1. Vật liệu composite g-C3N4/TiO2 được chế tạo thành công bằng phương pháp trộn cơ học g-C3N4 với TiO2. Các hạt TiO2 kích thước nano đã phân tán trên bề mặt các lá mỏng g-C3N4 làm cho vật liệu composite g-C3N4/TiO2 tạo thành có độ xốp cao. Sự kết hợp giữa g-C3N4 với TiO2 cũng làm giảm sự tái hợp của cặp điện tử - lỗ trống. Điều này đã làm cho khả năng quang xúc tác của vật liệu composite tốt hơn so với g-C3N4 trong điều kiện chiếu sáng bằng đèn Xenon. Vật liệu composite chế tạo được cũng thể hiện tốc độ phân hủy cao hơn TiO2 trong khoảng thời gian ngắn (dưới 1 giờ) mặc dù hiệu quả quang xúc tác cuối cùng thấp hơn.
2. Vật liệu tổ hợp g-C3N4/ZnO đã được chế tạo thành công bằng phương pháp trộn cơ học hai thành phần. Vật liệu biểu hiện sự kết tinh tốt của cả hai pha thành phần, không có sự xuất hiện của pha tạp chất. Các hạt nano ZnO được phân tán khá tốt trên các tấm g-C3N4, phù hợp với mục đích chế tạo. Độ rộng vùng cấm của vật liệu tổ hợp nhỏ hơn của ZnO và lớn hơn của g-C3N4, là do kết quả cộng phổ hấp thụ của hai thành phần. Các mẫu CZ7-3 và CZ6-4 biểu hiện khả năng quang xúc tác lớn nhất, phân huỷ 100% RhB trong dung dịch sau 90 phút chiếu sáng đèn Xenon. Hiệu suất quang xúc tác mạnh của vật liệu tổ hợp có thể được giải thích do tiếp xúc dị chất giữa hai chất bán dẫn, dẫn tới giảm tốc độ tái hợp điện tử - lỗ trống.
190 trang |
Chia sẻ: Kim Linh 2 | Ngày: 09/11/2024 | Lượt xem: 37 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu cải thiện khả năng quang xúc tác của g-C₃N₄ biến tính với kim loại (Fe, Co, Mg, Ag) và oxit bán dẫn (TiO2, ZnO), để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
K. (2018), "An overview on Ag modified g-
C3N4 based nanostructured materials for energy and environmental
applications", Renewable and Sustainable Energy Reviews, 82, 1297-1312.
17. Ismael M. and Wu Y. (2019), "A mini-review on the synthesis, structural
modification of g-C3N4-based materials, and their applications for solar energy
conversion and environmental remediation", J. Name., 3(11), 2907-2925.
18. Singh P. P. and Srivastava V. (2022), "Recent advances in visible-light
graphitic carbon nitride (g-C3N4) photocatalysts for chemical transformations",
RSC Adv, 12(28), 18245-18265.
19. Pérez-Molina Á., Pastrana-Martínez L. M., Morales-Torres S. et al (2023),
"Photodegradation of cytostatic drugs by g-C3N4: Synthesis, properties and
performance fitted by selecting the appropriate precursor", Catal. Today, 418,
156
20. Li X., Huang G., Chen X. et al (2021), "A review on graphitic carbon nitride (g-
C3N4) based hybrid membranes for water and wastewater treatment", Sci Total
Environ, 792, 148462.
21. Li C., Lu H., Ding G. et al (2023), "Recent advances on g-C3N4-based Z-
scheme photocatalysts for organic pollutant removal", Catalysis Science &
Technology, 13(10), 2877-2898.
22. Qamar M. A., Javed M., Shahid S. et al (2023), "Synthesis and applications of
graphitic carbon nitride (g-C3N4) based membranes for wastewater treatment: A
critical review", Heliyon, 9(1), e12685.
23. Yap F. M., Sheng Ling G. Z., Su B. J. et al (2024), "Recent advances in
structural modification on graphitic carbon nitride (g-C3N4)-based
photocatalysts for high-efficiency photocatalytic H2O2 production", Nano
Research Energy, 3, e9120091.
24. Cui Y., An X., Zhang S. et al (2021), "Emerging graphitic carbon nitride-based
membranes for water purification", Water Res, 200, 117207.
25. An T., Tang J., Zhang Y. et al (2016), "Photoelectrochemical Conversion from
Graphitic C3N4 Quantum Dot Decorated Semiconductor Nanowires", ACS Appl.
Mater. & Inter., 8(20), 12772-12779.
26. Cao C. B., Lv Q., and Zhu H.-S. (2003), "Carbon nitride prepared by
solvothermal method", Diam. Relat. Mater. , 12(3-7), 1070-1074.
27. Xu J., Li Y., Peng S. et al (2013), "Eosin Y-sensitized graphitic carbon nitride
fabricated by heating urea for visible light photocatalytic hydrogen evolution:
the effect of the pyrolysis temperature of urea", Phys. Chem. Chem. Phys.,
15(20), 7657-7665.
28. Xiong Q., Yuan Y., Zhang L. et al (2015), "High-yield Synthesis and Optical
Properties of g-C3N4", J. Name., 1-3, 1-9.
29. Yuan J., Liu X., Tang Y. et al (2018), "Positioning cyanamide defects in g-
C3N4: Engineering energy levels and active sites for superior photocatalytic
hydrogen evolution", Appl. Catal. B-Environ., 237, 24-31.
157
30. Zhang Y., Pan Q., Chai G. et al (2013), "Synthesis and luminescence
mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature
thermal condensation of melamine", Sci. Rep., 3, 1943.
31. Dong F., Li Y., Wang Z. et al (2015), "Enhanced visible light photocatalytic
activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via
thermal exfoliation", Applied Surface Science, 358, 393-403.
32. Zhang S., Gu P., Ma R. et al (2019), "Recent developments in fabrication and
structure regulation of visible-light-driven g-C3N4-based photocatalysts towards
water purification: A critical review", Catalysis Today, 335, 65-77.
33. Yuan Y.-P., Xu W.-T., Yin L.-S. et al (2013), "Large impact of heating time on
physical properties and photocatalytic H2 production of g-C3N4 nanosheets
synthesized through urea polymerization in Ar atmosphere", Int. J. Hydrogen
Energ., 38(30), 13159-13163.
34. Hoa D. T. N., Tu N. T. T., Thinh H. Q. A. et al (2023), "TiO2/g-C3N4 Visible-
Light-Driven Photocatalyst for Methylene Blue Decomposition", Journal of
Nanomaterials, 2023, 1-15.
35. Jiang J.-J., Zhang F.-J., and Wang Y.-R. (2023), "Review of different series of
MOF/g-C3N4 composites for photocatalytic hydrogen production and CO2
reduction", New Journal of Chemistry, 47(4), 1599-1609.
36. Zhong Q., Lan H., Zhang M. et al (2020), "Preparation of heterostructure g-
C3N4/ZnO nanorods for high photocatalytic activity on different pollutants
(MB, RhB, Cr(VI) and eosin)", Ceramics International, 46, 0272-0280.
37. Liu J. (2015), "Origin of High Photocatalytic Efficiency in Monolayer g-
C3N4/CdS Heterostructure: A Hybrid DFT Study", J. Phys. Chem. C, 119(51),
28417-28423.
38. Hoang T. V. A., Nguyen P. A., and Shin E. W. (2023), "Effect of
Morphological Modification over g-C3N4 on Photocatalytic Hydrogen
Evolution Performance of g-C3N4-Pt Photocatalysts", Catalysts, 13(1),
158
39. Chen L., Man Y., Chen Z. et al (2016), "Ag/g-C3N4 layered composites with
enhanced visible light photocatalytic performance", Materials Research
Express, 3(11), 115003.
40. Mott D., Thuy N. T. B., Aoki Y. et al (2010), "Aqueous synthesis and
characterization of Ag and Ag-Au nanoparticles: addressing challenges in size,
monodispersity and structure", Philos Trans A Math Phys Eng Sci, 368(1927),
4275-92.
41. Michalska M., Matejka V., Pavlovsky J. et al (2023), "Effect of Ag
modification on TiO2 and melem/g-C3N4 composite on photocatalytic
performances", Sci Rep, 13(1), 5270.
42. Wang K., Li Q., Liu B. et al (2015), "Sulfur-doped g-C3N4 with enhanced
photocatalytic CO2-reduction performance", Appl. Catal. B-Environ., 176-177,
44-52.
43. Zhou Y., Zhang L., Liu J. et al (2015), "Brand new P-doped g-C3N4: enhanced
photocatalytic activity for H2 evolution and Rhodamine B degradation under
visible light", J. Mater. Chem. A, 3(7), 3862-3867.
44. Zou X., Su J., Silva R. et al (2013), "Efficient oxygen evolution reaction
catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-
embedded graphitic C3N4", Chem. Commun., 49(68), 7522--7524.
45. Han H., Ding G., Wu T. et al (2015), "Cu and Boron Doped Carbon Nitride for
Highly Selective Oxidation of Toluene to Benzaldehyde", Molecules, 20(7),
12686-97.
46. Tonda S., Kumar S., Kandula S. et al (2014), "Fe-doped and -mediated
graphitic carbon nitride nanosheets for enhanced photocatalytic performance
under natural sunlight", J. Mater. Chem. A, 2(19), 6772–6780.
47. Yue B., Li Q., Iwai H. et al (2011), "Hydrogen production using zinc-doped
carbon nitride catalyst irradiated with visible light", Sci. Technol. Adv. Mater.,
12(3), 034401.
159
48. Zou X., Silva R., Goswami A. et al (2015), "Cu-doped carbon nitride: Bio-
inspired synthesis of H2-evolving electrocatalysts using graphitic carbon nitride
(g-C3N4) as a host material", Appl. Surf. Sci., 357, 221-228.
49. Trần Mỹ Nghệ, Nguyễn Thị Mỹ Ngà, Nguyễn Thị Thu Sen et al (2016),
"Nghiên cứu tổng hợp và tính chất xúc tác quang của vật liệu g-C3N4 pha tạp
đồng thời oxi và lưu huỳnh", Tạp chí Xúc tác và Hấp phụ, T4.(No1), 142 – 147.
50. Nguyễn Văn Kim, Phạm Thành Tấn, Hồ Thị Xuân Thắm et al (2015), "Tổng
hợp g-C3N4 pha tạp oxy nhằm tăng cường hoạt tính xúc tác quang dưới ánh
sáng khả kiến", Tạp chí Hóa học, 53(4E1), 176 – 180.
51. Kim N. V., Nga N. T. V., Doanh S. C. et al (2015), "Nghiên cứu tổng hợp và
ứng dụng xúc tác quang của graphitic cacbon nitrua", Tạp chí Hóa học, 53(3e3),
133 – 137.
52. Vo Vien, Nguyen Van Kim, Nguyen Thi Viet Nga et al (2016), "Preparation of
g-C3N4/Ta2O5 Composites with Enhanced Visible-Light Photocatalytic
Activity", J. Electron. Mater., 45(5), 2334 – 2340.
53. Nguyễn Văn Kim, Nguyễn Thanh Liêm, Nguyễn Thị Việt Nga et al (2015),
"Tổng hợp và hoạt tính xúc tác quang của composit g-C3N4/GaN-ZnO", Tạp chí
Xúc tác và Hấp phụ, 2, 51 – 55.
54. Kim N. V. (2016), "Nghiên cứu tổng hợp, đặc trưng và khả năng quang xúc tác
của composite g-C3N4 với GaN-ZnO và Ta2O5", 125.
55. An T. D. (2021), "Nghiên cứu biến tính vật liệu g-C3N4 bằng các nguyên tố
phi kim làm chất xúc tác quang trong vùng ánh sáng khả kiến", Luận án tiến
sĩ hóa học
56. Hoa Đ. T. N. (2022), "Tổng hợp vật liệu composite trên cơ sở g-C3N4, ứng dụng
trong điện hóa và quang xúc tác", Luận án Tiến sĩ hóa học, Trường Đại học
Huế
57. Tete D. M. and Hemley R. J. (1996), "Low-Compressibility Carbon Nitrides",
Science, 271(5245), 53-55.
160
58. Reshak A. H., Khan S. A., and Auluck S. (2014), "Linear and nonlinear optical
properties for AA and AB stacking of carbon nitride polymorph (C3N4)", RSC
Adv., 4(23), 11967-11974.
59. Samir F. Matar and Mattesini M. (2001), "Ab initio search of carbon nitrides,
isoelectronic with diamond, likely to lead to new ultra hard materials",
Chemistry, 4, 255–272.
60. Komatsu and Tamikuni (2001), "Prototype carbon nitrides similar to the
symmetric triangular form of melon", J. Mater. Chem., 11(3), 802-803.
61. Xu Y. and Gao S.-P. (2012), "Band gap of C3N4 in the GW approximation", Int.
J. Hydrogen Energ., 37(15), 11072-11080.
62. Zhu B., Zhang L., Cheng B. et al (2018), "First-principle calculation study of
tri-s-triazine-based g-C3N4-: A review", Appl. Catal. B-Environ., 224, 983-999.
63. Ma X., Lv Y., Xu J. et al (2012), "A Strategy of Enhancing the Photoactivity of
g-C3N4 via Doping of Nonmetal Elements: A First-Principles Study", J. Phys.
Chem. C, 116(44), 23485-23493.
64. Liu X., Kang W., Zeng W. et al (2020), "Structural, electronic and
photocatalytic properties of g-C3N4 with intrinsic defects: A first-principles
hybrid functional investigation", Appl. Surf. Sci., 499, 143994-144000.
65. Zuo H.-W., Lu C.-H., Ren Y.-R. et al (2016), "Pt4 Clusters Supported on
Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First-
Principles Study", Acta Phys-Chim. Sin., 32(5), 1183-1190.
66. Tong T., Zhu B., Jiang C. et al (2018), "Mechanistic insight into the enhanced
photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C3N4", Appl.
Surf. Sci., 433, 1175-1183.
67. Gao J., Zhou Y., Li Z. et al (2012), "High-yield synthesis of millimetre-long,
semiconducting carbon nitride nanotubes with intense photoluminescence
emission and reproducible photoconductivity", Nanoscale, 4(12), 3687-92.
68. Zhu B., Xia P., Ho W. et al (2015), "Isoelectric point and adsorption activity of
porous g-C3N4", Appl. Surf. Sci., 344, 188-195.
161
69. Mao X., Guo R., Chen Q. et al (2023), "Recent Advances in Graphitic Carbon
Nitride Based Electro-Catalysts for CO2 Reduction Reactions", Molecules, 28(8),
70. Vinu A. (2008), "Two-Dimensional Hexagonally-Ordered Mesoporous Carbon
Nitrides with Tunable Pore Diameter, Surface Area and Nitrogen Content",
Adv. Funct. Mater., 18(5), 816-827.
71. Gu Q., Gao Z., Zhao H. et al (2015), "Temperature-controlled morphology
evolution of graphitic carbon nitride nanostructures and their photocatalytic
activities under visible light", RSC Adv., 5(61), 49317-49325.
72. Fan Dong, Zhenyu Wang, Yanjuan Sun et al (2013), "Engineering the
nanoarchitecture and texture of polymeric carbon nitride semiconductor for
enhanced visible light photocatalytic activity", J. Colloid Interface Sci., 401, 70-79.
73. Dong F., Sun Y., Wu L. et al (2012), "Facile transformation of low cost thiourea
into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light
photocatalytic performance", Catal. Sci. Technol., 2(7), 1332–1335.
74. Zhang Y., Liu J., Wu G. et al (2012), "Porous graphitic carbon nitride
synthesized via direct polymerization of urea for efficient sunlight-driven
photocatalytic hydrogen production", Nanoscale, 4(17), 5300-5303.
75. Xu L., Huang W.-Q., Wang L.-L. et al (2015), "Insights into Enhanced Visible-Light
Photocatalytic Hydrogen Evolution of g-C3N4 and Highly Reduced Graphene Oxide
Composite: The Role of Oxygen", Chem. Mater., 27(5), 1612-1621.
76. Gang Liu P. N., Chenghua Sun, Sean C. Smith, Zhigang Chen, Gao Qing (Max)
Lu, Hui-Ming Cheng (2010), "Unique Electronic Structure Induced High
Photoreactivity of Sulfur-Doped Graphitic C3N4", J. Am. Chem. Soc., 132,
11642–11648.
77. Wang X., Maeda K., Thomas A. et al (2009), "A metal-free polymeric
photocatalyst for hydrogen production from water under visible light", Nat.
Mater., 8(1), 76-80.
78. Yan S. C., Li Z. S., and Zou Z. G. (2009), "Photodegradation performance of g-
C3N4 fabricated by directly heating melamine", Langmuir, 25(17), 10397-401.
162
79. Zhang J., Chen X., Takanabe K. et al (2010), "Synthesis of a carbon nitride
structure for visible-light catalysis by copolymerization", Angew. Chem. Int.
Ed., 49(2), 441-444.
80. He Q., Zhou F., Zhan S. et al (2017), "Enhancement of photocatalytic and
photoelectrocatalytic activity of Ag modified Mpg-C3N4 composites", Appl.
Surf. Sci., 391, 423-431.
81. Cui J., Liang S., Wang X. et al (2015), "First principle modeling of oxygen-
doped monolayer graphitic carbon nitride", Mater. Chem. Phys., 161, 194-200.
82. Hernández-Uresti D. B., Vázquez A., Sanchez-Martinez D. et al (2016),
"Performance of the polymeric g-C3N4 photocatalyst through the degradation of
pharmaceutical pollutants under UV–vis irradiation", J. Photoch. Photobio. A-
Chem., 324, 47-52.
83. Wen J., Xie J., Chen X. et al (2017), "A review on g-C3N4-based
photocatalysts", Appl. Surf. Sci., 391, 72-123.
84. Dong F., Wu L., Sun Y. et al (2011), "Efficient synthesis of polymeric g-C3N4
layered materials as novel efficient visible light driven photocatalysts", J.
Mater. Chem. , 21(39), 15171-15174.
85. Das D., Shinde S. L., and Nanda K. K. (2016), "Temperature-Dependent
Photoluminescence of g-C3N4: Implication for Temperature Sensing", ACS
Appl. Mater. Interfaces., 8(3), 2181-2200.
86. Li H.-J., Sun B.-W., Sui L. et al (2015), "Preparation of water-dispersible
porous g-C3N4 with improved photocatalytic activity by chemical oxidation",
Phys. Chem. Chem. Phys., 17(5), 3309-15.
87. Chen Q., Hou H., Zhang D. et al (2018), "Enhanced visible-light driven
photocatalytic activity of hybrid ZnO/g-C3N4 by high performance ball
milling", J. Photoch. Photobio. A, 350, 1-9.
88. Tian W., Shen Q., Li N. et al (2016), "Efficient degradation of methylene blue
over boron-doped g-C3N4/Zn0.8Cd0.2S photocatalysts under simulated solar
irradiation", RSC Adv., 6(30), 25568-25576.
163
89. Zhao H.-M., Di C.-M., Wang L. et al (2015), "Synthesis of mesoporous
graphitic C3N4 using cross-linked bimodal mesoporous SBA-15 as a hard
template", Micropor. Mesopor. Mat., 208, 98-104.
90. X. C., Kuo D.-H., and Lu D. (2016), "Nanonization of g-C3N4 with the
assistance of activated carbon for improved visible light photocatalysis", RSC
Adv., 6(71), 66814-66821.
91. Muradova N. Z. and Veziroglu T. N. (2008), "“Green” path from fossil-based to
hydrogen economy: An overview of carbon-neutral technologies", Int. J.
Hydrogen Energ., 33(23), 6804-6839.
92. Züttel A., Introduction, in Hydrogen as a Future Energy Carrier, Andreas
Borgschulte Andreas Züttel, Louis Schlapbach, Editor. 2008. p. 1-6.
93. Oluwatobi A. D., Tahir M., and Amin N. A. S. (2017), "g-C3N4/(Cu/TiO2 )
nanocomposite for enhanced photoreduction of CO2 to CH3OH and HCOOH
under UV/visible light", J. CO2 Util., 18, 261-274.
94. Yiming He L. Z., Bo-Tao Teng, and Maohong Fan (2014), "A new application
of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel", Environ.
Sci. Technol., 49(1), 649–656.
95. Huang J., Ho W., and Wang X. (2014), "Metal-free disinfection effects induced
by graphitic carbon nitride polymers under visible light illumination", Chem.
Commun. , 50(33), 4338-40.
96. Xu B., Ahmed M. B., Zhou J. L. et al (2018), "Graphitic carbon nitride based
nanocomposites for the photocatalysis of organic contaminants under visible
irradiation: Progress, limitations and future directions", Sci. Total. Environ.,
633, 546-559.
97. Thomas A., Fischer A., Goettmann F. et al (2008), "Graphitic carbon nitride
materials: variation of structure and morphology and their use as metal-free
catalysts", J. Mater. Chem., 18(41), 4893–4908.
164
98. Zheng Y., Lin L., Wang B. et al (2015), "Graphitic Carbon Nitride Polymers
toward Sustainable Photoredox Catalysis", Angew. Chem. Int. Ed., 54(44),
12868-84.
99. Wang X., Chen X., Thomas A. et al (2009), "Metal-Containing Carbon Nitride
Compounds: A New Functional Organic-Metal Hybrid Material", Adv. Mater.,
21(16), 1609-1612.
100. Gong Y., Li M., Li H. et al (2015), "Graphitic carbon nitride polymers:
promising catalysts or catalyst supports for heterogeneous oxidation and
hydrogenation", Green Chem., 17(2), 715-736.
101. Uddin M. N. and Yang Y. S. (2009), "Sol-gel synthesis of well-crystallized
C3N4 nanostructures on stainless steel substrates", J. Mater. Chem., 19(19),
2909–2911.
102. Guo Q., Xie Y., Wang X. et al (2003), "Characterization of well-crystallized
graphitic carbon nitride nanocrystallites via a benzene-thermal route at low
temperatures", Chem. Phys. Lett., 380(1-2), 84-87.
103. Liu C. G., Wu X. T., Li X. F. et al (2014), "Synthesis of graphene-like g-
C3N4/Fe3O4 nanocomposites with high photocatalytic activity and applications
in drug delivery", RSC Adv., 4(107), 62492-62498.
104. Huang L., Xu H., Li Y. et al (2013), "Visible-light-induced WO3/g-C3N4
composites with enhanced photocatalytic activity", Dalton Transactions,
42(24), 8606-8616.
105. Peng W.-c. and Li X.-y. (2014), "Synthesis of MoS2/g-C3N4 as a solar light-
responsive photocatalyst for organic degradation", Catalysis Communications,
49, 63-67.
106. Zang Y. N., Yang S. S., Ding J. et al (2021), "A biochar-promoted V2O5/g-
C3N4 Z-Scheme heterostructure for enhanced simulated solar light-driven
photocatalytic activity", RSC Adv, 11(25), 15106-15117.
165
107. Li H., Liu J., Hou W. et al (2014), "Synthesis and characterization of g-
C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic
activity", Applied Catalysis B: Environmental, 160-161, 89-97.
108. Tao W., Wang M., Ali R. et al (2019), "Multi-layered porous hierarchical
TiO2/g-C3N4 hybrid coating for enhanced visible light photocatalysis", Appl.
Surf. Sci., 495, 143435.
109. Sharma D. K., Shukla S., Sharma K. K. et al (2022), "A review on ZnO:
Fundamental properties and applications", Materials Today: Proceedings, 49,
3028-3035.
110. Dharma H. N., Jaafar J., Widiastuti N. et al A Review of Titanium Dioxide
(TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment.
Membranes, 2022. 12, DOI: 10.3390/membranes12030345.
111. Hu S., Li F., Fan Z. et al (2015), "Band gap-tunable potassium doped graphitic
carbon nitride with enhanced mineralization ability", Dalton Transactions,
44(3), 1084-1092.
112. Zhang M., Bai X., Liu D. et al (2015), "Enhanced catalytic activity of
potassium-doped graphitic carbon nitride induced by lower valence position",
Applied Catalysis B: Environmental, 164, 77-81.
113. Xiong T., Cen W., Zhang Y. et al (2016), "Bridging the g-C3N4 Interlayers for
Enhanced Photocatalysis", ACS Catalysis, 6(4), 2462-2472.
114. Zhang J., Hu S., and Wang Y. (2014), "A convenient method to prepare a
novel alkali metal sodium doped carbon nitride photocatalyst with a tunable
band structure", RSC Advances, 4(108), 62912-62919.
115. Song X., Tao H., Chen L. et al (2014), "Synthesis of Fe/g-C3N4 composites with
improved visible light photocatalytic activity", Materials Letters, 116, 265-267.
116. Gao J., Wang J., Qian X. et al (2015), "One-pot synthesis of copper-doped
graphitic carbon nitride nanosheet by heating Cu–melamine supramolecular
network and its enhanced visible-light-driven photocatalysis", Journal of
Solid State Chemistry, 228, 60-64.
166
117. Le S., Jiang T., Zhao Q. et al (2016), "Cu-doped mesoporous graphitic carbon
nitride for enhanced visible-light driven photocatalysis", RSC Adv., 6, 38811-
38819.
118. Jin R., Hu S., Gui J. et al (2015), "A Convenient Method to Prepare Novel Rare
Earth Metal Ce-Doped Carbon Nitride with Enhanced Photocatalytic Activity
Under Visible Light", Bulletin of the Korean Chemical Society, 36(1), 17-23.
119. Chen P.-W., Li K., Yu Y.-X. et al (2017), "Cobalt-doped graphitic carbon
nitride photocatalysts with high activity for hydrogen evolution", Applied
Surface Science, 392, 608-615.
120. Xu D., Li X., Liu J. et al (2013), "Synthesis and photocatalytic performance of
europium-doped graphitic carbon nitride", Journal of Rare Earths, 31(11), 1085-1091.
121. Wang Y., Xu Y., Wang Y. et al (2016), "Synthesis of Mo-doped graphitic
carbon nitride catalysts and their photocatalytic activity in the reduction of CO2
with H2O", Catalysis Communications, 74, 75-79.
122. Rong X., Qiu F., Rong J. et al (2016), "Enhanced visible light photocatalytic
activity of W-doped porous g-C3N4 and effect of H2O2", Materials Letters, 164,
127-131.
123. Wang Y., Wang Y., Li Y. et al (2015), "Simple synthesis of Zr-doped graphitic
carbon nitride towards enhanced photocatalytic performance under simulated
solar light irradiation", Catalysis Communications, 72, 24-28.
124. Dong X., Zhang S., Wu H. et al (2019), "Facile one-pot synthesis of Mg-doped
g-C3N4 for photocatalytic reduction of CO2", RSC. Adv., 9(49), 28894-28901.
125. (!!! INVALID CITATION !!! [116]),
126. Han Z., Wang N., Fan H. et al (2017), "Ag nanoparticles loaded on porous
graphitic carbon nitride with enhanced photocatalytic activity for degradation of
phenol", Solid State Sci., 65, 110-115.
127. Li Z., Wang J., Zhu K. et al (2015), "Ag/g-C3N4 composite nanosheets:
Synthesis and enhanced visible photocatalytic activities", Mater. Lett., 145,
167-170.
167
128. Chen L., Man Y., Chen Z. et al (2016), "Ag/g-C3N4 layered composites with enhanced
visible light photocatalytic performance", Mater. Res. Express, 3(11), 115003.
129. Ong W.-J., Tan L.-L., Chai S.-P. et al (2015), "Heterojunction engineering of
graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced
photocatalytic reduction of carbon dioxide to methane", Dalton Trans., 44(3),
1249-57.
130. Zhang W., Zhou L., and Deng H. (2016), "Ag modified g-C3N4 composites
with enhanced visible-light photocatalytic activity for diclofenac degradation",
J. Mol. Catal. A-Chem., 423, 270-276.
131. Sun T., Jiang H.-Y., Ma C.-C. et al (2016), "Ag/g-C3N4 photocatalysts:
Microwave-assisted synthesis and enhanced visible-light photocatalytic
activity", Catal. Commun., 79, 45-48.
132. Thommes M., Kaneko K., Neimark A. V. et al (2015), "Physisorption of gases,
with special reference to the evaluation of surface area and pore size
distribution (IUPAC Technical Report)", 87(9-10),
133. Kang D.-Y., Kim C., Park G. et al (2015), "Liquid immersion thermal
crosslinking of 3D polymer nanopatterns for direct carbonisation with high
structural integrity", Sci. Rep., 5, 18185-18193.
134. Jianghua Li, Biao Shen, Zhenhua Hong et al (2012), "A facile approach to
synthesize novel oxygen-doped g-C3N4 with superior visible-light
photoreactivity", Chem. Commun., 48(98), 12017-12019.
135. Wu P., Wang J., Zhao J. et al (2014), "Structure defects in g-C3N4 limit visible
light driven hydrogen evolution and photovoltage", J. Mater. Chem. A, 2(47),
20338-20344.
136. Meyers R. A. (2000), "Interpretation of Infrared Spectra, A Practical
Approach", Encyclopedia of Analytical Chemistry, 10815–10837.
137. Zuluaga S., Liu L. H., Shafiq N. et al (2015), "Structural band-gap tuning in g-
C3N4", Phys. Chem. Chem. Phys., 17(2), 957-62.
168
138. Davis E. A. and Mott N. F. (1970), "Conduction in non-crystalline systems V.
Conductivity, optical absorption and photoconductivity in amorphous
semiconductors", The Philosophical Magazine: A Journal of Theoretical
Experimental and Applied Physics, 22(179), 0903-0922.
139. Deng Q. and Li Q. (2017), "Facile preparation of Mg-doped graphitic carbon
nitride composites as a solid base catalyst for Knoevenagel condensations",
Journal of Materials Science, 53(1), 506-515.
140. Jerng S.-K., Seong Yu D., Hong Lee J. et al (2011), "Graphitic carbon growth
on crystalline and amorphous oxide substrates using molecular beam epitaxy",
Nanoscale Res. Lett., 6(1), 565-571.
141. Fan Y., Chen G., Li D. et al (2012), "Highly Selective Deethylation of
Rhodamine B on TiO2 Prepared in Supercritical Fluids", International Journal
of Photoenergy, 2012, 173865.
142. Pica M., Nocchetti M., Ridolfi B. et al (2015), "Nanosized zirconium
phosphate/AgCl composite materials: a new synergy for efficient photocatalytic
degradation of organic dye pollutants", Journal of Materials Chemistry A,
3(10), 5525-5534.
143. Zhu B., Cheng B., Zhang L. et al (2019), "Review on DFT calculation of s‐
triazine‐based carbon nitride", Carbon Energy, 1(1), 32-56.
144. Fan C., Miao J., Xu G. et al (2017), "Graphitic carbon nitride nanosheets
obtained by liquid stripping as efficient photocatalysts under visible light", RSC
Advances, 7(59), 37185-37193.
145. Wang Y., Wang H., Chen F. et al (2017), "Facile synthesis of oxygen doped
carbon nitride hollow microsphere for photocatalysis", Applied Catalysis B:
Environmental, 206, 417-425.
146. Yi J., Liao K., Zhang C. et al (2015), "Facile in Situ Preparation of Graphitic-
C3N4@carbon Paper As an Efficient Metal-Free Cathode for Nonaqueous Li–O2
Battery", ACS Appl. Mater. Interfaces, 7(20), 10823-10827.
147. Zhang W.-D. and Su F. (2016), "Carbonyl-Grafted g-C3N4 Porous Nanosheets for
Efficient Photocatalytic Hydrogen Evolution", Chemistry - An Asian Journal, 12,
169
148. Feng L., Yang L., Huang Z. et al (2013), "Enhancing Electrocatalytic Oxygen
Reduction on Nitrogen-Doped Graphene by Active Sites Implantation", Sci.
Rep., 3(1), 3306.
149. Ong W.-J., Putri L. K., Tan L.-L. et al (2016), "Heterostructured AgX/g-C3N4
(X=Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation
approach: Emerging role of halide ions in the synergistic photocatalytic reduction
of carbon dioxide", Appl. Catal. B-Environ., 180, 530-543.
150. Ong W.-J., Tan L.-L., Chai S.-P. et al (2015), "Heterojunction engineering of
graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced
photocatalytic reduction of carbon dioxide to methane", Dalton Trans., 44(3),
1249-1257.
151. Kundu S., Nagaiah T. C., Xia W. et al (2009), "Electrocatalytic Activity and
Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen Reduction
Reaction", J. Phys. Chem. C, 113(32), 14302-14310.
152. Shao Y., Zhang S., Engelhard M. H. et al (2010), "Nitrogen-doped graphene
and its electrochemical applications", J. Mater. Chem. , 20(35), 7491-7496.
153. Wang Y., Shao Y., Matson D. W. et al (2010), "Nitrogen-Doped Graphene and
Its Application in Electrochemical Biosensing", ACS Nano, 4(4), 1790-1798.
154. Lu M., Pei Z., Weng S. et al (2014), "Constructing atomic layer g-C3N4–CdS
nanoheterojunctions with efficiently enhanced visible light photocatalytic
activity", Phys. Chem. Chem. Phys., 16(39), 21280-21288.
155. Chen Y., Huang W., He D. et al (2014), "Construction of Heterostructured g-
C3N4/Ag/TiO2 Microspheres with Enhanced Photocatalysis Performance under
Visible-Light Irradiation", ACS Applied Materials & Interfaces, 6(16), 14405-14414.
156. Charle K. P., Konig L., Nepijko S. et al (1998), "The Surface Plasmon
Resonance of Free and Emberred Ag-Clusters in the Size Range of 1.5 < D < 30
nm", Cryst. Res. Technol., 33, 1085-1096.
157. Kaur R. and Pal B. (2015), "Plasmonic coinage metal–TiO2 hybrid
nanocatalysts for highly efficient photocatalytic oxidation under sunlight
irradiation", New J. Chem., 39(8), 5966-5976.
170
158. Zhang S., Zhang B.-p., Li S. et al (2017), "Enhanced photocatalytic activity in
Ag-nanoparticle-dispersed BaTiO3 composite thin films: Role of charge
transfer", J. Adv. Ceramics, 6(1), 1-10.
159. Gao L., Li Z., and Liu J. (2017), "Facile synthesis of Ag3VO4/β-AgVO3
nanowires with efficient visible-light photocatalytic activity", RSC Adv., 7(44),
27515-27521.
160. Ma T., Shen Q., Xue B. Z. J. et al (2019), "Facile synthesis of Fe-doped g-
C3N4 for enhanced visible-light photocatalytic activity", Inorganic Chemistry
Communications, 107, 107451-107460.
161. Min C., Shen C., Li R. et al (2016), "In-situ fabrication of Ag/g-C3N4
composite materials with improved photocatalytic activity by coordination-
driven assembly of precursors", Ceramics International, 42(4), 5575-5581.
162. Wood D. L. and Tauc J. (1972), "Weak Absorption Tails in Amorphous
Semiconductors", Physical Review B, 5(8), 3144-3151.
163. Kolodziejczak-Radzimska A. and Jesionowski T. (2014), "Zinc Oxide-From
Synthesis to Application: A Review", Materials (Basel), 7(4), 2833-2881.
164. Li F. M., Hsieh G. W., Dalal S. et al (2008), "Zinc Oxide Nanostructures and
High Electron Mobility Nanocomposite Thin Film Transistors", IEEE
Transactions on Electron Devices, 55(11), 3001-3011.
165. Farhadi-Khouzani M., Fereshteh Z., Loghman-Estarki M. R. et al (2012),
"Different morphologies of ZnO nanostructures via polymeric complex sol–gel
method: synthesis and characterization", Journal of Sol-Gel Science and
Technology, 64(1), 193-199.
166. Chen D., Jiao X., and Cheng G. (1999), "Hydrothermal synthesis of zinc oxide
powders with different morphologies", Solid State Communications, 113(6), 363-366.
167. Meena P. L., Poswal K., Surela A. K. et al (2022), "Synthesis of graphitic
carbon nitride/zinc oxide (g-C3N4/ZnO) hybrid nanostructures and investigation
of the effect of ZnO on the photodegradation activity of g-C3N4 against the
brilliant cresyl blue (BCB) dye under visible light irradiation", Advanced
Composites and Hybrid Materials, 6(1),