The testing results supported two over four moderating hypotheses. More specifically, the negatively moderating effect of CFC-Immediate and the positively moderating effect of CFC-Future on the relationship between perceived security and continuance intention to use mobile commerce were confirmed. These findings are consistent with regulatory fit theory (Aaker and Lee, 2006, Higgins et al., 2003), which suggests that CFC-Future will have a feeling of “fit” when thinking about security and individuals with a high level of CFC-Immediate will have a feeling of “mismatch” when thinking about security. However, we fail to prove the buffering role of CFC-Immediate on perceived risk – continuance intention to use mobile commerce relationship. This is unexpected yet is explainable. As mentioned above, mobile commerce comprises of immediate hedonic consequences such as fun, enjoyment that promote mobile commerce use. These hedonic motivations are stronger than the perceived risk in explaining mobile commerce and thus, neutralize the negative moderating effect of CFC-Immediate on risk – continuance intention association. Also, we fail to prove the weakening effect of CFC-Future on this relationship
183 trang |
Chia sẻ: tueminh09 | Lượt xem: 470 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Time perspective and continuance intention to use mobile commerce: The dual role of perceived risk and security, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
commerce of Vietnam. Sustainability, 10(2): 1-18.
Choi, Y.K., J.W. Totten, 2012. Self-construal's role in mobile TV acceptance: Extension of TAM across cultures. Journal of Business Research, 65(11): 1525-1533.
Chong, A. Y. -L., F.T. Chan and Ooi, K. -B., 2012. Predicting consumer decisions to adopt mobile commerce: Cross country empirical examination between China and Malaysia. Decision Support Systems, 53(1): 34-43.
Chong, A.Y.-L., 2015. Understanding mobile commerce continuance intentions: An empirical analysis of Chinese consumers. Journal of Computer Information Systems, 53(4): 22–30.
Citrin, A.V., D.E. Sprott, S.N. Silverman and D.E. Stem, 2000. Adoption of Internet shopping: the role of consumer innovativeness. Industrial Management & Data Systems, 100(7): 294–300.
Cohen, J., 1992. A power primer. Psychological Bulletin, 112(1): 155-159.
Costa, P.T., R.R. McCrae, 1992. Four ways five factors are basic. Personality and Individual Differences, 13(6): 653-665.
Cozzarin, B.P., S. Dimitrov, 2015. Mobile commerce and device specific perceived risk. Electronic Commerce Research, 16(3): 335-354.
Cunningham, L.F., J.H. Gerlach, M.D. Harper and C.E. Young, 2005. Perceived risk and the consumer buying process: internet airline reservations. International Journal of Service Industry Management, 16(4): 357-372.
D'Arcy, J., A. Hovav and D. Galletta, 2009. User awareness of security countermeasures and its impact on information systems misuse: A deterrence approach. Information Systems Research, 20(1): 79-98.
Dassen, F.C., K. Houben and A. Jansen, 2015. Time orientation and eating behavior: Unhealthy eaters consider immediate consequences, while healthy eaters focus on future health. Appetite, 91: 13-19.
Dassen, F.C.M., A. Jansen, C. Nederkoorn and K. Houben, 2016. Focus on the future: Episodic future thinking reduces discount rate and snacking. Appetite, 96: 327-332.
Davis, F.D., 1989. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3): 319-340.
DeLone, W.H., E.R. McLean, 1992. Information systems success: The quest for the dependent variable. Information Systems Research, 3(1): 60-95.
Delone, W.H., E.R. McLean, 2003. The DeLone and McLean model of information systems success: a ten-year update. Journal of Management Information Systems, 19(4): 9-30.
Devaraj, S., R.F. Easley and J.M. Crant, 2008. Research note-how does personality matter? Relating the five-factor model to technology acceptance and use. Information Systems Research, 19(1): 93-105.
Dinh, V.S., H.V. Nguyen and T.N. Nguyen, 2018. Cash or cashless? Strategic Direction, 34(1): 1-4.
Faqih, K.M.S., M.-I.R.M. Jaradat, 2015. Assessing the moderating effect of gender differences and individualism-collectivism at individual-level on the adoption of mobile commerce technology: TAM3 perspective. Journal of Retailing and Consumer Services, 22: 37-52.
Featherman, M.S., P.A. Pavlou, 2003. Predicting e-services adoption: a perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4): 451-474.
Fessel, F., 2010. Increasing level of aspiration by matching construal level and temporal distance. Social Psychological and Personality Science, 2(1): 103-111.
Fishbein, M., I. Ajzen, 1977. Belief, attitude, intention, and behavior: An introduction to theory and research. Philosophy & Rhetoric, 10(2): 132-132.
Fishbein, M., I. Ajzen 2011. Predicting and Changing Behavior: The Reasoned Action Approach. New York, NY: Taylor and Francis.
Flavián, C., M. Guinalíu, 2006. Consumer trust, perceived security and privacy policy. Industrial Management & Data Systems, 106(5): 601-620.
Fornell, C., D.F. Larcker, 1981. Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1): 39-50.
Geers, A.L., J.A. Wellman, L.D. Seligman, L.A. Wuyek and L.A. Neff, 2010. Dispositional optimism, goals, and engagement in health treatment programs. Journal of Behavioral Medicine, 33(2): 123-134.
Gerpott, T.J., S. Thomas, 2014. Empirical research on mobile Internet usage: A meta-analysis of the literature. Telecommunications Policy, 38(3): 291-310.
Gilovich, T., M. Kerr and V.H. Medvec, 1993. Effect of temporal perspective on subjective confidence. Journal of Personality and Social Psychology, 64(4): 552-560.
Glover, S., I. Benbasat, 2014. A comprehensive model of perceived risk of e-commerce transactions. International Journal of Electronic Commerce, 15(2): 47-78.
Goodhue, D.L., R.L. Thompson, 1995. Task-technology fit and individual performance. MIS Quarterly, 19(2): 213-236.
Graso, M., T.M. Probst, 2012. The Effect of Consideration of Future Consequences on Quality and Quantity Aspects of Job Performance1. Journal of Applied Social Psychology, 42(6): 1335-1352.
Grewal, D., J. Gotlieb and H. Marmorstein, 1994. The moderating effects of message framing and source credibility on the price-perceived risk relationship. Journal of consumer research, 21(1): 145-153.
Gwinner, K.P., D.D. Gremler and M.J. Bitner, 1998. Relational benefits in services industries: the customer’s perspective. Journal of the Academy of Marketing Science, 26(2): 101-114.
Hair, J.F., M. Celsi, D.J. Ortinau and R.P. Bush 2008. Essentials of marketing research. New York, NY: McGraw-Hill.
Hair, J.F., G.T.M. Hult, C. Ringle and M. Sarstedt 2016. A primer on partial least squares structural equation modeling (PLS-SEM). Thousand Oaks, CA: Sage Publications.
Hair, J.F., C.M. Ringle and M. Sarstedt, 2014. PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2): 139-152.
Hair, J.F., M. Sarstedt, C.M. Ringle and S.P. Gudergan 2017. Advanced issues in partial least squares structural equation modeling. Thousand Oaks, CA: SAGE Publications.
Han, H., L.-T.J. Hsu and C. Sheu, 2010. Application of the theory of planned behavior to green hotel choice: Testing the effect of environmental friendly activities. Tourism Management, 31(3): 325-334.
Han, S.-L., T.P. Thao Nguyen and V. Anh Nguyen, 2016. Antecedents of intention and usage toward customers’ mobile commerce: Evidence in Vietnam. Journal of Global Scholars of Marketing Science, 26(2): 129-151.
Hanafizadeh, P., M. Behboudi, A.A. Koshksaray and M.J.S. Tabar, 2014. Mobile-banking adoption by Iranian bank clients. Telematics and Informatics, 31(1): 62-78.
Hartono, E., C.W. Holsapple, K.-Y. Kim, K.-S. Na and J.T. Simpson, 2014. Measuring perceived security in B2C electronic commerce website usage: A respecification and validation. Decision Support Systems, 62: 11-21.
Hazlett, A., D.C. Molden and A.M. Sackett, 2011. Hoping for the best or preparing for the worst? Regulatory focus and preferences for optimism and pessimism in predicting personal outcomes. Social Cognition, 29(1): 74-96.
Hennig-Thurau, T., K.P. Gwinner and D.D. Gremler, 2002. Understanding relationship marketing outcomes. Journal of Service Research, 4(3): 230-247.
Henseler, J., W.W. Chin, 2010. A comparison of approaches for the analysis of interaction effects between latent variables using partial least squares path modeling. Structural Equation Modeling, 17(1): 82-109.
Higgins, E.T., 1997. Beyond pleasure and pain. American Psychologist, 52(12): 1280-1300.
Higgins, E.T., R.S. Friedman, R.E. Harlow, L.C. Idson, O.N. Ayduk and A. Taylor, 2001. Achievement orientations from subjective histories of success: Promotion pride versus prevention pride. European Journal of Social Psychology, 31(1): 3-23.
Higgins, E.T., L.C. Idson, A.L. Freitas, S. Spiegel and D.C. Molden, 2003. Transfer of value from fit. Journal of Personality and Social Psychology, 84(6): 1140.
Hirschberg, N., 1978. A correct treatment of traits. In H. London ed.1978. Personality: A new look at metatheories. New York, Hemisphere. pp. 45-68.
Hofmann, W., M. Friese and F. Strack, 2009. Impulse and self-control from a dual-systems perspective. Perspectives on Psychological Science, 4(2): 162-176.
Hong, J.-C., P.-H. Lin and P.-C. Hsieh, 2017. The effect of consumer innovativeness on perceived value and continuance intention to use smartwatch. Computers in Human Behavior, 67: 264-272.
Hsieh, C.-T., 2014. Mobile commerce: assessing new business opportunities. Communications of the IIMA, 7(1): 87-100.
Hung, S.-Y., C.-Y. Ku and C.-M. Chang, 2003. Critical factors of WAP services adoption: an empirical study. Electronic Commerce Research and Applications, 2(1): 42-60.
Im, H., Y. Ha, 2012. Who are the users of mobile coupons? A profile of US consumers. Journal of Research in Interactive Marketing, 6(3): 215-232.
Jarvis, C.B., S.B. MacKenzie and P.M. Podsakoff, 2003. A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30(2): 199-218.
Joireman, J., D. Balliet, D. Sprott, E. Spangenberg and J. Schultz, 2008. Consideration of future consequences, ego-depletion, and self-control: Support for distinguishing between CFC-Immediate and CFC-Future sub-scales. Personality and Individual Differences, 45(1): 15-21.
Joireman, J., J. Kees and D. Sprott, 2010. Concern with immediate consequences magnifies the impact of compulsive buying tendencies on college students' credit card debt. Journal of Consumer Affairs, 44(1): 155-178.
Joireman, J., S. King, 2016. Individual differences in the consideration of future and (more) immediate consequences: A review and directions for future research. Social and Personality Psychology Compass, 10(5): 313-326.
Joireman, J., M.J. Shaffer, D. Balliet and A. Strathman, 2012. Promotion orientation explains why future-oriented people exercise and eat healthy: evidence from the two-factor consideration of future consequences-14 scale. Personality and Social Psychology Bulletin, 38(10): 1272-1287.
Joireman, J., D.E. Sprott and E.R. Spangenberg, 2005. Fiscal responsibility and the consideration of future consequences. Personality and Individual Differences, 39(6): 1159-1168.
Joireman, J., A. Strathman and D.P. Balliet, 2006. Considering future consequences: An integrative model. In L. J. Sanna and E. C. Chang eds.2006. Judgments over time: The interplay of thoughts, feelings, and behaviors. New York, NY, US, Oxford University Press. pp. 82-99.
Jung, Y., B. Perez-Mira and S. Wiley-Patton, 2009. Consumer adoption of mobile TV: Examining psychological flow and media content. Computers in Human Behavior, 25(1): 123-129.
Junglas, I.A., N.A. Johnson and C. Spitzmüller, 2008. Personality traits and concern for privacy: an empirical study in the context of location-based services. European Journal of Information Systems, 17(4): 387-402.
Kalinic, Z., V. Marinkovic, 2015. Determinants of users’ intention to adopt m-commerce: an empirical analysis. Information Systems and e-Business Management, 14(2): 367-387.
Kees, J., S. Burton and A.H. Tangari, 2010. The impact of regulatory focus, temporal orientation, and fit on consumer responses to health-related advertising. Journal of Advertising, 39(1): 19-34.
Khalifa, M., S.K. Cheng and K.N. Shen, 2012. Adoption of mobile commerce: a confidence model. Journal of Computer Information Systems, 53(1): 14-22.
Khalifa, M., K.N. Shen, 2008a. Drivers for transactional B2C m-commerce adoption: extended theory of planned behavior. Journal of Computer Information Systems, 48(3): 111-117.
Khalifa, M., K.N. Shen, 2008b. Explaining the adoption of transactional B2C mobile commerce. Journal of Enterprise Information Management, 21(2): 110-124.
Khoi, N.H., H.H. Tuu and S.O. Olsen, 2018. The role of perceived values in explaining Vietnamese consumers’ attitude and intention to adopt mobile commerce. Asia Pacific Journal of Marketing and Logistics, 30(4): 1112-1134.
Kijsanayotin, B., S. Pannarunothai and S.M. Speedie, 2009. Factors influencing health information technology adoption in Thailand's community health centers: Applying the UTAUT model. International Journal of Medical Informatics, 78(6): 404-416.
Kim, C., M. Mirusmonov and I. Lee, 2010a. An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3): 310-322.
Kim, C., W. Tao, N. Shin and K.-S. Kim, 2010b. An empirical study of customers’ perceptions of security and trust in e-payment systems. Electronic Commerce Research and Applications, 9(1): 84-95.
Kim, D.J., D.L. Ferrin and H.R. Rao, 2008. A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2): 544-564.
Kim, J., Y. Jin Ma and J. Park, 2009. Are US consumers ready to adopt mobile technology for fashion goods? An integrated theoretical approach. Journal of Fashion Marketing and Management: An International Journal, 13(2): 215-230.
Kim, L.H., D.J. Kim and J.K. Leong, 2005. The effect of perceived risk on purchase intention in purchasing airline tickets online. Journal of Hospitality & Leisure Marketing, 13(2): 33-53.
Kotler, P. 2009. Marketing management: A south Asian perspective: Pearson Education India.
Koufaris, M., 2002. Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2): 205-223.
Kourouthanassis, P.E., G.M. Giaglis, 2012. Introduction to the special issue mobile commerce: the past, present, and future of mobile commerce research. International Journal of Electronic Commerce, 16(4): 5-18.
Kuo, Y.-F., S.-N. Yen, 2009. Towards an understanding of the behavioral intention to use 3G mobile value-added services. Computers in Human Behavior, 25(1): 103-110.
Lam, H.K.S., A.C.L. Yeung, C.K.Y. Lo and T.C.E. Cheng, 2019. Should firms invest in social commerce? An integrative perspective. Information & Management.
Law, R., R. Leung, 2000. A study of airlines’ online reservation services on the Internet. Journal of Travel Research, 39(2): 202-211.
Le, H., F.K. Koo and J. Sargent, 2013. A synthesis of globalisation, business culture and e-business adoption in Vietnam. In B. Christiansen, E. Turkina and N. Williams eds.2013. Cultural and Technological Influences on Global Business. Hershey PA, IGI Global. pp. 120-141.
Lee, A.Y., P.A. Keller and B. Sternthal, 2010. Value from regulatory construal fit: The persuasive impact of fit between consumer goals and message concreteness. Journal of Consumer Research, 36(5): 735-747.
Lee, M.-C., 2009. Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3): 130-141.
Lian, J.-W., T.-M. Lin, 2008. Effects of consumer characteristics on their acceptance of online shopping: Comparisons among different product types. Computers in Human Behavior, 24(1): 48-65.
Liao, C., J.-L. Chen and D.C. Yen, 2007. Theory of planning behavior (TPB) and customer satisfaction in the continued use of e-service: An integrated model. Computers in Human Behavior, 23(6): 2804-2822.
Limayem, M., M. Khalifa and A. Frini, 2000. What makes consumers buy from Internet? A longitudinal study of online shopping. IEEE Transactions on Systems, Man, and Cybernetics, 30(4): 421–432.
Lin, C., C. Nguyen, 2011. Exploring e-payment adoption in Vietnam and Taiwan. Journal of Computer Information Systems, 51(4): 41-52.
Lin, F.-T., H.-Y. Wu and T.N.N. Tran, 2014. Internet banking adoption in a developing country: an empirical study in Vietnam. Information Systems and e-Business Management, 13(2): 267-287.
Lin, J., B. Wang, N. Wang and Y. Lu, 2013. Understanding the evolution of consumer trust in mobile commerce: a longitudinal study. Information Technology and Management, 15(1): 37-49.
Lin, Y.-M., D.-H. Shih, 2008. Deconstructing mobile commerce service with continuance intention. International Journal of Mobile Communications, 6(1): 67–87.
Little, T.D., J.A. Bovaird and K.F. Widaman, 2006. On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables. Structural Equation Modeling, 13(4): 497-519.
Liu, F., X. Zhao, P.Y.K. Chau and Q. Tang, 2015. Roles of perceived value and individual differences in the acceptance of mobile coupon applications. Internet Research, 25(3): 471–495.
Liu, Y., H. Li, 2011. Exploring the impact of use context on mobile hedonic services adoption: An empirical study on mobile gaming in China. Computers in Human Behavior, 27(2): 890-898.
Loch, K.D., D.W. Straub and S. Kamel, 2003. Diffusing the Internet in the Arab world: The role of social norms and technological culturation. IEEE Transactions on Engineering Management, 50(1): 45-63.
López-Nicolása, C., F.J. Molina-Castilloa and H. Bouwman, 2008. An assessment of advanced mobile services acceptance: Contributions from TAM and diffusion theory models. Information & Management, 45: 359–364.
Louch, G., S. Dalkin, J. Bodansky and M. Conner, 2013. An exploratory randomised controlled trial using short messaging service to facilitate insulin administration in young adults with type 1 diabetes. Psychology, Health & Medicine, 18(2): 166-174.
Lu, J., 2014. Are personal innovativeness and social influence critical to continue with mobile commerce? Internet Research, 24(2): 134-159.
Lu, J., J.E. Yao and Yu, C. -S., 2005. Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. The Journal of Strategic Information Systems, 14(3): 245-268.
Lu, J., C.-S. Yu and C. Liu, 2009. Mobile data service demographics in urban China. Journal of Computer Information Systems, 50(2): 117-126.
Luo, X., H. Li, J. Zhang and J.P. Shim, 2010. Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: An empirical study of mobile banking services. Decision Support Systems, 49(2): 222-234.
Madden, T.J., P.S. Ellen and I. Ajzen, 1992. A comparison of the theory of planned behavior and the theory of reasoned action. Personality and Social Psychology Bulletin, 18(1): 3-9.
Mahatanankoon, P., 2007. The effects of personality traits and optimum stimulation level on text-messaging activities and m-commerce intention. International Journal of Electronic Commerce, 12(1): 7-30.
Malaquias, R.F., Y. Hwang, 2016. An empirical study on trust in mobile banking: A developing country perspective. Computers in Human Behavior, 54: 453-461.
Malhotra, Y., D.F. Galletta 1999. Extending the technology acceptance model to account for social influence: theoretical bases and empirical validation. Systems Sciences, 1999. HICSS-32. Proceedings of the 32nd Annual Hawaii International Conference, Maui, HI, USA, IEEE.
Mallat, N., M. Rossi, V.K. Tuunainen and A. Öörni, 2008. An empirical investigation of mobile ticketing service adoption in public transportation. Personal and Ubiquitous Computing, 12(1): 57-65.
Marcoulides, G.A., W.W. Chin, 2013. You write, but others read: Common methodological misunderstandings in PLS and related methods. In H. Abdi et al. eds.2013. New perspectives in partial least squares and related methods. New York, Springer. pp. 31-64.
Mathieson, K., E. Peacock and W.W. Chin, 2001. Extending the technology acceptance model: the influence of perceived user resources. ACM SigMIS Database, 32(3): 86-112.
Mayer, R.C., J.H. Davis and F.D. Schoorman, 1995. An Integrative Model of Organizational Trust. The Academy of Management Review, 20(3): 709-734.
McKay, M.T., J.L. Perry, J.C. Cole and J. Magee, 2017. Adolescents consider the future differently depending on the domain in question: Results of an exploratory study in the United Kingdom. Personality and Individual Differences, 104: 448-452.
Menon, G., P. Raghubir and N. Agrawal, 2006. Health risk perceptions and consumer psychology.
Milfont, T.L., J. Wilson and P. Diniz, 2012. Time perspective and environmental engagement: a meta-analysis. International Journal of Psychology, 47(5): 325-334.
Mohamed, N., R. Hussein, N. Hidayah Ahmad Zamzuri and H. Haghshenas, 2014. Insights into individual's online shopping continuance intention. Industrial Management & Data Systems, 114(9): 1453-1476.
Moore, G.C., I. Benbasat, 1991. Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3): 192-222.
Morison, L.A., P.J. Cozzolino and S. Orbell, 2010. Temporal perspective and parental intention to accept the human papillomavirus vaccination for their daughter. British Journal of Psychology, 15(Pt 1): 151-165.
Nabavi, A., M.T. Taghavi-Fard, P. Hanafizadeh and M.R. Taghva, 2016. Information technology continuance intention: a systematic literature review. International Journal of E-Business Research, 12(1): 58-95.
Nan, X., J. Kim, 2014. Predicting H1N1 vaccine uptake and H1N1-related health beliefs: the role of individual difference in consideration of future consequences. Journal of Health Communication, 19(3): 376-388.
Nassuora, A.B., 2013. Understanding factors affecting the adoption of m-commerce by consumers. Journal of Applied Sciences, 13(6): 913-918.
O'Connor, D.B., S. Warttig, M. Conner and R. Lawton, 2009. Raising awareness of hypertension risk through a web-based framing intervention: does consideration of future consequences make a difference? Psychology, Health & Medicine, 14(2): 213-219.
Olsen, S.O., H.H. Tuu, 2017. Time perspectives and convenience food consumption among teenagers in Vietnam: The dual role of hedonic and healthy eating values. Food Research International, 99(1): 98-105.
Orbell, S., M. Hagger, 2006. Temporal framing and the decision to take part in type 2 diabetes screening: Effects of individual differences in consideration of future consequences on persuasion. Health Psychology, 25(4): 537-548.
Orbell, S., M. Kyriakaki, 2008. Temporal framing and persuasion to adopt preventive health behavior: Moderating effects of individual differences in consideration of future consequences on sunscreen use. Health Psychology, 27(6): 770-779.
Ouellette, J.A., R. Hessling, F.X. Gibbons, M. Reis-Bergan and M. Gerrard, 2005. Using images to increase exercise behavior: Prototypes versus possible selves. Personality and Social Psychology Bulletin, 31(5): 610-620.
Ovčjak, B., M. Heričko and G. Polančič, 2015. Factors impacting the acceptance of mobile data services–a systematic literature review. Computers in Human Behavior, 53: 24-47.
Park, S., I.P. Tussyadiah, 2016. Multidimensional facets of perceived risk in mobile travel booking. Journal of Travel Research, 56(7): 854-867.
Park, Y., 2011. A pedagogical framework for mobile learning: Categorizing educational applications of mobile technologies into four types. The International Review of Research in Open and Distributed Learning, 12(2): 78-102.
Parks-Leduc, L., G. Feldman and A. Bardi, 2014. Personality traits and personal values: a meta-analysis. Personality and Social Psychology Review, 19(1): 3-29.
Parks-Leduc, L., G. Feldman and A. Bardi, 2015. Personality traits and personal values: a meta-analysis. Personality and Social Psychology Review, 19(1): 3-29.
Pavlou, P.A., 2003. Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3): 101-134.
Pavlou, P.A., M. Fygenson, 2006. Understanding and predicting electronic commerce adoption: An extension of the theory of planned behavior. MIS Quarterly, 30(1): 115-143.
Pennington, G.L., N.J. Roese, 2003. Regulatory focus and temporal distance. Journal of Experimental Social Psychology, 39(6): 563-576.
Persaud, A., I. Azhar, 2012. Innovative mobile marketing via smartphones. Marketing Intelligence & Planning, 30(4): 418-443.
Peters, B.R., J. Joireman and R.L. Ridgway, 2005. Individual differences in the consideration of future consequences scale correlate with sleep habits, sleep quality, and GPA in university students. Psychological Reports, 96(3): 817-824.
Phong, N.D., N.H. Khoi and A.N.-H. Le, 2018. Factors affecting mobile shopping: a Vietnamese perspective. Journal of Asian Business and Economic Studies, 25(2): 186-205.
Phuong, D., N. Ngoc and T.T. Dai Trang, 2018. Repurchase intention: The effect of service quality, system quality, information quality, and customer satisfaction as mediating role: A PLS approach of m-commerce ride hailing service in Vietnam. Marketing and Branding Research, 5: 78-91.
Podsakoff, P.M., S.B. MacKenzie, J.-Y. Lee and N.P. Podsakoff, 2003. Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5): 879-903.
Pozolotina, T., S.O. Olsen, 2019. Present and future temporal profiles and their relationship to health intentions and behaviors: A test on a Norwegian general population sample. Scandinavian Journal of Psychology, 60(1): 36-42.
Probst, T.M., M. Graso, A.X. Estrada and S. Greer, 2013. Consideration of future safety consequences: a new predictor of employee safety. Accident Analysis & Prevention, 55: 124-134.
Rappange, D.R., W.B. Brouwer and N.J. van Exel, 2009. Back to the Consideration of Future Consequences Scale: time to reconsider? The Journal of Social Psychology, 149(5): 562-584.
Rasmussen, H.N., C. Wrosch, M.F. Scheier and C.S. Carver, 2006. Self-regulation processes and health: the importance of optimism and goal adjustment. Journal of Personality, 74(6): 1721-1747.
Rigdon, E.E., C.M. Ringle and M. Sarstedt, 2010. Structural modeling of heterogeneous data with partial least squares.2010. Review of Marketing Research. pp. 255-296.
Rodríguez-Entrena, M., F. Schuberth and C. Gelhard, 2018. Assessing statistical differences between parameters estimates in Partial Least Squares path modeling. Quality & Quantity, 52(1): 57-69.
Rogers, E.M. 1995. Diffusion of innovations. New York: Free Press.
Salisbury, W.D., R.A. Pearson, A.W. Pearson and D.W. Miller, 2001. Perceived security and World Wide Web purchase intention. Industrial Management & Data Systems, 101(4): 165-177.
Sanakulov, N., H. Karjaluoto, 2015. Consumer adoption of mobile technologies: a literature review. International Journal of Mobile Communications, 13(3): 244-275.
Sarstedt, M., E. Mooi 2014. A Concise Guide to Market Research: The Process, Data, and Methods Using IBM SPSS Statistics. Berlin: Springer-Verlag.
Schierz, P.G., O. Schilke and B.W. Wirtz, 2010. Understanding consumer acceptance of mobile payment services: An empirical analysis. Electronic Commerce Research and Applications, 9(3): 209-216.
Shaikh, A.A., H. Karjaluoto, 2015. Mobile banking adoption: A literature review. Telematics and Informatics, 32(1): 129-142.
Shao, Z., L. Zhang, X. Li and Y. Guo, 2019. Antecedents of trust and continuance intention in mobile payment platforms: The moderating effect of gender. Electronic Commerce Research and Applications, 33(January–February).
Sharkey, U., M. Scott and T. Acton, 2010. The influence of quality on e-commerce success: an empirical application of the Delone and Mclean IS success model. International Journal of E-Business Research, 6(1): 68-84.
Sheeran, P., S. Taylor, 1999. Predicting intentions to use condoms: A meta‐analysis and comparison of the theories of reasoned action and planned behavior. Journal of Applied Social Psychology, 29(8): 1624-1675.
Shin, D.-H., 2009. Towards an understanding of the consumer acceptance of mobile wallet. Computers in Human Behavior, 25(6): 1343-1354.
Sirois, F.M., 2004. Procrastination and intentions to perform health behaviors: The role of self-efficacy and the consideration of future consequences. Personality and Individual Differences, 37(1): 115-128.
Slade, E.L., Y.K. Dwivedi, N.C. Piercy and M.D. Williams, 2015. Modeling consumers’ adoption intentions of remote mobile payments in the United Kingdom: extending UTAUT with innovativeness, risk, and trust. Psychology & Marketing, 32(8): 860-873.
Snyder, C., K.L. Rand and L.A. Ritschel, 2006. Hope over time. In L. Sanna and C. E. eds.2006. Judgments over time: The interplay of thoughts, feelings, and behaviors. Oxford, UK, Oxford University Press. pp. 100-119.
Stolarski, M., J. Vowinckel, K.S. Jankowski and M. Zajenkowski, 2016. Mind the balance, be contented: Balanced time perspective mediates the relationship between mindfulness and life satisfaction. Personality and Individual Differences, 93: 27-31.
Strathman, A., F. Gleicher, D.S. Boninger and C.S. Edwards, 1994. The consideration of future consequences: weighing immediate and distant outcomes of behavior. Journal of Personality and Social Psychology, 66(4): 742-752.
Sun, Q., C. Wang and H. Cao 2009. An extended TAM for analyzing adoption behavior of mobile commerce. Mobile Business, 2009. ICMB 2009. Eighth International Conference on, IEEE.
Teo, T.S., S.C. Srivastava and L. Jiang, 2008. Trust and electronic government success: An empirical study. Journal of Management Information Systems, 25(3): 99-132.
Toepoel, V., 2010. Is consideration of future consequences a changeable construct? Personality and Individual Differences, 48(8): 951-956.
Toplak, M.E., E. Liu, R. Macpherson, T. Toneatto and K.E. Stanovich, 2007. The reasoning skills and thinking dispositions of problem gamblers: a dual-process taxonomy. Journal of Behavioral Decision Making, 20(2): 103-124.
Trope, Y., N. Liberman, 2003. Temporal construal. Psychological Review, 110(3): 403-421.
Tsiakis, T., G. Sthephanides, 2005. The concept of security and trust in electronic payments. Computers & Security, 24(1): 10-15.
van Beek, J., G. Antonides and M.J.J. Handgraaf, 2013. Eat now, exercise later: The relation between consideration of immediate and future consequences and healthy behavior. Personality and Individual Differences, 54(6): 785-791.
van Noort, G., P. Kerkhof and B.M. Fennis, 2007. Online versus conventional shopping: consumers' risk perception and regulatory focus. CyberPsychology & Behavior, 10(5): 731-733.
van Noort, G., P. Kerkhof and B.M. Fennis, 2008. The persuasiveness of online safety cues: The impact of prevention focus compatibility of Web content on consumers’ risk perceptions, attitudes, and intentions. Journal of Interactive Marketing, 22(4): 58-72.
Vatanasombut, B., M. Igbaria, A.C. Stylianou and W. Rodgers, 2008. Information systems continuance intention of web-based applications customers: The case of online banking. Information & Management, 45(7): 419-428.
Venkatesh, V., M.G. Morris, G.B. Davis and F.D. Davis, 2003. User acceptance of information technology: toward a unified view. MIS Quarterly, 27(3): 425-478.
Venkatesh, V., J.Y. Thong and X. Xu, 2012. Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly: 157-178.
Vladimir, Z., 1996. Electronic commerce: structures and issues. International Journal of Electronic Commerce, 1(1): 3-23.
Walczuch, R., H. Lundgren, 2004. Psychological antecedents of institution-based consumer trust in e-retailing. Information & Management, 42(1): 159-177.
Wang, W., E.W. Ngai and H. Wei, 2012. Explaining instant messaging continuance intention: the role of personality. International Journal of Human-Computer Interaction, 28(8): 500-510.
Wei, T.T., G. Marthandan, Chong, A. Y. -L., Ooi, K. -B. and S. Arumugam, 2009. What drives Malaysian m-commerce adoption? An empirical analysis. Industrial Management & Data Systems, 109(3): 370-388.
Williams, L.J., J.R. Edwards and R.J. Vandenberg, 2003. Recent advances in causal modeling methods for organizational and management research. Journal of Management, 29(6): 903-936.
Williams, M.D., N.P. Rana and Y.K. Dwivedi, 2015. The unified theory of acceptance and use of technology (UTAUT): a literature review. Journal of Enterprise Information Management, 28(3): 443-488.
Wu, J.-H., S.-C. Wang, 2005. What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. Information & Management, 42(5): 719-729.
Wu, J., X. Lu, 2013. Effects of extrinsic and intrinsic motivators on using utilitarian, hedonic, and dual-purposed information systems: a meta-analysis. Journal of the Association for Information Systems, 14(3): 153-191.
Wu, Y.-C.J., J.-P. Shen and C.-L. Chang, 2015. Electronic service quality of Facebook social commerce and collaborative learning. Computers in Human Behavior, 51: 1395-1402.
Yang, K.C., 2005. Exploring factors affecting the adoption of mobile commerce in Singapore. Telematics and Informatics, 22(3): 257-277.
Yang, Y., J. Zhang 2009. Discussion on the dimensions of consumers' perceived risk in mobile service. The Proceeding of 2009 Eighth International Conference on Mobile Business, Washington, DC, IEEE Computer Society.
Yoon, C., 2009. The effects of national culture values on consumer acceptance of e-commerce: Online shoppers in China. Information & Management, 46(5): 294-301.
Yuan, S., Y. Liu, R. Yao and J. Liu, 2014. An investigation of users’ continuance intention towards mobile banking in China. Information Development, 32(1): 20–34.
Zarmpou, T., V. Saprikis, A. Markos and M. Vlachopoulou, 2012. Modeling users’ acceptance of mobile services. Electronic Commerce Research, 12(2): 225-248.
Zhang, L., J. Zhu and Q. Liu, 2012. A meta-analysis of mobile commerce adoption and the moderating effect of culture. Computers in Human Behavior, 28(5): 1902-1911.
Zhou, T., 2011. Understanding mobile Internet continuance usage from the perspectives of UTAUT and flow. Information Development, 27(3): 207–218.
Zhou, T., 2012. Examining location-based services usage from the perspectives of unified theory of acceptance and use of technology and privacy risk. Journal of Electronic Commerce Research, 13(2): 135.
Zhou, T., 2013a. An empirical examination of continuance intention of mobile payment services. Decision Support Systems, 54(2): 1085-1091.
Zhou, T., 2013b. An empirical examination of continuance intention of mobile payment services. Decision Support Systems, 54(2): 1085–1091.
Zhou, T., 2013c. Examining continuance usage of mobile Internet services from the perspective of resistance to change. Information Development, 30(1): 22–31.
Zhou, T., 2013d. Understanding continuance usage of mobile services. International Journal of Mobile Communications, 11(1): 56–70.
Zhou, T., 2013e. Understanding continuance usage of mobile sites. Industrial Management & Data Systems, 113(9): 1286–1299.
Zhou, T., 2014. Understanding the determinants of mobile payment continuance usage. Industrial Management & Data Systems, 114(6): 936–948.
Zhou, T., Y. Lu, 2011. The effects of personality traits on user acceptance of mobile commerce. International Journal of Human–Computer Interaction, 27(6): 545-561.
APPENDICES
APENDIX A: VIETNAMESE RESEARCH QUESTIONNAIRE
TRƯỜNG ĐẠI HỌC KINH TẾ TP. HỒ CHÍ MINH - KHOA QUẢN TRỊ
BẢNG CÂU HỎI KHẢO SÁT
NGHIÊN CỨU CẢM NHẬN CỦA NGƯỜI TIÊU DÙNG
VỀ THƯƠNG MẠI DI ĐỘNG
STT: ....................... MẠNG: .........................
Chúng tôi là giảng viên của trường Đại học Kinh tế Tp. Hồ Chí Minh, đang thực hiện nghiên cứu liên quan đến cảm nhận của người tiêu dùng về mua sắm trực tuyến bằng thiết bị di động sau đây được gọi tắt với thuật ngữ THƯƠNG MẠI DI ĐỘNG - TMDĐ. Nghiên cứu này nhằm khám phá tác động của các tính cách cá nhân đến cảm nhận về rủi ro, an toàn và hành vi sử dụng thương mại di động.
Chúng tôi cam kết các thông tin khảo sát sẽ hoàn toàn được giữ kín!
Cách trả lời
Hầu hết các câu hỏi sẽ có một đoạn giới thiệu ngắn trước khi bắt đầu câu hỏi thực sự. Một vài câu hỏi có thể tương tự nhau, nhưng các Anh/Chị có thể trả lời giống hoặc khác nhau tùy thuộc vào đánh giá của bản thân. Trước khi trả lời câu hỏi, các Anh/Chị vui lòng đọc đoạn giới thiệu và câu hỏi một cách kỹ càng. Đối với các câu hỏi, Anh/Chị bạn lựa chọn trả lời bằng cách đánh (X) trên thang đo từ 1 (hoàn toàn không đồng ý) đến 7 (hoàn toàn đồng ý).
1 = Hoàn toàn không đồng ý; 2 = Rất không đồng ý; 3 = Hơi không đồng ý; 4 = Trung dung; 5 = Hơi đồng ý; 6 = Rất đồng ý; và 7 = Hoàn toàn đồng ý.
Cảm ơn Anh/Chị vì đã dành thời gian trả lời!
PHẦN 1: KHẢO SÁT
Câu 1: Anh/Chị hãy vui lòng cho biết mức độ đồng ý của mình đối với những phát biểu sau liên quan đến việc sử dụng thương mại di động
Tôi hình dung việc sử dụng TMDĐ sẽ như thế nào trong tương lai, và cố gắng đạt được điều đó bằng việc sử dụng TMDĐ hàng ngày của tôi
1
2
3
4
5
6
7
Tôi tham gia TMDĐ để đạt được những lợi ích trong tương lai
1
2
3
4
5
6
7
Tôi sẵn sàng bỏ qua niềm vui và lợi ích trước mắt khi sử dụng TMDĐ để đạt những lợi ích lâu dài
1
2
3
4
5
6
7
Tôi nghĩ rằng cần đề phòng những kết quả tiêu cực của TMDĐ ngay cả khi những kết quả tiêu cực này chỉ xuất hiện trong tương lai
1
2
3
4
5
6
7
Tôi nghĩ rằng nên thực hiện một hành vi TMDĐ có kết quả quan trọng trong tương lai hơn là một hành vi TMDĐ có kết quả ít quan trọng hơn trong hiện tại.
1
2
3
4
5
6
7
Khi ra quyết định TMDĐ, tôi nghĩ về việc quyết định này sẽ ảnh hưởng đến tôi trong tương lai như thế nào
1
2
3
4
5
6
7
Việc sử dụng TMDĐ của tôi thường bị ảnh hưởng bởi các kết quả trong tương lai
1
2
3
4
5
6
7
Tôi sử dụng TMDĐ để thỏa mãn nhu cầu trước mắt, các vấn đề trong tương lai sẽ giải quyết sau
1
2
3
4
5
6
7
Việc sử dụng TMDĐ của tôi chỉ bị tác động bởi kết quả ngắn hạn (tính theo ngày hoặc theo tuần)
1
2
3
4
5
6
7
Sự thuận tiện là một yếu tố quan trọng của việc tôi sử dụng TMDĐ
1
2
3
4
5
6
7
Tôi thường bỏ qua những cảnh báo về những hậu quả tiêu cực trong tương lai của việc sử dụng TMDĐ vì tôi nghĩ vấn đề sẽ được giải quyết trước khi quá muộn
1
2
3
4
5
6
7
Tôi nghĩ bỏ qua việc sử dụng TMDĐ trong hiện tại là không cần thiết vì các vấn đề trong tương lai có thể được giải quyết sau đó
1
2
3
4
5
6
7
Tôi chỉ sử dụng TMDĐ để giải quyết vấn đề trước mắt, những vấn đề của tương lai sẽ được xử lý sau
1
2
3
4
5
6
7
Đối với tôi, hoạt động TMDĐ thường ngày đem lại kết quả cụ thể quan trọng hơn các hoạt động TMDĐ chỉ mang lại kết quả trong tương lai
1
2
3
4
5
6
7
Câu 2: Anh/Chị hãy suy nghĩ về hoạt động thương mại điện tử trên thiết bị di động và vui lòng cho biết mức độ đồng ý đối với những phát biểu sau
Ai đó sử dụng tài khoản TMDĐ của tôi để xem các thông tin giao dịch
1
2
3
4
5
6
7
Ai đó sử dụng tài khoản TMDĐ của tôi để mua hàng
1
2
3
4
5
6
7
Ai đó đánh cắp tài khoản TMDĐ của tôi
1
2
3
4
5
6
7
Website TMDĐ truyền đi thông tin giao dịch không chính xác
1
2
3
4
5
6
7
Thông tin giao dịch TMDĐ của tôi bị chỉnh sửa
1
2
3
4
5
6
7
Website TMDĐ ghi nhận thông tin giao dịch không đúng
1
2
3
4
5
6
7
Tôi không thể đặt hàng qua TMDĐ vì lỗi hệ thống
1
2
3
4
5
6
7
Tôi không thể đặt hàng qua TMDĐ vì lỗi cơ sở dữ liệu
1
2
3
4
5
6
7
Tôi không thể đặt hàng qua TMDĐ vì lỗi mạng
1
2
3
4
5
6
7
Website TMDĐ sử dụng chữ kí số
1
2
3
4
5
6
7
Pháp luật bảo hộ chữ kí số TMDĐ
1
2
3
4
5
6
7
Định danh của website TMDĐ đáng tin cậy
1
2
3
4
5
6
7
Câu 3: Anh/Chị hãy suy nghĩ về hoạt động thương mại điện tử trên thiết bị di động và vui lòng cho biết mức độ đồng ý đối với những phát biểu sau
TMDĐ không phù hợp để chi tiền giao dịch
1
2
3
4
5
6
7
Chi tiền cho giao dịch TMDĐ hẳn là không sáng suốt
1
2
3
4
5
6
7
Tôi sẽ không nhận được từ TMDĐ những gì tương xứng với số tiền bỏ ra
1
2
3
4
5
6
7
TMDĐ không mang lại giá trị tương xứng với số tiền bỏ ra
1
2
3
4
5
6
7
Tôi lo lắng rằng TMDĐ sẽ không hoạt động như kì vọng
1
2
3
4
5
6
7
Tôi lo lắng rằng TMDĐ sẽ không mang lại lợi ích như kì vọng
1
2
3
4
5
6
7
Mua hàng trên website TMDĐ sẽ có nhiều rủi ro
1
2
3
4
5
6
7
Tôi không chắc người bán trên website TMDĐ sẽ hoạt động như kì vọng
1
2
3
4
5
6
7
Tôi sẽ mất kiểm soát thông tin thanh toán khi sử dụng TMDĐ
1
2
3
4
5
6
7
Thông tin cá nhân của tôi sẽ bị sử dụng ngoài ý muốn khi sử dụng TMDĐ
1
2
3
4
5
6
7
Tội phạm mạng có thể chiếm quyền kiểm soát tài khoản TMDĐ của tôi
1
2
3
4
5
6
7
TMDĐ không phù hợp với hình ảnh cá nhân của tôi
1
2
3
4
5
6
7
Sử dụng TMDĐ sẽ dẫn đến những ảnh hưởng về mặt tâm lý
1
2
3
4
5
6
7
TMDĐ làm người khác nghĩ tiêu cực về tôi
1
2
3
4
5
6
7
TMDĐ sẽ dẫn đến tổn thất về mặt xã hội (hình ảnh, danh tiếng, )
1
2
3
4
5
6
7
Sử dụng TMDĐ làm tôi mất thời gian chuyển sang phương thức thanh toán khác.
1
2
3
4
5
6
7
Sử dụng TMDĐ, tôi sẽ mất thời gian khắc phục các lỗi liên quan đến thanh toán.
1
2
3
4
5
6
7
TMDĐ có thể dẫn đến việc tiêu tốn thời gian không hiệu quả
1
2
3
4
5
6
7
TMDĐ có thể làm tiêu tốn nhiều thời gian hoặc gây lãng phí thời gian
1
2
3
4
5
6
7
Câu hỏi 4: Anh/Chị hãy suy nghĩ về hoạt động thương mại điện tử trên thiết bị di động và vui lòng cho biết mức độ đồng ý đối với những phát biểu sau
Tôi dự định sẽ gia tăng việc sử dụng TMDĐ trong tương lai
1
2
3
4
5
6
7
Tôi dự định sẽ tiếp tục sử dụng TMDĐ trong tương lai
1
2
3
4
5
6
7
Tôi sẽ khuyến khích nhiều người khác sử dụng TMDĐ
1
2
3
4
5
6
7
PHẦN 2: THÔNG TIN KHÁC
Anh/ Chị vui lòng cho biết giới tính: Nam * Nữ *
Anh/Chị sinh năm: ..............
Anh/Chị thuộc nhóm nghề nghiệp:
Sinh viên * Nhân viên doanh nghiệp quốc doanh *
Nhân viên công ty tư nhân * Tự kinh doanh * Khác *
Anh chị thuộc nhóm thu nhập (VNĐ):
Dưới 5 triệu * 5 triệu – dưới 10 triệu * 10 triệu – dưới 15 *
Từ 15 triệu *
Trân trọng cảm ơn Anh/Chị!
APPENDIX B: FORMULA FOR CALCULATING CRONBACH’S ALPHA, COMPOSITE RELIABILITY AND AVERAGE VARIANCE EXTRACTED
Cronbach's Alpha α= M*r1+M-1*r (1)
Notes: r: represents the average correlation of the first-order constructs; M: the number of first-order construct
pc= i=1Mli2i=1Mli2+ 1Mvarei (2)
Note: li: refers to the loading of the lower order construct i of a specific higher order construct measured with M lower order constructs (i = 1, . . ., M); ei is the measurement error of lower order construct i; var(ei) refers to the variance of the measurement error, which is defined as 1- li2.
AVE= i=1Mli2M (3)
Note: li: refers to the loading of the lower order construct i of a specific higher order construct measured with M lower order constructs (i = 1, . . ., M)
APPENDIX C: COMMON LATENT FACTOR ANALYSIS
The result of Harmon’s one-factor test
Component
Initial Eigenvalues
Extraction Sums of Squared Loadings
Total
% of Variance
Cumulative %
Total
% of Variance
Cumulative %
1
10.55
21.54
21.54
10.55
21.54
21.54
2
6.00
12.25
33.79
3
3.00
6.12
39.91
4
2.79
5.70
45.60
5
2.18
4.46
50.06
6
1.95
3.98
54.04
7
1.85
3.77
57.81
8
1.44
2.93
60.74
9
1.34
2.74
63.48
10
1.21
2.47
65.95
11
1.11
2.26
68.21
12
1.01
2.07
70.28
13
0.93
1.89
72.17
14
0.80
1.63
73.80
15
0.77
1.57
75.37
16
0.67
1.37
76.74
17
0.60
1.22
77.96
18
0.57
1.17
79.13
19
0.56
1.13
80.26
20
0.54
1.10
81.36
21
0.52
1.05
82.41
22
0.50
1.02
83.44
23
0.48
0.97
84.41
24
0.47
0.95
85.36
25
0.44
0.90
86.26
26
0.42
0.86
87.13
27
0.42
0.85
87.98
28
0.40
0.82
88.79
29
0.38
0.78
89.57
30
0.38
0.77
90.34
31
0.37
0.75
91.09
32
0.33
0.68
91.77
33
0.33
0.67
92.44
34
0.32
0.66
93.10
35
0.31
0.63
93.73
36
0.29
0.59
94.32
37
0.29
0.59
94.91
38
0.27
0.55
95.46
39
0.26
0.53
95.99
40
0.25
0.51
96.49
41
0.23
0.48
96.97
42
0.22
0.46
97.43
43
0.22
0.45
97.88
44
0.20
0.41
98.29
45
0.20
0.40
98.69
46
0.18
0.37
99.05
47
0.17
0.35
99.40
(Source: author’s calculation)
The result of common latent factor analysis
Constructs and indicators
Substantive factor loadings (R1)
R12
Latent Factor loading (R2)
R22
CFC-Immediate (CFCI) (Joireman et al., 2012, Strathman et al., 1994)
I only use mobile commerce to satisfy immediate concerns, figuring the future will take care of itself (CFCI1)
0.75***
0.56
0.05
0.00260
My mobile commerce activities are only influenced by the immediate (i.e., a matter of days or weeks) outcomes of my actions (CFCI2)
0.77***
0.59
0.09
0.00828
My convenience is a big factor in my mobile commerce activities (CFCI3)
0.89***
0.78
0.02
0.00023
I think that sacrificing mobile commerce activities now is usually unnecessary since future outcomes can be dealt with at a later time (CFCI5)
0.78***
0.6
0.07
0.00462
I only use mobile commerce to satisfy immediate concerns, figuring that I will take care of future problems that may occur at a later date (CFCI6)
0.92***
0.84
-0.08*
0.00672
Since my day-to-day mobile commerce activities have specific outcomes, it is more important to me than mobile commerce activities that have distant outcomes (CFCI7)
0.81***
0.66
-0.07
0.00518
CFC-Future (CFCF) (Joireman et al., 2012, Strathman et al., 1994)
I consider how mobile commerce’s benefits might be in the future, and try to archive those benefits with my day-to-day of using mobile commerce (CFCF1)
0.87***
0.76
-0.06
0.00303
Often, I engage in a mobile commerce activity in order to achieve outcomes that may not result for many years (CFCF2)
0.84***
0.7
0.03
0.00090
I am willing to sacrifice my immediate happiness or well-being of using mobile commerce activities in order to achieve future outcomes (CFCF3)
0.79***
0.62
0.02
0.00026
I think it is more important to make a mobile commerce decision with important distant consequences than a mobile commerce decision with less important immediate consequences (CFCF5)
0.81***
0.66
0
0.00000
When I make a mobile commerce decision, I think about how it might affect me in the future (CFCF6)
0.82***
0.67
0
0.00000
My mobile commerce activities are generally influenced by future consequences (CFCF7)
0.75***
0.56
0.01
0.00012
Financial Risk (FR) (Featherman and Pavlou, 2003, Kim et al., 2005)
Mobile commerce would be an inappropriate way to spend my money (FR1)
0.79***
0.63
0.044
0.0019
The money I would make on mobile commerce would not be wise (FR2)
0.83***
0.70
-0.06
0.0036
I will not get my money’s worth from mobile commerce (FR3)
0.86***
0.75
-0.063
0.0040
Mobile commerce would not provide value for the money I spent (FR4)
0.88***
0.79
0.1**
0.0100
Performance Risk (PER) (Featherman and Pavlou, 2003, Kim et al., 2005)
I worry mobile commerce will not perform as they are supposed to (PER1)
0.9***
0.81
-0.07*
0.00504
I worry mobile commerce will not provide the level of benefits as I expect (PER2)
0.77***
0.59
0.1*
0.00903
A lot of risks would be involved with purchasing items on mobile commerce (PER3)
0.9***
0.8
-0.06
0.00325
I am not confident about mobile commerce vendors to perform as expected (PER4)
0.76***
0.57
0.04
0.00152
Privacy Risk (PrR) (Featherman and Pavlou, 2003, Kim et al., 2005)
Using mobile commerce, I will lose control over my payment information (PrR1)
0.8***
0.64
0.02
0.00036
Using mobile commerce, my personal information would be used without my knowledge (PrR2)
0.85***
0.72
0.02
0.00058
Internet criminals might take control of my account if I use mobile commerce (PrR3)
0.87***
0.75
-0.04
0.00185
Psychological Risk (PSR) (Featherman and Pavlou, 2003, Kim et al., 2005)
Mobile commerce will not fit in well with my self-image or self-concept (PSR1)
0.91***
0.83
0.01
0.00005
The usage of mobile commerce would lead to a psychological loss for me (PSR2)
0.91***
0.83
-0.01
0.00005
Social Risk (SR) (Featherman and Pavlou, 2003, Kim et al., 2005)
Mobile commerce will negatively affect the way others think of you (SR1)
0.94***
0.88
-0.05*
0.00260
Using mobile commerce would lead to a social loss for me (SR2)
0.9***
0.82
0.05*
0.00240
Time Risk (TR) (Featherman and Pavlou, 2003, Kim et al., 2005)
Using mobile commerce, I will lose time switching to a different payment method (TR1)
0.84***
0.7
0
0.00002
Using mobile commerce, I will waste a lot of time fixing payments errors (TR2)
0.87***
0.76
-0.01
0.00006
Mobile commerce could lead to an inefficient use of my time (TR3)
0.85***
0.73
0.03
0.00090
Mobile commerce will take too much time or be a waste of time (TR4)
0.79***
0.62
-0.02
0.00044
Perceived Confidentiality (PC) (Hartono et al., 2014)
Someone uses my mobile commerce ID to read my transactional informationR (PC1)
0.8***
0.64
-0.03
0.00073
Someone uses my mobile commerce ID to make order R (PC1)
0.84***
0.71
0
0.00000
Someone steals my mobile commerce ID R (PC1)
0.89***
0.79
0
0.00001
The site transmits my transactional information accurately (PI1)
0.79***
0.63
0.03
0.00078
My transactional information is alteredR (PI2)
0.84***
0.7
0.03
0.00078
The site records my transactional information incorrectlyR (PI3)
0.72***
0.51
-0.03
0.00090
Perceived Availability (PA) (Hartono et al., 2014)
I cannot order due to system failureR (PA1)
0.78***
0.61
0.05
0.00212
I cannot order due to database failureR (PA2)
0.89***
0.79
-0.09*
0.00740
I cannot order due to network failureR (PA3)
0.82***
0.67
0.04
0.00152
Perceived Non-Repudiation (PNR) (Hartono et al., 2014)
The site uses digital signature (PNR1)
0.91***
0.84
-0.047
0.0022
The legislation backs up the digital signature (PNR2)
0.88***
0.79
0.113**
0.0128
The identity of this site is trustworthy (PNR3)
0.92***
0.86
-0.034
0.0012
Continuance intention to use mobile commerce (UMC) (Chong, 2015)
I intend to increase my use of mobile commerce in the future (UMC1)
0.9***
0.81
-0.01
0.00008
I intend to continue my use of mobile commerce in the future (UMC2)
0.85***
0.73
0.07**
0.00548
I will strongly recommend others to use mobile commerce (UMC3)
0.94***
0.88
-0.06**
0.00397
Average
0.84
0.71
0.001
0.002
Notes: *** p < 0.001; ** p < 0.01; * p < 0.05
(Source: author’s calculation)