1. Vật liệu composite g-C3N4/TiO2 được chế tạo thành công bằng phương pháp trộn cơ học g-C3N4 với TiO2. Các hạt TiO2 kích thước nano đã phân tán trên bề mặt các lá mỏng g-C3N4 làm cho vật liệu composite g-C3N4/TiO2 tạo thành có độ xốp cao. Sự kết hợp giữa g-C3N4 với TiO2 cũng làm giảm sự tái hợp của cặp điện tử - lỗ trống. Điều này đã làm cho khả năng quang xúc tác của vật liệu composite tốt hơn so với g-C3N4 trong điều kiện chiếu sáng bằng đèn Xenon. Vật liệu composite chế tạo được cũng thể hiện tốc độ phân hủy cao hơn TiO2 trong khoảng thời gian ngắn (dưới 1 giờ) mặc dù hiệu quả quang xúc tác cuối cùng thấp hơn.
2. Vật liệu tổ hợp g-C3N4/ZnO đã được chế tạo thành công bằng phương pháp trộn cơ học hai thành phần. Vật liệu biểu hiện sự kết tinh tốt của cả hai pha thành phần, không có sự xuất hiện của pha tạp chất. Các hạt nano ZnO được phân tán khá tốt trên các tấm g-C3N4, phù hợp với mục đích chế tạo. Độ rộng vùng cấm của vật liệu tổ hợp nhỏ hơn của ZnO và lớn hơn của g-C3N4, là do kết quả cộng phổ hấp thụ của hai thành phần. Các mẫu CZ7-3 và CZ6-4 biểu hiện khả năng quang xúc tác lớn nhất, phân huỷ 100% RhB trong dung dịch sau 90 phút chiếu sáng đèn Xenon. Hiệu suất quang xúc tác mạnh của vật liệu tổ hợp có thể được giải thích do tiếp xúc dị chất giữa hai chất bán dẫn, dẫn tới giảm tốc độ tái hợp điện tử - lỗ trống.
                
              
                                            
                                
            
 
            
                 190 trang
190 trang | 
Chia sẻ: Kim Linh 2 | Ngày: 09/11/2024 | Lượt xem: 367 | Lượt tải: 0 
              
            Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu cải thiện khả năng quang xúc tác của g-C₃N₄ biến tính với kim loại (Fe, Co, Mg, Ag) và oxit bán dẫn (TiO2, ZnO), để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
K. (2018), "An overview on Ag modified g-
C3N4 based nanostructured materials for energy and environmental 
applications", Renewable and Sustainable Energy Reviews, 82, 1297-1312. 
17. Ismael M. and Wu Y. (2019), "A mini-review on the synthesis, structural 
modification of g-C3N4-based materials, and their applications for solar energy 
conversion and environmental remediation", J. Name., 3(11), 2907-2925. 
18. Singh P. P. and Srivastava V. (2022), "Recent advances in visible-light 
graphitic carbon nitride (g-C3N4) photocatalysts for chemical transformations", 
RSC Adv, 12(28), 18245-18265. 
19. Pérez-Molina Á., Pastrana-Martínez L. M., Morales-Torres S. et al (2023), 
"Photodegradation of cytostatic drugs by g-C3N4: Synthesis, properties and 
performance fitted by selecting the appropriate precursor", Catal. Today, 418, 
156 
20. Li X., Huang G., Chen X. et al (2021), "A review on graphitic carbon nitride (g-
C3N4) based hybrid membranes for water and wastewater treatment", Sci Total 
Environ, 792, 148462. 
21. Li C., Lu H., Ding G. et al (2023), "Recent advances on g-C3N4-based Z-
scheme photocatalysts for organic pollutant removal", Catalysis Science & 
Technology, 13(10), 2877-2898. 
22. Qamar M. A., Javed M., Shahid S. et al (2023), "Synthesis and applications of 
graphitic carbon nitride (g-C3N4) based membranes for wastewater treatment: A 
critical review", Heliyon, 9(1), e12685. 
23. Yap F. M., Sheng Ling G. Z., Su B. J. et al (2024), "Recent advances in 
structural modification on graphitic carbon nitride (g-C3N4)-based 
photocatalysts for high-efficiency photocatalytic H2O2 production", Nano 
Research Energy, 3, e9120091. 
24. Cui Y., An X., Zhang S. et al (2021), "Emerging graphitic carbon nitride-based 
membranes for water purification", Water Res, 200, 117207. 
25. An T., Tang J., Zhang Y. et al (2016), "Photoelectrochemical Conversion from 
Graphitic C3N4 Quantum Dot Decorated Semiconductor Nanowires", ACS Appl. 
Mater. & Inter., 8(20), 12772-12779. 
26. Cao C. B., Lv Q., and Zhu H.-S. (2003), "Carbon nitride prepared by 
solvothermal method", Diam. Relat. Mater. , 12(3-7), 1070-1074. 
27. Xu J., Li Y., Peng S. et al (2013), "Eosin Y-sensitized graphitic carbon nitride 
fabricated by heating urea for visible light photocatalytic hydrogen evolution: 
the effect of the pyrolysis temperature of urea", Phys. Chem. Chem. Phys., 
15(20), 7657-7665. 
28. Xiong Q., Yuan Y., Zhang L. et al (2015), "High-yield Synthesis and Optical 
Properties of g-C3N4", J. Name., 1-3, 1-9. 
29. Yuan J., Liu X., Tang Y. et al (2018), "Positioning cyanamide defects in g-
C3N4: Engineering energy levels and active sites for superior photocatalytic 
hydrogen evolution", Appl. Catal. B-Environ., 237, 24-31. 
157 
30. Zhang Y., Pan Q., Chai G. et al (2013), "Synthesis and luminescence 
mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature 
thermal condensation of melamine", Sci. Rep., 3, 1943. 
31. Dong F., Li Y., Wang Z. et al (2015), "Enhanced visible light photocatalytic 
activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via 
thermal exfoliation", Applied Surface Science, 358, 393-403. 
32. Zhang S., Gu P., Ma R. et al (2019), "Recent developments in fabrication and 
structure regulation of visible-light-driven g-C3N4-based photocatalysts towards 
water purification: A critical review", Catalysis Today, 335, 65-77. 
33. Yuan Y.-P., Xu W.-T., Yin L.-S. et al (2013), "Large impact of heating time on 
physical properties and photocatalytic H2 production of g-C3N4 nanosheets 
synthesized through urea polymerization in Ar atmosphere", Int. J. Hydrogen 
Energ., 38(30), 13159-13163. 
34. Hoa D. T. N., Tu N. T. T., Thinh H. Q. A. et al (2023), "TiO2/g-C3N4 Visible-
Light-Driven Photocatalyst for Methylene Blue Decomposition", Journal of 
Nanomaterials, 2023, 1-15. 
35. Jiang J.-J., Zhang F.-J., and Wang Y.-R. (2023), "Review of different series of 
MOF/g-C3N4 composites for photocatalytic hydrogen production and CO2 
reduction", New Journal of Chemistry, 47(4), 1599-1609. 
36. Zhong Q., Lan H., Zhang M. et al (2020), "Preparation of heterostructure g-
C3N4/ZnO nanorods for high photocatalytic activity on different pollutants 
(MB, RhB, Cr(VI) and eosin)", Ceramics International, 46, 0272-0280. 
37. Liu J. (2015), "Origin of High Photocatalytic Efficiency in Monolayer g-
C3N4/CdS Heterostructure: A Hybrid DFT Study", J. Phys. Chem. C, 119(51), 
28417-28423. 
38. Hoang T. V. A., Nguyen P. A., and Shin E. W. (2023), "Effect of 
Morphological Modification over g-C3N4 on Photocatalytic Hydrogen 
Evolution Performance of g-C3N4-Pt Photocatalysts", Catalysts, 13(1), 
158 
39. Chen L., Man Y., Chen Z. et al (2016), "Ag/g-C3N4 layered composites with 
enhanced visible light photocatalytic performance", Materials Research 
Express, 3(11), 115003. 
40. Mott D., Thuy N. T. B., Aoki Y. et al (2010), "Aqueous synthesis and 
characterization of Ag and Ag-Au nanoparticles: addressing challenges in size, 
monodispersity and structure", Philos Trans A Math Phys Eng Sci, 368(1927), 
4275-92. 
41. Michalska M., Matejka V., Pavlovsky J. et al (2023), "Effect of Ag 
modification on TiO2 and melem/g-C3N4 composite on photocatalytic 
performances", Sci Rep, 13(1), 5270. 
42. Wang K., Li Q., Liu B. et al (2015), "Sulfur-doped g-C3N4 with enhanced 
photocatalytic CO2-reduction performance", Appl. Catal. B-Environ., 176-177, 
44-52. 
43. Zhou Y., Zhang L., Liu J. et al (2015), "Brand new P-doped g-C3N4: enhanced 
photocatalytic activity for H2 evolution and Rhodamine B degradation under 
visible light", J. Mater. Chem. A, 3(7), 3862-3867. 
44. Zou X., Su J., Silva R. et al (2013), "Efficient oxygen evolution reaction 
catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-
embedded graphitic C3N4", Chem. Commun., 49(68), 7522--7524. 
45. Han H., Ding G., Wu T. et al (2015), "Cu and Boron Doped Carbon Nitride for 
Highly Selective Oxidation of Toluene to Benzaldehyde", Molecules, 20(7), 
12686-97. 
46. Tonda S., Kumar S., Kandula S. et al (2014), "Fe-doped and -mediated 
graphitic carbon nitride nanosheets for enhanced photocatalytic performance 
under natural sunlight", J. Mater. Chem. A, 2(19), 6772–6780. 
47. Yue B., Li Q., Iwai H. et al (2011), "Hydrogen production using zinc-doped 
carbon nitride catalyst irradiated with visible light", Sci. Technol. Adv. Mater., 
12(3), 034401. 
159 
48. Zou X., Silva R., Goswami A. et al (2015), "Cu-doped carbon nitride: Bio-
inspired synthesis of H2-evolving electrocatalysts using graphitic carbon nitride 
(g-C3N4) as a host material", Appl. Surf. Sci., 357, 221-228. 
49. Trần Mỹ Nghệ, Nguyễn Thị Mỹ Ngà, Nguyễn Thị Thu Sen et al (2016), 
"Nghiên cứu tổng hợp và tính chất xúc tác quang của vật liệu g-C3N4 pha tạp 
đồng thời oxi và lưu huỳnh", Tạp chí Xúc tác và Hấp phụ, T4.(No1), 142 – 147. 
50. Nguyễn Văn Kim, Phạm Thành Tấn, Hồ Thị Xuân Thắm et al (2015), "Tổng 
hợp g-C3N4 pha tạp oxy nhằm tăng cường hoạt tính xúc tác quang dưới ánh 
sáng khả kiến", Tạp chí Hóa học, 53(4E1), 176 – 180. 
51. Kim N. V., Nga N. T. V., Doanh S. C. et al (2015), "Nghiên cứu tổng hợp và 
ứng dụng xúc tác quang của graphitic cacbon nitrua", Tạp chí Hóa học, 53(3e3), 
133 – 137. 
52. Vo Vien, Nguyen Van Kim, Nguyen Thi Viet Nga et al (2016), "Preparation of 
g-C3N4/Ta2O5 Composites with Enhanced Visible-Light Photocatalytic 
Activity", J. Electron. Mater., 45(5), 2334 – 2340. 
53. Nguyễn Văn Kim, Nguyễn Thanh Liêm, Nguyễn Thị Việt Nga et al (2015), 
"Tổng hợp và hoạt tính xúc tác quang của composit g-C3N4/GaN-ZnO", Tạp chí 
Xúc tác và Hấp phụ, 2, 51 – 55. 
54. Kim N. V. (2016), "Nghiên cứu tổng hợp, đặc trưng và khả năng quang xúc tác 
của composite g-C3N4 với GaN-ZnO và Ta2O5", 125. 
55. An T. D. (2021), "Nghiên cứu biến tính vật liệu g-C3N4 bằng các nguyên tố 
phi kim làm chất xúc tác quang trong vùng ánh sáng khả kiến", Luận án tiến 
sĩ hóa học 
56. Hoa Đ. T. N. (2022), "Tổng hợp vật liệu composite trên cơ sở g-C3N4, ứng dụng 
trong điện hóa và quang xúc tác", Luận án Tiến sĩ hóa học, Trường Đại học 
Huế 
57. Tete D. M. and Hemley R. J. (1996), "Low-Compressibility Carbon Nitrides", 
Science, 271(5245), 53-55. 
160 
58. Reshak A. H., Khan S. A., and Auluck S. (2014), "Linear and nonlinear optical 
properties for AA and AB stacking of carbon nitride polymorph (C3N4)", RSC 
Adv., 4(23), 11967-11974. 
59. Samir F. Matar and Mattesini M. (2001), "Ab initio search of carbon nitrides, 
isoelectronic with diamond, likely to lead to new ultra hard materials", 
Chemistry, 4, 255–272. 
60. Komatsu and Tamikuni (2001), "Prototype carbon nitrides similar to the 
symmetric triangular form of melon", J. Mater. Chem., 11(3), 802-803. 
61. Xu Y. and Gao S.-P. (2012), "Band gap of C3N4 in the GW approximation", Int. 
J. Hydrogen Energ., 37(15), 11072-11080. 
62. Zhu B., Zhang L., Cheng B. et al (2018), "First-principle calculation study of 
tri-s-triazine-based g-C3N4-: A review", Appl. Catal. B-Environ., 224, 983-999. 
63. Ma X., Lv Y., Xu J. et al (2012), "A Strategy of Enhancing the Photoactivity of 
g-C3N4 via Doping of Nonmetal Elements: A First-Principles Study", J. Phys. 
Chem. C, 116(44), 23485-23493. 
64. Liu X., Kang W., Zeng W. et al (2020), "Structural, electronic and 
photocatalytic properties of g-C3N4 with intrinsic defects: A first-principles 
hybrid functional investigation", Appl. Surf. Sci., 499, 143994-144000. 
65. Zuo H.-W., Lu C.-H., Ren Y.-R. et al (2016), "Pt4 Clusters Supported on 
Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First-
Principles Study", Acta Phys-Chim. Sin., 32(5), 1183-1190. 
66. Tong T., Zhu B., Jiang C. et al (2018), "Mechanistic insight into the enhanced 
photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C3N4", Appl. 
Surf. Sci., 433, 1175-1183. 
67. Gao J., Zhou Y., Li Z. et al (2012), "High-yield synthesis of millimetre-long, 
semiconducting carbon nitride nanotubes with intense photoluminescence 
emission and reproducible photoconductivity", Nanoscale, 4(12), 3687-92. 
68. Zhu B., Xia P., Ho W. et al (2015), "Isoelectric point and adsorption activity of 
porous g-C3N4", Appl. Surf. Sci., 344, 188-195. 
161 
69. Mao X., Guo R., Chen Q. et al (2023), "Recent Advances in Graphitic Carbon 
Nitride Based Electro-Catalysts for CO2 Reduction Reactions", Molecules, 28(8), 
70. Vinu A. (2008), "Two-Dimensional Hexagonally-Ordered Mesoporous Carbon 
Nitrides with Tunable Pore Diameter, Surface Area and Nitrogen Content", 
Adv. Funct. Mater., 18(5), 816-827. 
71. Gu Q., Gao Z., Zhao H. et al (2015), "Temperature-controlled morphology 
evolution of graphitic carbon nitride nanostructures and their photocatalytic 
activities under visible light", RSC Adv., 5(61), 49317-49325. 
72. Fan Dong, Zhenyu Wang, Yanjuan Sun et al (2013), "Engineering the 
nanoarchitecture and texture of polymeric carbon nitride semiconductor for 
enhanced visible light photocatalytic activity", J. Colloid Interface Sci., 401, 70-79. 
73. Dong F., Sun Y., Wu L. et al (2012), "Facile transformation of low cost thiourea 
into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light 
photocatalytic performance", Catal. Sci. Technol., 2(7), 1332–1335. 
74. Zhang Y., Liu J., Wu G. et al (2012), "Porous graphitic carbon nitride 
synthesized via direct polymerization of urea for efficient sunlight-driven 
photocatalytic hydrogen production", Nanoscale, 4(17), 5300-5303. 
75. Xu L., Huang W.-Q., Wang L.-L. et al (2015), "Insights into Enhanced Visible-Light 
Photocatalytic Hydrogen Evolution of g-C3N4 and Highly Reduced Graphene Oxide 
Composite: The Role of Oxygen", Chem. Mater., 27(5), 1612-1621. 
76. Gang Liu P. N., Chenghua Sun, Sean C. Smith, Zhigang Chen, Gao Qing (Max) 
Lu, Hui-Ming Cheng (2010), "Unique Electronic Structure Induced High 
Photoreactivity of Sulfur-Doped Graphitic C3N4", J. Am. Chem. Soc., 132, 
11642–11648. 
77. Wang X., Maeda K., Thomas A. et al (2009), "A metal-free polymeric 
photocatalyst for hydrogen production from water under visible light", Nat. 
Mater., 8(1), 76-80. 
78. Yan S. C., Li Z. S., and Zou Z. G. (2009), "Photodegradation performance of g-
C3N4 fabricated by directly heating melamine", Langmuir, 25(17), 10397-401. 
162 
79. Zhang J., Chen X., Takanabe K. et al (2010), "Synthesis of a carbon nitride 
structure for visible-light catalysis by copolymerization", Angew. Chem. Int. 
Ed., 49(2), 441-444. 
80. He Q., Zhou F., Zhan S. et al (2017), "Enhancement of photocatalytic and 
photoelectrocatalytic activity of Ag modified Mpg-C3N4 composites", Appl. 
Surf. Sci., 391, 423-431. 
81. Cui J., Liang S., Wang X. et al (2015), "First principle modeling of oxygen-
doped monolayer graphitic carbon nitride", Mater. Chem. Phys., 161, 194-200. 
82. Hernández-Uresti D. B., Vázquez A., Sanchez-Martinez D. et al (2016), 
"Performance of the polymeric g-C3N4 photocatalyst through the degradation of 
pharmaceutical pollutants under UV–vis irradiation", J. Photoch. Photobio. A-
Chem., 324, 47-52. 
83. Wen J., Xie J., Chen X. et al (2017), "A review on g-C3N4-based 
photocatalysts", Appl. Surf. Sci., 391, 72-123. 
84. Dong F., Wu L., Sun Y. et al (2011), "Efficient synthesis of polymeric g-C3N4 
layered materials as novel efficient visible light driven photocatalysts", J. 
Mater. Chem. , 21(39), 15171-15174. 
85. Das D., Shinde S. L., and Nanda K. K. (2016), "Temperature-Dependent 
Photoluminescence of g-C3N4: Implication for Temperature Sensing", ACS 
Appl. Mater. Interfaces., 8(3), 2181-2200. 
86. Li H.-J., Sun B.-W., Sui L. et al (2015), "Preparation of water-dispersible 
porous g-C3N4 with improved photocatalytic activity by chemical oxidation", 
Phys. Chem. Chem. Phys., 17(5), 3309-15. 
87. Chen Q., Hou H., Zhang D. et al (2018), "Enhanced visible-light driven 
photocatalytic activity of hybrid ZnO/g-C3N4 by high performance ball 
milling", J. Photoch. Photobio. A, 350, 1-9. 
88. Tian W., Shen Q., Li N. et al (2016), "Efficient degradation of methylene blue 
over boron-doped g-C3N4/Zn0.8Cd0.2S photocatalysts under simulated solar 
irradiation", RSC Adv., 6(30), 25568-25576. 
163 
89. Zhao H.-M., Di C.-M., Wang L. et al (2015), "Synthesis of mesoporous 
graphitic C3N4 using cross-linked bimodal mesoporous SBA-15 as a hard 
template", Micropor. Mesopor. Mat., 208, 98-104. 
90. X. C., Kuo D.-H., and Lu D. (2016), "Nanonization of g-C3N4 with the 
assistance of activated carbon for improved visible light photocatalysis", RSC 
Adv., 6(71), 66814-66821. 
91. Muradova N. Z. and Veziroglu T. N. (2008), "“Green” path from fossil-based to 
hydrogen economy: An overview of carbon-neutral technologies", Int. J. 
Hydrogen Energ., 33(23), 6804-6839. 
92. Züttel A., Introduction, in Hydrogen as a Future Energy Carrier, Andreas 
Borgschulte Andreas Züttel, Louis Schlapbach, Editor. 2008. p. 1-6. 
93. Oluwatobi A. D., Tahir M., and Amin N. A. S. (2017), "g-C3N4/(Cu/TiO2 ) 
nanocomposite for enhanced photoreduction of CO2 to CH3OH and HCOOH 
under UV/visible light", J. CO2 Util., 18, 261-274. 
94. Yiming He L. Z., Bo-Tao Teng, and Maohong Fan (2014), "A new application 
of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel", Environ. 
Sci. Technol., 49(1), 649–656. 
95. Huang J., Ho W., and Wang X. (2014), "Metal-free disinfection effects induced 
by graphitic carbon nitride polymers under visible light illumination", Chem. 
Commun. , 50(33), 4338-40. 
96. Xu B., Ahmed M. B., Zhou J. L. et al (2018), "Graphitic carbon nitride based 
nanocomposites for the photocatalysis of organic contaminants under visible 
irradiation: Progress, limitations and future directions", Sci. Total. Environ., 
633, 546-559. 
97. Thomas A., Fischer A., Goettmann F. et al (2008), "Graphitic carbon nitride 
materials: variation of structure and morphology and their use as metal-free 
catalysts", J. Mater. Chem., 18(41), 4893–4908. 
164 
98. Zheng Y., Lin L., Wang B. et al (2015), "Graphitic Carbon Nitride Polymers 
toward Sustainable Photoredox Catalysis", Angew. Chem. Int. Ed., 54(44), 
12868-84. 
99. Wang X., Chen X., Thomas A. et al (2009), "Metal-Containing Carbon Nitride 
Compounds: A New Functional Organic-Metal Hybrid Material", Adv. Mater., 
21(16), 1609-1612. 
100. Gong Y., Li M., Li H. et al (2015), "Graphitic carbon nitride polymers: 
promising catalysts or catalyst supports for heterogeneous oxidation and 
hydrogenation", Green Chem., 17(2), 715-736. 
101. Uddin M. N. and Yang Y. S. (2009), "Sol-gel synthesis of well-crystallized 
C3N4 nanostructures on stainless steel substrates", J. Mater. Chem., 19(19), 
2909–2911. 
102. Guo Q., Xie Y., Wang X. et al (2003), "Characterization of well-crystallized 
graphitic carbon nitride nanocrystallites via a benzene-thermal route at low 
temperatures", Chem. Phys. Lett., 380(1-2), 84-87. 
103. Liu C. G., Wu X. T., Li X. F. et al (2014), "Synthesis of graphene-like g-
C3N4/Fe3O4 nanocomposites with high photocatalytic activity and applications 
in drug delivery", RSC Adv., 4(107), 62492-62498. 
104. Huang L., Xu H., Li Y. et al (2013), "Visible-light-induced WO3/g-C3N4 
composites with enhanced photocatalytic activity", Dalton Transactions, 
42(24), 8606-8616. 
105. Peng W.-c. and Li X.-y. (2014), "Synthesis of MoS2/g-C3N4 as a solar light-
responsive photocatalyst for organic degradation", Catalysis Communications, 
49, 63-67. 
106. Zang Y. N., Yang S. S., Ding J. et al (2021), "A biochar-promoted V2O5/g-
C3N4 Z-Scheme heterostructure for enhanced simulated solar light-driven 
photocatalytic activity", RSC Adv, 11(25), 15106-15117. 
165 
107. Li H., Liu J., Hou W. et al (2014), "Synthesis and characterization of g-
C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic 
activity", Applied Catalysis B: Environmental, 160-161, 89-97. 
108. Tao W., Wang M., Ali R. et al (2019), "Multi-layered porous hierarchical 
TiO2/g-C3N4 hybrid coating for enhanced visible light photocatalysis", Appl. 
Surf. Sci., 495, 143435. 
109. Sharma D. K., Shukla S., Sharma K. K. et al (2022), "A review on ZnO: 
Fundamental properties and applications", Materials Today: Proceedings, 49, 
3028-3035. 
110. Dharma H. N., Jaafar J., Widiastuti N. et al A Review of Titanium Dioxide 
(TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment. 
Membranes, 2022. 12, DOI: 10.3390/membranes12030345. 
111. Hu S., Li F., Fan Z. et al (2015), "Band gap-tunable potassium doped graphitic 
carbon nitride with enhanced mineralization ability", Dalton Transactions, 
44(3), 1084-1092. 
112. Zhang M., Bai X., Liu D. et al (2015), "Enhanced catalytic activity of 
potassium-doped graphitic carbon nitride induced by lower valence position", 
Applied Catalysis B: Environmental, 164, 77-81. 
113. Xiong T., Cen W., Zhang Y. et al (2016), "Bridging the g-C3N4 Interlayers for 
Enhanced Photocatalysis", ACS Catalysis, 6(4), 2462-2472. 
114. Zhang J., Hu S., and Wang Y. (2014), "A convenient method to prepare a 
novel alkali metal sodium doped carbon nitride photocatalyst with a tunable 
band structure", RSC Advances, 4(108), 62912-62919. 
115. Song X., Tao H., Chen L. et al (2014), "Synthesis of Fe/g-C3N4 composites with 
improved visible light photocatalytic activity", Materials Letters, 116, 265-267. 
116. Gao J., Wang J., Qian X. et al (2015), "One-pot synthesis of copper-doped 
graphitic carbon nitride nanosheet by heating Cu–melamine supramolecular 
network and its enhanced visible-light-driven photocatalysis", Journal of 
Solid State Chemistry, 228, 60-64. 
166 
117. Le S., Jiang T., Zhao Q. et al (2016), "Cu-doped mesoporous graphitic carbon 
nitride for enhanced visible-light driven photocatalysis", RSC Adv., 6, 38811-
38819. 
118. Jin R., Hu S., Gui J. et al (2015), "A Convenient Method to Prepare Novel Rare 
Earth Metal Ce-Doped Carbon Nitride with Enhanced Photocatalytic Activity 
Under Visible Light", Bulletin of the Korean Chemical Society, 36(1), 17-23. 
119. Chen P.-W., Li K., Yu Y.-X. et al (2017), "Cobalt-doped graphitic carbon 
nitride photocatalysts with high activity for hydrogen evolution", Applied 
Surface Science, 392, 608-615. 
120. Xu D., Li X., Liu J. et al (2013), "Synthesis and photocatalytic performance of 
europium-doped graphitic carbon nitride", Journal of Rare Earths, 31(11), 1085-1091. 
121. Wang Y., Xu Y., Wang Y. et al (2016), "Synthesis of Mo-doped graphitic 
carbon nitride catalysts and their photocatalytic activity in the reduction of CO2 
with H2O", Catalysis Communications, 74, 75-79. 
122. Rong X., Qiu F., Rong J. et al (2016), "Enhanced visible light photocatalytic 
activity of W-doped porous g-C3N4 and effect of H2O2", Materials Letters, 164, 
127-131. 
123. Wang Y., Wang Y., Li Y. et al (2015), "Simple synthesis of Zr-doped graphitic 
carbon nitride towards enhanced photocatalytic performance under simulated 
solar light irradiation", Catalysis Communications, 72, 24-28. 
124. Dong X., Zhang S., Wu H. et al (2019), "Facile one-pot synthesis of Mg-doped 
g-C3N4 for photocatalytic reduction of CO2", RSC. Adv., 9(49), 28894-28901. 
125. (!!! INVALID CITATION !!! [116]), 
126. Han Z., Wang N., Fan H. et al (2017), "Ag nanoparticles loaded on porous 
graphitic carbon nitride with enhanced photocatalytic activity for degradation of 
phenol", Solid State Sci., 65, 110-115. 
127. Li Z., Wang J., Zhu K. et al (2015), "Ag/g-C3N4 composite nanosheets: 
Synthesis and enhanced visible photocatalytic activities", Mater. Lett., 145, 
167-170. 
167 
128. Chen L., Man Y., Chen Z. et al (2016), "Ag/g-C3N4 layered composites with enhanced 
visible light photocatalytic performance", Mater. Res. Express, 3(11), 115003. 
129. Ong W.-J., Tan L.-L., Chai S.-P. et al (2015), "Heterojunction engineering of 
graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced 
photocatalytic reduction of carbon dioxide to methane", Dalton Trans., 44(3), 
1249-57. 
130. Zhang W., Zhou L., and Deng H. (2016), "Ag modified g-C3N4 composites 
with enhanced visible-light photocatalytic activity for diclofenac degradation", 
J. Mol. Catal. A-Chem., 423, 270-276. 
131. Sun T., Jiang H.-Y., Ma C.-C. et al (2016), "Ag/g-C3N4 photocatalysts: 
Microwave-assisted synthesis and enhanced visible-light photocatalytic 
activity", Catal. Commun., 79, 45-48. 
132. Thommes M., Kaneko K., Neimark A. V. et al (2015), "Physisorption of gases, 
with special reference to the evaluation of surface area and pore size 
distribution (IUPAC Technical Report)", 87(9-10), 
133. Kang D.-Y., Kim C., Park G. et al (2015), "Liquid immersion thermal 
crosslinking of 3D polymer nanopatterns for direct carbonisation with high 
structural integrity", Sci. Rep., 5, 18185-18193. 
134. Jianghua Li, Biao Shen, Zhenhua Hong et al (2012), "A facile approach to 
synthesize novel oxygen-doped g-C3N4 with superior visible-light 
photoreactivity", Chem. Commun., 48(98), 12017-12019. 
135. Wu P., Wang J., Zhao J. et al (2014), "Structure defects in g-C3N4 limit visible 
light driven hydrogen evolution and photovoltage", J. Mater. Chem. A, 2(47), 
20338-20344. 
136. Meyers R. A. (2000), "Interpretation of Infrared Spectra, A Practical 
Approach", Encyclopedia of Analytical Chemistry, 10815–10837. 
137. Zuluaga S., Liu L. H., Shafiq N. et al (2015), "Structural band-gap tuning in g-
C3N4", Phys. Chem. Chem. Phys., 17(2), 957-62. 
168 
138. Davis E. A. and Mott N. F. (1970), "Conduction in non-crystalline systems V. 
Conductivity, optical absorption and photoconductivity in amorphous 
semiconductors", The Philosophical Magazine: A Journal of Theoretical 
Experimental and Applied Physics, 22(179), 0903-0922. 
139. Deng Q. and Li Q. (2017), "Facile preparation of Mg-doped graphitic carbon 
nitride composites as a solid base catalyst for Knoevenagel condensations", 
Journal of Materials Science, 53(1), 506-515. 
140. Jerng S.-K., Seong Yu D., Hong Lee J. et al (2011), "Graphitic carbon growth 
on crystalline and amorphous oxide substrates using molecular beam epitaxy", 
Nanoscale Res. Lett., 6(1), 565-571. 
141. Fan Y., Chen G., Li D. et al (2012), "Highly Selective Deethylation of 
Rhodamine B on TiO2 Prepared in Supercritical Fluids", International Journal 
of Photoenergy, 2012, 173865. 
142. Pica M., Nocchetti M., Ridolfi B. et al (2015), "Nanosized zirconium 
phosphate/AgCl composite materials: a new synergy for efficient photocatalytic 
degradation of organic dye pollutants", Journal of Materials Chemistry A, 
3(10), 5525-5534. 
143. Zhu B., Cheng B., Zhang L. et al (2019), "Review on DFT calculation of s‐
triazine‐based carbon nitride", Carbon Energy, 1(1), 32-56. 
144. Fan C., Miao J., Xu G. et al (2017), "Graphitic carbon nitride nanosheets 
obtained by liquid stripping as efficient photocatalysts under visible light", RSC 
Advances, 7(59), 37185-37193. 
145. Wang Y., Wang H., Chen F. et al (2017), "Facile synthesis of oxygen doped 
carbon nitride hollow microsphere for photocatalysis", Applied Catalysis B: 
Environmental, 206, 417-425. 
146. Yi J., Liao K., Zhang C. et al (2015), "Facile in Situ Preparation of Graphitic-
C3N4@carbon Paper As an Efficient Metal-Free Cathode for Nonaqueous Li–O2 
Battery", ACS Appl. Mater. Interfaces, 7(20), 10823-10827. 
147. Zhang W.-D. and Su F. (2016), "Carbonyl-Grafted g-C3N4 Porous Nanosheets for 
Efficient Photocatalytic Hydrogen Evolution", Chemistry - An Asian Journal, 12, 
169 
148. Feng L., Yang L., Huang Z. et al (2013), "Enhancing Electrocatalytic Oxygen 
Reduction on Nitrogen-Doped Graphene by Active Sites Implantation", Sci. 
Rep., 3(1), 3306. 
149. Ong W.-J., Putri L. K., Tan L.-L. et al (2016), "Heterostructured AgX/g-C3N4 
(X=Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation 
approach: Emerging role of halide ions in the synergistic photocatalytic reduction 
of carbon dioxide", Appl. Catal. B-Environ., 180, 530-543. 
150. Ong W.-J., Tan L.-L., Chai S.-P. et al (2015), "Heterojunction engineering of 
graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced 
photocatalytic reduction of carbon dioxide to methane", Dalton Trans., 44(3), 
1249-1257. 
151. Kundu S., Nagaiah T. C., Xia W. et al (2009), "Electrocatalytic Activity and 
Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen Reduction 
Reaction", J. Phys. Chem. C, 113(32), 14302-14310. 
152. Shao Y., Zhang S., Engelhard M. H. et al (2010), "Nitrogen-doped graphene 
and its electrochemical applications", J. Mater. Chem. , 20(35), 7491-7496. 
153. Wang Y., Shao Y., Matson D. W. et al (2010), "Nitrogen-Doped Graphene and 
Its Application in Electrochemical Biosensing", ACS Nano, 4(4), 1790-1798. 
154. Lu M., Pei Z., Weng S. et al (2014), "Constructing atomic layer g-C3N4–CdS 
nanoheterojunctions with efficiently enhanced visible light photocatalytic 
activity", Phys. Chem. Chem. Phys., 16(39), 21280-21288. 
155. Chen Y., Huang W., He D. et al (2014), "Construction of Heterostructured g-
C3N4/Ag/TiO2 Microspheres with Enhanced Photocatalysis Performance under 
Visible-Light Irradiation", ACS Applied Materials & Interfaces, 6(16), 14405-14414. 
156. Charle K. P., Konig L., Nepijko S. et al (1998), "The Surface Plasmon 
Resonance of Free and Emberred Ag-Clusters in the Size Range of 1.5 < D < 30 
nm", Cryst. Res. Technol., 33, 1085-1096. 
157. Kaur R. and Pal B. (2015), "Plasmonic coinage metal–TiO2 hybrid 
nanocatalysts for highly efficient photocatalytic oxidation under sunlight 
irradiation", New J. Chem., 39(8), 5966-5976. 
170 
158. Zhang S., Zhang B.-p., Li S. et al (2017), "Enhanced photocatalytic activity in 
Ag-nanoparticle-dispersed BaTiO3 composite thin films: Role of charge 
transfer", J. Adv. Ceramics, 6(1), 1-10. 
159. Gao L., Li Z., and Liu J. (2017), "Facile synthesis of Ag3VO4/β-AgVO3 
nanowires with efficient visible-light photocatalytic activity", RSC Adv., 7(44), 
27515-27521. 
160. Ma T., Shen Q., Xue B. Z. J. et al (2019), "Facile synthesis of Fe-doped g-
C3N4 for enhanced visible-light photocatalytic activity", Inorganic Chemistry 
Communications, 107, 107451-107460. 
161. Min C., Shen C., Li R. et al (2016), "In-situ fabrication of Ag/g-C3N4 
composite materials with improved photocatalytic activity by coordination-
driven assembly of precursors", Ceramics International, 42(4), 5575-5581. 
162. Wood D. L. and Tauc J. (1972), "Weak Absorption Tails in Amorphous 
Semiconductors", Physical Review B, 5(8), 3144-3151. 
163. Kolodziejczak-Radzimska A. and Jesionowski T. (2014), "Zinc Oxide-From 
Synthesis to Application: A Review", Materials (Basel), 7(4), 2833-2881. 
164. Li F. M., Hsieh G. W., Dalal S. et al (2008), "Zinc Oxide Nanostructures and 
High Electron Mobility Nanocomposite Thin Film Transistors", IEEE 
Transactions on Electron Devices, 55(11), 3001-3011. 
165. Farhadi-Khouzani M., Fereshteh Z., Loghman-Estarki M. R. et al (2012), 
"Different morphologies of ZnO nanostructures via polymeric complex sol–gel 
method: synthesis and characterization", Journal of Sol-Gel Science and 
Technology, 64(1), 193-199. 
166. Chen D., Jiao X., and Cheng G. (1999), "Hydrothermal synthesis of zinc oxide 
powders with different morphologies", Solid State Communications, 113(6), 363-366. 
167. Meena P. L., Poswal K., Surela A. K. et al (2022), "Synthesis of graphitic 
carbon nitride/zinc oxide (g-C3N4/ZnO) hybrid nanostructures and investigation 
of the effect of ZnO on the photodegradation activity of g-C3N4 against the 
brilliant cresyl blue (BCB) dye under visible light irradiation", Advanced 
Composites and Hybrid Materials, 6(1),