Vì các tương quan này chưa đủ mạnh để chỉ dùng lượng khí sinh ra sau 24
giờ làm biến duy nhất để ước tính ME in vivo (Chenost và cs., 1997; Steingass và
Menke, 1986; Menke và Steingass, 1988; Datt và Singh, 1995; Abreu và BrunoSoares, 1998; Sommart và cs., 2000, Nitipot và Sommart, 2003; Al-Masri. 2003;
Sallam và cs., 2007) nên khi đưa thêm các thành phần hóa học của thức ăn như: CP,
CF, NDF, ADF và thậm chí là khoáng và mỡ vào phương trình ước tính ME thì R2
của phương trình tăng lên.
Nguyên nhân khác nữa là thành phần hóa học nói chung, đặc biệt là CP,
NDF, ADF là các yếu tố quan trọng làm tăng hoặc giảm lên men trong dạ cỏ
(Sommart và cs., 2000; Al-Masri, 2003; Sayan và cs., 2004; Getachew và cs., 2004;
De Boever và cs.,2005; Sallam và cs., 2007; Njiadda và Nasiru, 2010) và do đó ảnh
hưởng đến lượng khí sinh ra và tỷ lệ tiêu hóa của thức ăn và kết quả là ảnh hưởng
đến ME.
149 trang |
Chia sẻ: anhthuong12 | Lượt xem: 828 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Đề tài Tỷ lệ tiêu hóa, giá trị dinh dưỡng và phương trình ước tính tỷ lệ tiêu hóa chất hữu cơ, giá trị năng lượng trao đổi của thức ăn cho gia súc nhai lại, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
roduction Technique to Evaluate Some Nigerian Feedstuffs. American-
Eurasian Journal of Scientific Research 4, 240-245.
24. Alcicek, A., F. Sevgican, Y. Sayan, T. Capci and H. Ozkul, 1997. Comparison
of the parameters using for determination of metabolizable energy value of
the roughage. J. Agric. Fac. Ege Univ., 34: 41-48.
25. Al-Masri, M. R., 2003. An in vitro evaluation of some in conventional ruminal
feeds in terms of the organic matter digestibility, energy and microbial
biomass. Trop. Anim. Health and Prod., 35 (2): 155-167.
108
26. Andrieu, J., Demarquilly, C and Sauvant, D., 1989. Tables of feeds used in
France. In R. Jarrige, Ruminant Nutrition: Recommended allowances
and feed tables, 1989, Pp: 213-294.
27. ARC. 1990. Agricultural and Food Research Council, 1990, Technical
Committee on Responses to Nutrients, Report Number 5, Nutritive
Requirements of Ruminant Animals: Energy, Nutr, Abstr, Rev, (Series B),
60: 729–804.
28. ARC. Agricultural Research Council. 1980. The Nutrient Requirements of
Ruminant Livestock, Technical Review, CAB, Farnham Royal.
29. Aregheore, E. M. and U. J. Ikhata (1999). Nutritional evaluation of some
tropical crop residues: In vitro organic matter, neutral detergent fibre, true
dry matter digestibility and metabolizable energy using Hoheinhem gas test,
Asian-Aus, J, Anim, Sci, 2: 747-751.
30. Aregheore. E. M., T. A. Steglar, J. W. Ngambi. 2010. Nutrient characterization
and in vitro digestibility of grass and legume/browse species- based diets for
beef cattle in Vanuatu (unpublished personal data).
31. Aschalew, T.1992. Effect of frequency of clipping and nitrogen fertilization on
dry matter yield, nutrient composition and in vitro digestibility of four
improved grasses under irrigated conditions. M. Sc. Thesis. Alemaya
University, Ethiopia. pp. 76.
32. Aumont, G., Caudron, I., Saminadin, G., Xande, A. 1995. Sources of variation
in nutritive values of tropical forages from Caribbean. Anim. Feed. Sci.
Technol. 51 (1), 1-13.
33. Babayemi, O.J., M.A. Bamikole and Modupe O. Daodu. 2009. In vitro gas
production and its prediction on metabolizable energy. Organic matter
digestibility and short chain fatty acids of some tropical seeds. Pak. J. Nutr.,
8 (7):1078-1082.
34. Bamikole, M.A., M.I. Ikhatua , U.J. Ikhatua and I.V. Ezenwa. 2005. Nutritive
Value of Mulberry (Morus Spp.) Leaves in the Growing Rabbits in Nigeria.
Pakistan Journal of Nutrition 4 (4): 231-236, 2005.
109
35. Bayble,T., Solomon Melaku, N K Prasad. 2007. Effects of cutting dates on
nutritive value of Napier (Pennisetum purpureum) grass planted sole and in
association with Desmodium (Desmodium intortum) or Lablab (Lablab
purpureus). Livestock Research For Rural Development 19 (1) 2007.
36. Blummel, M. and Orskov, E.R. 1993. Comparison of gas production and
nylon bag degradability of roughages in predicting feed intake in cattle.
Anim. Feed Sci. Technol., 40: 109–119.
37. Blummel, M., Orskov, E.R., Becker, K., Koppenhagen, M. 1993. Production of
SCFA, CO2, CH4 and microbial cells in vitro, Proc Soc Nutr Physiol 1, 9.
38. Blummel, M., Givens. D. I. And Moss, A. R. 2005. Comparision of methane
produced by straw fed sheep in open-circuit respiration with methane
predicted by fermentation characteristics measured by an in vitro gas
procedure. Anim. Feed Sci. Technol., 23: 51- 65.
39. Blummel, M., Makkar, H.P.S. & Becker K. 1997. In vitro gas production: a
technique revisited. J. Anim. Physiol. Anim. Nutr., 77: 24–34.
40. Blummel, M., Mgomezule, R., Chen, X.B., Makkar, H.P.S., Becker, K., Orskov,
E.R. 1999. The modification of an in vitro gas production test to detect
roughage related differences in in vitro microbial protein synthesis as
estimated by excretion of purine derivatives. J. Agric. Sci., Cambridge 133,
335-340.
41. Brenda Keir, Nguyen Van Lai, T R Preston and E R Orskov. 1997. Nutritive
value of leaves from tropical trees and shrubs: 1. In vitro gas production
and in saccorumen degradability. Livestock researh for Rural Development,
Vol:9, Number 4, 1997.
42. Brown, V.E., Rymer, C., Agnew, R.E., and Givens, D.I.. 2002. Relationship
between in vitro gas production profiles of forages and in vivo rumen
fermentation patterns in beef steers fed those forages. Anim. Feed Sci. and
Technol., 98, 13-24.
43. Burns, J. C., K. R. Pond and D. S. Fisher. 1994. Measurement of forage intake,
In: (Ed: George C, Fahey, Jr) Forage Quality, Evaluation and Utilisation,
110
Chapter 12: 494-528, American Society of Agronomy Inc,, Madison,
Wisconsin, USA, 1994.
44. Calabro. S, Lopez. S, Piccolo. V, Dijkstra. J, Dhanoa. M.S and France. J. 2005.
Comparative analysis of gas production profiles obtained with buffalo and
sheep ruminal fruid as the source of inoculum. Anim. Feed Sci. Technol.,
23:123 – 124.
45. Chanjula, P., M. Wanapat , C. Wachirapakorn, S. Uriyapongson and Rowlinson.
2003. Ruminant degradability of tropical feeds and their potential use in
ruminant diets. Asian-Aust. J.Anim.Sci. 2003. Vol 16, No 2: 211-216
46. Chen, M.C., Chen, C.P., Tan, S.Y., Chung, P. 1973. The nutritive value of
napier grass and pangora grass in Taiwan. J. Chin. Soc. Agric. Sci. 83, 46-53
(in Chinese, with English abstract).
47. Chenost, M. 1975. La valeur alimentaire du pangola (Digitaria decunbens
Stend) et ses facteurs de variation, en zone tropicale humide. Ann. Zootech.,
24:327-349.
48. Chenost, M., Aufrere, J and Macheboeuf, D. 2001. The gas test technique as a
tool for predicting the energetic value of forage plants. Anim. Res, 50, 349-
364.
49. Chenost, M., Deverre, F., Aufrere, J. and Demarquilly, C. 1997. The use of gas-
test technique for predicting the feeding value forage plants. In In vitro
techniques for measuring nutrient supply to ruminants. Proceedings of
Occasional Meeting of the British Society of Animal Science, 8-10 July
1997, University of Reading, UK. Pp:22-38
50. Cheva-Isarakul và Cheva-Isarakul. 1985. Variation in the nutritive value of rice
straw in northern Thailand : Voluntary feed intake and digestibility by sheep.
In: Proceedings of an international workshop held in Khon Kean, Thailand,
November 29-December 2, 1984. Pp:26-43. Funny press, Bangkok,
Thailand, 1985.
51. Chumpawadee, S. and O. Pimpa. 2008. Effect of non forage high fibrous
feedstuffs as fiber sources in total mixed ration on gas production
characteristics and in vitro fermentation. Pak. J. Nutr., 7(3): 459-464.
111
52. Chumpawadee, S., Chantaratikul, A., and Chantaratikul, P. 2007a. Chemical
compositions and nutritional evaluation of energy feeds for ruminant using in
vitro gas production technique. Pak. J. Nutr. 6(6): 607-612.
53. Chumpawadee, S., Chantiratikul, A., and Chantiratikul, P. 2007b. Chemical
composition and nutritional evaluation of protein feeds for ruminants using
an in vitro gas production technique. Journal of Agricultural Technology,
191-202.
54. Cochran, R. C. and Galyean, M. L. (1994) Measurement of in vivo forage
digestion by ruminants. In: (Ed: George C, Fahey, Jr) Forage Quality,
Evaluation and Utilisation, Chapter 15: 613-643, American Society of
Agronomy Inc, Madison, Wisconsin, USA, 1994.
55. Coles, L. T., Moughan, P. J. and Darragh, A. J. 2005. In vitro digestion and
fermentation methods, including gas production techniques, as applied to
nutritive evaluation of foods in the hindgut ò humans and other simple-
stomached animals. Anim. Feed Sci. Technol. 23: 421-444.
56. Collin-Schoellen, O. Jurjianz, S. and Laurent, F. 2000. Metabilizable protein
supply (PDIE) and restricted level of ruminally degradable nitrogen (PDIN)
in total mixed retions: Effect on milk production and composition and
nitrogen utilization by dairy cows. Livestock Production Science, Vol: 67,
Issues: 1-2, pp: 41-53.
57. Cone. J. W, A. H. Vangelder, G. J. W. Visscher and L. Oudshoorn. 1996. Use of
a new automated time related gas production apparatus to study the influence
of substrate concentration and source of rumen fluid on fermentation
kinetics. Anim. Feed Sci. Technol. 61:113-128.
58. Cone. J.W and Van Gelder. A.H. 1998. In vitro microbial protein synthesis in
rumen fluid estimated with the gas production technique: Gas Production:
Fermentation Kinetics for Feed Evaluation to Assess Microbial Activity,
British Society of Animal Science, Penicuik, UK (2000), pp. 25 – 26.
59. Coward-Lord, J.J., Arroyo-Agulilu and Garcia-Molinari. 1974. Fibrous
carbohydrate fractions and in vitro true and apparent digestibility of ten
tropical forage grasses. Agricultural University of Puerto Rico 58: 293-304.
112
60. Daniel, K. 1996. Effect of nitrogen application and stages of development on
yield and nutritional value of Rhodes grass (Chloris gayana). Ethiopian
Journal of Agricultural Science 15: 86-101.
61. Datt, C. and G. Singh, 1995. Effect of protein supplementation on in vitro
digestibility and gas production of wheat straw. Indian J. Dairy Sci., 48: 357-
361.
62. Davies. Z.S., Mason, D., Brooks., A.E. Giffith., G.E. Merry. R.J and
Theodorou. M.K. (2000). An automated system for measuring gas
production from forages inoculated with rumen fluid and its use in
determining the effect of enzymes on grass silage. Anim. Feed Sci. Technol.
83, 205 – 221.
63. De Boever, J.L., Aerts, J.M., Vanacker, J.M. and De Brabander, D.L. 2005.
Evaluation of the nutritive value of maize silages using a gas production
technique. Anim. Feed Sci. and Technol., 123-124, 255.
64. De Boever, J.L., Cottyn, B.G., Buysse, F.X., Wainman, F.W. and Vanacker,
J.M. 1986. The use of an enzymatic technique to predict digestibility,
metabolisable and net energy of compound feedstuffs for ruminants. Anim.
Feed Sci. Technol., 14: 203–214.
65. De Peters E J, G Getachew G, Fadel J G Zinn R A, Taylor S J, Pareas J W,
Hinders R G and Aseltine M. S., 2003 In vitro gas production as a method to
compare fermentation characteristics of steam-flaked corn. Anim. Feed Sci.
Technol., 105:109-122,
66. Deaville, E.R. and D.I. Givens. 2000. Use of the automated gas production
technique to determine the fermentation kinetics of carbohydrate fractions in
maize silage. Anim. Feed Sci. Technol., 93: 205-215.
67. Dehority. B.A. and Johnson. R.R.1961. Effect of particle size upon the in vitro
cellulose digestibility of forages by rumen bacteria. J. Dairy Sci. 44, pp. 2242
- 2249.
68. Deshmukh, S. V., N. N. Pathak., D. A. Takalikar and S. U. Digraskar. 1993.
Nutritional effect of mulberry (Morus alba) leaves as a sole ration of adult
rabbit. World Rabbit Sci. 1:67-68.
113
69. Dijkstra, J., France, J., Dhanoa, M.S. and Lopez, S. 2000. Simulation of
substrate degradation, microbial synthesis and gas production in the gas
production technique and in vivo. EAAP Satellite Symposium, Gas
production: fermentation kinetics for feed evaluation and to assess microbial
activity, 18-19 August, Wageningen, The Netherlands. Pp: 239-241.
70. Doran M. P., E. A. Laca and R. D. Sainz. 2008. Total tract and rumen
digestibility of mulberry foliage (Morus alba), alfalfa hay and oat hay in
sheep. Anim. Feed Sci. Technol. 138:239-253.
71. Dragan. V. P., and L. J. Klaas. 2009. Comparison of three in vitro methods for
determining and predicting the organic matter digestibility of complete diets
for ruminants. BIBLID 40: 79-86.
72. Dryden, Mcl. G. 2010. Animal Nutrition Science. CABI. Cambridge University
Press, Cambridge, UK.
73. FAO. 2006a. Livestock’s long shadow – environmental issues and options,
edited by H. Steinfeld, P. Gerber, T. Wassenaar, V. Castel, M. Rosales &
C. de Haan. Rome.
74. FAO. 2006b. Draft revision-1. 2006. Codex classification of foods and anmal
feeds. Joint FAO/WHO Food Standards Programme. Codex alimentarius
commission.
75. Feed into Milk. 2004. A new applied feeding system for dairy cows, Editor: C,
Thomas, Nottinggham University Press, UK.
76. Fievez, V., Babayemi, O.J., and Demeyer, D. 2005. Estimation of direct and
indirect gas production in syringes: A tool to estimate short chain fatty acid
production that requires minimal laboratory facilities. Anim. Feed Sci.
Technol. (123-124), 197-210.
77. Garcia-Rodriguez, A., Mandaluniz, N., Flores, G. and Oregui, L. M. 2005. A
gas production technique as a tool to predict organic matter digestibility of
grass and maize silage. Anim. Feed Sci. Technol. Vol 111, Isues 1-4, Pp: 82-
94.
114
78. Getachew, G., Blümmel, M., Makkar H.P.S. and Becker K. 1998. In vitro gas
measuring techniques for assessment of nutritional quality of feeds: a
review. Anim. Feed Sci. Technol., 72: 261–281.
79. Getachew, G., Robinson, P.H., DePeters, E.J., and Taylor, S.J. 2004.
Relationships between chemical composition, dry matter degradation and in
vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol.
111,57-71.
80. Getachew, G., G.M. Crovetto, M. Fondivila, U. Krishnamoorthy, B. Singh, M.
Spaghero, H. Steingass, P.H. Robinson and M.M. Kailas. 2002. Laboratory
variation of 24h in vitro gas production and estimated metabolizable energy
values of ruminant feeds. Anim. Feed Sci. Technol., 102: 169-180.
81. Getachew, G., Makkar, H.P.S. and Becker, K. 2000a. Stoichiometric
relationship between short chain fatty acid and in vitro gas production in
presence and absence of polyethylene glycol for tannin containing browses,
EAAP Satellite Symposium, Gas production: fermentation kinetics for feed
evaluation and to assess microbial activity, 18-19, August, Wageningen,
The Netherlands. Pp: 132-134.
82. Getachew, G., Robinson, P.H., DePeter, E. J., Taylor, S. L., Gisi, D. D.,
Higginbotham, G.F. and Riordan, T. J. 2005. Methane production from
commercial dairy rations estimated using in vitro gas technique. Anim. Feed
Sci. Technol. Vol: 127, 339-349.
83. Getachew, G., Makkar, H. P. S. and Becker, K. 2002a. Tropical browses:
contents of phenolic compounds, in vitro gas production and stoichiometric
relationship between short chain fatty acid and in vitro gas production. The
Journal of Agricultural Science 139, 341-352.
84. Goering, H. K. and Van Soest, P. J. 1970. Forage fiber analyses (Apparatus,
procedures and some applications). USDA-ARS. Agricultural Handbook,
379.US Government Printing Office, Washington, D. C.
85. Gohl, B. 1981. Tropical feeds; feed information summaries and nutritive values.
FAO Animal Production and Health Series No. 12, FAO, Rome, Italy, pp. 1-
12.
115
86. González-García, E., J Arece, H Archimède, P P Gomarín and O Cáceres. 2008.
Productive response of tropical lambs reared in two contrasting management
systems after weaning and using woody forage species. Livestock Res. Rural
Develop. 20 (11) article 185.
87. Harris, L. E., Asplund, J. M. and Crampton, E. W. 1968. An International Feed
Nomenclature and Methods for Summarizing and Using Feed Data to
Calculate Diets. Bull. No. 479. Agricultural Experimental Statio, Utah State
University, Logan, Utah.
88. Harris, L. E., Jager, F., Leche, T. F., Mayr, H., Neese, U. And Kearl, L. C. 1980.
International Feed Discription, International Feed Names and Country Feed
Names. INFIC. Pub. No. 5. International Feedstuffs Institute. Utah State
University, Logan, Utah.
89. Hassen, A., Rethman, N.F.G., Niekerk, W.A and Tjelele, T.J. 2006: Influence of
season/year and species on chemical composition and in vitro digestibility of
five Indigofera accessions. Anim. Feed Sci. Technol. 137, 336-347.
90. Hsu, F.H., Hong, K.Y., Lee, M.J. 1993. Effect of cutting intervals on forage
yield and quality of pangolagrass and coastal cross. II. Bermudagrass.
Taiwan Livest. Res. 26 (1), 91-97 (in Chinese, with English abstract).
91. Hsu, F.H., Hong, K.Y., Lee, M.J., Lee, K.C.1990. Effect of cutting intervals on
forage yield, nutrient composition and silage quality of Napiergrass. J.
Chin. Soc. Agric. 151, 77-89 (in Chinese, with English abstract).
92. Hulya, O., S. Yilmaz, P. Muazzer, and C. Tulug. 2005. Comparison of
metabolizable energy value of roughages determined by regression equation
using in vitro and in vitro parameters. Pakistan Journal of Biological
Science. 8 (5): 696-700.
93. Hungate, R.E. 1966. The Rumen and Microbes. Academic Press, New York,
NY, USA.
94. Iantcheva, N., H. Steingass, N. Todorov and D. Pavlov. 1999. A comparison of in
vitro rumen fluid and enzymatic methods to predict digestibility and energy
value of grass and alfalfa hay. Anim. Feed Sci. Technol., 81: 333-344.
95. INRA: Recommended allowance and Feed Tables. 1978. Paris.
116
96. INRA (1978). Alimentation des Ruminants. Ed. INRA Publications (Route de
Saint-Cyr), 78000 Versailles (France), 597 pp.
97. INRA (1988). Alimentation des Bovins, Ovins et Caprins. Ed. INRA
Publications (Route de Saint-Cyr), 78000 Versailles (France), 471 pp.
98. INRA (1983). Alimentación de Bovinos, Ovinos y Caprinos. Ed. Mundi
Prensa, 1990.
99. INRA. 1989. Ruminant Nutrition: Recommended Allowances and Feed Tables,
INRA, Paris, 1989.
100. Ismail. A., O. Haydar, H. C. Kutay, R. Kahraman. 2005. Determination of the
metabolizable energy (ME) and Net energy lactation (NEL) contents of some
feeds in the marmara region by in vitro gas technique. Turk. J. Vet. Anim.
Sci. 29: 751-757.
101. Jarige (1978). Alimentation des ruminants. Ed, INRA, Versilles, p:597.
102. Jegou, D. J. J. , Y. Waelput and G. Brumschwig. 1994. Consumo y
digestibilidad de la materia seca y del nitrógeno del follaje de Morera
(Morus sp.) y Amapola (Malvabiscus arboreus) en cabras lactantes. In:
J.E. Benavides ed. "Árboles y arbustos forrajeros en América Central". Vol.
I. Serie técnica, Informe técnico No. 236. Turrialba, C.R. CATIE. pp. 155-
162.
103. Jouany. J.P and Thivend. 1986. In vitro effect of avoparcin on protein
degradability and rumen fermentation. Anim. Feed Sci. Technol. 15, pp. 215
– 229.
104. Juárez Reyes, A. S., Cerrillo Soto, M. A., Gutiérrez Ornelas, E., Romero
Trevino, E. M., Colins Negrete, J., and Bernal Barragán, H. 2009.
Assessment of the nutritional value of tropical grasses obtained from
conventional analyses and in vitro gas production. Técnica Pecuaria en
México Vol. 47 No. 1, pp. 55-67.
105. Kabi, F. and F. B. Bareeba. 2008. Herbage biomass and nutritive value of
mulberry foliage (Morus alba) and calliandra calothyrsus harvested at
different cutting frequencies. Anim. Feed Sci. Technol. 140: 178-190.
106. Kabuga, J. D. and Darko, C. A. 1993. In Saco degradation of dry matter and
nitrogen in oven, dried and fresh tropical grasses and some relations to in vitro
dry matter digestibility. Animal Feed Science and Technology 40: 191-205.
117
107. Kamalak, A., Canbolat, O., Gurbuz, y., and Ozay, O. 2005a. Prediction of dry
matter intake and dry matter digestibilities of some forages using the gas
production technique in sheep. Turk. J. Vet. Anim. Sci., 29. 517-523.
108. Kamalak, A., O. Canbolat, Y. Gurbuz, O. Ozay, C. O. Ozkan and M. Sakarya.
2004. Chemical composition and in vitro gas production characteristics of
several tannin containing tree leaves. Livestock Research for Rural
Development. 16 (6).
109. Kamalak, A.,Canbolat, O., Gurbuz, Y., Ozay, O. 2005b. Comparison of in
vitro gas production technique with in situ nylon bag technique to estimate
dry matter degradation. Czech J. Anim. Sci., 50: 60-67.
110. Kandylis, K., I. Hadjigeorgiou and P. Harizanis. 2008. The nutritive value of
mulberry leaves (Morus alba) as a feed supplement for sheep. Trop. Anim.
Health Prod. DOI 10.1007/s11250-008-9149-y.
111. Kantwa, S. C., Gupta, L; Singh, B. P., Tailor, S. P. 2006. Nutritional
evaluation of mulberry (Morus alba L.) green leaves in sheep and goats.
Indian J. Small Rum.12(2)(Abstr.).
112. Kariuki, . N., S. Tamminga, C.K. Gachuiri, G. K. Gitau and J. M. K. Muia.
2001. Intake and rumen degradation in cattle fed napier grass (Pennisetum
purpureum) supplemented with various levels of Desmodium intortum and
Ipomoea batatus vines. South African Journal of Animal Science 2001, 31(3)
113. Kayongo and Said. 1986. Use of INFIC nomenclature on crop residues and
byproducts produced in Kenya. In: Preston, T. R. And Nuwannyakpa, M. Y.
(eds).Towards Oprimal Feeding of Agricultural byproducts to Livestock in Africa.
Proceedings of a Workshop held at the University of Alecxandria, Egypt, October,
1985. Available at:
114. Khanum, S. A., Yaqoob, T., Sadaf, S., Hussain, M., Jabbar, M. A., Hussain, H.
N., Kausar, R. and Rehman, S. 2007. Nutritional evaluation of various
feedstuffs for livestock production using in vitro gas method. Pakistan Vet.
J., 27(3), 129-133.
118
115. Kidunda, R. S., Lowga, E. J. and Mtengeti, E. 1990. Utilization of Pasture
Research Results in Tanzania. PANESA/ARNAB (Pasture Network for
Eastern and Southern Africa/African Research Network for Agriculture By-
products). Utilization of research results on forage and agricultural by
products as animal feed resources in Africa. Proceedings of the first Joint
workshop held in Lilongwe, Malawi. 5-9 December 1988.
PANESA/ARNAB. Pp:13-34.
116. Krishnamoorthy, U., H. Soller, H. Steigass and K.H. Menke. 1995. Energy and
protein evaluation of tropical feedstuffs for whole tract and ruminal digestion
by chemical analysis and rumen inoculums studies in vitro. Anim. Feed Sci.
Technol., 52: 177-188.
117. Larbi, A., Smith, J.W., Kurdi, I.O., Adekunle, I.O. Raji, A.M. and Ladipo,
D.O. 1998. Chemical composition, rumen degradation, and gas production
characteristics of some multipurpose fodder trees and shrubs during wet and
dry seasons in the humid tropics. Animal Feed Science and Technology 72,
63- 81.
118. Lee, C.F., Buu, R.H., Shy, Y.M., Chen, M.C. 1991. The nutritive value of
pangola grass A253 at different stages of growth. Taiwan Livest. Res. 24
(1), 59—65 (in Chinese, with English abstract).
119. Liu, J. X., Susenbeth, A. and Sudekum, K. H. 2002. In vitro gas production
measurements to evaluate interactions between untreated and chemically
treated rice straws, grass hay, and mulberry leaves. Journal of Animal
Science, Vol 80, Issue 2, 517-524.
120. Liu, J.X.1, Jun Yao1, Yan, B.1 J.Q.Yu, Z.Q.Shi1 and X.Q.Wang. 1998. The
Nutritional Value of Mulberry Leaves and their Use as Supplement to
Growing Sheep Fed Ammoniated Rice Straw. FAO Electronic Conference
on mulberry for animal production (Morus1-L)1.
121. Lowman. R.S, Theodorou. M.K and Cuddeford. D. 2002. The effect of sample
processing on gas production profiles obtained using the pressure transducer
technique. Anim. Feed Sci. Technol. 97, pp. 221 – 237.
119
122. Madibela, O.R. and E. Modiakgotla, 2004. Chemical composition and in vitro dry
matter digestibility of indigenous finger millet (Eleusine coracana) in Botswana.
Livestock Res. Rural Dev., Vol. 16.
123. Malamsha, P. C., Muhicambele, V. R. M, and Mtenga, L.A. 1999. White mulberry
(morus alba) as a potential feed supplement for stall-fed growing goats in highland
areas of Tanzania.
124. Markar H P S, Goodchild A V, El-Monein A.A and Becker K. 1996. Cell-
constituents, tannin levels by chemical and biological assays and nutritional
value of some legume foliage and straw. Journal of Food and Agriculture
71:129-136.
125. Markar, B., B. Singh and S. S. Negi. 1989. Relationship of rumen
degradability with microbial colonization, cell wall constituents and tannin
levels in some tree leaves. Anim. Prod. 49: 299-303.
126. Markar, H.P.S. 2000. Quantification of tannins in tree foliage - a laboratory
manual, a joint FAO/IAEA working document, Vienna, Austria.
127. Markar, H.P.S., Blummel, M. and Becker, K. 1995a. In vitro effects of and
interactions between tannins and saponins and fate of tannins in the
rumen. J. Sci. Food Agric., 69: 481–493.
128. Markar, H.P.S., Blummel, M., Becker, K. 1995b. Formation of complexes
between polyvinyl pyrrolidones or polyethylene glycols and tannins, and
their implication in gas production and true digestibility in in vitro
techniques. Br J Nitr 73, 897-913.
129. Markar. H.P.S. 2004. Recent advances in the in vitro gas method for evaluation
of nutritional quality of feed resources. In: Aceesing quality and safety of
animal feeds. Animal Production and Health paper FAO/IAEA Division
International Atomic Energy Agency Vienna, Austria, 2004, pp55-88.
130. Mauricio, R.M., Mould, F.L., Abdalla, A.L. and Owen, E. 2000. The potential
nitritive value for ruminants of some tropical feedstuffs as indicated by in
vitro gas production and chemical analysis,
http:/paginas,terra,com,br/educacao/cebrasp/jornal,htm
120
131. McBee, R. H., 1953. Manometric method for the evaluation of microbial
activitivity in the rumen with application to utilization of cellulose and
hemicellulose. Appl. Microbiol. 1, 106-110.
132. Mehrez, A.Z. and Ørskov, E.R. 1977. A study of artificial fibre bag
technique for determining the digestibility of feeds in the rumen. J. Agric.
Sci. (Camb.), 88: 645–650.
133. Mei-Ju Lee, Sen-Yuan Hwang, Peter Wen-Shyg Chiou. 2000. Metabolizable
energy of roughage in Taiwan. Small Ruminant Research. 36. (2000) 251-259.
134. Meissner H.H., P.J.K. Zacharias., H.H. Koster., S.H. Nieuwoudt and R.J.
Coetze. 1991. Effects of energy supplementation on intake and digestion on
early and mid-season ryegrass and Panicum/Smuts finger hay, and on in
sacco disappearance of various forage species, S. Afr. J. Anim. Sci . 21
(1991), pp:33-42.
135. Meissner H.H., P.J.K. Zacharias. And P.J. Reagain. 2000. Forage quality (feed
value), In: N. M. Tainton, Ed, Pasture Management in South Africa,
University of Natal Press, Pietermaritzburg, (2000), pp:66-88.)
136. Menke K H, Raab L, Salewski A, Steingass H, Fritz D and Schneider W. 1979.
The estimation of digestibility and metabolizable energy content of ruminant
feedstuffs from the gas production when they incubated with rumen liquor in
vitro. Journal of Agricultural Science (Cambridge) 92:217-222.
137. Menke, K.H. and H. Steigass. 1988. Estination of the energetic feed value
obtained from chemical analysis and gas production using rumen fluid.
Anim. Res. Dev., 28: 7-55.
138. Mertens. R.D, Weimer. P.J and Waghorn.G.M. 1998. Inocula differences
affect in vitro gas production kinetics, In. E.R. Deaville, E. Owen, A.T.
Adesogen, C.Rymer, J.A. Huntington and T.L.J. Lawrence. In vitro
Techniques for Measuring Nutrient Supply to Ruminants, BSAS, Edinburgh,
UK (1998), pp. 95 – 98 BSAS Occ. Publ. No. 22. pp, 20-28.
139. Minson D. J. 1998. A history of in vitro techniques, In: In vitro techniques for
measuring nutrient supply to ruminants, (Editors E R Deaville, E Owen, A T
121
Adesogan, C Rymer, J A Huntington and T L J Lawrence, Occasional
Publication, British Society, Animal Science, No: 22, pp, 13-19.
140. Minson, D. J. 1981. Nutritional differences between tropical and temperate
pasture. In: Morley.F. H. W. (ed) Grazing Animals. World Animal Science,
B1, 143-157, Elsevier, Amsterdam.
141. Mupangwa, J.F., N.T. Ngongoni, J.H. Topps and P. Ndlovu. 1997. Chemical
composition and dry matter of forage legumes Cassia rotundiforlia cv.
Wynn, Lablab purpureus cv. Highworth and Macroptilium atropurpureum
cv. Siratro at 8 weeks of growth (preanthesis). Anim. Feed Csi. Technol., 69:
167-178.
142. Murphy, J. J., Bohane, D. C. Fitzgerald, J. J., Kavanagh, S. and O’Mara, F. P.
2003. Evaluation and Refinement of the French Protein System (PDI) in the
Irish Conditions. Final Project Report, Belfast, 2003.
143. Nagadi. S, Herrero. M and Jessop. N.S. 2000. The influence of diet of the
donor animal on the initial bacterial concentration of fruid and in vitro gas
production degradability parameters, Anim. Feed Sci. Technol. 76 (1999) pp.
153; 87, pp. 231 – 239.
144. Nasser, M.E.A., El-Waziry, A.M. and Sallam, S.M.A. 2009. In vitro gas
production measurements and estimated energy value and microbial protein
to investigate associative effects of untreated or biological treated linen straw
and berseem hay. Nutritional and foraging ecology of sheep and goats 85,
261-265.
145. Nguyen Thi Hong Nhan, Nguyen Trong Ngu, T R Preston and R A Leng.
2008. Effects of drenching soybean oil and fish oil on intake, digestibility
and performance of cattle fattening in the Mekong Delta, Vietnam. Livestock
research for Rural development 20 (7) 2008.
146. Nguyen Xuan Ba, Vu Duy Giang and Le Duc Ngoan. 2005. Ensiling of
mulberry foliage (Morus alba) and the nutritive value of mulberry foliage
silage for goats in central Vietnam. Livestock Research for Rural
Development 17 (2) 2005.
122
147. Nieves, D. Basilia Silva, O Teran, C Gonzalez and J Ly. 2004. A note on the
chemical composition and feeding characteristics of dicts containing
Leucaena leucocephala and Arachis pintoi for growing rabbits. Livestock
research for Rural development 16 (12) 2004.
148. Nitipot, P. And K. Sommart. 2003. Evaluation of ruminant nutritive value of
cassava starch industry by products, energy feed sources and roughages
using in vitro gas production technique. In: Proceeding of Annual
Agricultural Seminar for year 2003, 27-28 January, KKU., pp: 179-190.
149. Njiadda, A.A. and Nasiru, A. 2010. In vitro gas production and dry matter
digestibility of tannin-containing forages of simi-arid region of North-
Eastern Nigeria. Pak. J. Nutr., 9 (1): 60-66.
150. Njidda, A. A. 2010. In vitro gas production and Stoichiometric relationship
between short chain fatty acid and in vitro gas production of semi-arid
browses of North-eastern Negeria. Global Veterinaria 4, 292-298.
151. Njoka-Njiru, E. N., Njarui M. G., Abdulrazak S. A., Mureithi J. G. 2006.
Effect of intercropping herbaceous legumes with napier grass on dry matter
yield and nutritive value of the feedstuffs in semi-arid region of Eastern
Kenya. Agricultura Tropica et Subtropica. Vol.39(4),2006 255-267.
152. NRC. National Research Council. 1988. Nutrient Requirements of Dairy
Cattle (6th revised Edition ed.), National Academy Press, Washington, DC.
153. NRC. National Research Council. 1996. Nutrient requirements of beef cattle.
6th rev. ed. Natl. Acad. Sci., Washington, DC.
154. NRC. National Research Council. 2001. Nutrient Requirements of Dairy
Cattle (7th revised Edition ed.), National Academy Press, Washington, DC.
155. Nsahlai, I.V., Siaw, D.E.K.A. and Osuji, P.O. 1994. The relationship between
gas production and chemical composition of 23 browses of the genus
Sesbania. J. Sci. Food Agric, 65, 13.
156. Nutrient Requirement for Australian Livestock, 1999. Canberra, Australia.
157. Nutrient Requirement of Beef Cattle in Indochinse Penninsula. 2010. The
Working Group Committee of Thai Feeding Standard for Ruminants
123
(WTSR), Department of Livestock Development, Ministry of Agriculture,
Thailand, Bangkok, Thailand.
158. Omar. S. S. Shayo, C. M and Ude'n, P. 1998. Voluntary intake and digestibility
of mulberry (Morus alba) diets by goats. In the potential of Mulberry as
fodder tree for goats in semi-arid Tanzania. M.S.c. Thesis. Swedish
University of Agricultural Sciences.
159. Ostrowski-Meissner, H T. 1987. Australian Feed Composition Table:
Ruminants. AFIC-CSIRO, Sydney, Australia.
160. Ostrowski-Meissner, H. T. 1990. Australian Feed Composition Table: Pigs and
Poultry. AFIC-CSIRO, Sydney, Australia.
161. Palic. D., and H. Muller. 2006. Prediction of the in vivo organic matter
digestibility of feed stuff for ruminants using in vitro techniques. Savremena
Poljoprivreda 55: 127-132.
162. Paquay. R. 2000. Performances de croissance, de reproduction et de
production. In : Le mouton et la chèvre d'Afrique de l'Est. par J. Mbayahaga,
avec la collaboration de J-L Bister et R. Paquay. Presses universitaires de
Namur, rempart de la Vierge, 8, 5000 Namur. ISBN n° 2-87037-319-8, dépôt
légal D/2000/1881/18; 178 pp.
163. Partanen, K. and Jalava,T. 2005. Effects of some organic acids and salts on
microbial fermentation in the digestive tract of piglets estimated using an in
vitro gas production techniques. Agriculture and food science. Vol 14, 311-324.
164. Paya. H., A. Taghizadeh, H. Janmohammadi and A. G. Moghadam. 2007. Nutrient
Digestibility and Gas production of Some Tropical Feeds Used in Ruminant Diets
Estimated by the in vivo and in vi tro Gas Production Techniques. American
Journal of Animal and Veterinary Sciences 2(4): 108-113.
165. Pearson, C.J and Ison, R.L. 1997. Agronomy of grassland systems. Cambridge
University Press, Cambridge, UK.
166. Pell, A.N., and Schofield, P. 1993. Nutrition, feeding, and calves.
Computerized monitoring of gas production to measure forage digestion in
vitro. J. Dairy Sci. 76, 1063-1073.
124
167. Phiny, C., Preston, T. R. and Ly, J. 2003. Mulberry (Morus alba) leaves as protein
source for young pigs fed rice-based diets: Digestibility studies. Livestock
Research for Rural Development. (
168. Prasard, C.S., Wood, C.D., Sampath, K.T. 1994. Use of in vitro gas production
to evaluate rumen fermentation of untreated and urea-treated finger millet
straw (Eleusine coracana) Supplemented with different levels of concentrate.
J Food Sci Agric 65, 457-464.
169. Promkot, C and M Wanapat. 2003. Ruminal degradation and intestinal
digestion of crude protein of tropical protein resources using nylon bag
technique and three-step in vitro procedure in dairy cattle. Livestock
Research for Rural Development 15 (11) 2003.
170. Promkot, C. and M. Wanapat, 2004. Ruminal degradation and intestinal
digestion of crude protein of tropical resources using nylon bag amd three-
step in vitro procedure in dairy Cattle. In: Proceedings of the agricultural
Seminar, Animal Science/Animal Husbandry. Held at Sofitel Raja Orchid
Hotel 27-28 January 2004. Pp: 16-25.
171. Richard, D., Guerin, H and Safietou. T. Fall. 1989. Feeds of the dry tropics.
In R. Jarrige, Ruminant Nutrition. Recommended allowances and feed tables.
1989. Pp: 325-342.
172. Rostock Feed Evaluation Sysstem, Reference number of feed value and
requirement on the base of net energy. 2003. Frankfurt, Germany
173. Rymer, C. and Givens, D.I. 1999. The use of the in vitro gas production
technique to investigate the effect of substrate on the partitioning
between microbial biomass production and the yield of fermentation
products. Proc. Br. Soc. Anim. Sci., pp 36.
174. Rymer. C, Huntington. J.A, Williams. B.A and Givens. D.I. 2005. In vitro
cumulative gas production techniques: History, methodological considerations
and challenges. Anim. Feed Sci. Techol. 123 – 124, pp. 9 – 30.
175. Sallam, S.M.A., Nasser, M.E.A., El-Waziry, A.M., Bueno, I.C.S. and Abdalla,
A.L. 2007. Use of an in vitro Rumen Gas Production Technique to Evaluate
Some Ruminant Feedstuffs. Journal of Applied Sciences Research 3: 34-41.
125
176. Sallam. S. M. A. 2005. Nutritive value assessment of the alternative feed
resources by gas production and rumen fermentation in vitro. Research
Journal of Agriculture and Biological Science 1(2): 200-209.
177. Sanderson. R, Lister. S.J, Sargeant. A and Dhanoa. M.S. 1997. Effect of
particle size on in vitro fermentation of silages differing in dry matter
content. Proc. Br. Soc. Anim. Sci., p. 197.
178. Sarwatt, S.V., M S Milang ha, F P Lekule and N Madalla. 2004. Moringa
oleifera and cottonseed cake as supplements for smallholder dairy cow fed
Napier grass. Livestock research for Rural development 16 (6) 2004.
179. Sayan, Y., H. Ozkul, A. Alcicek, L. Coskuntuna, S. Onenc and M. Polat. 2004.
Comparison of the parameters using for determination of metabolizable
energy value of the roughages. J. Agri. Fac. Ege Univ., 41:167-175.
180. Schmidek, A.Takahashi, R, Nunes de Medeiros, A and de Resende, K. T.
2000. Bromatological composition and degradation rate of mulberry in goats.
In: Proceedings of an electronic conference carried out between May and
August, 2002. FAO animal production and health paper, 147
181. Schofield. P, Pitt. R.E and Pell. A.N. (1994). Kinetics of fibre digestion from
in vitro gas production. J. Anim. Sci. 72, pp. 2980 - 2981.
182. Sebastian Chakeredza, Festus K. Akinnifesi, Oluyede Clifford Ajayi, Gudeta
Sileshi, Simon Mngomba and France M. T. Gondwe. 2008. A simple method
of formulating least-cost diets for smallholder dairy production in sub-
Saharan Africa. African Journal of Biotechnology Vol. 7 (16), pp. 2925-
2933, 18 August, 2008.
183. Seker. E. 2002. The determination of the energy values of some ruminant feeds
by using digestibility trial and gas test. Revue Med. Vet. 253: 323-328.
184. Seven. P., I. H. Cerci, M. A. Azman. 2007. The different between methods and
determining of metabolisable energy levels with enzyme and gas techniques
in concentrate feeds. ARASTIRMA, 21 (4): 159-162. Fýrat University
Veterinary Journal of Health Sciences.
126
185. Seyoum Bediye, Zinash Sileshi, Tadesse Tekle Tsadik and Liyusew Ayalew.
1998. Evaluation of Napier (Pennisetum purpureum) and Hybrids
(Pennisetum purpureum x Pennisetum typhoides) in the central highlands of
Ethiopia. Proceedings of the Fifth Conference of Ethiopian Society of
Animal Production (ESAP). 15-17 May 1997. Addis Ababa, Ethiopia. pp.
705-735.
186. Shayo, C. M. 1997. Uses, yield and nutritive value of mulberry (Morus alba)
trees for ruminants in the semi-arid areas of central Tanzania. Tropical
Grassland, 31, 599-601.
187. Shayo, C. M. 1998. The potential of the Mulberry as feed for ruminants in
central Tanzania. In FAO Electronic Conference on Mulberry for Animal
Production.
U../paper.ht
188. Singh, B. and H. P. S. Markar. 2002. The potential of mulberry foliage as a
feed supplement in India. In: Mulberry for animal production, FAO Anim.
Prod. Health Paper 147, 139-156.
189. Singh, B. Goel, G. C and Negi, S. S. 1984. Effects of supplementing mulberry
(Morus alba) leaves ad libitum to concentrate diets of Angora rabbits on
wool production. Journal of Applied Rabbit Research 7,156-160.
190. Singh, B., A. Sahoo, R. Sharma and T.K. Bhat. 2005. Effect of polethylene
glycol on gas production parameters and nitrogen disappearance of some tree
forages. Animal feed science and technology. Volumes 123-124, part 1, 30
September 2005, pages 351-364.
191. Smith, O. B., O. A. Idown., V. O. Asaolu and O. Odunlami. 1991.
Comparative rumen degradability of forages, browse, crop residues and
agricultural by – products. Livestock Research for Rural Development,
Volume 3, Number 2, June 1991.
192. Sommart, K., D.S. Parker, P. Rowlinson and M. Wanapat. 2000. Fermentation
characteristics and microbial protein synthesis in an in vitro system using
127
cassava, rice straw and dried ruzi grass as substrates. Asian-Aust. J. Anim.
Sci., 13: 1084-1093.
193. Songsak. C., S. Kritapon, V. Thevin, and P. Virote. 2006. Nutritional
evaluation of crop residues and selected roughages for ruminants using in
vitro gas production technique. Chiang Mai J. Sci 33 (3): 371-380.
194. Stango, G., Di Meo, C., Calabro, S., Nizza, A. 2003. Prediction of nutritive
value of diets for rabbits using in vitro gas production techniques. World
Rabbit Sci. 11: 199-210.
195. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C. 2006.
Livestock’s Long Shadow: Environmental Issues and Options. Rome, Italy:
Food and Agriculture Organization of the United Nations.
196. Steingass, H. and K.H. Menke. 1986. Schatzung des energetischen
Futterwertes aus der in vitro mit Pansensaft “bestimmten Gasbildung und der
chemischen Analyse”. Tierernahrung, 14:251.
197. Taghizadeh, H. Janmohammadi and A. G. Moghadam. 2007. Nutrient
Digestibility and Gas production of Some Tropical Feeds Used in Ruminant
Diets Estimated by the in vivo and in vi tro Gas Production Techniques.
American Journal of Animal and Veterinary Sciences 2(4): 108-113.
198. Tedonkeng, P., E., B. Boukila, F. A. Fonteh, F. Tendonkeng., J. R. Kana and
A. S. Nanda. 2007. Nutritive value of some grasses and leguminous tree
leaves of the Central region of Africa. Animal Feed Science and Technology,
Vol 135, Issues 3-4, 15 june 2007, pp: 273-282.
199. Tesema, Z., Baars M. R. T. and Alemu Yami. 2002. Effect of plant height at
cutting, source and Level of fertilizer on yield and nutritional Quality of
Napier grass (Pennisetum purpureum (L.) Schumach.) African Journal of
Range and Forage Science 2002, 19:123-128.
200. Tessema, Z. and R.M.T. Baars. 2004. Chemical composition, in vitro dry
matter digestibility and ruminal degradation of Napier grass (Pennisetum
purpureum (L.) Schumach.) mixed whit different levels of Sesbania sesban
(L.) Merr. Animal feed science and technology volume 117, issues 1-2, 10
november 2004, pp: 29-41.
128
201. Theodorou, M.K., Williams, B.A., Dhanoa, M.S., McAllan, A.B. and France,
J. 1994. A simple gas production method using a pressure transducer to
determine the fermentation kinetics of ruminant feeds. Animal Feed
Science and Technology 48, 185.
202. Thu. N.V and T.R. Preston, 1999. Rumen environment and feed degradability
in swamp buffaloes fed different supplements. Livestock Research for Rural
Development, 11: 1-7.
203. Tilley, J.M. and Terry, R.A. 1963. A two stage technique for the in vitro
digestion of forage crops. J. Brit. Grassl. Soc., 18: 104–111.
204. Trei. J, Hale. W and Theurer,B.1970. Effect of grain processing on in vitro gas
production. J. Anim. Sci. 30, pp. 825 – 831.
205. Tuah, A.K., Okai, D.B., Orskov, E.R., Kyle, D., Shand, W., Greenhalgh,
J.F.D., Obese, F.Y., and Karikari, P.K. 1996. In sacco dry matter
degradability and in vitro gas production characteristics of some Ghanaian
feeds. Liv Res Rural Develop 8(1). [on line]
Accessed Aug 5, 2007.
206. Tudor, G. D and Minson, D. J., 1982. The utilization of the dietary energy of
Pangola and Setaria by young growing beef cattle. J. Agric. Sci., 98:395-404.
207. Van Soest, P.J. 1982. Chemistry of forages and feeds. In: Nutritional
Ecology of the Ruminant. Cornell University Press, New York, pp. 75-151.
208. Van Soest, P.J., 1994. Nutritional Ecology of ruminants. 2nd Edn., Ithaca, NY:
Cornell University Press.
209. Vermorel, M. and J. B. Coulon. 1998. Comparision of the National Research
Council Energy System for Lactating Cows with Four Europea Systems. J.
Dairy Science, 81:846-855.
210. Vo Duy Thanh, T. R. Preston and R. A. Leng. 2011. Effect on methane
production of supplementing a basal substrate of molasses and cassava leaf
meal with mangosteen peel (Garcinia mangostana) and urea or nitrate in an
in vitro incubation. Livestock Research for Rural Develoment 23 (4), 2011.
211. Von Keyserlingk. M. A. G., M. L. Swift, R. Puchala, and V. Shelford. 1996.
Degradability characteristics of dry matter and crude protein of forages in
ruminant. Anim. Feed Sci. Technol. 57: 291 – 311.
129
212. Wanapat, 1985. Improving rice straw quality as ruminant feed by urea
treatment in Thailand. In: Proceedings of an international workshop held in
Khon Kean, Thailand, November 29-December 2, 1984. Pp:122-147. Funny
press, Bangkok, Thailand, 1985.
213. Wilkins. J. 1974. Pressure transducer method for measuring gas production by
microorganisms. Appl. Microbiol. 27, pp. 135 – 140.
214. Wilson, J.R. and C.C. Wong. 1982. Effects of shade on some factors
influencing nutritive quality of green panic and siratro pastures. Aus. J.
Agric. Res. 33: 937-949.
215. Wolin, M.J. 1960. A theoretical rumen fermentation balance. J. Dairy Sci., 43,
1452.
216. Wood. C.D, Prathalingam. N.S, Murray. A.M and Matthewan. R.W. (1998)
Use of the gas production technique to investigate supplementation of
nitrogen- deficcient foods. In: E.R. Deaville, E. Owen, A.T. Adesogen, C.
Rymer, J.A. Huntington and T.L.J. Lawrence. In vitro Techniques for
Measuring Nutrient Supply to Ruminants, BSAS, Edinburgh, UK, pp. 202 –
204 BSAS Occ. Publ. No. 22.
217. Xande, A., Garcia-Trujillo, R. and Caceres. (1989a). Feeds of the humid
tropics (West Indies). In R. Jarrige, Ruminant Nutrition. Recommended
allowances and feed tables. 1989. Pp: 347-362.
218. Xande, A., R. Garcia Trujillo et O. Caceres (1989b) Methode d’expression de
la valeur alimentaire des fourrages tropicaux in Paturages et alimentation des
ruminants en zone tropical humid. INRA, Paris.
219. Zinash, S., Seyoum Bediye., Lulseged Gebrehiwot and Tadesse, T. 1995.
Effect of harvesting stage on yield and quality of natural pasture in the
central highlands of Ethiopia. Addis Ababa, Ethiopia. In: Proceedings of 3rd
National Conference of the Ethiopian Society of Animal Production. 27-29
April 1995. pp. 316-322.
220. Yan, T., Agnew, R. E., Murphy, J. J., Ferris, C. P. and Gordon, F. J. 2003.
Evaluation of Dfferent Energy Feeding Systems with Production Data from
Lactating Dairy Cows offered Grass Silage-Based Diets. J. Dairy Science,
86:1415-1428.
130
PHẦN PHỤ LỤC
PHỤ LỤC 1
Xác định giá trị dinh dưỡng (các dạng năng lượng, đơn vị thức ăn cho tạo sữa
– UFL và protein tiêu hoá ở ruột- PDI) của thức ăn
1. Tính toán các giá trị năng lượng của thức ăn
Giá trị GE:
Để tính giá trị GE của các loại thức ăn vùng nhiệt đới dùng công thức của
Jarige (1978); Xande và cs. (1989b):
GE (kcal/kg OM) = 4543 + 2,0113 x CP (g/kg OM) ± 32,8 (r = 0,935)
Trong đó GE = Kcal/kg chất hữu cơ - OM
Sau đó chuyển giá trị này thành GE: Kcal/kg chất khô - DM và MJ/kg DM
Giá trị DE:
Để tính giá trị DE dùng công thức của Jarige (1978); Xande và cs. (1989b):
DE = GE x dE
Ở đây: DE = Kcal/kg OM.
dE - Tỷ lệ tiêu hoá của năng lượng thô = 1,0087 dOM - 0,0377 ± 0,007 (r =
0,996)
dOM: tỷ lệ tiêu hoá của chất hữu cơ.
Sau đó chuyển giá trị này thành DE: Kcal/kg DM và MJ/kg DM.
Giá trị ME:
Để tính giá trị ME của thức ăn nhiệt đới dùng công thức của Jarige (1978);
Xande và cs. (1989): ME = DE x ME/DE
Trong đó: ME = Kcal/kg OM. Sau đó chuyển giá trị này thành ME: Kcal/kg
DM và MJ/kg DM.
ME/DE = 0,8417 - (9,9 x 10-5 x CF [crude fibre - xơ thô (g/kg chất hữu cơ])
- (1,96 x 10-4 x CP (crude protein-protein thô) (g/kg chất hữu cơ)) + 0,221 x NA).
NA = Số lượng chất hữu cơ tiêu hoá ăn được (Digestible oganic matter -
DOM) (g/kg W0,75)/23 . Thông thường người ta sử dụng giá trị bình quân: NA = 1,7
131
Giá trị NE
Để tính giá trị NE của thức ăn nhiệt đới dùng công thức của Jarige (1978);
Xande và cs. (1989b):
NE = ME × kl
kl = 0,463 + [0,24 × (ME/GE)]
kl: là hiệu quả sử dụng năng lượng trao đổi cho sản xuất sữa
Năng lượng thuần cũng có thể biểu diễn dưới dạng đơn vị thức ăn. Theo hệ
thống đánh giá giá trị thức ăn của Pháp, đơn vị thức ăn tạo sữa (UFL) của thức ăn
được tính bằng 1700 Kcal NE.
UFL = NE (Kcal)/1700
2. Tính toán các giá trị protein của thức ăn
Giá trị protein của một thức ăn là tổng lượng protein được tiêu hoá tại ruột
non tính bằng g/kg vật chất khô (PDI)- Protéines Digestibles dans l’Intestine) và
được biểu thị bằng hai giá trị PDIE và PDIN. Thông thường người ta lấy giá trị thấp
hơn trong hai giá trị này làm giá trị PDI của thức ăn, một thức ăn có hai giá trị này
tương đương nhau là một thức ăn cân đối). Protein tiêu hóa ở ruột (PDI) (g/kgDM):
- Protein tiêu hoá ở ruột giới hạn bởi năng lượng: PDIE = PDIA + PDIME
- Protein tiêu hoá ở ruột giới hạn bởi ni tơ: PDIN = PDIA + PDMN
và được tính như sau:
PDIME (g/kgDM): Số lượng protein vi sinh vật tiêu hoá ở ruột có thể được
tổng hợp khi năng lượng dễ lên men không bị hạn chế:
PDIME = 135 x 0,8 x 0,7xDOM (kg/kgDM)
Ở đây: DOM - Chất hữu cơ tiêu hoá ((kg/kg vật chất khô) = OM (chất hữu
cơ) kg/kg DM (chất khô) x Tỷ lệ tiêu hoá OM (chất hữu cơ)
PDIMN (g/kgDM): Số lượng protein vi sinh vật tiêu hoá ở ruột có thể được
tổng hợp khi năng lượng không bị hạn chế:
PDIMN = CP (g/kgDM) x (S + 0,35 x (1-S)) x 0,8 x 0,7
S: độ hoà tan của Nitơ ≅ 0,3 cho các loại thức ăn.
PDIMN (g/kg DM) = CP (g/kgDM) x (0,3 + 0,35 x (1-0,3)) x 0,8x0,7
PDIA (g/kgDM): Protein tiêu hoá ở ruột từ nguồn thức ăn ăn vào (g/kgDM).
PDIA (g/kgDM) = 0,65x CP (g/kgDM) x (1-S) x dr
132
Ở đây: dr: Tỷ lệ tiêu hoá của protein của khẩu phần trong ruột.
dr = (0,65 x Protein không hoà tan (g/kg DM) - PANDI)/0,65 x Protein
không hoà tan (g/kgDM)
Protein không hoà tan = CP x (1-S)
PANDI (g/kgDM): Protein của khẩu phần không tiêu hoá ở ruột non
PANDI (g/kgDM) = ICP - 0,501 - 0,033 x DOM - 0,009 x IDOM = 0,045 x CP.
ICP: Protein không thể tiêu hoá
ICP = 0,501 + 0,045 CP g/kgDM) + 0,033 DOM (g/kg DM) + 0,009 IDOM
(chất hữu cơ không thể tiêu hoá, g/kgDM)
Ở đây: * Protein tiêu hoá DCP = CP (g/kgDM) x tỷ lệ tiêu hoá của CP
* Chất hữu cơ tiêu hoá DOM (g/kgDM) = OM (g/kgDM) x tỷ lệ tiêu hoá OM
* Chất hữu cơ không thể tiêu hoá IDOM (g/kgDM) = OM (g/kgDM) - DOM
(g/kgDM)
133
PHỤ LỤC 2
1. Các hình ảnh thí nghiệm in vitro gas production
Ảnh 1: Lấy dịch dạ cỏ làm thí nghiệm in vitro
gas production
Ảnh 2: Chuẩn bị xylanh làm thí nghiệm in vitro
gas production
Ảnh 3: Lấy dịch dạ cỏ vào xylanh đưa vào máy
gas
Ảnh 4: Chuẩn bị đọc kết quả thí nghiệm in
vitro gas production
134
Ảnh 5: Chuẩn bị mẫu thức ăn thí nghiệm Ảnh 6: Thí nghiệm in vivo trên cừu
Ảnh 7: Cân khối lượng phân thải ra của cừu thí
nghiệm
Ảnh 8: Cân khối lượng thức ăn còn thừa của
cừu thí nghiệm
Các file đính kèm theo tài liệu này:
- muoi_chinh_8027_2078212.pdf