCe
1-3-0.75
MnCoCe
7-3-1.11
MnCoCe
7-3-2.5
MnCoCe
7-3-4.29
100 96.71 100 0 0 0
150 96.86 100 0 98.56 2.99
200 96.90 100 2.07 98.79 96.87
250 97.26 100 91.83 98.24 97.48
300 97.73 100 94.42 97.83 97.52
350 97.67 100 95.76 97.65 97.53
400 97.25 100 98.43 98.22 98.16
450 97.63 100 98.62 98.75 98.76
500 97.89 100 98.42 99.00 99.00
Table A8 NO conversion of MnCoCe catalysts in 4.35% CO, 7.06% O2, 1.15% C3H6, 1.77% NO (Figure 3.24,
Figure 3.26c)
Temperature,
oC
MnCoCe
1-3-0.38
MnCoCe
1-3-0.75
MnCoCe
7-3-1.11
MnCoCe
7-3-2.5
MnCoCe
7-3-4.29
100 81.44 62.11 0 0 0
150 85.89 63.54 0 48.95 0
200 90.75 66.042 0.13 50.04 54.31
250 93.38 70.56 24.11 62.32 60.38
300 99.77 75.17 27.10 71.98 66.22
350 100 82.10 42.88 75.98 73.14
400 100 99.06 54.28 80.34 75.76
450 100 92.00 74.83 83.12 78.79
500 100 99.65 85.12 100 84.03
Annex 2.2.3 Influence of aging condition on activity of MnCoCe catalysts
Table A9 C3H6 conversion of MnCoCe 1-3-0.75 fresh and after aging in different conditions (Figure 3.35 a)
Temperature,
oC
0 1 2 3 4 5
100 97.44 0 1.96 3.1 0.39 3.58
150 97.01 40.68 1.86 2.47 85.6 1.19
200 96.79 65.31 94.48 95.01 90.02 98.74
250 96.73 97.02 94.88 95.46 90.61 98.74
300 96.89 93.72 95.32 95.62 91.63 98.77
350 97.2 97.74 95.12 95.83 92.17 97.61
400 97.49 97.91 95.46 96.05 93.86 97.96
450 97.73 98.21 95.86 96.56 95.09 98.15
500 98.09 98.09 96.63 97.31 96.24 98.62
Table A10 CO conversion of MnCoCe 1-3-0.75 fresh and after aging in different conditions
(Figure 3.35 b)
Temperature,
oC
0 1 2 3 4 5
100 99.56 0 0 0 0 0
150 99.68 3.57 1.2 1.04 82.24 0
200 99.56 97.47 1.34 2.08 82.48 98.67
250 99.59 98.65 0.04 99.28 83.85 98.8
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
111
300 99.73 97.89 98.86 99.56 87.33 99.01
350 99.62 98.01 99.35 99.78 88.85 98.69
400 99.77 98.57 99.78 99.84 91.83 98.8
450 99.83 99.03 99.03 99.34 95.09 98.84
500 99.1 99.32 99.45 99.58 97.83 98.96
Annex 2.2.4 Study on the improvement of catalytic activity of MnO2-Co3O4-CeO2
catalyst by addition of the fourth metallic oxides
Table A11 CO conversion of catalysts based on MnO2, Co3O4, CeO2, BaO and WO3 in the gas flow containing
4.35% CO, 7.06% O2, 1.15% C3H6, 1.77% NO (Figure 3.41 a)
Temperature,
oC
MnCoCe
1-3-0.75
15% BaO 10% BaO 5% BaO 15% WO3 5% WO3
100 97 0 1.86 6.79 6.79 2.35
150 96.17 1.92 3.18 6.03 6.03 1.74
200 96.28 88.50 95.11 92.99 92.99 2.22
250 94.97 88.64 91.84 92.38 92.38 95.73
300 95.27 88.46 88.04 92.25 92.25 94.96
350 94.81 91.46 87.30 92.84 92.84 94.98
400 94.65 90.00 87.29 90.91 90.91 94.40
450 93.46 92.05 87.17 91.40 91.40 92.79
500 94.21 92.36 90.51 92.47 92.47 92.95
Table A12 C3H6 conversion of catalysts based on MnO2, Co3O4, CeO2, BaO and WO3 in the gas flow containing
4.35% CO, 7.06% O2, 1.15% C3H6, 1.77% NO (Figure 3.41 b)
Temperature,
oC
MnCoCe
1-3-0.75
15% BaO 10% BaO 5% BaO 15% WO3 5% WO3
100 100 0 96.49 8.89 8.89 0.42
150 100 2.00 96.21 0.11 0.11 0.56
200 100 82.85 96.16 94.89 94.89 93.29
250 100 83.13 96.23 95.45 95.45 93.96
300 100 85.18 96.67 96.04 96.04 94.48
350 100 88.72 97.07 96.42 96.41 97.00
400 100 90.49 96.42 97.37 97.37 97.50
450 100 90.20 96.79 100 100 97.90
500 100 91.14 96.94 100 100 98.87
Table A13 NO conversion of catalysts based on MnO2, Co3O4, CeO2, BaO and WO3 in the gas flow containing
4.35% CO, 7.06% O2, 1.15% C3H6, 1.77% NO (Figure 3.41 c)
Temperature,
oC
MnCoCe
1-3-0.75
15% BaO 10% BaO 5% BaO 15% WO3 5% WO3
100 62.11 0 77.59 3.65 3.65 1.189
150 63.54 4.14 79.95 6.41 6.41 0.24
200 66.04 53.05 83.51 27.99 27.99 20.77
250 70.56 51.73 87.94 31.53 31.53 24.50
300 75.17 52.36 93.17 34.36 34.36 24.78
350 82.10 80.49 95.91 37.28 37.28 37.90
400 99.06 94.21 98.46 43.35 43.35 40.25
450 92.00 94.08 100 47.76 47.76 44.70
500 99.65 98.69 100 50.45 50.45 50.33
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
112
0
20
40
60
80
100
100 150 200 250 300 350 400 450 500
Reaction temperature, oC
C
O
c
on
ve
rs
io
n,
%
MnCoCe 7-3-2.5 10% CuO 50% CuO
0
20
40
60
80
100
100 150 200 250 300 350 400 450 500
Reaction temperature, oC
C
3H
6 c
on
ve
rs
io
n,
%
MnCoCe 7-3-2.5 10% CuO 50% CuO
0
20
40
60
80
100
100 150 200 250 300 350 400 450 500
Reaction temperature, oC
N
O
c
on
ve
rs
io
n,
%
MnCoCe 7-3-2.5 10% CuO 50% CuO
Figure A17: Catalytic activity of MnCoCe 7-3-2.5 added CuO
0
20
40
60
80
100
100 150 200 250 300 350 400 450 500
Reaction temperature, oC
C
O
c
on
ve
rs
io
n,
%
MnCoCe 7-3-2.5
10% ZnO
50% ZnO
a
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
113
0
20
40
60
80
100
100 150 200 250 300 350 400 450 500
Reaction temperature, oC
C
3H
6 c
on
ve
rs
io
n,
%
MnCoCe 7-3-2.5
10% ZnO
50% ZnO
b
0
20
40
60
80
100
100 150 200 250 300 350 400 450 500
Reaction temperature , oC
N
O
c
on
ve
rs
io
n,
%
MnCoCe 7-3-2.5
10% ZnO
50% ZnO
c
Figure A18: Catalytic activity of MnCoCe 7-3-2.5 added ZnO
Annex 2.3 The catalytic activity of MnCoNi catalysts for simultaneous
treatment of CO, C3H6 and NO
Annex 2.3.1 The catalytic activity of MnCoNi catalyst with different MnO2/Co3O4
ratio
0
20
40
60
80
100
100 200 300 400 500
Reaction temperature, oC
C
O
c
on
ve
rs
io
n,
%
MnCoNi 2-3-3
MnCoNi 7-3-3
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
114
0
20
40
60
80
100
100 200 300 400 500
Reaction temperature, oC
C
3H
6 c
on
ve
rs
io
n,
%
MnCoNi 2-3-3
MnCoNi 7-3-3
0
20
40
60
80
100
100 200 300 400 500
Reaction temperature, oC
N
O
c
on
ve
rs
io
n,
%
MnCoNi 2-3-3
MnCoNi 7-3-3
Figure A19 CO, C3H6 and NO conversion of catalyst MnCoNi 2-3-3 and MnCoNi 7-3-3
Annex 2.3.2 The catalytic activity of MnCoNi 7-3-3 catalyst added CeO2
0
20
40
60
80
100
100 150 200 250 300 350 400 450 500
Reaction temperature, oC
C
O
c
on
ve
rs
io
n,
%
MnCoNi 7-3-3 5% CeO2
a
Synthesize and investigate the catalytic activity of three-way catalysts based on mixed
metal oxides for the treatment of exhaust gases from internal combustion engine
Nguyen The Tien
115
0
20
40
60
80
100
100 150 200 250 300 350 400 450 500
Reaction temperature, oC
C
3H
6 c
on
ve
rs
io
n,
%
MnCoNi 7-3-3 5% CeO2
b
0
20
40
60
80
100
100 150 200 250 300 350 400 450 500
Reaction temperature, oC
N
O
c
on
ve
rs
io
n,
%
MnCoNi 7-3-3 5% CeO2
c
Figure A20 Catalytic activity of MnCoNi 7-3-3 and added 5% CeO2 sample