Phân tích lượng nhỏ các nguyên tố đất hiếm trong lớp mạ hợp kim Ni – Zn

MỞ ĐẦU Ngày nay, vật liệu kim loại vẫn đang chiếm một vị trí quan trọng trong các ngành công nghiệp cũng như trong nền kinh tế quốc dân. Do có hoạt tính cao nên chúng luôn bị môi trường tác động làm phá hủy dần từ ngoài vào trong. Theo ước tính thì ăn mòn kim loại hàng năm trên thế giới làm thiệt hại khoảng 5% nền kinh tế. Ở nước ta, môi trường khí hậu nhiệt đới nóng ẩm là điều kiện lý tưởng cho ăn mòn kim loại, tỷ lệ vật liệu kim loại được sử dụng còn cao vì vậy thiệt hại do ăn mòn chắc chắn sẽ lớn hơn. Như chúng ta đã biết, sắt và hợp kim của nó là vật liệu rất quan trọng đối với các lĩnh vực công nghiệp, kinh tế cũng như đời sống thường nhật. Trong đó thép cacbon được xem như vật liệu quan trọng và thông dụng nhất. Do có tính chất cơ lý, hóa ưu việt nên thép cacbon được dùng ở khắp nơi là vật liệu kim loại có sản lượng lớn nhất thế giới hiện nay. Tuy nhiên, vật liệu này kém bền, dễ bị ăn mòn trong các môi trường nên khi sử dụng phải có biện pháp bảo vệ chống ăn mòn thích hợp. Trong trường hợp này chúng ta thường có hai cách bảo vệ sắt: Tạo ra hợp kim của sắt có đặc tính chống ăn mòn cao hoặc tạo ra lớp phủ, mạ bảo vệ ngăn cách sự tiếp xúc giữa vật liệu với môi trường, sự ngăn cách có thể là lớp sơn bề mặt hay dùng lớp phủ photphat hóa bề mặt và một kỹ thuật đang được sử dụng phổ biến trên thế giới đó là phương pháp mạ hợp kim. Đã có nhiều công trình nghiên cứu về lớp mạ hợp kim nhằm tạo ra một lớp mạ bền vững nâng cao khả năng chống ăn mòn và các nghiên cứu này đều tập trung vào các chất phụ gia có trong thành phần lớp mạ. Một trong số các chất phụ gia được nghiên cứu là hợp chất của đất hiếm. Chúng có khả năng bảo vệ vật liệu, chống ăn mòn trong các môi trường khác nhau hoặc ở nhiệt độ cao (môi trường oxi hóa hay sunfit hóa hoặc các muối nóng chảy) hoặc ở nhiệt độ thấp (các dung dịch có chứa clorua hay nước biển). Ngoài ra người ta còn sử dụng các nguyên tố đất hiếm làm chất ức chế gỉ, không độc như các chất ức chế cromat nói chung. Như vậy việc nghiên cứu sử dụng các nguyên tố đất hiếm trong công nghiệp đã rất phong phú, ở nhiều lĩnh vực, trong đó có lĩnh vực công nghệ mạ điện. Việc xác định thành phần hóa học các lớp mạ, tìm ra các tỷ lệ phụ gia đất hiếm hợp lí để nâng cao chất lượng bề mặt cũng như khả năng chống ăn mòn của lớp mạ là một trong những đòi hỏi của quá trình nghiên cứu thực nghiệm chế tạo lớp mạ, phục vụ sản xuất trong tương lai. Vì vậy chúng tôi chọn đề tài : “Phân tích lượng nhỏ các nguyên tố đất hiếm trong lớp mạ hợp kim Ni – Zn” cho cuốn luận văn này. Với các nhiệm vụ chủ yếu sau: 1. Tìm các điều kiện tối ưu để xác định thành phần nguyên tố đất hiếm (Ce3+) có trong lớp mạ hợp kim Ni- Zn bằng phương pháp UV-VIS. 2. Ngoài việc xác định nguyên tố Ce3+ là chất phụ gia có trong lớp mạ, chúng tôi cũng xác định thêm cả Ni2+ (bằng phương pháp F-AAS) và Zn2+ (bằng phương pháp chuẩn độ complecxon) là những thành phần chính của lớp mạ. 3. Trong luận văn chúng tôi cũng trình bày tóm tắt quá trình chế tạo lớp mạ và khả năng chống ăn mòn của lớp mạ khi có chất phụ gia Ce3+. Mục lục Nội dung Trang MỞ ĐẦU 1 CHƯƠNG I: TỔNG QUAN 3 1.1 Tình hình nghiên cứu lớp mạ hợp kim có nguyên tố đất hiếm bảo vệ bề mặt kim loại 3 1.1.1 Nghiên cứu ở nước ngoài 3 1.1.2 Nghiên cứu trong nước 5 1.2 Giới thiệu về các nguyên tố đất hiếm (NTĐH) 6 1.2.1 Giới thiệu chung về các NTĐH 6 1.2.2 Các hợp chất của đất hiếm 7 1.3 Các phương pháp xác định NTĐH 11 1.3.1 Các phương pháp hoá học 11 1.3.2 Phương pháp vật lý 13 1.3.3 Các phương pháp phân tích công cụ 13 1.3.4 Các phương pháp phân tích định lượng 15 1.4 Các phương pháp xác định hàm lượng Ni2+, Zn2+ 15 1.4.1 Xác định hàm lượng Ni2+ bằng phương pháp F-AAS 15 1.4.2 Xác định hàm lượng Zn2+ bằng phương pháp chuẩn độ 16 1.5 Phương pháp đánh giá khả năng chống ăn mòn của lớp mạ 16 1.5.1 Phương pháp kính hiển vi điện tử quét ( SEM) 16 1.5.2 Phương pháp nhỏ giọt 16 1.5.3. Phương pháp ngâm trong dung dịch muối ăn 17 1.5.4 Phương pháp điện hóa 17 CHƯƠNG II: ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU 19 2.1 Đối tượng, nội dung nghiên cứu 19 2.1.1 Đối tượng 19 2.1.2 Nội dung 19 2.2 Phương pháp nghiên cứu 19 CHƯƠNG III: KẾT QUẢ VÀ THẢO LUẬN 20 3.1 Thiết bị và hóa chất 20 3.1.1 Thiết bị 20 3.1.2 Hóa chất 20 3.2 Khảo sát phổ hấp thụ phân tử của phức Ce3+-arsenazo III bằng phương pháp trắc quang UV-VIS 22 3.3 Khảo sát các yếu tố ảnh hưởng đến phép đo 22 3.3.1 Ảnh hưởng của pH môi trường đêm tới A 22 3.3.2 Ảnh hưởng của thời gian tới độ bền của phức 23 3.3.3 Ảnh hưởng của thuốc thử dư tới A 24 3.3.4 Ảnh hưởng của các ion kim loại 25 3.3.5 Loại trừ các yếu tố ảnh hưởng 29 3.4 Xây dựng phương trình đường chuẩn xác định Ce3+ 31 3.4.1 Xây dựng phương trình đường chuẩn 31 3.4.2 Kiểm tra sai số hệ thống của đường chuẩn 32 3.4.3 Giới hạn phát hiện (LOD) 33 3.4.4 Giới hạn định lượng (LOQ) 34 3.5 Chế tạo lớp mạ làm mẫu nghiên cứu 34 3.5.1 Xử lý bề mặt mẫu nghiên cứu 34 3.5.2 Chế tạo lớp mạ 34 3.5.3 Đánh giá khả năng chống ăn mòn của vật liêu sau mạ 39 3.6 Xác định các nguyên tố có trong thành phần lớp mạ 42 3.6.1 Xử lý mẫu 42 3.6.2 Xác định hàm lượng Ce3+ trong lớp mạ bằng phương pháp trắc quang 42 3.6.3 Xác định Ni2+ trong lớp mạ bằng phương pháp F-AAS 45 3.6.4 Xác định Zn2+ trong lớp mạ bằng phương pháp chuẩn độ complecxon 47 KẾT LUẬN 49 TÀI LIỆU THAM KHẢO 51 CÁC KÝ HIỆU VIẾT TẮT NTĐH: Nguyên tố đất hiếm TEA: Triethanolamine EPA: Là tác nhân làm bóng chính, được lựa chọn từ các sản phẩm phản ứng của các amin hoặc các dẫn xuất thế nhóm metyl của chúng với epinhalohydrin. SEM: Scanning electron microcope DANH MỤC BẢNG BIỂU, HÌNH VẼ A- Bảng biểu Bảng 1.1 Các nhóm NTĐH. Bảng 1.2: Logarit hằng số bền của NTĐH với EDTA phức 1:1. Bảng 3.1 : Ảnh hưởng của pH đến độ hấp thụ quang A. Bảng 3.2 : Ảnh hưởng của thuốc thử dư. Bảng 3.3 : Ảnh hưởng của Fe2+ tới A. Bảng 3.4 : Ảnh hưởng của Fe3+ tới A. Bảng 3.5 : Ảnh hưởng của Ni2+ tới A. Bảng 3.6 : Ảnh hưởng của Zn2+ tới A. Bảng 3.7: Ảnh hưởng của nồng độ H+ tới khả năng tách Fe3+ ra khỏi Ce3+. Bảng 3.8: Hiệu suất thu hồi Ce3+. Bảng 3.9: Xác định giá trị A của đường chuẩn Ce3+. Bảng 3.10 : Thành phần dung dịch mạ và chế độ mạ. Bảng 3.11: Kết quả so sánh đặc tính của hai loại lớp mạ khi đánh giá bằng phương pháp nhỏ giọt. Bảng 3.12: Kết qủa so sánh đặc tính lớp mạ khi ngâm trong dung dịch muối ăn. Bảng 3.13: Kết quả đo đường cong phân cực. Bảng 3.14: Độ hấp thụ quang của Ce3+ trong các mẫu theo phương pháp thêm chuẩn. Bảng 3.15: Kết quả xác định hàm lượng Ce3+ trong các mẫu được mạ. Bảng 3.16: Kết qủa đo phổ dãy chuẩn Ni2+. Bảng 3.17: Kết quả đo phổ AAS của Ni2+ trong lớp mạ. Bảng 3.18: Xác định hàm lượng Zn2+ trong lớp mạ bằng phương pháp chuẩn độ complecxon. B- Hình vẽ Hình 1.1: Hình miêu tả phương pháp ngoại suy Tafel. Hình 3.1: Phổ UV- VIS của phức Ce- Asenazo III. Hình 3.2 : Đồ thị biểu diễn sự phụ thuộc của A vào pH. Hình 3.3: Độ bền của phức theo thời gian. Hình 3.4: Đồ thị biểu diễn ảnh hưởng của thuốc thử dư đến A của Ce3+. Hình 3.5: Đồ thị biểu diễn ảnh hưởng của Fe3+ tới A của Ce3+. Hình 3.6: Đồ thị biểu diễn ảnh hưởng của Zn2+ tới A của Ce3+. Hình 3.7: Đồ thị biểu diễn ảnh hưởng của nồng độ H+ tới khả năng tách Fe3+ ra khỏi Ce3+. Hình 3.8: Đường chuẩn xác định Ce3+. Hình 3.9: Ảnh hưởng của nồng độ tác nhân tạo phức kết hợp với axit citric trong dung dịch mạ lên tỉ lệ Ni lên lớp mạ. Hình 3.10: Đồ thị biểu diễn đường cong dòng - thế của dung dịch mạ hợp kim có phụ gia (1-1’) và dung dịch chưa có phụ gia (2-2’). Hình 3.11: Cấu trúc lớp mạ có Ce-Zn-Ni. Hình 3.12: Cấu trúc lớp mạ có Zn-Ni. Hình 3.13: Đường cong phân cực lg i = f(E) Hình 3.14: Đồ thị thêm chuẩn của mẫu 1. Hình 3.15: Đồ thị thêm chuẩn của mẫu 2. Hình 3.16: Đồ thị thêm chuẩn của mẫu 3. Hình 3.17: Đường chuẩn của Ni2+.

doc65 trang | Chia sẻ: lvcdongnoi | Lượt xem: 3154 | Lượt tải: 5download
Bạn đang xem trước 20 trang tài liệu Phân tích lượng nhỏ các nguyên tố đất hiếm trong lớp mạ hợp kim Ni – Zn, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Xanh Hồng Ln+3 : ion NTĐH hoá trị (III) Ind3- : Thuốc thử ở dạng phân ly H2Y2- : Complecxon (III) Điểm tương đương của phép chuẩn độ là thời điểm dung dịch chuyển từ màu xanh sang màu hồng 12 1.3.2 Phương pháp vật lý Các kỹ thuật dựa trên việc đo các tín hiệu vật lý của các chất như quang phổ phát xạ, độ phóng xạ, huỳnh quang tia X. Các phương pháp này đòi hỏi phải có các thiết bị phức tạp, nhưng lại cho phép phân tích thành phần hoá học của các lớp có độ sâu nhất định ở độ sâu khác nhau mà không cần phải phá mẫu và có thể phân tích được nhiều chỉ tiêu trong cùng một đối tượng. 1.3.3 Các phương pháp phân tích công cụ [3,5,6] 1.3.3.1 Phương pháp quang phổ phát xạ nguyên tử ( AES) AES là phương pháp có độ nhạy cao, phân tích nhanh, dùng đánh giá độ tinh khiết của nhiều hợp chất có độ tinh khiết cao. Nguyên tắc của phương pháp là làm bay hơi một lượng nhỏ mẫu và kích thích đám hơi nguyên tử đủ để nó bức xạ các ánh sáng đặc trưng trong nguồn phóng điện hồ quang hoặc tia lửa điện. Phương pháp trắc quang ( phổ hấp thụ phân tử UV-VIS ) [4] Phổ hấp thụ phân tử là phổ do tương tác của các điện tử hóa trị ở trong phân tử hay nhóm phân tử với chùm sáng kích thích (chùm tia bức xạ trong vùng UV-VIS) tạo ra. Các ion kim loại đất hiếm, bản thân nó không có khả năng hấp thụ tia bức xạ để sinh ra phổ UV-VIS nhưng nhờ khả năng tạo phức tốt đối với các thuốc thử hữu cơ tạo ra phức bền (có thể là phức màu hoặc hợp chất liên hợp) có khả năng hấp thụ tốt tia bức xạ và cho phổ UV-VIS nhạy. Các thuốc thử hữu cơ phổ biến là arsenazo III, PAR, alirazin S, Dithyzone, Diphenyicacbazit…Phức của các nguyên tố đất hiếm với các thuốc thử này có hệ số hấp thụ phân tử () rất cao. Ví dụ phức của đất hiếm vơi arsenazo III ở = 650-670 nm có = 78000. Độ nhạy của phương pháp đối với phép đo này khoảng 0,02-0,06g/ml. Phương pháp này được ứng dụng để xác định lượng nhỏ NTĐH ở pH không cao. 13 Phương pháp này có ưu điểm là phân tích nhanh dễ thực hiện nhưng có nhược điểm là phổ có ít cực đại hấp thụ nên phép định tính bị hạn chế, mặt khác phổ hấp thụ của nhiều chất xen phủ nhau thì việc đánh giá định tính bị sai lệch, do đó trong phép định lượng nếu phổ bị xen phủ thì phải phân tích trước rồi mới định lượng. * Giới thiệu về thuốc thử Arsenazo III [11,20] Arsenazo III là một thuốc thử hữu cơ trong phân tử chứa các liên kết đôi C=C, N=N-, liên kết liên hợp. Do vậy, chúng tạo ra phức bền với các ion kim loại trong các môi trường khác nhau. Tên hoá học là: 2,2 [1,8 dihydroxy-3,6disunlfo-2,7-naphtylendi(azo)] dibenzenazosonic axit Dạng rắn có màu đỏ đậm khối lượng phân tử bằng 822,27. Bị phân huỷ ở nhiệt độ trên 3200C, độ tan trung bình trong nước trong môi trường axit dung dịch có màu hồng hoặc màu đỏ thẫm tùy thuộc vào nồng độ của nó ở pH >5 dung dịch có màu tím hoặc xanh ở môi trường axit đặc chúng có màu xanh nhạt do nhóm azo bị proton hoá. Arsenazo III có cực đại hấp thụ ở bước sóng lmax = 540nm về hệ số hấp thụ phân tử là e =3,6.104. 1.3.3.3 Phương pháp sắc ký [7] Sắc ký là quá trình tách và xác định hỗn hợp các chất do sự phân bố không đồng đều của chúng giữa pha tĩnh và pha động khi có pha động đi qua pha tĩnh. Phương pháp sắc ký cổ điển được áp dụng thông dụng nhất để xác định các NTĐH là sắc ký trao đổi ion. Chất phân tích trao đổi ion với nhựa của cột sau đó nhựa được rửa giải bằng chất có thành phần thích hợp, chất phân tích được phát hiện ở cuối cột và đem xác định nồng độ. 14 Trong những năm gần đây đã ra đời phương pháp sắc ký mới đó là sắc ký điện di mao quản với kỹ thuật tách và phân tích đồng thời các chất trong hỗn hợp dựa trên nguyên tắc điện di của dung dịch chất phân tích trong mao quản hẹp có chứa dung dịch đệm và điều khiển bằng lực điện trường ở hai đầu mao quản, kỹ thuật này đã được phát triển và ứng dụng có hiệu quả trong việc tách và phân tích định tính, định lượng nhiều loại chất khác nhau. 1.3.4 Các phương pháp phân tích định lượng [ 4,5,12] - Phương pháp đường chuẩn - Phương pháp thêm tiêu chuẩn - Phương pháp một mẫu chuẩn 1.4 Các phương pháp xác định hàm lượng Ni 2+ , Zn2+ 1.4.1 Xác định hàm lượng Ni 2+ bằng phương pháp F-AAS [ 9,12] Với hàm lượng Ni trong mẫu nhỏ thì các phương pháp phân tích hoá học được thay thế bằng phương pháp phân tích công cụ. Có rất nhiều phương pháp phân tích công cụ có thể xác định lượng nhỏ các nguyên tố có trong mẫu như các phương pháp điện hóa hoặc phương pháp trắc quang, các phương pháp tách chất, phương pháp quang phổ hấp thụ nguyên tử,...mỗi phương pháp đều có ưu, nhược điểm. Vì vậy mỗi phương pháp sẽ phù hợp với một đối tượng và phù hợp với nồng độ của chúng có trong mẫu. Với hàm lượng Ni trong mẫu phân tích nằm trong khoảng ppm thì phương pháp thường được sử dụng là phương pháp phổ hấp thụ nguyên tử F-AAS. Muốn thực hiện được phép đo phổ hấp thụ nguyên tử F-AAS của một nguyên tố cần phải thực hiện các quá trình sau đây: - Chọn các điều kiện và một loại trang bị phù hợp chuyển mẫu phân tích từ trạng thái ban đầu (rắn, dung dịch) thành trạng thái hơi của nguyên tử tự do. - Chiếu chùm tia sáng bức xạ đặc trưng của nguyên tố cần phân tích qua đám hơi nguyên tử vừa điều chế được ở trên. - Tiếp đó, nhờ một hệ thống máy quang phổ người ta thu toàn bộ chùm sáng, phân ly và chọn một vạch phổ hấp thụ của nguyên tố cần nghiên cứu. 15 Ưu điểm của phương pháp này là có độ nhạy, độ chính xác, độ chọn lọc và độ phân tích nhanh thao tác phân tích đơn giản, thuận tiện có thể tự động hoá. Với các ưu điểm trên phương pháp F- AAS đã và đang được sử dụng rộng rãi trong nhiều lĩnh vực khác nhau: sinh hoá, thực phẩm, địa chất, công nghiệp, nông nghiệp, luyện kim và môi trường... 1.4.2 Xác định hàm lượng Zn2+ bằng phương pháp chuẩn độ complecxon [8,22] Xác định hàm lượng Zn2+ bằng phương pháp chuẩn độ complecxon không gặp trở ngại gì và đã được áp dụng từ lâu.Trong phép xác định đó người ta chuẩn độ kẽm trong dung dịch đệm amoni có pH = 10 khi có mặt ET-OO làm chất chỉ thị, điểm tương đương rất rõ rệt. Trong thực tế người ta ứng dụng phép xác định complecxon kẽm trong phân tích những vật liệu khác nhau như: xác định kẽm của sản phẩm công nghiệp luyện kim, đặc biệt là các hợp kim nhôm, trong các hợp kim Zn- Ni, trong đồng thau, đồng đỏ, trong các hợp kim với đồng. Ngoài ra người ta còn xác định kẽm trong quặng và tinh quặng, trong nước, trong hơi nước ngưng tụ, trong các muối kẽm, trong dầu, trong tro xương động vật và trong tế bào thực vật, trong các bể mạ và trong công nghiệp sơn. Ưu điểm của phương pháp này là phân tích nhanh, thao tác phân tích đơn giản, độ chính xác cao và đang được sử dụng rộng rãi. 1.5 Phương pháp đánh giá chất lượng bề mặt và khả năng chống ăn mòn của lớp mạ 1.5.1 Phương pháp kính hiển vi điện tử quét (SEM) - Phương pháp kính hiển vi điện tử quét được ứng dụng chủ yếu để nghiên cứu bề mặt mẫu vật liệu, đặc biệt là các vật liệu không thể chế tạo mẫu dạng lá mỏng cho chùm tia điện tử xuyên qua hoặc mẫu không thể chế hoá thành dạng bột. Chúng tôi tiến hành phân tích lớp mạ hợp kim trên kính hiển vi điện tử HITACHI S4800. Thông qua hình ảnh vi cấu trúc cho phép ta quan sát được kích thước hạt cũng như độ phân tán kích thước của chúng để từ đó rút ra được những kết luận cho nghiên cứu. 16 1.5.2 Phương pháp nhỏ giọt Theo tiêu chuẩn nghiệm thu các sản phẩm vũ khí của Bộ Quốc phòng thì dung dịch nhỏ giọt để kiểm tra khả năng chống ăn mòn có thành phần như sau: Dung dịch CuSO4. 0,5N : 40ml Dung dịch HCl 0,1% : 0,8ml Dung dịch NaCl 10% : 20ml Sau khi trộn lẫn, lắc đều dung dịch trên đồng nhất mới được sử dụng, dùng bông đã tẩy sạch dầu mỡ, thấm ướt bằng cồn etylic lau sạch một vùng bề mặt lớp mạ định kiểm tra. Sau khi cồn đã bay hơi hết, dùng ống nhỏ giọt nhỏ một số giọt dung dịch lên đó. Bấm đồng hồ từ khi bắt đầu nhỏ giọt cho đến khi ở vị trí nhỏ giọt dung dịch biến đổi màu từ màu xanh sang màu vàng gạch hoặc hồng thì ngừng (tiến hành ở nhiệt độ phòng). Thời gian đó được biểu thị tính năng chống ăn mòn của lớp mạ. Thông thường lấy một phút là hợp lý, còn nếu yêu cầu khả năng chống ăn mòn rất tốt thì phải từ 5 phút trở lên. 1.5.3 Phương pháp ngâm trong dung dịch muối ăn Căn cứ vào yêu cầu chất lượng của lớp mạ hợp kim có thể theo các cách sau đây để kiểm tra khả năng chống ăn mòn. - Ngâm chi tiết đã mạ vào dung dịch NaCl 3%. Sau 2 giờ rồi lấy ra, bề mặt lớp mạ không thấy xuất hiện các vết tích lạ, trừ các mép biên, đỉnh nhọn, điểm hàn nối là đạt yêu cầu. - Ngâm chi tiết đã mạ vào dung dịch NaCl 3% sau 15 phút lấy ra rửa sạch, để yên trong không khí khô, mát 30 phút, nếu không thấy các điểm vệt vàng là được. 1.5.4 Phương pháp điện hoá [13,14] 17 Xác định độ ăn mòn điện hoá tức là đo dòng ăn mòn iam và thế ăn mòn Eam của hệ, xây dựng đường cong phân cực bằng cách phân cực hệ ra khỏi trạng thái cân bằng của nó rồi ngoại suy về trạng thái không có dòng điện ở đây chúng tôi sử dụng phương pháp đo điện thế ổn định (điện thế dừng) xây dựng đường cong phân cực, từ đường công phân cực tính tốc độ ăn mòn. Cách tính : - Bước 1: Đo thế nghỉ (Eam). - Bước 2 : Phân cực anôt, catôt, xây dựng đường cong E-lgi. - Bước3 : Tính tốc độ ăn mòn bằng cách ngoại suy một phần đường cong tìm iam. - Ngoại suy miền anôt cho đồ thị ha=aa + bblgi - Ngoại suy miền catôt cho đồ thị hc= ac + bclgi - Hai đường này cắt nhau tại điểm có toạ độ (iam, Eam) - Ea nằm trong miền Tafel của phản ứng điện cực Hình 1.1: Đồ thị miêu tả phương pháp ngoại suy Tafel. Từ việc xác định dòng ăn mòn iam khi không có chất ức chế và có chất ức chế, từ đo suy ra mức độ bảo vệ iam°, iam: mật độ dòng ăn mòn khi không và có chất ức chế 18 CHƯƠNG II: ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU Đối tượng, nội dung nghiên cứu 2.1.1 Đối tượng Các NTĐH đưa vào lớp mạ hợp kim Ni-Zn rất phong phú nhưng trong đó Xeri là chất phụ gia phổ biến được đưa vào lớp mạ để tăng khả năng chống ăn mòn cho kim loại. Vì vậy trong phạm vi luận văn này chúng tôi tập trung chủ yếu vào việc phân tích xác định hàm lượng của Ce3+ trong lớp mạ hợp kim Ni-Zn bằng phương pháp quang phổ thụ phân tử UV-VIS Nội dung - Khảo sát chọn các điều kiện tối ưu để xác định Ce3+ bằng phương pháp trắc quang UV-VIS. - Tiến hành phân tích lớp mạ hợp kim Ni-Zn có chứa phụ gia Ce3+. + Chế tạo lớp mạ để làm mẫu nghiên cứu. + Đánh giá chất lượng lớp mạ (chất lượng bề mặt và khả năng chống ăn mòn của lớp mạ hợp kim Ni-Zn có phụ gia Ce3+). + Phân tích thành phần lớp mạ hợp kim Ni-Zn có phụ gia Ce3+. 2.2 Phương pháp nghiên cứu Để hoàn thành bản luận văn này, các phương pháp nghiên cứu được lựa chọn sử dụng là : 1- Phương pháp quang phổ hấp phụ phân tử UV-VIS để xác định hàm lượng phụ gia Ce3+ trong lớp mạ hợp kim Ni-Zn. 2- Phương pháp hấp thụ nguyên tử F-AAS để xác định Ni2+ 3- Phương chuẩn độ complecxon để xác định Zn2+ 4- Đánh giá khả năng chống ăn mòn của lớp mạ Ni-Zn có chứa Ce3+: * Phương pháp kính hiển vi điện tử quét (SEM) * Phương pháp nhỏ giọt * Phương pháp ngâm trong dung dịch muối ăn 19 * Phương pháp điện hoá CHƯƠNG III: KẾT QUẢ VÀ THẢO LUẬN 3.1 Thiết bị và hóa chất 3.1.1 Thiết bị: - Dụng cụ thí nghiệm - Máy trắc quang UV–VIS, UV - 1650 PC, UV-VISIBLE Spectrophotometer, Shimadzu - Máy hấp thụ nguyên tử F- AAS, Philips, Model SP9 / 800 - Máy đo pH, Oakton, 2500 Series, Singapo. 3.1.2 Hóa chất: Các hóa chất sử dụng: Hóa chất điều chế là loại tinh khiết của Trung Quốc, hóa chất dùng để phân tích là loại tinh khiết phân tích của Meck- Đức. - Ce(OH)4 tinh khiết, rắn - CeO2 tinh khiết, rắn - HNO3 đặc - HCl đặc - H2SO4 đặc - H3PO4 đặc - FeSO4.7H2O tinh thể - Fe2(SO4)3.10H2O tinh thể - NiSO4.7H2O tinh thể - NaCl tinh thể - EDTA tinh thể - NaOH dạng viên 20 - Dung dịch H2O2 30% - Zn(NO3)2 .6H2O tinh thể - Ni(NO3)2.6H2O tinh thể - NaNO2 tinh thể - Dung dịch Ni2+ chuẩn 1000ppm - Dung dịch Zn2+ chuẩn 1000ppm - Chỉ thị ET-OO - Chỉ thị PP - Nhựa IRA – 400 - Dung dịch 4-metyl 2- pentanol - NH4NO3 tinh thể. - KNO3 tinh thể. - CuSO4.5H2O tinh thể. - CH3COOH đặc - CH3COONa.3 H2O - Arsenazo III. Pha chế một số dung dịch * Pha dung dịch gốc Ce3+: Cân chính xác trên cân phân tích một lượng 0,8606 g CeO2 ( Merck) , tẩm ướt bằng nước cất 2 lần, hòa tan bằng một lượng vừa đủ dung dịch H2SO4 đặc, đun nóng đến nhiệt độ 60- 700C, khuấy dung dịch cho đến khi tan hết, cô cạn đến muối ẩm. Hòa tan muối ẩm và định mức thành 100ml. Ta được dung dịch CeO2 0,05M, dùng H2O2 30 % để khử Ce4+ về Ce3+, sau đó xác định lại nồng độ Ce3+ bằng dung dịch EDTA 0,01 M với thuốc thử arsenazo III ở pH= 4-5. 21 *Pha đệm axetat (pH = 4,75): Dung dịch đệm được pha từ axit axetic và muối natriaxetat (pa). Pha nồng độ của axit axetic 0,5M và muối natriaxetat 0,5M, sau đó trộn theo thể tích bằng nhau, lắc kỹ rồi đem xác định lại pH của dung dịch đệm trên máy đo pH. Điều chỉnh pH bằng dung dịch CH3COOH hoặc NaOH . * Pha thuốc thử arsenazo III nồng độ 10-3M: Cân chính xác 0,0411 (g) thuốc thử arsenazo III đem hòa tan và định mức thành 50 ml dung dịch bằng dung dịch đệm axetat, lắc kỹ cho tan hết. 3.2 Khảo sát phổ hấp thụ của phức Ce3+ - arsenazo III bằng phương pháp trắc quang UV- VIS Cách tiến hành: Pha dung dịch Ce3+ nồng độ 10-5M và nồng độ thuốc thử arsenazo III 10-4 M trong môi trường đệm axetat có pH = 4,75 để tạo phức trong 30 phút. Đem đo phổ hấp thụ phân tử của phức thu được kết quả như hình 3.1. Phổ cho thấy phức của Ce3+- arsenazo III có hai cực đại λmax = 610 nm và λmax = 656 nm . Trong phép đo chúng tôi chọn λmax = 656 nm. Hình 3.1: Phổ UV- VIS của phức Ce3+ - arsenazo III 3.3 Khảo sát các yếu tố ảnh hưởng đến phép đo 3.3.1 Ảnh hưởng của pH dung dịch tới độ hấp thụ quang A 22 Mỗi hợp chất chỉ bền và tồn tại trong một môi trường pH nhất định hay ở độ axit nhất định. Vì thế pH của dung dịch màu có ảnh hưởng đến độ hấp thụ quang của chất phân tích. Tiến hành: Pha các dung dịch đệm axetat có pH từ 3 ÷ 6 trong các bình định mức 25ml. Chỉnh pH bằng axit axetic hoặc kiềm, sau đó kiểm tra lại bằng máy đo pH. Cho vào các bình định mức với các giá trị pH khác nhau, cùng một lượng Ce3+ nồng độ 10-5M và nồng độ thuốc thử arsenazo III 10-4M ta thu được kết quả như sau : Bảng 3.1 : Ảnh hưởng của pH đến độ hấp thụ quang A STT 1 2 3 4 5 6 7 8 pH 3 3,5 4 4,5 4,75 5 5,5 6 A 0,069 0,109 0,136 0,160 0,169 0,168 0,160 0,158 Biểu diễn trên đồ thị: Hình 3.2 : Đồ thị biểu diễn sự phụ thuộc của A vào pH. Kết luận: Nhìn vào bảng và đồ thị ta thấy tại pH = 4,75 thì độ hấp thụ quang là lớn nhất. Ta chọn pH = 4,75 để thực hiện các khảo sát tiếp theo. 3.3.2 Ảnh hưởng của thời gian tới độ bền màu của phức 23 Nhiều hợp chất có độ hấp thụ quang tăng hoặc giảm theo thời gian. Chính vì thế phải chọn thời gian đo phù hợp với mỗi hợp chất phức là cần thiết để tìm ra khoảng thời gian mà chất phân tích có độ hấp thụ quang tốt nhất. Tiến hành: Pha một mẫu dung dịch phức của Ce3+ - arsenazo III rồi đo ở các thời gian khác nhau ta thu được kết quả như sau: Hình 3.3: Độ bền màu của phức theo thời gian Kết luận: Dựa vào đồ thị ta thấy màu của phức Ce3+ - arsenazo III bền trong khoảng 1 giờ sau khi pha. Chúng tôi chọn thời điểm 20 phút sau khi tạo phức để đo độ hấp thụ quang của dung dịch. 3.3.3 Ảnh hưởng của lượng thuốc thử tới độ hấp thụ quang A Trong trắc quang, để phân tích được nguyên tố cần xác định, thì phải chuyển nguyên tố đó thành hợp chất có khả năng hấp thụ quang, để nguyên tố cần xác định thành hợp chất hấp thụ hoàn toàn người ta thường dùng lượng thuốc thử dư. Nhưng thêm bao nhiêu để không gây sai số cho phép định lượng. Do đó cần nghiên cứu cụ thể để thêm lượng thuốc thử như thế nào để đủ và tốt nhất cho việc phân tích. 24 Tiến hành: Lấy cố định nồng độ Ce3+ 10-5M trong mỗi bình, thay đổi lượng thuốc thử arsenazo III từ 4.10-5M đến 2.10-4M, chờ tạo phức 20 phút rồi đem đo độ hấp thụ quang của dung dịch ta thu được kết quả như sau: Bảng 3.2: Ảnh hưởng của lượng thuốc thử (CR) STT 1 2 3 4 5 6 7 8 CR (M) 4.10-5 6. 10-5 8.10-5 10-4 1,2.10-4 1,4.10-4 1,6.10-4 2.10-4 A 0,071 0,121 0,152 0,172 0,168 0,160 0,156 0,150 Biểu diễn dưới dạng đồ thị như sau: Hình 3.4: Đồ thị biểu diễn ảnh hưởng của lượng thuốc thử đến độ hấp thụ quang của Ce3+. Kết luận: Nhìn vào bảng và đồ thị ta thấy ở nồng độ thuốc thử arsenazo III là 10-4 M (gấp 10 lần nồng độ Ce3+) thì độ hấp thụ quang là lớn nhất. 3.3.4 Ảnh hưởng của các ion kim loại 25 Trong phép đo xác định Ce3+ trong lớp mạ của chúng tôi, các chất đi kèm là: Fe2+, Fe3+, Ni2+, Zn2+. Vì thế chúng tôi nghiên cứu ảnh hưởng của từng nguyên tố đến độ hấp thụ quang của phức Ce3+- arsenazo III và cách loại trừ các yếu tố ảnh hưởng nếu có. 3.3.4.1 Ảnh hưởng của ion Fe2+ Pha 7 mẫu có cùng nồng độ Ce3+ là 10-5M, nồng độ thuốc thử arsenazo III là 10-4M trong môi trường đệm axetat pH=4,75. Thay đổi nồng độ của Fe2+ theo thứ tự tăng dần từ 1 đến 100 lần . Ta thu được kết quả như sau: Bảng 3.3: Ảnh hưởng của Fe2+ tới độ hấp thụ quangcủa Ce3+ STT 1 2 3 4 5 6 7 [Fe2+],10-5 M 0 1 5 10 20 50 100 A 0,170 0,169 0,168 0,168 0,166 0,160 0,159 Sai số (%) 0 -0,580 -1,176 - 1,176 -2,353 -5,882 -6,470 Kết luận: Nhìn vào bảng số liệu ta thấy nồng độ Fe2+ hầu như không ảnh hưởng tới độ hấp thụ quang của Ce3+. 3.3.4.2 Ảnh hưởng của ion Fe3+ Pha 7 mẫu có cùng nồng độ Ce3+ là 10-5M, nồng độ thuốc thử arsenazo III là 10-4M trong môi trường đệm axetat pH= 4,75. Thay đổi nồng độ của Fe3+ theo thứ tự tăng dần từ 1 đến 100 lần . Kết quả thu được như bảng sau: Bảng 3.4 Ảnh hưởng của nồng độ Fe3+ tới độ hấp thụ quang của Ce3+ STT 1 2 3 4 5 6 7 [Fe3+],10-5 M 0 1 5 10 20 50 100 A 0,171 0,168 0,162 0,144 0,119 0,037 0,027 Sai số (%) 0 -1,754 -5,263 -15,789 -30,409 -78,362 -84,210 26 Kết quả được biểu diễn dưới dạng đồ thị như sau: Hình 3.5: Đồ thị biểu diễn ảnh hưởng của Fe3+ tới độ hấp thụ quang A của Ce3+ Kết luận: Nhìn vào bảng số liệu và đồ thị ta thấy Fe3+ có ảnh hưởng rõ rệt tới độ hấp thụ quang của Ce3+, khi nồng độ Fe3+ lớn gấp 10 lần thì độ hấp thụ quang của Ce3+ bắt đầu thấp dần, và khi nồng độ Fe3+lớn gấp 100 lần thì tín hiệu gần như tắt. Vì thế để đo được độ hấp thụ quang của Ce3+ có độ chính xác chúng ta cần loại bỏ Fe3+. 3.3.4.3 Ảnh hưởng của ion Ni2+ Pha 7 mẫu có cùng nồng độ Ce3+ là 10-5M, nồng độ thuốc thử arsenazo III là 10-4M trong môi trường đệm axetat pH =4,75. Thay đổi nồng độ Ni2+ theo thứ tự tăng dần từ 1 đến 100 lần. Kết quả thu được như sau: Bảng 3.5: Ảnh hưởng của Ni2+ tới độ hấp thụ quang của Ce3+ STT 1 2 3 4 5 6 7 [Ni2+],10-5M 0 1 5 10 20 50 100 A 0,168 0,168 0,169 0,170 0,171 0,167 0,166 Sai số (%) 0 0 + 0,595 27 +1,190 + 1,785 -0,595 -1,190 Kết luận: Nhìn vào bảng số liệu trên ta thấy khi nồng độ Ni2+ gấp 100 lần so với nồng độ của Ce3+ vẫn không ảnh hưởng tới độ hấp thụ quang của Ce3+ . 3.3.4.4 Ảnh hưởng của ion Zn2+ Pha 7 mẫu có cùng nồng độ Ce3+ là 10-5M, nồng độ thuốc thử arsenazo III là 10-4M trong môi trường đệm axetat pH=4,75. Thay đổi nồng độ của Zn2+ theo thứ tự tăng dần ( từ 1 đến 100 lần ). Kết quả thu được như sau. Bảng 3.6: Ảnh hưởng của Zn2+ tới độ hấp thụ quangcủa Ce3+ STT 1 2 3 4 5 6 7 [Zn2+], 10-5M 0 1 5 10 20 50 100 A 0,171 0,170 0,163 0,150 0,131 0,101 0,087 Sai số (%) 0 - 0,585 - 4,678 -12,281 -23,392 -40,936 49,123 Biểu diễn dưới dạng đồ thị: Hình 3.6: Đồ thị biểu diễn ảnh hưởng của Zn2+ tới A của Ce3+. 28 Kết luận: Nhìn vào bảng số liệu và đồ thị ta thấy Zn2+ có ảnh hưởng đến độ hấp thụ quang của Ce3+, nên phải loại trừ Zn2+ trước khi thực hiện phép đo. 3.3.5 Loại trừ các yếu tố ảnh hưởng [33] 3.3.5.1 Loại trừ ảnh hưởng của Zn2+bằng phương pháp tạo phức- trao đổi ion Trong môi trường axit HCl, các nguyên tố Fe3+, Zn2+, Ni2+… tạo thành phức mang điện tích âm có độ bền khác nhau. Trong điều kiện nồng độ HCl = 0,5 – 2M chỉ có phức [ZnCl4]2- hình thành tốt nhất, các ion khác có phức rất kém bền. Khi cho hỗn hợp này đi qua cột anionit thì [ZnCl4]2- bị giữ lại hoàn toàn, còn các ion khác đi ra khỏi cột. Dùng dung dịch là hỗn hợp NaCl 1,7M + HCl 0,12M để tạo phức cho Zn2+ giữ lại trên cột và rửa cho đến hết vết Fe3+ (thử bằng giấy tẩm K4Fe(CN)6 không còn màu xanh) thu được dung dịch Fe3+. Giải hấp Zn2+ bằng dung dịch đệm NH3 + NH4Cl cho đến khi hết vết Zn2+ (thử bằng chỉ thị ET-OO trong dung dịch đệm NH3 + NH4Cl không còn màu hồng). 3.3.5.2 Loại trừ ảnh hưởng của Fe3+ bằng phương pháp chiết và trao đổi ion Phương pháp chiết Chúng tôi thực hiện chiết bằng dung môi 4-metyl-2-pentanol trong môi trường H+. Ta khảo sát ảnh hưởng của nồng độ H+ đến hiệu suất chiết. Dung dịch gồm 0,25 ml Ce3+ 10-3M và 0,25 ml Fe3+ 0,2M, dung dịch HCl có nồng độ khác nhau và tất cả được định mức trong bình 25 ml. Sau đó tiến hành chiết trong 5 ml dung môi 4-metyl-2-pentanol. Trên phễu chiết sẽ phân 2 lớp: Lớp trên gồm dung môi và phức của Fe, còn Ce phân bố ở lớp dưới. Chiết dung dịch ở phía dưới mang đi đo độ hấp thụ quang. So sánh độ hấp thụ quang của dung dịch này với dung dịch chuẩn Ce 10-5 M không chứa Fe. Hiệu suất chiết = ACe(chiết).100%/ ACe (chuẩn) với ACe (chuẩn) = 0,168. Sự phân lớp này phụ thuộc vào nồng độ H+ nên ta có bảng sau: Bảng 3.7: Ảnh hưởng của nồng độ H+ tới khả năng tách Fe3+ ra khỏi Ce3+. [H+] (M) 0 1 2 3 4 5 6 7 8 9 10 A 0,009 0,017 0,042 0,076 0,126 0,145 0,153 0,157 0,161 0,161 0,161 H (%) 5,36 10,23 25,07 45,34 29 75,23 86,31 91,07 93,45 95,80 95,80 95,08 Biểu diễn dưới dạng đồ thị: Hình 3.7: Đồ thị biểu diễn ảnh hưởng của nồng độ H+ tới khả năng tách Fe3+ ra khỏi Ce3+. Nhận xét: Nhìn vào đồ thị ta thấy tại [H+] = 8M thì khả năng tách Fe3+ ra khỏi Ce3+ là cao và ổn định. Phương pháp trao đổi ion Theo [34] trong môi trường HCl 7-8M, Fe3+ tạo phức FeCl4- trong khi Ce3+ tạo phức âm rất kém. Dùng cột trao đổi anionit thì có thể tách Fe3+ ra khỏi Ce3+ . - Chuẩn bị nhựa trao đổi anionit: Nhựa IRA 400 được xử lí bằng cách ngâm trong nước cất nhiều lần, sau đó ngâm nhựa trong axit HCl 10 - 15% trong 30 phút để các hạt nhựa trương đều. Rửa lại bằng nước cất, rửa sạch các tạp chất có trong nhựa bằng HCl 10 - 15% nhiều lần rồi chuyển lên cột. 30 - Cách nạp nhựa vào cột: Chuyển nhựa cùng nước cất vào cột. Khi nạp nhựa cần theo dõi sao cho không bị các bọt khí trong cột. Sau đó rửa lại bằng nước cất rồi tiến hành thí nghiệm (chú ý: Nhựa phải luôn nằm dưới nước, nếu nhựa nằm trên nước thì phải tíên hành nạp nhựa lại từ đầu). - Sau mỗi lần thí nghiệm phải tái sinh nhựa bằng dung dịch HCl 2M. - Xác định hiệu suất thu hồi của Ce3+: Lấy 1 ml Ce3+ 0,01M trộn với 1; 2; 5 ml Fe3+ 0,01 M định mức 10 ml bằng hỗn hợp dung dịch HCl 7M + NaCl 1M (khi đó nồng độ Ce3+ là 10-3M) để tạo phức trong 30 phút sau đó chuyển lên cột trao đổi anion, tốc độ nhỏ giọt 2 giọt/phút, tráng rửa nhiều lần bằng dung dịch HCl 7M. Lấy dung dịch thu được đem định mức thành 50 ml (dung dịch 1). Xác định hàm lượng Ce3+ đi ra khỏi cột trao đổi bằng cách lấy 2,5 ml dung dịch 1 cho vào bình định mức 25ml, trung hòa bớt axit bằng dung dịch NaOH đến pH4 , thêm thuốc thử arsenazo III nồng độ 10-4M trong môi trường đệm axetat pH= 4,75 (khi đó nồng độ pha loãng 50 lần so với ban đầu). Hiệu suất thu hồi Ce3+ sẽ bằng 50 x [Ce3+] thu được x 100%/10-3 ta thu được bảng số liệu sau: Bảng 3.8: Hiệu suất thu hồi Ce3+ STT Fe3+ 0,01M [Ce3+] thu hồi (M) Hiệu suất thu hồi Ce3+(%) 1 1ml 1,927.10-5 96,35 2 2ml 1,92.10-5 96,00 3 5ml 1,9.10-5 95,0 Kết luận: Ta thấy tách Fe3+ ra khỏi Ce3+ bằng phương pháp trao đổi ion cho hiệu suất khá cao, cao hơn phương pháp chiết, nhất là khi tỉ lệ Fe3+/Ce3+ thấp. Thông qua việc khảo sát trên trong luận văn này chúng tôi chọn phương trao đổi ion để tách Fe3+ ra khỏi Ce3 +. 3.4 Xây dựng phương trình đường chuẩn xác định Ce3+ 3.4.1 Xây dựng phương trình đường chuẩn 31 Từ các điều kiện tối ưu đã khảo sát ở trên ta xây dựng đường chuẩn của Ce3+. Chuẩn bị 5 bình, mỗi bình chứa dung dịch đệm axetat pH = 4,75, nồng độ thuốc thử arsenazo III 10-4 M và nồng độ Ce3+ tăng dần từ 10-6 M đến 2,5.10-5M ta thu được các giá trị A như sau: Bảng 3.9: Xác định giá trị A của đường chuẩn Ce3+ STT 1 2 3 4 5 [Ce3+], M 10-6 5. 10-6 7,5. 10-6 10-5 2,5. 10-5 A 0,017 0,083 0,124 0,166 0,415 Sử dụng phần mềm origin 7.5 xây dựng được đồ thị như sau: Hình 3.8: Đường chuẩn xác định Ce3+ Tra bảng t (0,95; 3) = 3,18 Phương trình đường chuẩn của Ce3+: y = (4,8545.10-5 ± 2,500.10-4) + (0,1659 ± 1,9676.10-4)x 3.4.2 Kiểm tra sai số hệ thống của đường chuẩn Cách làm: So sánh A của phương trình với giá trị 0 với độ tin cậy là 32 P = 0,95. Nếu xem A= 0 thì phương trình y = A + Bx được viết thành phương trình y = B’x. Thay các giá trị yi và xi vào phương trình y = B’x ta sẽ thu được các giá trị B’ và giá trị B’ chính là trung bình cộng của các giá trị B’i thu được. Sau đó đánh giá sự sai khác giữa A và 0 theo chuẩn F (tính theo tỷ số của hai phương sai của 2 phương trình sao cho F > 1) và so sánh giá trị này với F (P, f1, f2) với P = 0,95 và f1= n1-1, f2 = n2-1. Ta thu được kết quả dưới đây. Nếu xem A = 0 thì phương trình có dạng y = (0,1659 ± 1,9676.10-4)x với Sy’ = 3,740.10-4 Ta có Ftính = = = 1,036 Mặt khác Fbảng(0,95;4;3) = 6,95 Ta thấy Ftính < Fbảng nên sự khác nhau giữa A và 0 không có ý nghĩa thống kê, nên phương trình đường chuẩn không mắc sai số hệ thống. 3.4.3 Giới hạn phát hiện (LOD) LOD được xem là nồng độ thấp nhat của chất phân tích mà hệ thống phân tích còn cho tín hiệu phân tích khác có nghĩa với tín hiệu của mẫu trắng hay tín hiệu nền. Đây là thông số đặc trưng cho độ nhạy của phương pháp phân tích. Nêu chất nào nhạy thì giới hạn phát hiện nhỏ và ngược lại. Có thể xác định giới hạn phát hiện theo cách sau đây: Dựa vào phương trình đường chuẩn ta có Giới hạn phát hiện: LOD = 3. Trong đó: Sy : là độ lệch chuẩn của mẫu trắng, cũng được xác định theo phương trình hồi quy. 33 b : là hệ số góc trong phương trình đường chuẩn Từ phương trình đường chuẩn ta có: LOD = 3..10-5 = 6,5.10-8 (M) 3.4.4 Giới hạn định lượng (LOQ) Giới hạn định lượng được xem là nồng độ thấp nhất (XQ) của chất phân tích mà hệ thống phân tích định lượng được tín hiệu phân tích (YQ) khác có ý nghĩa định lượng với tín hiệu mẫu trắng hay tín hiệu nền Dựa vào phương trình đường chuẩn ta có Giới hạn định lượng LOQ = 10. = 10..10-5 = 2,17.10-7(M) Nhận xét: Theo số liệu tính toán ở trên dựa vào phương trình đường chuẩn ta thấy LOQ ≈ 3x LOD, kết quả này hoàn toàn phù hợp với lý thuyết sác xuất thống kê về giới hạn định lượng. Để thấy rõ ưu điểm của lớp mạ Ni-Zn có phụ gia Ce3+ chúng tôi trình bày tóm tắt quá trình chế tạo lớp mạ và khả năng chống ăn mòn của lớp mạ. 3.5 Chế tạo lớp mạ làm mẫu nghiên cứu [23] 3.5.1 Xử lý bề mặt vật liệu Tất cả các mẫu nghiên cứu được chế tạo bằng những tấm thép CT3 có kích thước 50 x100 mm, chiều dày 0,8-1,0 mm và thành phần hóa học theo TCVN 1765-75( là : 0,180,21% C; 0,40 0,65% Mn; 0,120,30% Si; P max: 0,04%; S max: 0,05%; Cr max:0,30%; Ni max: 0,30% ). Những tấm thép này trước khi được nhúng vào dung dịch mạ phải được làm sạch bề mặt bằng cách: Đánh gỉ bằng máy lắp phớt ( chổi đánh gỉ), tẩy sạch dầu mỡ bằng dung dịch xút nóng, tẩy nhẹ bằng dung dịch axit loãng rồi rửa sạch qua dòng nước chảy.Nếu là thép mới chưa bị gỉ bề mặt thì chỉ cần nhúng 1 phút trong dung dịch HCl 10%, rồi rửa sạch bằng nước máy trước khi cho vào bể mạ) 3.5.2 Chế tạo lớp mạ hợp kim Ni-Zn có chứa Xeri 34 3.5.2.1 Điều kiện thí nghiệm Tiến hành thí nghiệm trong bể mạ có kích thước 120x200x150 mm, dùng anốt điện cực là kẽm 99,99%, những tấm mạ là catot thép kích thước cỡ 50x100mm, áp dòng điện một chiều vào bằng nguồn chỉnh lưu ổn áp có gắn ampe kế và hộp biến trở để thay đổi dòng điện, vì vậy có thể điều chỉnh mật độ dòng từ 0,8 ÷ 40 A/dm2. Theo các kết quả nghiên cứu trước chúng tôi tiến hành cố định hàm lượng Ce3+ trong dung dịch phủ là 70g/l , tỉ lệ nồng độ mol của Zn/Ni = 2/1, KCl = 120 g/l, NH4Cl = 10g/l để tiến hành các khảo sát tiếp theo. Mẫu nghiên cứu được chế tạo tại Viện Khoa học và Công nghệ GTVT 1252- Đường Láng – Đống Đa - Hà Nội. 3.5.2.2 Nghiên cứu thành phần dung dịch mạ hợp kim Zn- Ni- Ce sử dụng tác nhân tạo phức axit citric Các tác nhân tạo phức đóng một vai trò quan trọng trong việc cung cấp nồng độ ion Niken đủ ngay cả ở một nồng độ thấp bằng cách hòa tan Niken và làm cho sự đồng nhất tỉ lệ Niken phóng điện với Kẽm vào lớp mạ hợp kim được tăng lên . Tác nhân tạo phức phù hợp cho một hệ mạ không chỉ có hiệu quả về độ hòa tan ổn định bằng cách tạo phức với ion Niken để mở rộng khả năng kết tủa điện phân mà còn không được gây tác động xấu về độ bóng, các tính chất vật lý, tỉ lệ đồng kết tủa. Đề tài lựa chọn axit citric tinh khiết thực phẩm làm tác nhân tạo phức trong dung dịch mạ hợp kim Zn- Ni- Ce để nghiên cứu vì tính không độc, rẻ, dễ kiếm và khả năng tạo phức tốt của nó với Ni2+. Thực nghiệm cho thấy khi axit citric (H3L) được phối hợp với ion Kẽm, 35 Niken và Xeri tạo thành ion phức phối hợp ZnL và NiL, anot có thể hòa tan tốt hơn, và có sự tăng độ phân cực catot, vì thế nhận được lớp mạ mịn hơn. Điều này là do axit citric đã phối hợp với ion Zn2+, Ni2+, Ce2+ dẫn tới việc hình thành hợp chất phức ổn định với các ion này. Kết quả phân tích Ni2+ trong lớp mạ cho thấy có một mối quan hệ rất mật thiết giữa nồng độ axit citric và lớp mạ, cũng như độ ổn định của dung dịch. Khi nồng độ axit citric cao hơn 140 g/l dung dịch mạ dễ kết tinh và tốc độ mạ rất thấp, khi nồng độ axit citric thấp hơn 40g/l dung dịch mạ không ổn định, sau khi điện phân một thời gian ngắn, lớp mạ có mầu xám và lốm đốm. Qua số liệu phân tích hàm lượng Ni2+ trong lớp mạ hợp kim nhận thấy khi nồng độ axit tăng lên, hàm lượng Ni2+ trong lớp mạ giảm nhẹ. Điều này được giải thích khi logarit các hằng số bền của phức axit citric - Zn ( ZnL) là 4,5 và bé hơn của phức axit citric- Ni ( NiL) là 4,8 và tỉ lệ KNiL/ KZnL = 1,1. Khi nồng độ của axit citric giảm dưới 40 g/l, Ni đồng kết tủa nhiều hơn nên dung dịch mạ chóng bị đục và không ổn định. Nồng độ axit citric trong dung dịch mạ không gây biến động lớn đến hàm lượng Ni2+, Ce3+, Zn2+ đi vào hợp kim mạ, nhưng quá trình mạ luôn có hiện tượng pH tăng cục bộ nên khi có thêm một số tác nhân tạo phức vô cơ bền với kẽm thì tác dụng kìm hãm kết tủa của kẽm, đồng thời nâng hàm lượng Ce3+, Ni2+ trong lớp mạ là hợp lý và kết quả thực nghiệm cũng chứng tỏ điều này. 36 Hình 3.9: Ảnh hưởng của nồng độ tác nhân tác nhân tạo phức kết hợp với axit citric trong dung dịch mạ lên tỉ lệ Ni lên lớp mạ Để có một thành phần dung dịch mạ hợp kim Zn- Ni- Ce hợp lý (cho hàm lượng Ni 2+ trong lớp mạ cao nhất và khả năng phân tán lớp mạ sâu), trên cơ sở này chúng tôi tiến hành khảo sát các thông số có thể gây ảnh hưởng tới chất lượng mạ. 3.5.2.3 Khảo sát ảnh hưởng của phụ gia chính EPA và phụ gia bổ trợ TEA Sử dụng dung dịch mạ có thành phần ( bảng 3.10), chúng tôi tiến hành hàng loạt thí nghiệm với các tác nhân phụ gia đưa vào thành phần dung dịch mạ, các tác nhân này có vai trò: - Làm sáng mịn lớp mạ - Làm tác nhân thấm ướt bề mặt, tránh hiện tượng không có lớp mạ cục bộ trên chi tiết mạ. Chúng là những hóa chất có ở trong nước. Sau khi mạ thử nghiệm trong hệ mạ dùng axit citric với nhiều loại phụ gia, và chúng tôi chọn EPA, TEA là tác nhân làm bóng chính. 37 Kết quả thực nghiệm sự có mặt của EPA và TEA trong hệ mạ axit citric nghiên cứu đã được thấy hiệu quả chủ yếu ở đây là các phức này đã làm sự hòa tan anot kẽm bị chậm đi, nhưng với liều lượng hợp lý lại không làm anot bị thụ động và ngăn không cho màng thụ động phát sinh trên bề mặt anot, đồng thời làm ổn định mật độ dòng anot. Khi thêm phụ gia bổ trợ TEA với hàm lượng 3- 10 g/l và TEA với nồng độ 15g/l thu được lớp mạ mịn (độ chặt khít của lớp mạ trở nên cao hơn). Khi cho phụ gia vào lớp mạ thì khả năng chống ăn mòn của lớp mạ tốt hơn, điều này thể hiện rõ dưới đồ thị sau: Hình 3.10: Đồ thị biểu diễn đường cong dòng- thế của dung dịch mạ hợp kim có phụ gia (1-1’) và dung dịch chưa có phụ gia (2-2’) Qua đồ thị ta thấy sự chênh lệch điện thế mạch hở ở mẫu dung dịch có mặt phụ gia lớn hơn ở dung dịch chưa có phụ gia, đồng nghĩa với việc khi E cố định thì dòng ở dung dịch không có phụ gia lớn hơn dòng ở dung dịch có phụ gia và mẫu mạ có được từ dung dịch có phụ gia mịn bóng, phân tán tốt hơn nhiều là hợp lý. Từ các nghiên cứu ở trên ta có thành phần các chất có trong dung dịch mạ và chế độ mạ được biểu thị trong bảng sau: Bảng 3.10 : Thành phần dung dịch mạ và chế độ mạ Thành phần dung dịch Nồng độ (g/l) Chế độ mạ NiCl2 25 DK (A/dm2) : 1,5-3,8 Anot : Zn T0C:25 ZnCl2 50 KCl 120 Axit citric 90 Ce 70 NH4Cl 10 EPA 15 TEA 5 pH 38 3- 4,5 3.5.3 Đánh giá chất lượng lớp mạ Ni- Zn chứa Xeri của mẫu nghiên cứu 3.5.3.1.Đánh giá chất lượng bề mặt lớp mạ bằng kính hiển vi điện tử quét ( SEM). Hình 3.11: Cấu trúc lớp mạ có Ce-Zn-Ni Hình 3.12: Cấu trúc lớp mạ có Zn-Ni Nhìn vào ảnh SEM có cùng độ phóng đại của hai mẫu: mẫu mạ không có phụ gia Ce3+ và mẫu mạ có phụ gia Ce3+ ta dễ dàng nhận thấy sự khác nhau rõ rệt: lớp mạ được chế tạo từ dung dịch có phụ gia Ce3+ có bề mặt phẳng, nhẵn với tinh thể, được sắp sếp rất đều đặn, mịn khít. Còn lớp mạ được chế tạo từ dung dịch không có phụ gia Ce3+ thì kết tủa thô, đứt quãng, không đều. Điều này khẳng định vai trò nổi bật của Ce3+ đến cấu trúc và tính chất của lớp mạ bề mặt kim loại. Với những kết quả thu được lớp mạ chế tạo từ dung dịch có phụ gia gia Ce3+ có khả năng chống ăn mòn tiếp xúc với bề mặt kim loại. 3.5.3.2 Đánh giá khả năng chóng ăn mòn của lớp mạ bằng phương pháp nhỏ giọt 39 Tiến hành đánh giá đối với cả 2 lớp mạ có phụ gia Ce3+ và không có phụ gia Ce3+ Bảng 3.11: Kết qủa so sánh đặc tính của hai loại lớp mạ khi đánh giá bằng phương pháp nhỏ giọt Chỉ tiêu so sánh Lớp mạ không có Ce3+ Lớp mạ có Ce3+ Thời gian xuất hiện gỉ 4 phút 60 phút Đặc tính vật lý Màu xám đen, thô ráp, sần sùi, khi va chạm dễ bong lớp mạ Màu nâu xám, mịn sít, đồng đều, khi bị va chạm khó bong lớp mạ Kết luận: Qua bảng trên ta nhận thấy lớp mạ có phụ gia Ce3+ có nhiều đặc tính vượt trội hơn cả. 3.5.3.3 Đánh giá chất lượng lớp mạ bằng phương pháp ngâm trong dung dịch muối ăn Tấm thép sau khi mạ có phụ gia Ce3+ đem ngâm trong dung dịch NaCl 3%. Xác định khả năng chống ăn mòn bằng thời gian ngâm trong dung dịch NaCl đến khi bề mặt có vết vàng. Kết quả thu được như sau: Bảng 3.12: Kết quả so sánh đặc tính lớp phủ khi ngâm trong dung dịch muối ăn Mẫu Lớp mạ không có Ce3+ Lớp mạ có Ce3+ Thời gian xuất hiện vết vàng (h) 28 50 Kết luận: Tấm thép sau khi mạ có phụ gia Ce3+ có khả năng chống ăn mòn cao hơn tấm thép sau khi mạ không có phụ gia Ce3+. 3.5.3.4 Đánh giá chất lượng lớp mạ bằng phương pháp điện hóa 40 Để so sánh giữa hai lớp mạ có phụ gia Ce3+ và không có phụ gia Ce3+. Nhìn vào các đường cong phân cực so sánh là Fe chưa mạ và điện cực làm việc là các điện cực Fe đã được mạ trong dung dịch NaCl 3%. Lấy ngẫu nhiên các mẫu được mạ Ce. Kết quả như sau Hình 3.13: Đường cong phân cực lg i = f(E) Trong đó: Mẫu 1 là mẫu chưa mạ: Loại I Mẫu 2,3,4 là mẫu trong lớp mạ Ni-Zn (không có phụ gia NTĐH Ce): Loại II Mẫu 5,6,7 là mẫu trong lớp mạ có phụ gia Ni-Zn-Ce: Loại III Từ đường ăn mòn U(V) = lgi ta kẻ 2 tiếp tuyến liên tiếp với đường cong Tafel. Giao điểm của 2 đường tiếp tuyến cho ta giá trị dòng ăn mòn (iam) và thế ăn mòn Uam ổn định. Kết quả thu được ở bảng sau: Bảng 3.13: Kết quả đo đường cong phân cực Mẫu Mật độ dòng ăn mòn trung bình (mA/cm2) Thế ăn mòn trung bình (V) Hiệu suất bảo vệ Z (%) Loại I 1,145 -0,73 0 Loại II 0,213 -0,55 81,40 Loại III 0,190 41 -0,50 83,41 Kết luận: Dựa vào bảng kết quả trên ta thấy khả năng ăn mòn của vật liệu sau khi mạ là rất tốt, đặc biệt là mẫu sau khi mạ có phụ gia Xeri có khả năng chống ăn mòn cao hơn hẳn khi không có phụ gia Xeri. * Từ những kết quả quan sát bề mặt lớp mạ, xác định khả năng chống ăn mòn của lớp mạ của mẫu nghiên cứu cho thấy các mẫu mạ hợp kim Ni- Zn chứa Xeri chế tạo có chất lượng tốt hơn hẳn các mẫu lớp mạ không chứa Xeri. Chúng tôi chọn các mẫu có lớp mạ tốt đem đi phá mẫu để phân tích xác định thành phần Ce3+, Ni2+, Zn2+ trong lớp mạ đó. 3.6 Xác định các nguyên tố có trong thành phần lớp mạ hợp kim Ni- Zn chứa Xeri 3.6.1 Xử lý mẫu Lấy mẫu kim loại đã được mạ có kích thước 50 x 100 mm cho vào đĩa sứ đặt lên bếp điện, cho từ từ dung dịch HCl 1:1 (khoảng 50ml), đun nóng trên bếp điện ở nhiệt độ 70-800C trong khoảng thời gian 10-20 phút thỉnh thoảng nhỏ vài giọt H2O2 30% hoặc HNO3 đặc vào dung dịch đến khi lớp phủ đã bị phân hủy hết, kiểm tra bề mặt kim loại thấy sáng, không còn lớp phủ là được. Để nguội, tráng rửa, lọc tạp chất và định mức đến 100ml thu được dung dịch A. Đem dung dịch này đi xác định thành phần các nguyên tố có trong lớp mạ. 3.6.2 Xác định hàm lượng Ce3+ trong lớp mạ bằng phương pháp hấp thụ phân tử UV-VIS Theo khảo sát ảnh hưởng của các nguyên tố đến độ hấp thụ quang của phức Ce3+ - arsenazo III ta phải loại bỏ 2 nguyên tố Fe3+ , Zn2+ ra khỏi dung dịch bằng cách: 42 Lấy 10ml dung dịch A cho tác dụng với NH3 đặc, dư. Khi đó Zn2+ tạo phức [Zn(NH3)4]2+ tan, còn Fe3+, Ce3+ kết tủa dưới dạng hidroxit Fe(OH)3 và Ce(OH)3. Lọc lấy kết tủa, hòa tan trong dung dịch HCl 10%. Lấy dung dịch thu được đem đi tách bằng phương pháp trao đổi ion, dung dịch sau khi tách Fe3+ đem cô đuổi axit, định mức 50ml, ta thu được dung dịch B. Chuẩn bị 7 bình định mức 25ml, mỗi bình lấy 2ml dung dịch B và 2,5 ml thuốc thử arsenazo III trong môi trường đệm axeat pH= 4,75, thêm vào bình từ số 2 đến số 7 các nồng độ Ce3+ chính xác tăng dần ta thu được kết quả như bảng sau. Bảng 3.14: Độ hấp thụ quang của Ce3+ trong các mẫu theo phương pháp thêm chuẩn STT 1 2 3 4 5 6 7 [Ce3+],10-5 M thêm chuẩn 0 0,5 0,75. 1 1,5 2 2,5 Mẫu A 1 0,016 0,089 0,138 0,181 0,263 0,383 0,430 2 0,015 0,086 0,133 0,174 0,254 0,370 0,417 3 0,017 0,094 0,145 0,190 0,277 0,404 0,453 Sử dụng phần mềm Origin 7.5 ta được đồ thị của các mẫu như sau: Hình 3.14: Đồ thị thêm chuẩn của mẫu 1 Dựa vào đồ thị thêm chuẩn ta xác định được nồng độ của Ce3+ trong mẫu phân tích 1 43 * Tính hàm lượng Ce3+ trong lớp mạ: Từ phương trình đường chuẩn ta xác định được hàm lượng Ce3+ trong lớp mạ Tính Sx : Từ phương trình y = A + Bx Þ x = = = 0,0560 Khi đó = với Sa = = 0,0172 và a = - A = 0,2046 Thay số vào ta được = 0,092; do đó Sx = 0,0052 Vậy nồng độ Ce3+ xác định trong mẫu 1 là (0,0560 ± 0,0052).10-5 (M) Tương tự ta xác định hàm lượng Ce3+ có trong lớp mạ của mẫu 2 và mẫu 3 Hình 3.15: Đồ thị thêm chuẩn mẫu 2 44 Nồng độ Ce3+ của mẫu 2 là (0,054 ± 0,0050)10-5 (M) Hình 3.16: Đồ thị thêm chuẩn mẫu 3 Nồng độ của Ce3+ trong mẫu 3 là (0,059 ± 0,0061). 10-5 (M). Tóm tắt kết quả dưới bảng số liệu sau: Bảng 3.15: Kết quả xác định hàm lượng Ce3+ trong các mẫu được mạ Mẫu 1 2 3 [Ce3+] , 10 -5M (0,056±0,0052) (0,054±0,0050) (0,059±0,0061) mCe (g/m2) 7,85.10-4±0,73.10-4 7,57.10-4±0,70.10-4 8,27.10-4±0,85.10-4 3.6.3 Xác định Ni 2+ trong lớp mạ bằng phương pháp F- AAS Sau khi khảo sát các điều kiện máy đo ta thu được các điều kiện tối ưu để đo Ni2+. - Cường độ đèn : 15(mA) - Vạch đo phổ: 232 (nm) - Khe đo: 0,5 (nm) - Chiều cao Burner: 5-6 (mm) - Tốc độ dòng không khí nén: 5,2 (l/ph) - Tốc độ dẫn mẫu: 5 (ml/ph) 45 - Tốc độ dòng khí axetylen: 1,25 (l/ph) - Khoảng tuyến tính: 0,5-8 (ppm) - Pha loãng dung dich A: 50 lần Tiến hành đo Ni2+ trong môi trường HCl 1% và NH4Ac 1%, ta pha dãy dung dịch chuẩn trong khoảng tuyến tính 0,5 - 4ppm và thu được kết quả như bảng sau: Bảng 3.16: Kết quả đo phổ dẫy chuẩn Ni2+ CNi(ppm) 0,5 1 2 3 4 Hpick(cm) 0,55 1,2 2,4 3,6 4,7 Sử dụng phần mềm Origin 7.5 ta có đồ thị như hình dưới đây Hình 3.17: Đường chuẩn của Ni2+ Tra bảng t(0,95;3) = 3,18 Phương trình đường chuẩn của Ni2+: y = -(0,0018 ± 0,1272) + (1,1866 ± 0,0518)x * Kiểm tra sai số hệ thống của đường chuẩn: 46 Nếu xem A = 0 thì phương trình có dạng y = (1,1860 ± 0,0204)x với Sy’ = 0,0484 Ta có Ftính = = = 1,0386 Mặt khác Fbảng(0,95;4;3) = 6,95 Ta thấy Ftính < Fbảng nên sự khác nhau giữa A và 0 không có ý nghĩa thống kê, nên phương trình đường chuẩn không mắc sai số hệ thống. * Tính hàm lượng Ni trong lớp mạ: Từ phương trình đường chuẩn ta xác định được hàm lượng Ni2+ trong lớp mạ theo công thức x = Tính Sx: Từ phương trình y = A + Bx Þ x = = Khi đó = với Sa = = 0,0614 và a = - A= 2,4918 Thay số vào ta được = 0,0282 Kết quả thu được như sau: Bảng 3.17: Kết qủa đo phổ AAS của Ni2+ trong lớp mạ Mẫu 1 2 3 HPic(cm) 3,7 3,8 3,65 CNi2+(ppm) 155,98 ± 4,399 160,19 ± 4,517 153,88 ± 4,339 mNi2+(g/m2) 1,560± 0,440 1,601 ± 0,452 1,539 ± 0,434 3.6.4 Xác định Zn2+ bằng phương pháp chuẩn độ complecxon 47 Có thể xác định nồng độ Zn2+ theo phương pháp chuẩn độ complecxon với chất chỉ thị ET-OO ở pH = 10 Nguyên tắc: Cơ sở của phương pháp là phản ứng tạo phức bền của Zn2+ với EDTA ở pH = 10: Zn2+ + H2Y2- ® ZnY2- + 2H+ Chất chỉ thị ET-OO có màu xanh khi ở dạng tự do, có màu đỏ nho khi ở dạng phức. Sát điểm tương đương, EDTA phản ứng với phức ZnInd chuyển chúng trở lại dạng tự do có màu xanh. ZnInd (đỏ nho) + H2Y2- ® ZnY2- + H2Ind (xanh) Tiến hành: Pha loãng dung dịch A 10 lần. Dùng pipet lấy chính xác 10ml dung dịch vừa pha loãng vào bình nón 250ml. Thêm 20ml nước cất nữa, thêm 5ml dung dịch đệm amoni và một ít chất chỉ thị ET-OO (dung dịch có màu đỏ nho). Lắc đều và tiến hành chuẩn độ bằng dung dịch EDTA 0,01M. Khi dung dịch có màu xanh biếc thì dừng chuẩn độ. Ghi số ml dung dịch EDTA tiêu tốn - V0. Khi đó nồng độ Zn2+ được tính theo công thức: CZn = Ta thu được kết quả sau : 48 Bảng 3.18: Xác định hàm lượng Zn2+ trong lớp mạ bằng phương pháp chuẩn độ complecxon Mẫu 1 2 3 V(ml)EDTA 0,01M Lần 1 4,7 Lần 1 5,7 Lần 1 5,0 Lần 2 4,7 Lần 2 5,6 Lần 2 5,0 Lần 3 4,7 Lần 3 5,6 Lần 3 5,0 TB 4,7 TB 5,6 TB 5,0 C Zn(M) 0,0047 0,0055 0,0050 mZng/100 ml 0,3055 0,3575 0,3250 mZn(g/m2) 30,55 35,75 32,50 49 KẾT LUẬN Sau một thời gian nghiên cứu đề tài luận văn chúng tôi đã đạt được những kết quả sau: 1. Đã khảo sát phổ hấp thụ phân tử UV- VIS của phức Ce3+  - arsenazo III và chọn được bước sóng hấp thụ cực đại λmax = 656 nm để xác định Ce3+. 2. Đã khảo sát các yếu tố ảnh hưởng tới độ hấp thụ quang của Ce3+: - pH thích hợp 4,75 - Thời gian tạo phức 20 phút - Lượng thuốc thử thích hợp 10-4 M - Các ion ảnh hưởng : Fe3+, Zn2+. - Các ion không ảnh hưởng: Fe2+, Ni2+. 3. Đã nghiên cứu cách loại trừ ảnh hưởng của Zn2+ ra khỏi Ce3+ bằng phương pháp tạo phức- trao đổi ion. 4. Đã nghiên cứu cách loại trừ ảnh hưởng của Fe3+ ra khỏi Ce3+ bằng phương pháp chiết và trao đổi ion và chọn phương pháp trao đổi ion để tách Fe3+ ra khỏi Ce3+ với hiệu suất đạt trên 95%. 5. Đã chế tạo lớp mạ hợp kim Ni- Zn chứa Xeri trên nền thép CT3 làm mẫu nghiên cứu. 6. Phân tích hình thái bề mặt của lớp mạ có và không có phụ gia Ce3+ bằng phương pháp kính hiển vi điện tử quét(SEM) và cho thấy lớp mạ có phụ gia Ce3+có cấu trúc mịn và khả năng chống ăn mòn tốt hơn. 7. Đánh giá khả năng chống ăn mòn của lớp mạ: - Đánh giá bằng phương pháp nhỏ giọt : Sau 60 phút không thấy hiện tượng gì xảy ra. 50 - Đánh giá bằng phương pháp ngâm trong dung dịch muối ăn: Sau 50 giờ xuất hiện vệt vàng. - Đánh giá bằng phương pháp điện hóa: Khả năng chống ăn mòn cao: Trung bình 83,41%. 8.Đã xác định hàm lượng Ce3+, Ni2+ và Zn2+ trong lớp mạ hợp kim Ni- Zn. Mẫu Hàm lượng 1 2 3 Ce3+ (g/m2) 7,85.10-4±0,73.10-4 7,57.10-4±0,70.10-4 8,27.10-4±0,85.10-4 Ni2+ (g/m2) 1,560± 0,440 1,601 ± 0,452 1,539 ± 0,434 Zn2+ (g/m2) 30,55 35,75 32,50 Với kết quả thu được, trong thực tế có thể thêm Xeri vào lớp mạ để nâng cao khả năng chống ăn mòn của kim loại. Mặt khác đề tài có thể tiếp tục với việc sử dụng tổng các nguyên tố đất hiếm thay cho Xeri nhằm hạ giá thành sản phẩm . 51 TÀI LIỆU THAM KHẢO A.Tiếng việt 1. Hoàng Nhâm (2002), Hoá vô cơ, NXB giáo dục, Hà Nội, tập 3 2. Vũ Hoàng Minh (1997) Tách và xác định riêng biệt các NTĐH bằng phương pháp quang phổ plasma ICP-AES. Báo cáo tổng kết đề án khoa học. Bộ Công nghiệp 3. Lê Hùng (2005) Bài giảng chuyên đề hoá học phức chất của NTĐH, NXB Đại học Quốc Gia Hà Nội. 4. Trần Tứ Hiếu (1999), Phân tích trắc quang- NXB Đại học Quốc Gia Hà Nội. 5. Phạm Luận (1998), Cơ sở lý thuyết của phương pháp phân tích phổ phát xạ và hấp thụ nguyên tử tập I, II- Khoa hoá học- Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội 6. Phạm Luận (1999) Bài giảng về cơ sở lý thuyết các phương pháp phân tích phổ quang học, Đại học Khoa học Tự Nhiên, Đại học Quốc Gia Hà Nội 7. Nông Minh Dũng, Nguyễn Văn Ri, Phạm Luận (2002)- Tách và xác định các NTĐH bằng phương pháp điện di mao quản, Tạp chí hoá học phân tích. 8. Flaska, Lâm Ngọc Thu, Đào Hữu Vinh dịch (1979)- Chuẩn độ phức chất, NXB Khoa học và kĩ thuật. 9. Phạm Luận (1994) phương pháp phân tích phổ nguyên tử, NXB Đại học Quốc Gia Hà Nội. 10. Trần Thị Trang (2008)- Nghiên cứu thành phần lớp phủ pyrophotphat trên kim loại đen có phụ gia NTĐH và một số nguyên tố khác nhằm hạ nhiệt thiêu kết, Khoá luận tốt nghiệp. 52 11. Đoàn Minh Châu (1972) Asenazo III và ứng dụng của nó trong quá trình phân tích- Luận văn tốt nghiệp đại học. 12. Trần Tứ Hiếu, Từ Vong Nghi, Nguyễn Văn Ri, Nguyễn Xuân Trung (2007)- Hoá học phân tích- phần 2- Các phương pháp phân tích công cụ, NXB Đại học quốc gia Hà Nội 13. Trịnh Xuân Sén ( 2002)- Điện hóa học, NXB Đại học quốc gia Hà Nội 14. Nguyễn Văn Tư (2002) Ăn mòn và bảo vệ vật liệu, NXB Khoa học và kỹ thuật. 15. Tạ Thị Thảo (2006)- Bài giảng chuyên đề Thống kê trong hoá phân tích, trường ĐHKHTN- ĐHQGHN. 16. Trịnh Thị Như Ngọc (2003)- Tách và xác định lượng nhỏ các NTĐH trong uran bằng phương pháp chiết và điện di mao quản, khoá luận tốt nghiệp. 17. Trần Minh Thuý (2003), Tách và xác định lượng nhỏ các NTĐH trong uran bằng phương pháp trao đổi ion và điện di mao quản, Khoá luận tốt nghiệp. 18. Võ Văn Tân (2007), Hoá học các NTĐH, 19. Bùi Thị Dung (2004), Tách lượng vết các NTĐH trong uran bằng phương pháp kết tủa chọn lọc với ion F và xác định nó bằng phương pháp phổ hấp thụ phân tử UV-VIS, Khóa luận tốt nghiệp. 20. Phạm Luận (1999), Sổ tay pha chế dung dịch, trường ĐHKHTN- ĐHQGHN. 21. Nguyễn Văn Ri (2006), Giáo trình thực tập phân tích, bộ môn hoá phân tích, trường ĐHKHTN- ĐHQGHN. 22. Nguyễn Văn Ri (2007), Thực tập phân tích công cụ, bộ môn hoá phân tích, trường ĐHKHTN- ĐHQGHN. 23. Ngô Văn Tuấn (2005), Nghiên cứu thành phần lớp phủ bảo vệ bề mặt kim loại bằng phương pháp phân tích hiện đại, Luận văn thạc sĩ Hóa học. B. Tiếng Anh 53 24. Jian, People Repubic of china (1997), “Determination of cerium in rare Earth ores by fluorescence quenching of Rhodanmine 6G”, Department of chemistry, Shandong University. 25.Hiroaki Onoda, Kazuo Kojima, Hiroyuki Nariai, (2004), “Addition effects of rare earth elements on formation and Properties of some transion metal pyrophotphates” 26.Standard 9717, (1900), “Phosphate vonversion coatings for metals- Method of specifying requirements”, First edition, pp . 5-15. 27. Takeshi Suwa, Nobuhide Kuribayashi and Enzo Tachikawa, (1986), ”  Development of Chemical Decontamination Process with Sulfuric Acid-Cerium (IV) for Decommissioning”, Journal of Nuclear Science and technology Vol.23, (No.7), pp. 622-632. 28. Journal of the Less- Common Metals, 148 (1989), “ Rare earthas for matererials corrosion protection, pp.73-78. 29. Pedreira W.R., Da silva Queiroz C.A., Abrao A., Pimentel M.M. (2004), Quantification of trace amounts of rare earth elements in high purity gadolinium oxide by sector field inductively coupled plasma mass spectrometry (ICP-MS), Journal of Alloys and Compounds, [J.Alloys Compd.], vol 374, pp. 129-132. 30. Del Mar Castineira Gomez Maria, Brandt Rolf, Jakubowski Norbert, Andersson Jan T. (2004), Changes of the metal composition in German white wines through the winemaking process. A study of 63 elements by inductively coupled plasma-mass spectrometry, Journal of Agricultural and Food Chemistry, [J. Agric. Food Chem.], vol 52, no. 10, pp. 2953-2961. 31. Krachler Michael, Mohl Carola, Emons Hendrik , Shotyk William (2002), Influence of digestion procedures on the determination of rare earth elements in peat and plant samples by USN-ICP-MS, Journal of analytical atomic spectrometry, vol. 17, no. 8, pp. 844-851. 32. Yanbei Zhu, Itoh Akihide, Fujimori Eiji, Umemura Tomonari, Haraguchi Hiroki (2006), Determination of rare earth elements in seawater by ICP-MS after preconcerntration with a chelating resinpacked minicolumn, Journal of alloys and compounds, vol 408, pp. 985-988 54 C. Tiếng Nga 33. B.A PaбИНОВИЧ, З.Я. Хавин,(1977), краткий химичесий справочик, Издатедателвство, Химия. 34. В.Риман, Г.Уоптно, 1973, Ионообменная хроматоґрафия в аиа Итнческой ҳимии, Издателвство, миР. 55 TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN PHÒNG SAU ĐẠI HỌC CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự do - Hạnh phúc PHIẾU THÔNG TIN CỦA HVCH Họ và tên học viên: NGUYỄN THỊ ANH Giới tính: Nữ Ngày sinh: 26 tháng 02 năm 1971 Nơi sinh: Kim động – Hưng yên Quê quán: Kim động – Hưng yên Địa chỉ NR: Khu 4 Thị trấn Hùng Sơn - Lâm thao - Phú thọ Số ĐTNR: 02103787235 ĐTDĐ: 0983006945 QĐ trúng tuyển cao học số: ……………. Ngày ……… tháng …… năm ….. QĐ công nhận HVCH số: ……………… Ngày ……… tháng …… năm ….. Chuyên ngành: Hóa học phân tích Khoa: Hóa học Khóa học: 2007 – 2009 Đề tài luận văn: Phân tích lượng nhỏ các nguyên tố đất hiếm trong lớp mạ hợp kim Ni - Zn Người hướng dẫn: PGS.TS NGUYỄN VĂN RI Cơ quan: Trường Đại học Khoa học Tự nhiên – ĐHQG Hà Nội Ngày bảo vệ luận văn: 31/12/2009 Điểm luận văn: 8.8 Điểm trung bình các môn học: 7,3 Có điểm môn học nào dưới 7 không? có Có môn học nào thi lần thứ hai không? không Số lượng các bài báo, công trình NCKH đã công bố:………………………... Hội đồng chấm luận văn có đề nghị xét chuyển tiếp NCS hay không?............ Hà Nội, ngày… tháng…năm…. Học viên cao học Số bằng thạc sĩ: Số vào sổ Nguyễn Thị Anh

Các file đính kèm theo tài liệu này:

  • docPhân tích lượng nhỏ các nguyên tố đất hiếm trong lớp mạ hợp kim Ni – Zn.doc
Luận văn liên quan