Luận án Nghiên cứu cải thiện khả năng quang xúc tác của g-C₃N₄ biến tính với kim loại (Fe, Co, Mg, Ag) và oxit bán dẫn (TiO2, ZnO)

1. Vật liệu composite g-C3N4/TiO2 được chế tạo thành công bằng phương pháp trộn cơ học g-C3N4 với TiO2. Các hạt TiO2 kích thước nano đã phân tán trên bề mặt các lá mỏng g-C3N4 làm cho vật liệu composite g-C3N4/TiO2 tạo thành có độ xốp cao. Sự kết hợp giữa g-C3N4 với TiO2 cũng làm giảm sự tái hợp của cặp điện tử - lỗ trống. Điều này đã làm cho khả năng quang xúc tác của vật liệu composite tốt hơn so với g-C3N4 trong điều kiện chiếu sáng bằng đèn Xenon. Vật liệu composite chế tạo được cũng thể hiện tốc độ phân hủy cao hơn TiO2 trong khoảng thời gian ngắn (dưới 1 giờ) mặc dù hiệu quả quang xúc tác cuối cùng thấp hơn. 2. Vật liệu tổ hợp g-C3N4/ZnO đã được chế tạo thành công bằng phương pháp trộn cơ học hai thành phần. Vật liệu biểu hiện sự kết tinh tốt của cả hai pha thành phần, không có sự xuất hiện của pha tạp chất. Các hạt nano ZnO được phân tán khá tốt trên các tấm g-C3N4, phù hợp với mục đích chế tạo. Độ rộng vùng cấm của vật liệu tổ hợp nhỏ hơn của ZnO và lớn hơn của g-C3N4, là do kết quả cộng phổ hấp thụ của hai thành phần. Các mẫu CZ7-3 và CZ6-4 biểu hiện khả năng quang xúc tác lớn nhất, phân huỷ 100% RhB trong dung dịch sau 90 phút chiếu sáng đèn Xenon. Hiệu suất quang xúc tác mạnh của vật liệu tổ hợp có thể được giải thích do tiếp xúc dị chất giữa hai chất bán dẫn, dẫn tới giảm tốc độ tái hợp điện tử - lỗ trống.

pdf190 trang | Chia sẻ: Kim Linh 2 | Ngày: 09/11/2024 | Lượt xem: 37 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu cải thiện khả năng quang xúc tác của g-C₃N₄ biến tính với kim loại (Fe, Co, Mg, Ag) và oxit bán dẫn (TiO2, ZnO), để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
K. (2018), "An overview on Ag modified g- C3N4 based nanostructured materials for energy and environmental applications", Renewable and Sustainable Energy Reviews, 82, 1297-1312. 17. Ismael M. and Wu Y. (2019), "A mini-review on the synthesis, structural modification of g-C3N4-based materials, and their applications for solar energy conversion and environmental remediation", J. Name., 3(11), 2907-2925. 18. Singh P. P. and Srivastava V. (2022), "Recent advances in visible-light graphitic carbon nitride (g-C3N4) photocatalysts for chemical transformations", RSC Adv, 12(28), 18245-18265. 19. Pérez-Molina Á., Pastrana-Martínez L. M., Morales-Torres S. et al (2023), "Photodegradation of cytostatic drugs by g-C3N4: Synthesis, properties and performance fitted by selecting the appropriate precursor", Catal. Today, 418, 156 20. Li X., Huang G., Chen X. et al (2021), "A review on graphitic carbon nitride (g- C3N4) based hybrid membranes for water and wastewater treatment", Sci Total Environ, 792, 148462. 21. Li C., Lu H., Ding G. et al (2023), "Recent advances on g-C3N4-based Z- scheme photocatalysts for organic pollutant removal", Catalysis Science & Technology, 13(10), 2877-2898. 22. Qamar M. A., Javed M., Shahid S. et al (2023), "Synthesis and applications of graphitic carbon nitride (g-C3N4) based membranes for wastewater treatment: A critical review", Heliyon, 9(1), e12685. 23. Yap F. M., Sheng Ling G. Z., Su B. J. et al (2024), "Recent advances in structural modification on graphitic carbon nitride (g-C3N4)-based photocatalysts for high-efficiency photocatalytic H2O2 production", Nano Research Energy, 3, e9120091. 24. Cui Y., An X., Zhang S. et al (2021), "Emerging graphitic carbon nitride-based membranes for water purification", Water Res, 200, 117207. 25. An T., Tang J., Zhang Y. et al (2016), "Photoelectrochemical Conversion from Graphitic C3N4 Quantum Dot Decorated Semiconductor Nanowires", ACS Appl. Mater. & Inter., 8(20), 12772-12779. 26. Cao C. B., Lv Q., and Zhu H.-S. (2003), "Carbon nitride prepared by solvothermal method", Diam. Relat. Mater. , 12(3-7), 1070-1074. 27. Xu J., Li Y., Peng S. et al (2013), "Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea", Phys. Chem. Chem. Phys., 15(20), 7657-7665. 28. Xiong Q., Yuan Y., Zhang L. et al (2015), "High-yield Synthesis and Optical Properties of g-C3N4", J. Name., 1-3, 1-9. 29. Yuan J., Liu X., Tang Y. et al (2018), "Positioning cyanamide defects in g- C3N4: Engineering energy levels and active sites for superior photocatalytic hydrogen evolution", Appl. Catal. B-Environ., 237, 24-31. 157 30. Zhang Y., Pan Q., Chai G. et al (2013), "Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine", Sci. Rep., 3, 1943. 31. Dong F., Li Y., Wang Z. et al (2015), "Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation", Applied Surface Science, 358, 393-403. 32. Zhang S., Gu P., Ma R. et al (2019), "Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review", Catalysis Today, 335, 65-77. 33. Yuan Y.-P., Xu W.-T., Yin L.-S. et al (2013), "Large impact of heating time on physical properties and photocatalytic H2 production of g-C3N4 nanosheets synthesized through urea polymerization in Ar atmosphere", Int. J. Hydrogen Energ., 38(30), 13159-13163. 34. Hoa D. T. N., Tu N. T. T., Thinh H. Q. A. et al (2023), "TiO2/g-C3N4 Visible- Light-Driven Photocatalyst for Methylene Blue Decomposition", Journal of Nanomaterials, 2023, 1-15. 35. Jiang J.-J., Zhang F.-J., and Wang Y.-R. (2023), "Review of different series of MOF/g-C3N4 composites for photocatalytic hydrogen production and CO2 reduction", New Journal of Chemistry, 47(4), 1599-1609. 36. Zhong Q., Lan H., Zhang M. et al (2020), "Preparation of heterostructure g- C3N4/ZnO nanorods for high photocatalytic activity on different pollutants (MB, RhB, Cr(VI) and eosin)", Ceramics International, 46, 0272-0280. 37. Liu J. (2015), "Origin of High Photocatalytic Efficiency in Monolayer g- C3N4/CdS Heterostructure: A Hybrid DFT Study", J. Phys. Chem. C, 119(51), 28417-28423. 38. Hoang T. V. A., Nguyen P. A., and Shin E. W. (2023), "Effect of Morphological Modification over g-C3N4 on Photocatalytic Hydrogen Evolution Performance of g-C3N4-Pt Photocatalysts", Catalysts, 13(1), 158 39. Chen L., Man Y., Chen Z. et al (2016), "Ag/g-C3N4 layered composites with enhanced visible light photocatalytic performance", Materials Research Express, 3(11), 115003. 40. Mott D., Thuy N. T. B., Aoki Y. et al (2010), "Aqueous synthesis and characterization of Ag and Ag-Au nanoparticles: addressing challenges in size, monodispersity and structure", Philos Trans A Math Phys Eng Sci, 368(1927), 4275-92. 41. Michalska M., Matejka V., Pavlovsky J. et al (2023), "Effect of Ag modification on TiO2 and melem/g-C3N4 composite on photocatalytic performances", Sci Rep, 13(1), 5270. 42. Wang K., Li Q., Liu B. et al (2015), "Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance", Appl. Catal. B-Environ., 176-177, 44-52. 43. Zhou Y., Zhang L., Liu J. et al (2015), "Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light", J. Mater. Chem. A, 3(7), 3862-3867. 44. Zou X., Su J., Silva R. et al (2013), "Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal- embedded graphitic C3N4", Chem. Commun., 49(68), 7522--7524. 45. Han H., Ding G., Wu T. et al (2015), "Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde", Molecules, 20(7), 12686-97. 46. Tonda S., Kumar S., Kandula S. et al (2014), "Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight", J. Mater. Chem. A, 2(19), 6772–6780. 47. Yue B., Li Q., Iwai H. et al (2011), "Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light", Sci. Technol. Adv. Mater., 12(3), 034401. 159 48. Zou X., Silva R., Goswami A. et al (2015), "Cu-doped carbon nitride: Bio- inspired synthesis of H2-evolving electrocatalysts using graphitic carbon nitride (g-C3N4) as a host material", Appl. Surf. Sci., 357, 221-228. 49. Trần Mỹ Nghệ, Nguyễn Thị Mỹ Ngà, Nguyễn Thị Thu Sen et al (2016), "Nghiên cứu tổng hợp và tính chất xúc tác quang của vật liệu g-C3N4 pha tạp đồng thời oxi và lưu huỳnh", Tạp chí Xúc tác và Hấp phụ, T4.(No1), 142 – 147. 50. Nguyễn Văn Kim, Phạm Thành Tấn, Hồ Thị Xuân Thắm et al (2015), "Tổng hợp g-C3N4 pha tạp oxy nhằm tăng cường hoạt tính xúc tác quang dưới ánh sáng khả kiến", Tạp chí Hóa học, 53(4E1), 176 – 180. 51. Kim N. V., Nga N. T. V., Doanh S. C. et al (2015), "Nghiên cứu tổng hợp và ứng dụng xúc tác quang của graphitic cacbon nitrua", Tạp chí Hóa học, 53(3e3), 133 – 137. 52. Vo Vien, Nguyen Van Kim, Nguyen Thi Viet Nga et al (2016), "Preparation of g-C3N4/Ta2O5 Composites with Enhanced Visible-Light Photocatalytic Activity", J. Electron. Mater., 45(5), 2334 – 2340. 53. Nguyễn Văn Kim, Nguyễn Thanh Liêm, Nguyễn Thị Việt Nga et al (2015), "Tổng hợp và hoạt tính xúc tác quang của composit g-C3N4/GaN-ZnO", Tạp chí Xúc tác và Hấp phụ, 2, 51 – 55. 54. Kim N. V. (2016), "Nghiên cứu tổng hợp, đặc trưng và khả năng quang xúc tác của composite g-C3N4 với GaN-ZnO và Ta2O5", 125. 55. An T. D. (2021), "Nghiên cứu biến tính vật liệu g-C3N4 bằng các nguyên tố phi kim làm chất xúc tác quang trong vùng ánh sáng khả kiến", Luận án tiến sĩ hóa học 56. Hoa Đ. T. N. (2022), "Tổng hợp vật liệu composite trên cơ sở g-C3N4, ứng dụng trong điện hóa và quang xúc tác", Luận án Tiến sĩ hóa học, Trường Đại học Huế 57. Tete D. M. and Hemley R. J. (1996), "Low-Compressibility Carbon Nitrides", Science, 271(5245), 53-55. 160 58. Reshak A. H., Khan S. A., and Auluck S. (2014), "Linear and nonlinear optical properties for AA and AB stacking of carbon nitride polymorph (C3N4)", RSC Adv., 4(23), 11967-11974. 59. Samir F. Matar and Mattesini M. (2001), "Ab initio search of carbon nitrides, isoelectronic with diamond, likely to lead to new ultra hard materials", Chemistry, 4, 255–272. 60. Komatsu and Tamikuni (2001), "Prototype carbon nitrides similar to the symmetric triangular form of melon", J. Mater. Chem., 11(3), 802-803. 61. Xu Y. and Gao S.-P. (2012), "Band gap of C3N4 in the GW approximation", Int. J. Hydrogen Energ., 37(15), 11072-11080. 62. Zhu B., Zhang L., Cheng B. et al (2018), "First-principle calculation study of tri-s-triazine-based g-C3N4-: A review", Appl. Catal. B-Environ., 224, 983-999. 63. Ma X., Lv Y., Xu J. et al (2012), "A Strategy of Enhancing the Photoactivity of g-C3N4 via Doping of Nonmetal Elements: A First-Principles Study", J. Phys. Chem. C, 116(44), 23485-23493. 64. Liu X., Kang W., Zeng W. et al (2020), "Structural, electronic and photocatalytic properties of g-C3N4 with intrinsic defects: A first-principles hybrid functional investigation", Appl. Surf. Sci., 499, 143994-144000. 65. Zuo H.-W., Lu C.-H., Ren Y.-R. et al (2016), "Pt4 Clusters Supported on Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First- Principles Study", Acta Phys-Chim. Sin., 32(5), 1183-1190. 66. Tong T., Zhu B., Jiang C. et al (2018), "Mechanistic insight into the enhanced photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C3N4", Appl. Surf. Sci., 433, 1175-1183. 67. Gao J., Zhou Y., Li Z. et al (2012), "High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity", Nanoscale, 4(12), 3687-92. 68. Zhu B., Xia P., Ho W. et al (2015), "Isoelectric point and adsorption activity of porous g-C3N4", Appl. Surf. Sci., 344, 188-195. 161 69. Mao X., Guo R., Chen Q. et al (2023), "Recent Advances in Graphitic Carbon Nitride Based Electro-Catalysts for CO2 Reduction Reactions", Molecules, 28(8), 70. Vinu A. (2008), "Two-Dimensional Hexagonally-Ordered Mesoporous Carbon Nitrides with Tunable Pore Diameter, Surface Area and Nitrogen Content", Adv. Funct. Mater., 18(5), 816-827. 71. Gu Q., Gao Z., Zhao H. et al (2015), "Temperature-controlled morphology evolution of graphitic carbon nitride nanostructures and their photocatalytic activities under visible light", RSC Adv., 5(61), 49317-49325. 72. Fan Dong, Zhenyu Wang, Yanjuan Sun et al (2013), "Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity", J. Colloid Interface Sci., 401, 70-79. 73. Dong F., Sun Y., Wu L. et al (2012), "Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance", Catal. Sci. Technol., 2(7), 1332–1335. 74. Zhang Y., Liu J., Wu G. et al (2012), "Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production", Nanoscale, 4(17), 5300-5303. 75. Xu L., Huang W.-Q., Wang L.-L. et al (2015), "Insights into Enhanced Visible-Light Photocatalytic Hydrogen Evolution of g-C3N4 and Highly Reduced Graphene Oxide Composite: The Role of Oxygen", Chem. Mater., 27(5), 1612-1621. 76. Gang Liu P. N., Chenghua Sun, Sean C. Smith, Zhigang Chen, Gao Qing (Max) Lu, Hui-Ming Cheng (2010), "Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4", J. Am. Chem. Soc., 132, 11642–11648. 77. Wang X., Maeda K., Thomas A. et al (2009), "A metal-free polymeric photocatalyst for hydrogen production from water under visible light", Nat. Mater., 8(1), 76-80. 78. Yan S. C., Li Z. S., and Zou Z. G. (2009), "Photodegradation performance of g- C3N4 fabricated by directly heating melamine", Langmuir, 25(17), 10397-401. 162 79. Zhang J., Chen X., Takanabe K. et al (2010), "Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization", Angew. Chem. Int. Ed., 49(2), 441-444. 80. He Q., Zhou F., Zhan S. et al (2017), "Enhancement of photocatalytic and photoelectrocatalytic activity of Ag modified Mpg-C3N4 composites", Appl. Surf. Sci., 391, 423-431. 81. Cui J., Liang S., Wang X. et al (2015), "First principle modeling of oxygen- doped monolayer graphitic carbon nitride", Mater. Chem. Phys., 161, 194-200. 82. Hernández-Uresti D. B., Vázquez A., Sanchez-Martinez D. et al (2016), "Performance of the polymeric g-C3N4 photocatalyst through the degradation of pharmaceutical pollutants under UV–vis irradiation", J. Photoch. Photobio. A- Chem., 324, 47-52. 83. Wen J., Xie J., Chen X. et al (2017), "A review on g-C3N4-based photocatalysts", Appl. Surf. Sci., 391, 72-123. 84. Dong F., Wu L., Sun Y. et al (2011), "Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts", J. Mater. Chem. , 21(39), 15171-15174. 85. Das D., Shinde S. L., and Nanda K. K. (2016), "Temperature-Dependent Photoluminescence of g-C3N4: Implication for Temperature Sensing", ACS Appl. Mater. Interfaces., 8(3), 2181-2200. 86. Li H.-J., Sun B.-W., Sui L. et al (2015), "Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation", Phys. Chem. Chem. Phys., 17(5), 3309-15. 87. Chen Q., Hou H., Zhang D. et al (2018), "Enhanced visible-light driven photocatalytic activity of hybrid ZnO/g-C3N4 by high performance ball milling", J. Photoch. Photobio. A, 350, 1-9. 88. Tian W., Shen Q., Li N. et al (2016), "Efficient degradation of methylene blue over boron-doped g-C3N4/Zn0.8Cd0.2S photocatalysts under simulated solar irradiation", RSC Adv., 6(30), 25568-25576. 163 89. Zhao H.-M., Di C.-M., Wang L. et al (2015), "Synthesis of mesoporous graphitic C3N4 using cross-linked bimodal mesoporous SBA-15 as a hard template", Micropor. Mesopor. Mat., 208, 98-104. 90. X. C., Kuo D.-H., and Lu D. (2016), "Nanonization of g-C3N4 with the assistance of activated carbon for improved visible light photocatalysis", RSC Adv., 6(71), 66814-66821. 91. Muradova N. Z. and Veziroglu T. N. (2008), "“Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies", Int. J. Hydrogen Energ., 33(23), 6804-6839. 92. Züttel A., Introduction, in Hydrogen as a Future Energy Carrier, Andreas Borgschulte Andreas Züttel, Louis Schlapbach, Editor. 2008. p. 1-6. 93. Oluwatobi A. D., Tahir M., and Amin N. A. S. (2017), "g-C3N4/(Cu/TiO2 ) nanocomposite for enhanced photoreduction of CO2 to CH3OH and HCOOH under UV/visible light", J. CO2 Util., 18, 261-274. 94. Yiming He L. Z., Bo-Tao Teng, and Maohong Fan (2014), "A new application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel", Environ. Sci. Technol., 49(1), 649–656. 95. Huang J., Ho W., and Wang X. (2014), "Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination", Chem. Commun. , 50(33), 4338-40. 96. Xu B., Ahmed M. B., Zhou J. L. et al (2018), "Graphitic carbon nitride based nanocomposites for the photocatalysis of organic contaminants under visible irradiation: Progress, limitations and future directions", Sci. Total. Environ., 633, 546-559. 97. Thomas A., Fischer A., Goettmann F. et al (2008), "Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts", J. Mater. Chem., 18(41), 4893–4908. 164 98. Zheng Y., Lin L., Wang B. et al (2015), "Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis", Angew. Chem. Int. Ed., 54(44), 12868-84. 99. Wang X., Chen X., Thomas A. et al (2009), "Metal-Containing Carbon Nitride Compounds: A New Functional Organic-Metal Hybrid Material", Adv. Mater., 21(16), 1609-1612. 100. Gong Y., Li M., Li H. et al (2015), "Graphitic carbon nitride polymers: promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation", Green Chem., 17(2), 715-736. 101. Uddin M. N. and Yang Y. S. (2009), "Sol-gel synthesis of well-crystallized C3N4 nanostructures on stainless steel substrates", J. Mater. Chem., 19(19), 2909–2911. 102. Guo Q., Xie Y., Wang X. et al (2003), "Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures", Chem. Phys. Lett., 380(1-2), 84-87. 103. Liu C. G., Wu X. T., Li X. F. et al (2014), "Synthesis of graphene-like g- C3N4/Fe3O4 nanocomposites with high photocatalytic activity and applications in drug delivery", RSC Adv., 4(107), 62492-62498. 104. Huang L., Xu H., Li Y. et al (2013), "Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity", Dalton Transactions, 42(24), 8606-8616. 105. Peng W.-c. and Li X.-y. (2014), "Synthesis of MoS2/g-C3N4 as a solar light- responsive photocatalyst for organic degradation", Catalysis Communications, 49, 63-67. 106. Zang Y. N., Yang S. S., Ding J. et al (2021), "A biochar-promoted V2O5/g- C3N4 Z-Scheme heterostructure for enhanced simulated solar light-driven photocatalytic activity", RSC Adv, 11(25), 15106-15117. 165 107. Li H., Liu J., Hou W. et al (2014), "Synthesis and characterization of g- C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity", Applied Catalysis B: Environmental, 160-161, 89-97. 108. Tao W., Wang M., Ali R. et al (2019), "Multi-layered porous hierarchical TiO2/g-C3N4 hybrid coating for enhanced visible light photocatalysis", Appl. Surf. Sci., 495, 143435. 109. Sharma D. K., Shukla S., Sharma K. K. et al (2022), "A review on ZnO: Fundamental properties and applications", Materials Today: Proceedings, 49, 3028-3035. 110. Dharma H. N., Jaafar J., Widiastuti N. et al A Review of Titanium Dioxide (TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment. Membranes, 2022. 12, DOI: 10.3390/membranes12030345. 111. Hu S., Li F., Fan Z. et al (2015), "Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability", Dalton Transactions, 44(3), 1084-1092. 112. Zhang M., Bai X., Liu D. et al (2015), "Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position", Applied Catalysis B: Environmental, 164, 77-81. 113. Xiong T., Cen W., Zhang Y. et al (2016), "Bridging the g-C3N4 Interlayers for Enhanced Photocatalysis", ACS Catalysis, 6(4), 2462-2472. 114. Zhang J., Hu S., and Wang Y. (2014), "A convenient method to prepare a novel alkali metal sodium doped carbon nitride photocatalyst with a tunable band structure", RSC Advances, 4(108), 62912-62919. 115. Song X., Tao H., Chen L. et al (2014), "Synthesis of Fe/g-C3N4 composites with improved visible light photocatalytic activity", Materials Letters, 116, 265-267. 116. Gao J., Wang J., Qian X. et al (2015), "One-pot synthesis of copper-doped graphitic carbon nitride nanosheet by heating Cu–melamine supramolecular network and its enhanced visible-light-driven photocatalysis", Journal of Solid State Chemistry, 228, 60-64. 166 117. Le S., Jiang T., Zhao Q. et al (2016), "Cu-doped mesoporous graphitic carbon nitride for enhanced visible-light driven photocatalysis", RSC Adv., 6, 38811- 38819. 118. Jin R., Hu S., Gui J. et al (2015), "A Convenient Method to Prepare Novel Rare Earth Metal Ce-Doped Carbon Nitride with Enhanced Photocatalytic Activity Under Visible Light", Bulletin of the Korean Chemical Society, 36(1), 17-23. 119. Chen P.-W., Li K., Yu Y.-X. et al (2017), "Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution", Applied Surface Science, 392, 608-615. 120. Xu D., Li X., Liu J. et al (2013), "Synthesis and photocatalytic performance of europium-doped graphitic carbon nitride", Journal of Rare Earths, 31(11), 1085-1091. 121. Wang Y., Xu Y., Wang Y. et al (2016), "Synthesis of Mo-doped graphitic carbon nitride catalysts and their photocatalytic activity in the reduction of CO2 with H2O", Catalysis Communications, 74, 75-79. 122. Rong X., Qiu F., Rong J. et al (2016), "Enhanced visible light photocatalytic activity of W-doped porous g-C3N4 and effect of H2O2", Materials Letters, 164, 127-131. 123. Wang Y., Wang Y., Li Y. et al (2015), "Simple synthesis of Zr-doped graphitic carbon nitride towards enhanced photocatalytic performance under simulated solar light irradiation", Catalysis Communications, 72, 24-28. 124. Dong X., Zhang S., Wu H. et al (2019), "Facile one-pot synthesis of Mg-doped g-C3N4 for photocatalytic reduction of CO2", RSC. Adv., 9(49), 28894-28901. 125. (!!! INVALID CITATION !!! [116]), 126. Han Z., Wang N., Fan H. et al (2017), "Ag nanoparticles loaded on porous graphitic carbon nitride with enhanced photocatalytic activity for degradation of phenol", Solid State Sci., 65, 110-115. 127. Li Z., Wang J., Zhu K. et al (2015), "Ag/g-C3N4 composite nanosheets: Synthesis and enhanced visible photocatalytic activities", Mater. Lett., 145, 167-170. 167 128. Chen L., Man Y., Chen Z. et al (2016), "Ag/g-C3N4 layered composites with enhanced visible light photocatalytic performance", Mater. Res. Express, 3(11), 115003. 129. Ong W.-J., Tan L.-L., Chai S.-P. et al (2015), "Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane", Dalton Trans., 44(3), 1249-57. 130. Zhang W., Zhou L., and Deng H. (2016), "Ag modified g-C3N4 composites with enhanced visible-light photocatalytic activity for diclofenac degradation", J. Mol. Catal. A-Chem., 423, 270-276. 131. Sun T., Jiang H.-Y., Ma C.-C. et al (2016), "Ag/g-C3N4 photocatalysts: Microwave-assisted synthesis and enhanced visible-light photocatalytic activity", Catal. Commun., 79, 45-48. 132. Thommes M., Kaneko K., Neimark A. V. et al (2015), "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)", 87(9-10), 133. Kang D.-Y., Kim C., Park G. et al (2015), "Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity", Sci. Rep., 5, 18185-18193. 134. Jianghua Li, Biao Shen, Zhenhua Hong et al (2012), "A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity", Chem. Commun., 48(98), 12017-12019. 135. Wu P., Wang J., Zhao J. et al (2014), "Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage", J. Mater. Chem. A, 2(47), 20338-20344. 136. Meyers R. A. (2000), "Interpretation of Infrared Spectra, A Practical Approach", Encyclopedia of Analytical Chemistry, 10815–10837. 137. Zuluaga S., Liu L. H., Shafiq N. et al (2015), "Structural band-gap tuning in g- C3N4", Phys. Chem. Chem. Phys., 17(2), 957-62. 168 138. Davis E. A. and Mott N. F. (1970), "Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors", The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 22(179), 0903-0922. 139. Deng Q. and Li Q. (2017), "Facile preparation of Mg-doped graphitic carbon nitride composites as a solid base catalyst for Knoevenagel condensations", Journal of Materials Science, 53(1), 506-515. 140. Jerng S.-K., Seong Yu D., Hong Lee J. et al (2011), "Graphitic carbon growth on crystalline and amorphous oxide substrates using molecular beam epitaxy", Nanoscale Res. Lett., 6(1), 565-571. 141. Fan Y., Chen G., Li D. et al (2012), "Highly Selective Deethylation of Rhodamine B on TiO2 Prepared in Supercritical Fluids", International Journal of Photoenergy, 2012, 173865. 142. Pica M., Nocchetti M., Ridolfi B. et al (2015), "Nanosized zirconium phosphate/AgCl composite materials: a new synergy for efficient photocatalytic degradation of organic dye pollutants", Journal of Materials Chemistry A, 3(10), 5525-5534. 143. Zhu B., Cheng B., Zhang L. et al (2019), "Review on DFT calculation of s‐ triazine‐based carbon nitride", Carbon Energy, 1(1), 32-56. 144. Fan C., Miao J., Xu G. et al (2017), "Graphitic carbon nitride nanosheets obtained by liquid stripping as efficient photocatalysts under visible light", RSC Advances, 7(59), 37185-37193. 145. Wang Y., Wang H., Chen F. et al (2017), "Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis", Applied Catalysis B: Environmental, 206, 417-425. 146. Yi J., Liao K., Zhang C. et al (2015), "Facile in Situ Preparation of Graphitic- C3N4@carbon Paper As an Efficient Metal-Free Cathode for Nonaqueous Li–O2 Battery", ACS Appl. Mater. Interfaces, 7(20), 10823-10827. 147. Zhang W.-D. and Su F. (2016), "Carbonyl-Grafted g-C3N4 Porous Nanosheets for Efficient Photocatalytic Hydrogen Evolution", Chemistry - An Asian Journal, 12, 169 148. Feng L., Yang L., Huang Z. et al (2013), "Enhancing Electrocatalytic Oxygen Reduction on Nitrogen-Doped Graphene by Active Sites Implantation", Sci. Rep., 3(1), 3306. 149. Ong W.-J., Putri L. K., Tan L.-L. et al (2016), "Heterostructured AgX/g-C3N4 (X=Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide", Appl. Catal. B-Environ., 180, 530-543. 150. Ong W.-J., Tan L.-L., Chai S.-P. et al (2015), "Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane", Dalton Trans., 44(3), 1249-1257. 151. Kundu S., Nagaiah T. C., Xia W. et al (2009), "Electrocatalytic Activity and Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen Reduction Reaction", J. Phys. Chem. C, 113(32), 14302-14310. 152. Shao Y., Zhang S., Engelhard M. H. et al (2010), "Nitrogen-doped graphene and its electrochemical applications", J. Mater. Chem. , 20(35), 7491-7496. 153. Wang Y., Shao Y., Matson D. W. et al (2010), "Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing", ACS Nano, 4(4), 1790-1798. 154. Lu M., Pei Z., Weng S. et al (2014), "Constructing atomic layer g-C3N4–CdS nanoheterojunctions with efficiently enhanced visible light photocatalytic activity", Phys. Chem. Chem. Phys., 16(39), 21280-21288. 155. Chen Y., Huang W., He D. et al (2014), "Construction of Heterostructured g- C3N4/Ag/TiO2 Microspheres with Enhanced Photocatalysis Performance under Visible-Light Irradiation", ACS Applied Materials & Interfaces, 6(16), 14405-14414. 156. Charle K. P., Konig L., Nepijko S. et al (1998), "The Surface Plasmon Resonance of Free and Emberred Ag-Clusters in the Size Range of 1.5 < D < 30 nm", Cryst. Res. Technol., 33, 1085-1096. 157. Kaur R. and Pal B. (2015), "Plasmonic coinage metal–TiO2 hybrid nanocatalysts for highly efficient photocatalytic oxidation under sunlight irradiation", New J. Chem., 39(8), 5966-5976. 170 158. Zhang S., Zhang B.-p., Li S. et al (2017), "Enhanced photocatalytic activity in Ag-nanoparticle-dispersed BaTiO3 composite thin films: Role of charge transfer", J. Adv. Ceramics, 6(1), 1-10. 159. Gao L., Li Z., and Liu J. (2017), "Facile synthesis of Ag3VO4/β-AgVO3 nanowires with efficient visible-light photocatalytic activity", RSC Adv., 7(44), 27515-27521. 160. Ma T., Shen Q., Xue B. Z. J. et al (2019), "Facile synthesis of Fe-doped g- C3N4 for enhanced visible-light photocatalytic activity", Inorganic Chemistry Communications, 107, 107451-107460. 161. Min C., Shen C., Li R. et al (2016), "In-situ fabrication of Ag/g-C3N4 composite materials with improved photocatalytic activity by coordination- driven assembly of precursors", Ceramics International, 42(4), 5575-5581. 162. Wood D. L. and Tauc J. (1972), "Weak Absorption Tails in Amorphous Semiconductors", Physical Review B, 5(8), 3144-3151. 163. Kolodziejczak-Radzimska A. and Jesionowski T. (2014), "Zinc Oxide-From Synthesis to Application: A Review", Materials (Basel), 7(4), 2833-2881. 164. Li F. M., Hsieh G. W., Dalal S. et al (2008), "Zinc Oxide Nanostructures and High Electron Mobility Nanocomposite Thin Film Transistors", IEEE Transactions on Electron Devices, 55(11), 3001-3011. 165. Farhadi-Khouzani M., Fereshteh Z., Loghman-Estarki M. R. et al (2012), "Different morphologies of ZnO nanostructures via polymeric complex sol–gel method: synthesis and characterization", Journal of Sol-Gel Science and Technology, 64(1), 193-199. 166. Chen D., Jiao X., and Cheng G. (1999), "Hydrothermal synthesis of zinc oxide powders with different morphologies", Solid State Communications, 113(6), 363-366. 167. Meena P. L., Poswal K., Surela A. K. et al (2022), "Synthesis of graphitic carbon nitride/zinc oxide (g-C3N4/ZnO) hybrid nanostructures and investigation of the effect of ZnO on the photodegradation activity of g-C3N4 against the brilliant cresyl blue (BCB) dye under visible light irradiation", Advanced Composites and Hybrid Materials, 6(1),

Các file đính kèm theo tài liệu này:

  • pdfluan_an_nghien_cuu_cai_thien_kha_nang_quang_xuc_tac_cua_g_cn.pdf
  • pdfQĐ thành lập hội đồng chấm luận án TS cấp trường_LÂM THỊ HẰNG.pdf
  • pdfThong tin tom tat ve nhung diem moi cua LA_LÂM THỊ HẰNG.pdf
  • pdfTT_LUẬN ÁN LÂM THỊ HẰNG_TA.pdf
  • pdfTT_LUẬN ÁN LÂM THỊ HẰNG_TV.pdf
Luận văn liên quan